Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
blobe76a44cf330cd47d57084a05fd69611985a79e15
1 /* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
29 #include "fm10k.h"
31 #define DRV_VERSION "0.15.2-k"
32 const char fm10k_driver_version[] = DRV_VERSION;
33 char fm10k_driver_name[] = "fm10k";
34 static const char fm10k_driver_string[] =
35 "Intel(R) Ethernet Switch Host Interface Driver";
36 static const char fm10k_copyright[] =
37 "Copyright (c) 2013 Intel Corporation.";
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
44 /* single workqueue for entire fm10k driver */
45 struct workqueue_struct *fm10k_workqueue = NULL;
47 /**
48 * fm10k_init_module - Driver Registration Routine
50 * fm10k_init_module is the first routine called when the driver is
51 * loaded. All it does is register with the PCI subsystem.
52 **/
53 static int __init fm10k_init_module(void)
55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 pr_info("%s\n", fm10k_copyright);
58 /* create driver workqueue */
59 if (!fm10k_workqueue)
60 fm10k_workqueue = create_workqueue("fm10k");
62 fm10k_dbg_init();
64 return fm10k_register_pci_driver();
66 module_init(fm10k_init_module);
68 /**
69 * fm10k_exit_module - Driver Exit Cleanup Routine
71 * fm10k_exit_module is called just before the driver is removed
72 * from memory.
73 **/
74 static void __exit fm10k_exit_module(void)
76 fm10k_unregister_pci_driver();
78 fm10k_dbg_exit();
80 /* destroy driver workqueue */
81 flush_workqueue(fm10k_workqueue);
82 destroy_workqueue(fm10k_workqueue);
83 fm10k_workqueue = NULL;
85 module_exit(fm10k_exit_module);
87 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
88 struct fm10k_rx_buffer *bi)
90 struct page *page = bi->page;
91 dma_addr_t dma;
93 /* Only page will be NULL if buffer was consumed */
94 if (likely(page))
95 return true;
97 /* alloc new page for storage */
98 page = dev_alloc_page();
99 if (unlikely(!page)) {
100 rx_ring->rx_stats.alloc_failed++;
101 return false;
104 /* map page for use */
105 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
107 /* if mapping failed free memory back to system since
108 * there isn't much point in holding memory we can't use
110 if (dma_mapping_error(rx_ring->dev, dma)) {
111 __free_page(page);
113 rx_ring->rx_stats.alloc_failed++;
114 return false;
117 bi->dma = dma;
118 bi->page = page;
119 bi->page_offset = 0;
121 return true;
125 * fm10k_alloc_rx_buffers - Replace used receive buffers
126 * @rx_ring: ring to place buffers on
127 * @cleaned_count: number of buffers to replace
129 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
131 union fm10k_rx_desc *rx_desc;
132 struct fm10k_rx_buffer *bi;
133 u16 i = rx_ring->next_to_use;
135 /* nothing to do */
136 if (!cleaned_count)
137 return;
139 rx_desc = FM10K_RX_DESC(rx_ring, i);
140 bi = &rx_ring->rx_buffer[i];
141 i -= rx_ring->count;
143 do {
144 if (!fm10k_alloc_mapped_page(rx_ring, bi))
145 break;
147 /* Refresh the desc even if buffer_addrs didn't change
148 * because each write-back erases this info.
150 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
152 rx_desc++;
153 bi++;
154 i++;
155 if (unlikely(!i)) {
156 rx_desc = FM10K_RX_DESC(rx_ring, 0);
157 bi = rx_ring->rx_buffer;
158 i -= rx_ring->count;
161 /* clear the status bits for the next_to_use descriptor */
162 rx_desc->d.staterr = 0;
164 cleaned_count--;
165 } while (cleaned_count);
167 i += rx_ring->count;
169 if (rx_ring->next_to_use != i) {
170 /* record the next descriptor to use */
171 rx_ring->next_to_use = i;
173 /* update next to alloc since we have filled the ring */
174 rx_ring->next_to_alloc = i;
176 /* Force memory writes to complete before letting h/w
177 * know there are new descriptors to fetch. (Only
178 * applicable for weak-ordered memory model archs,
179 * such as IA-64).
181 wmb();
183 /* notify hardware of new descriptors */
184 writel(i, rx_ring->tail);
189 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
190 * @rx_ring: rx descriptor ring to store buffers on
191 * @old_buff: donor buffer to have page reused
193 * Synchronizes page for reuse by the interface
195 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
196 struct fm10k_rx_buffer *old_buff)
198 struct fm10k_rx_buffer *new_buff;
199 u16 nta = rx_ring->next_to_alloc;
201 new_buff = &rx_ring->rx_buffer[nta];
203 /* update, and store next to alloc */
204 nta++;
205 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
207 /* transfer page from old buffer to new buffer */
208 *new_buff = *old_buff;
210 /* sync the buffer for use by the device */
211 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
212 old_buff->page_offset,
213 FM10K_RX_BUFSZ,
214 DMA_FROM_DEVICE);
217 static inline bool fm10k_page_is_reserved(struct page *page)
219 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
222 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
223 struct page *page,
224 unsigned int __maybe_unused truesize)
226 /* avoid re-using remote pages */
227 if (unlikely(fm10k_page_is_reserved(page)))
228 return false;
230 #if (PAGE_SIZE < 8192)
231 /* if we are only owner of page we can reuse it */
232 if (unlikely(page_count(page) != 1))
233 return false;
235 /* flip page offset to other buffer */
236 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
237 #else
238 /* move offset up to the next cache line */
239 rx_buffer->page_offset += truesize;
241 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
242 return false;
243 #endif
245 /* Even if we own the page, we are not allowed to use atomic_set()
246 * This would break get_page_unless_zero() users.
248 atomic_inc(&page->_count);
250 return true;
254 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
255 * @rx_buffer: buffer containing page to add
256 * @rx_desc: descriptor containing length of buffer written by hardware
257 * @skb: sk_buff to place the data into
259 * This function will add the data contained in rx_buffer->page to the skb.
260 * This is done either through a direct copy if the data in the buffer is
261 * less than the skb header size, otherwise it will just attach the page as
262 * a frag to the skb.
264 * The function will then update the page offset if necessary and return
265 * true if the buffer can be reused by the interface.
267 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
268 union fm10k_rx_desc *rx_desc,
269 struct sk_buff *skb)
271 struct page *page = rx_buffer->page;
272 unsigned char *va = page_address(page) + rx_buffer->page_offset;
273 unsigned int size = le16_to_cpu(rx_desc->w.length);
274 #if (PAGE_SIZE < 8192)
275 unsigned int truesize = FM10K_RX_BUFSZ;
276 #else
277 unsigned int truesize = SKB_DATA_ALIGN(size);
278 #endif
279 unsigned int pull_len;
281 if (unlikely(skb_is_nonlinear(skb)))
282 goto add_tail_frag;
284 if (likely(size <= FM10K_RX_HDR_LEN)) {
285 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
287 /* page is not reserved, we can reuse buffer as-is */
288 if (likely(!fm10k_page_is_reserved(page)))
289 return true;
291 /* this page cannot be reused so discard it */
292 __free_page(page);
293 return false;
296 /* we need the header to contain the greater of either ETH_HLEN or
297 * 60 bytes if the skb->len is less than 60 for skb_pad.
299 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
301 /* align pull length to size of long to optimize memcpy performance */
302 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
304 /* update all of the pointers */
305 va += pull_len;
306 size -= pull_len;
308 add_tail_frag:
309 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
310 (unsigned long)va & ~PAGE_MASK, size, truesize);
312 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
315 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
316 union fm10k_rx_desc *rx_desc,
317 struct sk_buff *skb)
319 struct fm10k_rx_buffer *rx_buffer;
320 struct page *page;
322 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
323 page = rx_buffer->page;
324 prefetchw(page);
326 if (likely(!skb)) {
327 void *page_addr = page_address(page) +
328 rx_buffer->page_offset;
330 /* prefetch first cache line of first page */
331 prefetch(page_addr);
332 #if L1_CACHE_BYTES < 128
333 prefetch(page_addr + L1_CACHE_BYTES);
334 #endif
336 /* allocate a skb to store the frags */
337 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
338 FM10K_RX_HDR_LEN);
339 if (unlikely(!skb)) {
340 rx_ring->rx_stats.alloc_failed++;
341 return NULL;
344 /* we will be copying header into skb->data in
345 * pskb_may_pull so it is in our interest to prefetch
346 * it now to avoid a possible cache miss
348 prefetchw(skb->data);
351 /* we are reusing so sync this buffer for CPU use */
352 dma_sync_single_range_for_cpu(rx_ring->dev,
353 rx_buffer->dma,
354 rx_buffer->page_offset,
355 FM10K_RX_BUFSZ,
356 DMA_FROM_DEVICE);
358 /* pull page into skb */
359 if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
360 /* hand second half of page back to the ring */
361 fm10k_reuse_rx_page(rx_ring, rx_buffer);
362 } else {
363 /* we are not reusing the buffer so unmap it */
364 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
365 PAGE_SIZE, DMA_FROM_DEVICE);
368 /* clear contents of rx_buffer */
369 rx_buffer->page = NULL;
371 return skb;
374 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
375 union fm10k_rx_desc *rx_desc,
376 struct sk_buff *skb)
378 skb_checksum_none_assert(skb);
380 /* Rx checksum disabled via ethtool */
381 if (!(ring->netdev->features & NETIF_F_RXCSUM))
382 return;
384 /* TCP/UDP checksum error bit is set */
385 if (fm10k_test_staterr(rx_desc,
386 FM10K_RXD_STATUS_L4E |
387 FM10K_RXD_STATUS_L4E2 |
388 FM10K_RXD_STATUS_IPE |
389 FM10K_RXD_STATUS_IPE2)) {
390 ring->rx_stats.csum_err++;
391 return;
394 /* It must be a TCP or UDP packet with a valid checksum */
395 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
396 skb->encapsulation = true;
397 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
398 return;
400 skb->ip_summed = CHECKSUM_UNNECESSARY;
402 ring->rx_stats.csum_good++;
405 #define FM10K_RSS_L4_TYPES_MASK \
406 ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
407 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
408 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
409 (1ul << FM10K_RSSTYPE_IPV6_UDP))
411 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
412 union fm10k_rx_desc *rx_desc,
413 struct sk_buff *skb)
415 u16 rss_type;
417 if (!(ring->netdev->features & NETIF_F_RXHASH))
418 return;
420 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
421 if (!rss_type)
422 return;
424 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
425 (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
426 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
429 static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
430 union fm10k_rx_desc *rx_desc,
431 struct sk_buff *skb)
433 struct fm10k_intfc *interface = rx_ring->q_vector->interface;
435 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
437 if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
438 fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
439 le64_to_cpu(rx_desc->q.timestamp));
442 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
443 union fm10k_rx_desc __maybe_unused *rx_desc,
444 struct sk_buff *skb)
446 struct net_device *dev = rx_ring->netdev;
447 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
449 /* check to see if DGLORT belongs to a MACVLAN */
450 if (l2_accel) {
451 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
453 idx -= l2_accel->dglort;
454 if (idx < l2_accel->size && l2_accel->macvlan[idx])
455 dev = l2_accel->macvlan[idx];
456 else
457 l2_accel = NULL;
460 skb->protocol = eth_type_trans(skb, dev);
462 if (!l2_accel)
463 return;
465 /* update MACVLAN statistics */
466 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
467 !!(rx_desc->w.hdr_info &
468 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
472 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
473 * @rx_ring: rx descriptor ring packet is being transacted on
474 * @rx_desc: pointer to the EOP Rx descriptor
475 * @skb: pointer to current skb being populated
477 * This function checks the ring, descriptor, and packet information in
478 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
479 * other fields within the skb.
481 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
482 union fm10k_rx_desc *rx_desc,
483 struct sk_buff *skb)
485 unsigned int len = skb->len;
487 fm10k_rx_hash(rx_ring, rx_desc, skb);
489 fm10k_rx_checksum(rx_ring, rx_desc, skb);
491 fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
493 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
495 skb_record_rx_queue(skb, rx_ring->queue_index);
497 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
499 if (rx_desc->w.vlan) {
500 u16 vid = le16_to_cpu(rx_desc->w.vlan);
502 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
503 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
504 else if (vid & VLAN_PRIO_MASK)
505 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
506 vid & VLAN_PRIO_MASK);
509 fm10k_type_trans(rx_ring, rx_desc, skb);
511 return len;
515 * fm10k_is_non_eop - process handling of non-EOP buffers
516 * @rx_ring: Rx ring being processed
517 * @rx_desc: Rx descriptor for current buffer
519 * This function updates next to clean. If the buffer is an EOP buffer
520 * this function exits returning false, otherwise it will place the
521 * sk_buff in the next buffer to be chained and return true indicating
522 * that this is in fact a non-EOP buffer.
524 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
525 union fm10k_rx_desc *rx_desc)
527 u32 ntc = rx_ring->next_to_clean + 1;
529 /* fetch, update, and store next to clean */
530 ntc = (ntc < rx_ring->count) ? ntc : 0;
531 rx_ring->next_to_clean = ntc;
533 prefetch(FM10K_RX_DESC(rx_ring, ntc));
535 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
536 return false;
538 return true;
542 * fm10k_cleanup_headers - Correct corrupted or empty headers
543 * @rx_ring: rx descriptor ring packet is being transacted on
544 * @rx_desc: pointer to the EOP Rx descriptor
545 * @skb: pointer to current skb being fixed
547 * Address the case where we are pulling data in on pages only
548 * and as such no data is present in the skb header.
550 * In addition if skb is not at least 60 bytes we need to pad it so that
551 * it is large enough to qualify as a valid Ethernet frame.
553 * Returns true if an error was encountered and skb was freed.
555 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
556 union fm10k_rx_desc *rx_desc,
557 struct sk_buff *skb)
559 if (unlikely((fm10k_test_staterr(rx_desc,
560 FM10K_RXD_STATUS_RXE)))) {
561 #define FM10K_TEST_RXD_BIT(rxd, bit) \
562 ((rxd)->w.csum_err & cpu_to_le16(bit))
563 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
564 rx_ring->rx_stats.switch_errors++;
565 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
566 rx_ring->rx_stats.drops++;
567 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
568 rx_ring->rx_stats.pp_errors++;
569 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
570 rx_ring->rx_stats.link_errors++;
571 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
572 rx_ring->rx_stats.length_errors++;
573 dev_kfree_skb_any(skb);
574 rx_ring->rx_stats.errors++;
575 return true;
578 /* if eth_skb_pad returns an error the skb was freed */
579 if (eth_skb_pad(skb))
580 return true;
582 return false;
586 * fm10k_receive_skb - helper function to handle rx indications
587 * @q_vector: structure containing interrupt and ring information
588 * @skb: packet to send up
590 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
591 struct sk_buff *skb)
593 napi_gro_receive(&q_vector->napi, skb);
596 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
597 struct fm10k_ring *rx_ring,
598 int budget)
600 struct sk_buff *skb = rx_ring->skb;
601 unsigned int total_bytes = 0, total_packets = 0;
602 u16 cleaned_count = fm10k_desc_unused(rx_ring);
604 while (likely(total_packets < budget)) {
605 union fm10k_rx_desc *rx_desc;
607 /* return some buffers to hardware, one at a time is too slow */
608 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
609 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
610 cleaned_count = 0;
613 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
615 if (!rx_desc->d.staterr)
616 break;
618 /* This memory barrier is needed to keep us from reading
619 * any other fields out of the rx_desc until we know the
620 * descriptor has been written back
622 dma_rmb();
624 /* retrieve a buffer from the ring */
625 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
627 /* exit if we failed to retrieve a buffer */
628 if (!skb)
629 break;
631 cleaned_count++;
633 /* fetch next buffer in frame if non-eop */
634 if (fm10k_is_non_eop(rx_ring, rx_desc))
635 continue;
637 /* verify the packet layout is correct */
638 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
639 skb = NULL;
640 continue;
643 /* populate checksum, timestamp, VLAN, and protocol */
644 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
646 fm10k_receive_skb(q_vector, skb);
648 /* reset skb pointer */
649 skb = NULL;
651 /* update budget accounting */
652 total_packets++;
655 /* place incomplete frames back on ring for completion */
656 rx_ring->skb = skb;
658 u64_stats_update_begin(&rx_ring->syncp);
659 rx_ring->stats.packets += total_packets;
660 rx_ring->stats.bytes += total_bytes;
661 u64_stats_update_end(&rx_ring->syncp);
662 q_vector->rx.total_packets += total_packets;
663 q_vector->rx.total_bytes += total_bytes;
665 return total_packets;
668 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
669 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
671 struct fm10k_intfc *interface = netdev_priv(skb->dev);
672 struct fm10k_vxlan_port *vxlan_port;
674 /* we can only offload a vxlan if we recognize it as such */
675 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
676 struct fm10k_vxlan_port, list);
678 if (!vxlan_port)
679 return NULL;
680 if (vxlan_port->port != udp_hdr(skb)->dest)
681 return NULL;
683 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
684 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
687 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
688 #define NVGRE_TNI htons(0x2000)
689 struct fm10k_nvgre_hdr {
690 __be16 flags;
691 __be16 proto;
692 __be32 tni;
695 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
697 struct fm10k_nvgre_hdr *nvgre_hdr;
698 int hlen = ip_hdrlen(skb);
700 /* currently only IPv4 is supported due to hlen above */
701 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
702 return NULL;
704 /* our transport header should be NVGRE */
705 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
707 /* verify all reserved flags are 0 */
708 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
709 return NULL;
711 /* report start of ethernet header */
712 if (nvgre_hdr->flags & NVGRE_TNI)
713 return (struct ethhdr *)(nvgre_hdr + 1);
715 return (struct ethhdr *)(&nvgre_hdr->tni);
718 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
720 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
721 struct ethhdr *eth_hdr;
723 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
724 skb->inner_protocol != htons(ETH_P_TEB))
725 return 0;
727 switch (vlan_get_protocol(skb)) {
728 case htons(ETH_P_IP):
729 l4_hdr = ip_hdr(skb)->protocol;
730 break;
731 case htons(ETH_P_IPV6):
732 l4_hdr = ipv6_hdr(skb)->nexthdr;
733 break;
734 default:
735 return 0;
738 switch (l4_hdr) {
739 case IPPROTO_UDP:
740 eth_hdr = fm10k_port_is_vxlan(skb);
741 break;
742 case IPPROTO_GRE:
743 eth_hdr = fm10k_gre_is_nvgre(skb);
744 break;
745 default:
746 return 0;
749 if (!eth_hdr)
750 return 0;
752 switch (eth_hdr->h_proto) {
753 case htons(ETH_P_IP):
754 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
755 break;
756 case htons(ETH_P_IPV6):
757 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
758 break;
759 default:
760 return 0;
763 switch (inner_l4_hdr) {
764 case IPPROTO_TCP:
765 inner_l4_hlen = inner_tcp_hdrlen(skb);
766 break;
767 case IPPROTO_UDP:
768 inner_l4_hlen = 8;
769 break;
770 default:
771 return 0;
774 /* The hardware allows tunnel offloads only if the combined inner and
775 * outer header is 184 bytes or less
777 if (skb_inner_transport_header(skb) + inner_l4_hlen -
778 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
779 return 0;
781 return eth_hdr->h_proto;
784 static int fm10k_tso(struct fm10k_ring *tx_ring,
785 struct fm10k_tx_buffer *first)
787 struct sk_buff *skb = first->skb;
788 struct fm10k_tx_desc *tx_desc;
789 unsigned char *th;
790 u8 hdrlen;
792 if (skb->ip_summed != CHECKSUM_PARTIAL)
793 return 0;
795 if (!skb_is_gso(skb))
796 return 0;
798 /* compute header lengths */
799 if (skb->encapsulation) {
800 if (!fm10k_tx_encap_offload(skb))
801 goto err_vxlan;
802 th = skb_inner_transport_header(skb);
803 } else {
804 th = skb_transport_header(skb);
807 /* compute offset from SOF to transport header and add header len */
808 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
810 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
812 /* update gso size and bytecount with header size */
813 first->gso_segs = skb_shinfo(skb)->gso_segs;
814 first->bytecount += (first->gso_segs - 1) * hdrlen;
816 /* populate Tx descriptor header size and mss */
817 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
818 tx_desc->hdrlen = hdrlen;
819 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
821 return 1;
822 err_vxlan:
823 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
824 if (!net_ratelimit())
825 netdev_err(tx_ring->netdev,
826 "TSO requested for unsupported tunnel, disabling offload\n");
827 return -1;
830 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
831 struct fm10k_tx_buffer *first)
833 struct sk_buff *skb = first->skb;
834 struct fm10k_tx_desc *tx_desc;
835 union {
836 struct iphdr *ipv4;
837 struct ipv6hdr *ipv6;
838 u8 *raw;
839 } network_hdr;
840 __be16 protocol;
841 u8 l4_hdr = 0;
843 if (skb->ip_summed != CHECKSUM_PARTIAL)
844 goto no_csum;
846 if (skb->encapsulation) {
847 protocol = fm10k_tx_encap_offload(skb);
848 if (!protocol) {
849 if (skb_checksum_help(skb)) {
850 dev_warn(tx_ring->dev,
851 "failed to offload encap csum!\n");
852 tx_ring->tx_stats.csum_err++;
854 goto no_csum;
856 network_hdr.raw = skb_inner_network_header(skb);
857 } else {
858 protocol = vlan_get_protocol(skb);
859 network_hdr.raw = skb_network_header(skb);
862 switch (protocol) {
863 case htons(ETH_P_IP):
864 l4_hdr = network_hdr.ipv4->protocol;
865 break;
866 case htons(ETH_P_IPV6):
867 l4_hdr = network_hdr.ipv6->nexthdr;
868 break;
869 default:
870 if (unlikely(net_ratelimit())) {
871 dev_warn(tx_ring->dev,
872 "partial checksum but ip version=%x!\n",
873 protocol);
875 tx_ring->tx_stats.csum_err++;
876 goto no_csum;
879 switch (l4_hdr) {
880 case IPPROTO_TCP:
881 case IPPROTO_UDP:
882 break;
883 case IPPROTO_GRE:
884 if (skb->encapsulation)
885 break;
886 default:
887 if (unlikely(net_ratelimit())) {
888 dev_warn(tx_ring->dev,
889 "partial checksum but l4 proto=%x!\n",
890 l4_hdr);
892 tx_ring->tx_stats.csum_err++;
893 goto no_csum;
896 /* update TX checksum flag */
897 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
898 tx_ring->tx_stats.csum_good++;
900 no_csum:
901 /* populate Tx descriptor header size and mss */
902 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
903 tx_desc->hdrlen = 0;
904 tx_desc->mss = 0;
907 #define FM10K_SET_FLAG(_input, _flag, _result) \
908 ((_flag <= _result) ? \
909 ((u32)(_input & _flag) * (_result / _flag)) : \
910 ((u32)(_input & _flag) / (_flag / _result)))
912 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
914 /* set type for advanced descriptor with frame checksum insertion */
915 u32 desc_flags = 0;
917 /* set timestamping bits */
918 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
919 likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
920 desc_flags |= FM10K_TXD_FLAG_TIME;
922 /* set checksum offload bits */
923 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
924 FM10K_TXD_FLAG_CSUM);
926 return desc_flags;
929 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
930 struct fm10k_tx_desc *tx_desc, u16 i,
931 dma_addr_t dma, unsigned int size, u8 desc_flags)
933 /* set RS and INT for last frame in a cache line */
934 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
935 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
937 /* record values to descriptor */
938 tx_desc->buffer_addr = cpu_to_le64(dma);
939 tx_desc->flags = desc_flags;
940 tx_desc->buflen = cpu_to_le16(size);
942 /* return true if we just wrapped the ring */
943 return i == tx_ring->count;
946 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
948 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
950 /* Memory barrier before checking head and tail */
951 smp_mb();
953 /* Check again in a case another CPU has just made room available */
954 if (likely(fm10k_desc_unused(tx_ring) < size))
955 return -EBUSY;
957 /* A reprieve! - use start_queue because it doesn't call schedule */
958 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
959 ++tx_ring->tx_stats.restart_queue;
960 return 0;
963 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
965 if (likely(fm10k_desc_unused(tx_ring) >= size))
966 return 0;
967 return __fm10k_maybe_stop_tx(tx_ring, size);
970 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
971 struct fm10k_tx_buffer *first)
973 struct sk_buff *skb = first->skb;
974 struct fm10k_tx_buffer *tx_buffer;
975 struct fm10k_tx_desc *tx_desc;
976 struct skb_frag_struct *frag;
977 unsigned char *data;
978 dma_addr_t dma;
979 unsigned int data_len, size;
980 u32 tx_flags = first->tx_flags;
981 u16 i = tx_ring->next_to_use;
982 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
984 tx_desc = FM10K_TX_DESC(tx_ring, i);
986 /* add HW VLAN tag */
987 if (skb_vlan_tag_present(skb))
988 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
989 else
990 tx_desc->vlan = 0;
992 size = skb_headlen(skb);
993 data = skb->data;
995 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
997 data_len = skb->data_len;
998 tx_buffer = first;
1000 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1001 if (dma_mapping_error(tx_ring->dev, dma))
1002 goto dma_error;
1004 /* record length, and DMA address */
1005 dma_unmap_len_set(tx_buffer, len, size);
1006 dma_unmap_addr_set(tx_buffer, dma, dma);
1008 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1009 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1010 FM10K_MAX_DATA_PER_TXD, flags)) {
1011 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1012 i = 0;
1015 dma += FM10K_MAX_DATA_PER_TXD;
1016 size -= FM10K_MAX_DATA_PER_TXD;
1019 if (likely(!data_len))
1020 break;
1022 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1023 dma, size, flags)) {
1024 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1025 i = 0;
1028 size = skb_frag_size(frag);
1029 data_len -= size;
1031 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1032 DMA_TO_DEVICE);
1034 tx_buffer = &tx_ring->tx_buffer[i];
1037 /* write last descriptor with LAST bit set */
1038 flags |= FM10K_TXD_FLAG_LAST;
1040 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1041 i = 0;
1043 /* record bytecount for BQL */
1044 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1046 /* record SW timestamp if HW timestamp is not available */
1047 skb_tx_timestamp(first->skb);
1049 /* Force memory writes to complete before letting h/w know there
1050 * are new descriptors to fetch. (Only applicable for weak-ordered
1051 * memory model archs, such as IA-64).
1053 * We also need this memory barrier to make certain all of the
1054 * status bits have been updated before next_to_watch is written.
1056 wmb();
1058 /* set next_to_watch value indicating a packet is present */
1059 first->next_to_watch = tx_desc;
1061 tx_ring->next_to_use = i;
1063 /* Make sure there is space in the ring for the next send. */
1064 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1066 /* notify HW of packet */
1067 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1068 writel(i, tx_ring->tail);
1070 /* we need this if more than one processor can write to our tail
1071 * at a time, it synchronizes IO on IA64/Altix systems
1073 mmiowb();
1076 return;
1077 dma_error:
1078 dev_err(tx_ring->dev, "TX DMA map failed\n");
1080 /* clear dma mappings for failed tx_buffer map */
1081 for (;;) {
1082 tx_buffer = &tx_ring->tx_buffer[i];
1083 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1084 if (tx_buffer == first)
1085 break;
1086 if (i == 0)
1087 i = tx_ring->count;
1088 i--;
1091 tx_ring->next_to_use = i;
1094 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1095 struct fm10k_ring *tx_ring)
1097 struct fm10k_tx_buffer *first;
1098 int tso;
1099 u32 tx_flags = 0;
1100 unsigned short f;
1101 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1103 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1104 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1105 * + 2 desc gap to keep tail from touching head
1106 * otherwise try next time
1108 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1109 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1111 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1112 tx_ring->tx_stats.tx_busy++;
1113 return NETDEV_TX_BUSY;
1116 /* record the location of the first descriptor for this packet */
1117 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1118 first->skb = skb;
1119 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1120 first->gso_segs = 1;
1122 /* record initial flags and protocol */
1123 first->tx_flags = tx_flags;
1125 tso = fm10k_tso(tx_ring, first);
1126 if (tso < 0)
1127 goto out_drop;
1128 else if (!tso)
1129 fm10k_tx_csum(tx_ring, first);
1131 fm10k_tx_map(tx_ring, first);
1133 return NETDEV_TX_OK;
1135 out_drop:
1136 dev_kfree_skb_any(first->skb);
1137 first->skb = NULL;
1139 return NETDEV_TX_OK;
1142 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1144 return ring->stats.packets;
1147 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1149 /* use SW head and tail until we have real hardware */
1150 u32 head = ring->next_to_clean;
1151 u32 tail = ring->next_to_use;
1153 return ((head <= tail) ? tail : tail + ring->count) - head;
1156 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1158 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1159 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1160 u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1162 clear_check_for_tx_hang(tx_ring);
1164 /* Check for a hung queue, but be thorough. This verifies
1165 * that a transmit has been completed since the previous
1166 * check AND there is at least one packet pending. By
1167 * requiring this to fail twice we avoid races with
1168 * clearing the ARMED bit and conditions where we
1169 * run the check_tx_hang logic with a transmit completion
1170 * pending but without time to complete it yet.
1172 if (!tx_pending || (tx_done_old != tx_done)) {
1173 /* update completed stats and continue */
1174 tx_ring->tx_stats.tx_done_old = tx_done;
1175 /* reset the countdown */
1176 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1178 return false;
1181 /* make sure it is true for two checks in a row */
1182 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1186 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1187 * @interface: driver private struct
1189 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1191 /* Do the reset outside of interrupt context */
1192 if (!test_bit(__FM10K_DOWN, &interface->state)) {
1193 interface->tx_timeout_count++;
1194 interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1195 fm10k_service_event_schedule(interface);
1200 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1201 * @q_vector: structure containing interrupt and ring information
1202 * @tx_ring: tx ring to clean
1204 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1205 struct fm10k_ring *tx_ring)
1207 struct fm10k_intfc *interface = q_vector->interface;
1208 struct fm10k_tx_buffer *tx_buffer;
1209 struct fm10k_tx_desc *tx_desc;
1210 unsigned int total_bytes = 0, total_packets = 0;
1211 unsigned int budget = q_vector->tx.work_limit;
1212 unsigned int i = tx_ring->next_to_clean;
1214 if (test_bit(__FM10K_DOWN, &interface->state))
1215 return true;
1217 tx_buffer = &tx_ring->tx_buffer[i];
1218 tx_desc = FM10K_TX_DESC(tx_ring, i);
1219 i -= tx_ring->count;
1221 do {
1222 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1224 /* if next_to_watch is not set then there is no work pending */
1225 if (!eop_desc)
1226 break;
1228 /* prevent any other reads prior to eop_desc */
1229 read_barrier_depends();
1231 /* if DD is not set pending work has not been completed */
1232 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1233 break;
1235 /* clear next_to_watch to prevent false hangs */
1236 tx_buffer->next_to_watch = NULL;
1238 /* update the statistics for this packet */
1239 total_bytes += tx_buffer->bytecount;
1240 total_packets += tx_buffer->gso_segs;
1242 /* free the skb */
1243 dev_consume_skb_any(tx_buffer->skb);
1245 /* unmap skb header data */
1246 dma_unmap_single(tx_ring->dev,
1247 dma_unmap_addr(tx_buffer, dma),
1248 dma_unmap_len(tx_buffer, len),
1249 DMA_TO_DEVICE);
1251 /* clear tx_buffer data */
1252 tx_buffer->skb = NULL;
1253 dma_unmap_len_set(tx_buffer, len, 0);
1255 /* unmap remaining buffers */
1256 while (tx_desc != eop_desc) {
1257 tx_buffer++;
1258 tx_desc++;
1259 i++;
1260 if (unlikely(!i)) {
1261 i -= tx_ring->count;
1262 tx_buffer = tx_ring->tx_buffer;
1263 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1266 /* unmap any remaining paged data */
1267 if (dma_unmap_len(tx_buffer, len)) {
1268 dma_unmap_page(tx_ring->dev,
1269 dma_unmap_addr(tx_buffer, dma),
1270 dma_unmap_len(tx_buffer, len),
1271 DMA_TO_DEVICE);
1272 dma_unmap_len_set(tx_buffer, len, 0);
1276 /* move us one more past the eop_desc for start of next pkt */
1277 tx_buffer++;
1278 tx_desc++;
1279 i++;
1280 if (unlikely(!i)) {
1281 i -= tx_ring->count;
1282 tx_buffer = tx_ring->tx_buffer;
1283 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1286 /* issue prefetch for next Tx descriptor */
1287 prefetch(tx_desc);
1289 /* update budget accounting */
1290 budget--;
1291 } while (likely(budget));
1293 i += tx_ring->count;
1294 tx_ring->next_to_clean = i;
1295 u64_stats_update_begin(&tx_ring->syncp);
1296 tx_ring->stats.bytes += total_bytes;
1297 tx_ring->stats.packets += total_packets;
1298 u64_stats_update_end(&tx_ring->syncp);
1299 q_vector->tx.total_bytes += total_bytes;
1300 q_vector->tx.total_packets += total_packets;
1302 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1303 /* schedule immediate reset if we believe we hung */
1304 struct fm10k_hw *hw = &interface->hw;
1306 netif_err(interface, drv, tx_ring->netdev,
1307 "Detected Tx Unit Hang\n"
1308 " Tx Queue <%d>\n"
1309 " TDH, TDT <%x>, <%x>\n"
1310 " next_to_use <%x>\n"
1311 " next_to_clean <%x>\n",
1312 tx_ring->queue_index,
1313 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1314 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1315 tx_ring->next_to_use, i);
1317 netif_stop_subqueue(tx_ring->netdev,
1318 tx_ring->queue_index);
1320 netif_info(interface, probe, tx_ring->netdev,
1321 "tx hang %d detected on queue %d, resetting interface\n",
1322 interface->tx_timeout_count + 1,
1323 tx_ring->queue_index);
1325 fm10k_tx_timeout_reset(interface);
1327 /* the netdev is about to reset, no point in enabling stuff */
1328 return true;
1331 /* notify netdev of completed buffers */
1332 netdev_tx_completed_queue(txring_txq(tx_ring),
1333 total_packets, total_bytes);
1335 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1336 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1337 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1338 /* Make sure that anybody stopping the queue after this
1339 * sees the new next_to_clean.
1341 smp_mb();
1342 if (__netif_subqueue_stopped(tx_ring->netdev,
1343 tx_ring->queue_index) &&
1344 !test_bit(__FM10K_DOWN, &interface->state)) {
1345 netif_wake_subqueue(tx_ring->netdev,
1346 tx_ring->queue_index);
1347 ++tx_ring->tx_stats.restart_queue;
1351 return !!budget;
1355 * fm10k_update_itr - update the dynamic ITR value based on packet size
1357 * Stores a new ITR value based on strictly on packet size. The
1358 * divisors and thresholds used by this function were determined based
1359 * on theoretical maximum wire speed and testing data, in order to
1360 * minimize response time while increasing bulk throughput.
1362 * @ring_container: Container for rings to have ITR updated
1364 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1366 unsigned int avg_wire_size, packets;
1368 /* Only update ITR if we are using adaptive setting */
1369 if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1370 goto clear_counts;
1372 packets = ring_container->total_packets;
1373 if (!packets)
1374 goto clear_counts;
1376 avg_wire_size = ring_container->total_bytes / packets;
1378 /* Add 24 bytes to size to account for CRC, preamble, and gap */
1379 avg_wire_size += 24;
1381 /* Don't starve jumbo frames */
1382 if (avg_wire_size > 3000)
1383 avg_wire_size = 3000;
1385 /* Give a little boost to mid-size frames */
1386 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1387 avg_wire_size /= 3;
1388 else
1389 avg_wire_size /= 2;
1391 /* write back value and retain adaptive flag */
1392 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1394 clear_counts:
1395 ring_container->total_bytes = 0;
1396 ring_container->total_packets = 0;
1399 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1401 /* Enable auto-mask and clear the current mask */
1402 u32 itr = FM10K_ITR_ENABLE;
1404 /* Update Tx ITR */
1405 fm10k_update_itr(&q_vector->tx);
1407 /* Update Rx ITR */
1408 fm10k_update_itr(&q_vector->rx);
1410 /* Store Tx itr in timer slot 0 */
1411 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1413 /* Shift Rx itr to timer slot 1 */
1414 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1416 /* Write the final value to the ITR register */
1417 writel(itr, q_vector->itr);
1420 static int fm10k_poll(struct napi_struct *napi, int budget)
1422 struct fm10k_q_vector *q_vector =
1423 container_of(napi, struct fm10k_q_vector, napi);
1424 struct fm10k_ring *ring;
1425 int per_ring_budget, work_done = 0;
1426 bool clean_complete = true;
1428 fm10k_for_each_ring(ring, q_vector->tx)
1429 clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1431 /* attempt to distribute budget to each queue fairly, but don't
1432 * allow the budget to go below 1 because we'll exit polling
1434 if (q_vector->rx.count > 1)
1435 per_ring_budget = max(budget/q_vector->rx.count, 1);
1436 else
1437 per_ring_budget = budget;
1439 fm10k_for_each_ring(ring, q_vector->rx) {
1440 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1442 work_done += work;
1443 clean_complete &= !!(work < per_ring_budget);
1446 /* If all work not completed, return budget and keep polling */
1447 if (!clean_complete)
1448 return budget;
1450 /* all work done, exit the polling mode */
1451 napi_complete_done(napi, work_done);
1453 /* re-enable the q_vector */
1454 fm10k_qv_enable(q_vector);
1456 return 0;
1460 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1461 * @interface: board private structure to initialize
1463 * When QoS (Quality of Service) is enabled, allocate queues for
1464 * each traffic class. If multiqueue isn't available,then abort QoS
1465 * initialization.
1467 * This function handles all combinations of Qos and RSS.
1470 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1472 struct net_device *dev = interface->netdev;
1473 struct fm10k_ring_feature *f;
1474 int rss_i, i;
1475 int pcs;
1477 /* Map queue offset and counts onto allocated tx queues */
1478 pcs = netdev_get_num_tc(dev);
1480 if (pcs <= 1)
1481 return false;
1483 /* set QoS mask and indices */
1484 f = &interface->ring_feature[RING_F_QOS];
1485 f->indices = pcs;
1486 f->mask = (1 << fls(pcs - 1)) - 1;
1488 /* determine the upper limit for our current DCB mode */
1489 rss_i = interface->hw.mac.max_queues / pcs;
1490 rss_i = 1 << (fls(rss_i) - 1);
1492 /* set RSS mask and indices */
1493 f = &interface->ring_feature[RING_F_RSS];
1494 rss_i = min_t(u16, rss_i, f->limit);
1495 f->indices = rss_i;
1496 f->mask = (1 << fls(rss_i - 1)) - 1;
1498 /* configure pause class to queue mapping */
1499 for (i = 0; i < pcs; i++)
1500 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1502 interface->num_rx_queues = rss_i * pcs;
1503 interface->num_tx_queues = rss_i * pcs;
1505 return true;
1509 * fm10k_set_rss_queues: Allocate queues for RSS
1510 * @interface: board private structure to initialize
1512 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1513 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1516 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1518 struct fm10k_ring_feature *f;
1519 u16 rss_i;
1521 f = &interface->ring_feature[RING_F_RSS];
1522 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1524 /* record indices and power of 2 mask for RSS */
1525 f->indices = rss_i;
1526 f->mask = (1 << fls(rss_i - 1)) - 1;
1528 interface->num_rx_queues = rss_i;
1529 interface->num_tx_queues = rss_i;
1531 return true;
1535 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1536 * @interface: board private structure to initialize
1538 * This is the top level queue allocation routine. The order here is very
1539 * important, starting with the "most" number of features turned on at once,
1540 * and ending with the smallest set of features. This way large combinations
1541 * can be allocated if they're turned on, and smaller combinations are the
1542 * fallthrough conditions.
1545 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1547 /* Start with base case */
1548 interface->num_rx_queues = 1;
1549 interface->num_tx_queues = 1;
1551 if (fm10k_set_qos_queues(interface))
1552 return;
1554 fm10k_set_rss_queues(interface);
1558 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1559 * @interface: board private structure to initialize
1560 * @v_count: q_vectors allocated on interface, used for ring interleaving
1561 * @v_idx: index of vector in interface struct
1562 * @txr_count: total number of Tx rings to allocate
1563 * @txr_idx: index of first Tx ring to allocate
1564 * @rxr_count: total number of Rx rings to allocate
1565 * @rxr_idx: index of first Rx ring to allocate
1567 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1569 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1570 unsigned int v_count, unsigned int v_idx,
1571 unsigned int txr_count, unsigned int txr_idx,
1572 unsigned int rxr_count, unsigned int rxr_idx)
1574 struct fm10k_q_vector *q_vector;
1575 struct fm10k_ring *ring;
1576 int ring_count, size;
1578 ring_count = txr_count + rxr_count;
1579 size = sizeof(struct fm10k_q_vector) +
1580 (sizeof(struct fm10k_ring) * ring_count);
1582 /* allocate q_vector and rings */
1583 q_vector = kzalloc(size, GFP_KERNEL);
1584 if (!q_vector)
1585 return -ENOMEM;
1587 /* initialize NAPI */
1588 netif_napi_add(interface->netdev, &q_vector->napi,
1589 fm10k_poll, NAPI_POLL_WEIGHT);
1591 /* tie q_vector and interface together */
1592 interface->q_vector[v_idx] = q_vector;
1593 q_vector->interface = interface;
1594 q_vector->v_idx = v_idx;
1596 /* initialize pointer to rings */
1597 ring = q_vector->ring;
1599 /* save Tx ring container info */
1600 q_vector->tx.ring = ring;
1601 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1602 q_vector->tx.itr = interface->tx_itr;
1603 q_vector->tx.count = txr_count;
1605 while (txr_count) {
1606 /* assign generic ring traits */
1607 ring->dev = &interface->pdev->dev;
1608 ring->netdev = interface->netdev;
1610 /* configure backlink on ring */
1611 ring->q_vector = q_vector;
1613 /* apply Tx specific ring traits */
1614 ring->count = interface->tx_ring_count;
1615 ring->queue_index = txr_idx;
1617 /* assign ring to interface */
1618 interface->tx_ring[txr_idx] = ring;
1620 /* update count and index */
1621 txr_count--;
1622 txr_idx += v_count;
1624 /* push pointer to next ring */
1625 ring++;
1628 /* save Rx ring container info */
1629 q_vector->rx.ring = ring;
1630 q_vector->rx.itr = interface->rx_itr;
1631 q_vector->rx.count = rxr_count;
1633 while (rxr_count) {
1634 /* assign generic ring traits */
1635 ring->dev = &interface->pdev->dev;
1636 ring->netdev = interface->netdev;
1637 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1639 /* configure backlink on ring */
1640 ring->q_vector = q_vector;
1642 /* apply Rx specific ring traits */
1643 ring->count = interface->rx_ring_count;
1644 ring->queue_index = rxr_idx;
1646 /* assign ring to interface */
1647 interface->rx_ring[rxr_idx] = ring;
1649 /* update count and index */
1650 rxr_count--;
1651 rxr_idx += v_count;
1653 /* push pointer to next ring */
1654 ring++;
1657 fm10k_dbg_q_vector_init(q_vector);
1659 return 0;
1663 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1664 * @interface: board private structure to initialize
1665 * @v_idx: Index of vector to be freed
1667 * This function frees the memory allocated to the q_vector. In addition if
1668 * NAPI is enabled it will delete any references to the NAPI struct prior
1669 * to freeing the q_vector.
1671 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1673 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1674 struct fm10k_ring *ring;
1676 fm10k_dbg_q_vector_exit(q_vector);
1678 fm10k_for_each_ring(ring, q_vector->tx)
1679 interface->tx_ring[ring->queue_index] = NULL;
1681 fm10k_for_each_ring(ring, q_vector->rx)
1682 interface->rx_ring[ring->queue_index] = NULL;
1684 interface->q_vector[v_idx] = NULL;
1685 netif_napi_del(&q_vector->napi);
1686 kfree_rcu(q_vector, rcu);
1690 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1691 * @interface: board private structure to initialize
1693 * We allocate one q_vector per queue interrupt. If allocation fails we
1694 * return -ENOMEM.
1696 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1698 unsigned int q_vectors = interface->num_q_vectors;
1699 unsigned int rxr_remaining = interface->num_rx_queues;
1700 unsigned int txr_remaining = interface->num_tx_queues;
1701 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1702 int err;
1704 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1705 for (; rxr_remaining; v_idx++) {
1706 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1707 0, 0, 1, rxr_idx);
1708 if (err)
1709 goto err_out;
1711 /* update counts and index */
1712 rxr_remaining--;
1713 rxr_idx++;
1717 for (; v_idx < q_vectors; v_idx++) {
1718 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1719 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1721 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1722 tqpv, txr_idx,
1723 rqpv, rxr_idx);
1725 if (err)
1726 goto err_out;
1728 /* update counts and index */
1729 rxr_remaining -= rqpv;
1730 txr_remaining -= tqpv;
1731 rxr_idx++;
1732 txr_idx++;
1735 return 0;
1737 err_out:
1738 interface->num_tx_queues = 0;
1739 interface->num_rx_queues = 0;
1740 interface->num_q_vectors = 0;
1742 while (v_idx--)
1743 fm10k_free_q_vector(interface, v_idx);
1745 return -ENOMEM;
1749 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1750 * @interface: board private structure to initialize
1752 * This function frees the memory allocated to the q_vectors. In addition if
1753 * NAPI is enabled it will delete any references to the NAPI struct prior
1754 * to freeing the q_vector.
1756 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1758 int v_idx = interface->num_q_vectors;
1760 interface->num_tx_queues = 0;
1761 interface->num_rx_queues = 0;
1762 interface->num_q_vectors = 0;
1764 while (v_idx--)
1765 fm10k_free_q_vector(interface, v_idx);
1769 * f10k_reset_msix_capability - reset MSI-X capability
1770 * @interface: board private structure to initialize
1772 * Reset the MSI-X capability back to its starting state
1774 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1776 pci_disable_msix(interface->pdev);
1777 kfree(interface->msix_entries);
1778 interface->msix_entries = NULL;
1782 * f10k_init_msix_capability - configure MSI-X capability
1783 * @interface: board private structure to initialize
1785 * Attempt to configure the interrupts using the best available
1786 * capabilities of the hardware and the kernel.
1788 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1790 struct fm10k_hw *hw = &interface->hw;
1791 int v_budget, vector;
1793 /* It's easy to be greedy for MSI-X vectors, but it really
1794 * doesn't do us much good if we have a lot more vectors
1795 * than CPU's. So let's be conservative and only ask for
1796 * (roughly) the same number of vectors as there are CPU's.
1797 * the default is to use pairs of vectors
1799 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1800 v_budget = min_t(u16, v_budget, num_online_cpus());
1802 /* account for vectors not related to queues */
1803 v_budget += NON_Q_VECTORS(hw);
1805 /* At the same time, hardware can only support a maximum of
1806 * hw.mac->max_msix_vectors vectors. With features
1807 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1808 * descriptor queues supported by our device. Thus, we cap it off in
1809 * those rare cases where the cpu count also exceeds our vector limit.
1811 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1813 /* A failure in MSI-X entry allocation is fatal. */
1814 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1815 GFP_KERNEL);
1816 if (!interface->msix_entries)
1817 return -ENOMEM;
1819 /* populate entry values */
1820 for (vector = 0; vector < v_budget; vector++)
1821 interface->msix_entries[vector].entry = vector;
1823 /* Attempt to enable MSI-X with requested value */
1824 v_budget = pci_enable_msix_range(interface->pdev,
1825 interface->msix_entries,
1826 MIN_MSIX_COUNT(hw),
1827 v_budget);
1828 if (v_budget < 0) {
1829 kfree(interface->msix_entries);
1830 interface->msix_entries = NULL;
1831 return -ENOMEM;
1834 /* record the number of queues available for q_vectors */
1835 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1837 return 0;
1841 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1842 * @interface: Interface structure continaining rings and devices
1844 * Cache the descriptor ring offsets for Qos
1846 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1848 struct net_device *dev = interface->netdev;
1849 int pc, offset, rss_i, i, q_idx;
1850 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1851 u8 num_pcs = netdev_get_num_tc(dev);
1853 if (num_pcs <= 1)
1854 return false;
1856 rss_i = interface->ring_feature[RING_F_RSS].indices;
1858 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1859 q_idx = pc;
1860 for (i = 0; i < rss_i; i++) {
1861 interface->tx_ring[offset + i]->reg_idx = q_idx;
1862 interface->tx_ring[offset + i]->qos_pc = pc;
1863 interface->rx_ring[offset + i]->reg_idx = q_idx;
1864 interface->rx_ring[offset + i]->qos_pc = pc;
1865 q_idx += pc_stride;
1869 return true;
1873 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1874 * @interface: Interface structure continaining rings and devices
1876 * Cache the descriptor ring offsets for RSS
1878 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1880 int i;
1882 for (i = 0; i < interface->num_rx_queues; i++)
1883 interface->rx_ring[i]->reg_idx = i;
1885 for (i = 0; i < interface->num_tx_queues; i++)
1886 interface->tx_ring[i]->reg_idx = i;
1890 * fm10k_assign_rings - Map rings to network devices
1891 * @interface: Interface structure containing rings and devices
1893 * This function is meant to go though and configure both the network
1894 * devices so that they contain rings, and configure the rings so that
1895 * they function with their network devices.
1897 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1899 if (fm10k_cache_ring_qos(interface))
1900 return;
1902 fm10k_cache_ring_rss(interface);
1905 static void fm10k_init_reta(struct fm10k_intfc *interface)
1907 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1908 u32 reta, base;
1910 /* If the netdev is initialized we have to maintain table if possible */
1911 if (interface->netdev->reg_state != NETREG_UNINITIALIZED) {
1912 for (i = FM10K_RETA_SIZE; i--;) {
1913 reta = interface->reta[i];
1914 if ((((reta << 24) >> 24) < rss_i) &&
1915 (((reta << 16) >> 24) < rss_i) &&
1916 (((reta << 8) >> 24) < rss_i) &&
1917 (((reta) >> 24) < rss_i))
1918 continue;
1919 goto repopulate_reta;
1922 /* do nothing if all of the elements are in bounds */
1923 return;
1926 repopulate_reta:
1927 /* Populate the redirection table 4 entries at a time. To do this
1928 * we are generating the results for n and n+2 and then interleaving
1929 * those with the results with n+1 and n+3.
1931 for (i = FM10K_RETA_SIZE; i--;) {
1932 /* first pass generates n and n+2 */
1933 base = ((i * 0x00040004) + 0x00020000) * rss_i;
1934 reta = (base & 0x3F803F80) >> 7;
1936 /* second pass generates n+1 and n+3 */
1937 base += 0x00010001 * rss_i;
1938 reta |= (base & 0x3F803F80) << 1;
1940 interface->reta[i] = reta;
1945 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1946 * @interface: board private structure to initialize
1948 * We determine which queueing scheme to use based on...
1949 * - Hardware queue count (num_*_queues)
1950 * - defined by miscellaneous hardware support/features (RSS, etc.)
1952 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1954 int err;
1956 /* Number of supported queues */
1957 fm10k_set_num_queues(interface);
1959 /* Configure MSI-X capability */
1960 err = fm10k_init_msix_capability(interface);
1961 if (err) {
1962 dev_err(&interface->pdev->dev,
1963 "Unable to initialize MSI-X capability\n");
1964 return err;
1967 /* Allocate memory for queues */
1968 err = fm10k_alloc_q_vectors(interface);
1969 if (err)
1970 return err;
1972 /* Map rings to devices, and map devices to physical queues */
1973 fm10k_assign_rings(interface);
1975 /* Initialize RSS redirection table */
1976 fm10k_init_reta(interface);
1978 return 0;
1982 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1983 * @interface: board private structure to clear queueing scheme on
1985 * We go through and clear queueing specific resources and reset the structure
1986 * to pre-load conditions
1988 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1990 fm10k_free_q_vectors(interface);
1991 fm10k_reset_msix_capability(interface);