2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
14 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
15 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
16 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
18 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
19 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
22 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
23 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
24 * can be used with gadget ether.
28 /* #define UDC_VERBOSE */
31 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
32 #define UDC_DRIVER_VERSION_STRING "01.00.0206"
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/list.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioctl.h>
48 #include <linux/dmapool.h>
49 #include <linux/moduleparam.h>
50 #include <linux/device.h>
52 #include <linux/irq.h>
53 #include <linux/prefetch.h>
55 #include <asm/byteorder.h>
56 #include <asm/unaligned.h>
59 #include <linux/usb/ch9.h>
60 #include <linux/usb/gadget.h>
63 #include "amd5536udc.h"
66 static void udc_tasklet_disconnect(unsigned long);
67 static void empty_req_queue(struct udc_ep
*);
68 static void udc_setup_endpoints(struct udc
*dev
);
69 static void udc_soft_reset(struct udc
*dev
);
70 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
);
71 static void udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
);
74 static const char mod_desc
[] = UDC_MOD_DESCRIPTION
;
75 static const char name
[] = "amd5536udc";
77 /* structure to hold endpoint function pointers */
78 static const struct usb_ep_ops udc_ep_ops
;
80 /* received setup data */
81 static union udc_setup_data setup_data
;
83 /* pointer to device object */
84 static struct udc
*udc
;
86 /* irq spin lock for soft reset */
87 static DEFINE_SPINLOCK(udc_irq_spinlock
);
89 static DEFINE_SPINLOCK(udc_stall_spinlock
);
92 * slave mode: pending bytes in rx fifo after nyet,
93 * used if EPIN irq came but no req was available
95 static unsigned int udc_rxfifo_pending
;
97 /* count soft resets after suspend to avoid loop */
98 static int soft_reset_occured
;
99 static int soft_reset_after_usbreset_occured
;
102 static struct timer_list udc_timer
;
103 static int stop_timer
;
105 /* set_rde -- Is used to control enabling of RX DMA. Problem is
106 * that UDC has only one bit (RDE) to enable/disable RX DMA for
107 * all OUT endpoints. So we have to handle race conditions like
108 * when OUT data reaches the fifo but no request was queued yet.
109 * This cannot be solved by letting the RX DMA disabled until a
110 * request gets queued because there may be other OUT packets
111 * in the FIFO (important for not blocking control traffic).
112 * The value of set_rde controls the correspondig timer.
114 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
115 * set_rde 0 == do not touch RDE, do no start the RDE timer
116 * set_rde 1 == timer function will look whether FIFO has data
117 * set_rde 2 == set by timer function to enable RX DMA on next call
119 static int set_rde
= -1;
121 static DECLARE_COMPLETION(on_exit
);
122 static struct timer_list udc_pollstall_timer
;
123 static int stop_pollstall_timer
;
124 static DECLARE_COMPLETION(on_pollstall_exit
);
126 /* tasklet for usb disconnect */
127 static DECLARE_TASKLET(disconnect_tasklet
, udc_tasklet_disconnect
,
128 (unsigned long) &udc
);
131 /* endpoint names used for print */
132 static const char ep0_string
[] = "ep0in";
133 static const struct {
135 const struct usb_ep_caps caps
;
137 #define EP_INFO(_name, _caps) \
144 USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL
, USB_EP_CAPS_DIR_IN
)),
146 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
147 EP_INFO("ep2in-bulk",
148 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
149 EP_INFO("ep3in-bulk",
150 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
151 EP_INFO("ep4in-bulk",
152 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
153 EP_INFO("ep5in-bulk",
154 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
155 EP_INFO("ep6in-bulk",
156 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
157 EP_INFO("ep7in-bulk",
158 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
159 EP_INFO("ep8in-bulk",
160 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
161 EP_INFO("ep9in-bulk",
162 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
163 EP_INFO("ep10in-bulk",
164 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
165 EP_INFO("ep11in-bulk",
166 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
167 EP_INFO("ep12in-bulk",
168 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
169 EP_INFO("ep13in-bulk",
170 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
171 EP_INFO("ep14in-bulk",
172 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
173 EP_INFO("ep15in-bulk",
174 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_IN
)),
176 USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL
, USB_EP_CAPS_DIR_OUT
)),
177 EP_INFO("ep1out-bulk",
178 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
179 EP_INFO("ep2out-bulk",
180 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
181 EP_INFO("ep3out-bulk",
182 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
183 EP_INFO("ep4out-bulk",
184 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
185 EP_INFO("ep5out-bulk",
186 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
187 EP_INFO("ep6out-bulk",
188 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
189 EP_INFO("ep7out-bulk",
190 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
191 EP_INFO("ep8out-bulk",
192 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
193 EP_INFO("ep9out-bulk",
194 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
195 EP_INFO("ep10out-bulk",
196 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
197 EP_INFO("ep11out-bulk",
198 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
199 EP_INFO("ep12out-bulk",
200 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
201 EP_INFO("ep13out-bulk",
202 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
203 EP_INFO("ep14out-bulk",
204 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
205 EP_INFO("ep15out-bulk",
206 USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK
, USB_EP_CAPS_DIR_OUT
)),
212 static bool use_dma
= 1;
213 /* packet per buffer dma */
214 static bool use_dma_ppb
= 1;
215 /* with per descr. update */
216 static bool use_dma_ppb_du
;
217 /* buffer fill mode */
218 static int use_dma_bufferfill_mode
;
219 /* full speed only mode */
220 static bool use_fullspeed
;
221 /* tx buffer size for high speed */
222 static unsigned long hs_tx_buf
= UDC_EPIN_BUFF_SIZE
;
224 /* module parameters */
225 module_param(use_dma
, bool, S_IRUGO
);
226 MODULE_PARM_DESC(use_dma
, "true for DMA");
227 module_param(use_dma_ppb
, bool, S_IRUGO
);
228 MODULE_PARM_DESC(use_dma_ppb
, "true for DMA in packet per buffer mode");
229 module_param(use_dma_ppb_du
, bool, S_IRUGO
);
230 MODULE_PARM_DESC(use_dma_ppb_du
,
231 "true for DMA in packet per buffer mode with descriptor update");
232 module_param(use_fullspeed
, bool, S_IRUGO
);
233 MODULE_PARM_DESC(use_fullspeed
, "true for fullspeed only");
235 /*---------------------------------------------------------------------------*/
236 /* Prints UDC device registers and endpoint irq registers */
237 static void print_regs(struct udc
*dev
)
239 DBG(dev
, "------- Device registers -------\n");
240 DBG(dev
, "dev config = %08x\n", readl(&dev
->regs
->cfg
));
241 DBG(dev
, "dev control = %08x\n", readl(&dev
->regs
->ctl
));
242 DBG(dev
, "dev status = %08x\n", readl(&dev
->regs
->sts
));
244 DBG(dev
, "dev int's = %08x\n", readl(&dev
->regs
->irqsts
));
245 DBG(dev
, "dev intmask = %08x\n", readl(&dev
->regs
->irqmsk
));
247 DBG(dev
, "dev ep int's = %08x\n", readl(&dev
->regs
->ep_irqsts
));
248 DBG(dev
, "dev ep intmask = %08x\n", readl(&dev
->regs
->ep_irqmsk
));
250 DBG(dev
, "USE DMA = %d\n", use_dma
);
251 if (use_dma
&& use_dma_ppb
&& !use_dma_ppb_du
) {
252 DBG(dev
, "DMA mode = PPBNDU (packet per buffer "
253 "WITHOUT desc. update)\n");
254 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBNDU");
255 } else if (use_dma
&& use_dma_ppb
&& use_dma_ppb_du
) {
256 DBG(dev
, "DMA mode = PPBDU (packet per buffer "
257 "WITH desc. update)\n");
258 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBDU");
260 if (use_dma
&& use_dma_bufferfill_mode
) {
261 DBG(dev
, "DMA mode = BF (buffer fill mode)\n");
262 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "BF");
265 dev_info(&dev
->pdev
->dev
, "FIFO mode\n");
266 DBG(dev
, "-------------------------------------------------------\n");
269 /* Masks unused interrupts */
270 static int udc_mask_unused_interrupts(struct udc
*dev
)
274 /* mask all dev interrupts */
275 tmp
= AMD_BIT(UDC_DEVINT_SVC
) |
276 AMD_BIT(UDC_DEVINT_ENUM
) |
277 AMD_BIT(UDC_DEVINT_US
) |
278 AMD_BIT(UDC_DEVINT_UR
) |
279 AMD_BIT(UDC_DEVINT_ES
) |
280 AMD_BIT(UDC_DEVINT_SI
) |
281 AMD_BIT(UDC_DEVINT_SOF
)|
282 AMD_BIT(UDC_DEVINT_SC
);
283 writel(tmp
, &dev
->regs
->irqmsk
);
285 /* mask all ep interrupts */
286 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqmsk
);
291 /* Enables endpoint 0 interrupts */
292 static int udc_enable_ep0_interrupts(struct udc
*dev
)
296 DBG(dev
, "udc_enable_ep0_interrupts()\n");
299 tmp
= readl(&dev
->regs
->ep_irqmsk
);
300 /* enable ep0 irq's */
301 tmp
&= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0
)
302 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0
);
303 writel(tmp
, &dev
->regs
->ep_irqmsk
);
308 /* Enables device interrupts for SET_INTF and SET_CONFIG */
309 static int udc_enable_dev_setup_interrupts(struct udc
*dev
)
313 DBG(dev
, "enable device interrupts for setup data\n");
316 tmp
= readl(&dev
->regs
->irqmsk
);
318 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
319 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_SI
)
320 & AMD_UNMASK_BIT(UDC_DEVINT_SC
)
321 & AMD_UNMASK_BIT(UDC_DEVINT_UR
)
322 & AMD_UNMASK_BIT(UDC_DEVINT_SVC
)
323 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM
);
324 writel(tmp
, &dev
->regs
->irqmsk
);
329 /* Calculates fifo start of endpoint based on preceding endpoints */
330 static int udc_set_txfifo_addr(struct udc_ep
*ep
)
336 if (!ep
|| !(ep
->in
))
340 ep
->txfifo
= dev
->txfifo
;
343 for (i
= 0; i
< ep
->num
; i
++) {
344 if (dev
->ep
[i
].regs
) {
346 tmp
= readl(&dev
->ep
[i
].regs
->bufin_framenum
);
347 tmp
= AMD_GETBITS(tmp
, UDC_EPIN_BUFF_SIZE
);
354 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
355 static u32 cnak_pending
;
357 static void UDC_QUEUE_CNAK(struct udc_ep
*ep
, unsigned num
)
359 if (readl(&ep
->regs
->ctl
) & AMD_BIT(UDC_EPCTL_NAK
)) {
360 DBG(ep
->dev
, "NAK could not be cleared for ep%d\n", num
);
361 cnak_pending
|= 1 << (num
);
364 cnak_pending
= cnak_pending
& (~(1 << (num
)));
368 /* Enables endpoint, is called by gadget driver */
370 udc_ep_enable(struct usb_ep
*usbep
, const struct usb_endpoint_descriptor
*desc
)
375 unsigned long iflags
;
380 || usbep
->name
== ep0_string
382 || desc
->bDescriptorType
!= USB_DT_ENDPOINT
)
385 ep
= container_of(usbep
, struct udc_ep
, ep
);
388 DBG(dev
, "udc_ep_enable() ep %d\n", ep
->num
);
390 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
393 spin_lock_irqsave(&dev
->lock
, iflags
);
398 /* set traffic type */
399 tmp
= readl(&dev
->ep
[ep
->num
].regs
->ctl
);
400 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_EPCTL_ET
);
401 writel(tmp
, &dev
->ep
[ep
->num
].regs
->ctl
);
403 /* set max packet size */
404 maxpacket
= usb_endpoint_maxp(desc
);
405 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
406 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_EP_MAX_PKT_SIZE
);
407 ep
->ep
.maxpacket
= maxpacket
;
408 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
413 /* ep ix in UDC CSR register space */
414 udc_csr_epix
= ep
->num
;
416 /* set buffer size (tx fifo entries) */
417 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufin_framenum
);
418 /* double buffering: fifo size = 2 x max packet size */
421 maxpacket
* UDC_EPIN_BUFF_SIZE_MULT
424 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufin_framenum
);
426 /* calc. tx fifo base addr */
427 udc_set_txfifo_addr(ep
);
430 tmp
= readl(&ep
->regs
->ctl
);
431 tmp
|= AMD_BIT(UDC_EPCTL_F
);
432 writel(tmp
, &ep
->regs
->ctl
);
436 /* ep ix in UDC CSR register space */
437 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
439 /* set max packet size UDC CSR */
440 tmp
= readl(&dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
441 tmp
= AMD_ADDBITS(tmp
, maxpacket
,
443 writel(tmp
, &dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
445 if (use_dma
&& !ep
->in
) {
446 /* alloc and init BNA dummy request */
447 ep
->bna_dummy_req
= udc_alloc_bna_dummy(ep
);
448 ep
->bna_occurred
= 0;
451 if (ep
->num
!= UDC_EP0OUT_IX
)
452 dev
->data_ep_enabled
= 1;
456 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
458 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_CSR_NE_MAX_PKT
);
460 tmp
= AMD_ADDBITS(tmp
, desc
->bEndpointAddress
, UDC_CSR_NE_NUM
);
462 tmp
= AMD_ADDBITS(tmp
, ep
->in
, UDC_CSR_NE_DIR
);
464 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_CSR_NE_TYPE
);
466 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
, UDC_CSR_NE_CFG
);
468 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
, UDC_CSR_NE_INTF
);
470 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
, UDC_CSR_NE_ALT
);
472 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
475 tmp
= readl(&dev
->regs
->ep_irqmsk
);
476 tmp
&= AMD_UNMASK_BIT(ep
->num
);
477 writel(tmp
, &dev
->regs
->ep_irqmsk
);
480 * clear NAK by writing CNAK
481 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
483 if (!use_dma
|| ep
->in
) {
484 tmp
= readl(&ep
->regs
->ctl
);
485 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
486 writel(tmp
, &ep
->regs
->ctl
);
488 UDC_QUEUE_CNAK(ep
, ep
->num
);
490 tmp
= desc
->bEndpointAddress
;
491 DBG(dev
, "%s enabled\n", usbep
->name
);
493 spin_unlock_irqrestore(&dev
->lock
, iflags
);
497 /* Resets endpoint */
498 static void ep_init(struct udc_regs __iomem
*regs
, struct udc_ep
*ep
)
502 VDBG(ep
->dev
, "ep-%d reset\n", ep
->num
);
504 ep
->ep
.ops
= &udc_ep_ops
;
505 INIT_LIST_HEAD(&ep
->queue
);
507 usb_ep_set_maxpacket_limit(&ep
->ep
,(u16
) ~0);
509 tmp
= readl(&ep
->regs
->ctl
);
510 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
511 writel(tmp
, &ep
->regs
->ctl
);
514 /* disable interrupt */
515 tmp
= readl(®s
->ep_irqmsk
);
516 tmp
|= AMD_BIT(ep
->num
);
517 writel(tmp
, ®s
->ep_irqmsk
);
520 /* unset P and IN bit of potential former DMA */
521 tmp
= readl(&ep
->regs
->ctl
);
522 tmp
&= AMD_UNMASK_BIT(UDC_EPCTL_P
);
523 writel(tmp
, &ep
->regs
->ctl
);
525 tmp
= readl(&ep
->regs
->sts
);
526 tmp
|= AMD_BIT(UDC_EPSTS_IN
);
527 writel(tmp
, &ep
->regs
->sts
);
530 tmp
= readl(&ep
->regs
->ctl
);
531 tmp
|= AMD_BIT(UDC_EPCTL_F
);
532 writel(tmp
, &ep
->regs
->ctl
);
535 /* reset desc pointer */
536 writel(0, &ep
->regs
->desptr
);
539 /* Disables endpoint, is called by gadget driver */
540 static int udc_ep_disable(struct usb_ep
*usbep
)
542 struct udc_ep
*ep
= NULL
;
543 unsigned long iflags
;
548 ep
= container_of(usbep
, struct udc_ep
, ep
);
549 if (usbep
->name
== ep0_string
|| !ep
->ep
.desc
)
552 DBG(ep
->dev
, "Disable ep-%d\n", ep
->num
);
554 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
555 udc_free_request(&ep
->ep
, &ep
->bna_dummy_req
->req
);
557 ep_init(ep
->dev
->regs
, ep
);
558 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
563 /* Allocates request packet, called by gadget driver */
564 static struct usb_request
*
565 udc_alloc_request(struct usb_ep
*usbep
, gfp_t gfp
)
567 struct udc_request
*req
;
568 struct udc_data_dma
*dma_desc
;
574 ep
= container_of(usbep
, struct udc_ep
, ep
);
576 VDBG(ep
->dev
, "udc_alloc_req(): ep%d\n", ep
->num
);
577 req
= kzalloc(sizeof(struct udc_request
), gfp
);
581 req
->req
.dma
= DMA_DONT_USE
;
582 INIT_LIST_HEAD(&req
->queue
);
585 /* ep0 in requests are allocated from data pool here */
586 dma_desc
= pci_pool_alloc(ep
->dev
->data_requests
, gfp
,
593 VDBG(ep
->dev
, "udc_alloc_req: req = %p dma_desc = %p, "
596 (unsigned long)req
->td_phys
);
597 /* prevent from using desc. - set HOST BUSY */
598 dma_desc
->status
= AMD_ADDBITS(dma_desc
->status
,
599 UDC_DMA_STP_STS_BS_HOST_BUSY
,
601 dma_desc
->bufptr
= cpu_to_le32(DMA_DONT_USE
);
602 req
->td_data
= dma_desc
;
603 req
->td_data_last
= NULL
;
610 /* frees pci pool descriptors of a DMA chain */
611 static int udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
)
614 struct udc_data_dma
*td
;
615 struct udc_data_dma
*td_last
= NULL
;
618 DBG(dev
, "free chain req = %p\n", req
);
620 /* do not free first desc., will be done by free for request */
621 td_last
= req
->td_data
;
622 td
= phys_to_virt(td_last
->next
);
624 for (i
= 1; i
< req
->chain_len
; i
++) {
625 pci_pool_free(dev
->data_requests
, td
,
626 (dma_addr_t
)td_last
->next
);
628 td
= phys_to_virt(td_last
->next
);
634 /* Frees request packet, called by gadget driver */
636 udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
639 struct udc_request
*req
;
641 if (!usbep
|| !usbreq
)
644 ep
= container_of(usbep
, struct udc_ep
, ep
);
645 req
= container_of(usbreq
, struct udc_request
, req
);
646 VDBG(ep
->dev
, "free_req req=%p\n", req
);
647 BUG_ON(!list_empty(&req
->queue
));
649 VDBG(ep
->dev
, "req->td_data=%p\n", req
->td_data
);
651 /* free dma chain if created */
652 if (req
->chain_len
> 1)
653 udc_free_dma_chain(ep
->dev
, req
);
655 pci_pool_free(ep
->dev
->data_requests
, req
->td_data
,
661 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
662 static void udc_init_bna_dummy(struct udc_request
*req
)
666 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
667 /* set next pointer to itself */
668 req
->td_data
->next
= req
->td_phys
;
671 = AMD_ADDBITS(req
->td_data
->status
,
672 UDC_DMA_STP_STS_BS_DMA_DONE
,
675 pr_debug("bna desc = %p, sts = %08x\n",
676 req
->td_data
, req
->td_data
->status
);
681 /* Allocate BNA dummy descriptor */
682 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
)
684 struct udc_request
*req
= NULL
;
685 struct usb_request
*_req
= NULL
;
687 /* alloc the dummy request */
688 _req
= udc_alloc_request(&ep
->ep
, GFP_ATOMIC
);
690 req
= container_of(_req
, struct udc_request
, req
);
691 ep
->bna_dummy_req
= req
;
692 udc_init_bna_dummy(req
);
697 /* Write data to TX fifo for IN packets */
699 udc_txfifo_write(struct udc_ep
*ep
, struct usb_request
*req
)
705 unsigned remaining
= 0;
710 req_buf
= req
->buf
+ req
->actual
;
712 remaining
= req
->length
- req
->actual
;
714 buf
= (u32
*) req_buf
;
716 bytes
= ep
->ep
.maxpacket
;
717 if (bytes
> remaining
)
721 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++)
722 writel(*(buf
+ i
), ep
->txfifo
);
724 /* remaining bytes must be written by byte access */
725 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
726 writeb((u8
)(*(buf
+ i
) >> (j
<< UDC_BITS_PER_BYTE_SHIFT
)),
730 /* dummy write confirm */
731 writel(0, &ep
->regs
->confirm
);
734 /* Read dwords from RX fifo for OUT transfers */
735 static int udc_rxfifo_read_dwords(struct udc
*dev
, u32
*buf
, int dwords
)
739 VDBG(dev
, "udc_read_dwords(): %d dwords\n", dwords
);
741 for (i
= 0; i
< dwords
; i
++)
742 *(buf
+ i
) = readl(dev
->rxfifo
);
746 /* Read bytes from RX fifo for OUT transfers */
747 static int udc_rxfifo_read_bytes(struct udc
*dev
, u8
*buf
, int bytes
)
752 VDBG(dev
, "udc_read_bytes(): %d bytes\n", bytes
);
755 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++)
756 *((u32
*)(buf
+ (i
<<2))) = readl(dev
->rxfifo
);
758 /* remaining bytes must be read by byte access */
759 if (bytes
% UDC_DWORD_BYTES
) {
760 tmp
= readl(dev
->rxfifo
);
761 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
762 *(buf
+ (i
<<2) + j
) = (u8
)(tmp
& UDC_BYTE_MASK
);
763 tmp
= tmp
>> UDC_BITS_PER_BYTE
;
770 /* Read data from RX fifo for OUT transfers */
772 udc_rxfifo_read(struct udc_ep
*ep
, struct udc_request
*req
)
777 unsigned finished
= 0;
779 /* received number bytes */
780 bytes
= readl(&ep
->regs
->sts
);
781 bytes
= AMD_GETBITS(bytes
, UDC_EPSTS_RX_PKT_SIZE
);
783 buf_space
= req
->req
.length
- req
->req
.actual
;
784 buf
= req
->req
.buf
+ req
->req
.actual
;
785 if (bytes
> buf_space
) {
786 if ((buf_space
% ep
->ep
.maxpacket
) != 0) {
788 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
789 ep
->ep
.name
, bytes
, buf_space
);
790 req
->req
.status
= -EOVERFLOW
;
794 req
->req
.actual
+= bytes
;
797 if (((bytes
% ep
->ep
.maxpacket
) != 0) || (!bytes
)
798 || ((req
->req
.actual
== req
->req
.length
) && !req
->req
.zero
))
801 /* read rx fifo bytes */
802 VDBG(ep
->dev
, "ep %s: rxfifo read %d bytes\n", ep
->ep
.name
, bytes
);
803 udc_rxfifo_read_bytes(ep
->dev
, buf
, bytes
);
808 /* Creates or re-inits a DMA chain */
809 static int udc_create_dma_chain(
811 struct udc_request
*req
,
812 unsigned long buf_len
, gfp_t gfp_flags
815 unsigned long bytes
= req
->req
.length
;
818 struct udc_data_dma
*td
= NULL
;
819 struct udc_data_dma
*last
= NULL
;
820 unsigned long txbytes
;
821 unsigned create_new_chain
= 0;
824 VDBG(ep
->dev
, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
826 dma_addr
= DMA_DONT_USE
;
828 /* unset L bit in first desc for OUT */
830 req
->td_data
->status
&= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L
);
832 /* alloc only new desc's if not already available */
833 len
= req
->req
.length
/ ep
->ep
.maxpacket
;
834 if (req
->req
.length
% ep
->ep
.maxpacket
)
837 if (len
> req
->chain_len
) {
838 /* shorter chain already allocated before */
839 if (req
->chain_len
> 1)
840 udc_free_dma_chain(ep
->dev
, req
);
841 req
->chain_len
= len
;
842 create_new_chain
= 1;
846 /* gen. required number of descriptors and buffers */
847 for (i
= buf_len
; i
< bytes
; i
+= buf_len
) {
848 /* create or determine next desc. */
849 if (create_new_chain
) {
850 td
= pci_pool_alloc(ep
->dev
->data_requests
,
851 gfp_flags
, &dma_addr
);
856 } else if (i
== buf_len
) {
858 td
= (struct udc_data_dma
*)phys_to_virt(
862 td
= (struct udc_data_dma
*)phys_to_virt(last
->next
);
867 td
->bufptr
= req
->req
.dma
+ i
; /* assign buffer */
872 if ((bytes
- i
) >= buf_len
) {
879 /* link td and assign tx bytes */
881 if (create_new_chain
)
882 req
->td_data
->next
= dma_addr
;
885 * req->td_data->next = virt_to_phys(td);
890 req
->td_data
->status
=
891 AMD_ADDBITS(req
->td_data
->status
,
893 UDC_DMA_IN_STS_TXBYTES
);
895 td
->status
= AMD_ADDBITS(td
->status
,
897 UDC_DMA_IN_STS_TXBYTES
);
900 if (create_new_chain
)
901 last
->next
= dma_addr
;
904 * last->next = virt_to_phys(td);
908 td
->status
= AMD_ADDBITS(td
->status
,
910 UDC_DMA_IN_STS_TXBYTES
);
917 td
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
918 /* last desc. points to itself */
919 req
->td_data_last
= td
;
925 /* create/re-init a DMA descriptor or a DMA descriptor chain */
926 static int prep_dma(struct udc_ep
*ep
, struct udc_request
*req
, gfp_t gfp
)
931 VDBG(ep
->dev
, "prep_dma\n");
932 VDBG(ep
->dev
, "prep_dma ep%d req->td_data=%p\n",
933 ep
->num
, req
->td_data
);
935 /* set buffer pointer */
936 req
->td_data
->bufptr
= req
->req
.dma
;
939 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
941 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
944 retval
= udc_create_dma_chain(ep
, req
, ep
->ep
.maxpacket
, gfp
);
946 if (retval
== -ENOMEM
)
947 DBG(ep
->dev
, "Out of DMA memory\n");
951 if (req
->req
.length
== ep
->ep
.maxpacket
) {
953 req
->td_data
->status
=
954 AMD_ADDBITS(req
->td_data
->status
,
956 UDC_DMA_IN_STS_TXBYTES
);
964 VDBG(ep
->dev
, "IN: use_dma_ppb=%d req->req.len=%d "
965 "maxpacket=%d ep%d\n",
966 use_dma_ppb
, req
->req
.length
,
967 ep
->ep
.maxpacket
, ep
->num
);
969 * if bytes < max packet then tx bytes must
970 * be written in packet per buffer mode
972 if (!use_dma_ppb
|| req
->req
.length
< ep
->ep
.maxpacket
973 || ep
->num
== UDC_EP0OUT_IX
974 || ep
->num
== UDC_EP0IN_IX
) {
976 req
->td_data
->status
=
977 AMD_ADDBITS(req
->td_data
->status
,
979 UDC_DMA_IN_STS_TXBYTES
);
980 /* reset frame num */
981 req
->td_data
->status
=
982 AMD_ADDBITS(req
->td_data
->status
,
984 UDC_DMA_IN_STS_FRAMENUM
);
987 req
->td_data
->status
=
988 AMD_ADDBITS(req
->td_data
->status
,
989 UDC_DMA_STP_STS_BS_HOST_BUSY
,
992 VDBG(ep
->dev
, "OUT set host ready\n");
994 req
->td_data
->status
=
995 AMD_ADDBITS(req
->td_data
->status
,
996 UDC_DMA_STP_STS_BS_HOST_READY
,
1000 /* clear NAK by writing CNAK */
1002 tmp
= readl(&ep
->regs
->ctl
);
1003 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1004 writel(tmp
, &ep
->regs
->ctl
);
1006 UDC_QUEUE_CNAK(ep
, ep
->num
);
1014 /* Completes request packet ... caller MUST hold lock */
1016 complete_req(struct udc_ep
*ep
, struct udc_request
*req
, int sts
)
1017 __releases(ep
->dev
->lock
)
1018 __acquires(ep
->dev
->lock
)
1023 VDBG(ep
->dev
, "complete_req(): ep%d\n", ep
->num
);
1028 usb_gadget_unmap_request(&dev
->gadget
, &req
->req
, ep
->in
);
1030 halted
= ep
->halted
;
1033 /* set new status if pending */
1034 if (req
->req
.status
== -EINPROGRESS
)
1035 req
->req
.status
= sts
;
1037 /* remove from ep queue */
1038 list_del_init(&req
->queue
);
1040 VDBG(ep
->dev
, "req %p => complete %d bytes at %s with sts %d\n",
1041 &req
->req
, req
->req
.length
, ep
->ep
.name
, sts
);
1043 spin_unlock(&dev
->lock
);
1044 usb_gadget_giveback_request(&ep
->ep
, &req
->req
);
1045 spin_lock(&dev
->lock
);
1046 ep
->halted
= halted
;
1049 /* Iterates to the end of a DMA chain and returns last descriptor */
1050 static struct udc_data_dma
*udc_get_last_dma_desc(struct udc_request
*req
)
1052 struct udc_data_dma
*td
;
1055 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
)))
1056 td
= phys_to_virt(td
->next
);
1062 /* Iterates to the end of a DMA chain and counts bytes received */
1063 static u32
udc_get_ppbdu_rxbytes(struct udc_request
*req
)
1065 struct udc_data_dma
*td
;
1069 /* received number bytes */
1070 count
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_RXBYTES
);
1072 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
1073 td
= phys_to_virt(td
->next
);
1074 /* received number bytes */
1076 count
+= AMD_GETBITS(td
->status
,
1077 UDC_DMA_OUT_STS_RXBYTES
);
1085 /* Enabling RX DMA */
1086 static void udc_set_rde(struct udc
*dev
)
1090 VDBG(dev
, "udc_set_rde()\n");
1091 /* stop RDE timer */
1092 if (timer_pending(&udc_timer
)) {
1094 mod_timer(&udc_timer
, jiffies
- 1);
1097 tmp
= readl(&dev
->regs
->ctl
);
1098 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1099 writel(tmp
, &dev
->regs
->ctl
);
1102 /* Queues a request packet, called by gadget driver */
1104 udc_queue(struct usb_ep
*usbep
, struct usb_request
*usbreq
, gfp_t gfp
)
1108 unsigned long iflags
;
1110 struct udc_request
*req
;
1114 /* check the inputs */
1115 req
= container_of(usbreq
, struct udc_request
, req
);
1117 if (!usbep
|| !usbreq
|| !usbreq
->complete
|| !usbreq
->buf
1118 || !list_empty(&req
->queue
))
1121 ep
= container_of(usbep
, struct udc_ep
, ep
);
1122 if (!ep
->ep
.desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1125 VDBG(ep
->dev
, "udc_queue(): ep%d-in=%d\n", ep
->num
, ep
->in
);
1128 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1131 /* map dma (usually done before) */
1133 VDBG(dev
, "DMA map req %p\n", req
);
1134 retval
= usb_gadget_map_request(&udc
->gadget
, usbreq
, ep
->in
);
1139 VDBG(dev
, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1140 usbep
->name
, usbreq
, usbreq
->length
,
1141 req
->td_data
, usbreq
->buf
);
1143 spin_lock_irqsave(&dev
->lock
, iflags
);
1145 usbreq
->status
= -EINPROGRESS
;
1148 /* on empty queue just do first transfer */
1149 if (list_empty(&ep
->queue
)) {
1151 if (usbreq
->length
== 0) {
1152 /* IN zlp's are handled by hardware */
1153 complete_req(ep
, req
, 0);
1154 VDBG(dev
, "%s: zlp\n", ep
->ep
.name
);
1156 * if set_config or set_intf is waiting for ack by zlp
1159 if (dev
->set_cfg_not_acked
) {
1160 tmp
= readl(&dev
->regs
->ctl
);
1161 tmp
|= AMD_BIT(UDC_DEVCTL_CSR_DONE
);
1162 writel(tmp
, &dev
->regs
->ctl
);
1163 dev
->set_cfg_not_acked
= 0;
1165 /* setup command is ACK'ed now by zlp */
1166 if (dev
->waiting_zlp_ack_ep0in
) {
1167 /* clear NAK by writing CNAK in EP0_IN */
1168 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1169 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1170 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1171 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1172 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
],
1174 dev
->waiting_zlp_ack_ep0in
= 0;
1179 retval
= prep_dma(ep
, req
, GFP_ATOMIC
);
1182 /* write desc pointer to enable DMA */
1184 /* set HOST READY */
1185 req
->td_data
->status
=
1186 AMD_ADDBITS(req
->td_data
->status
,
1187 UDC_DMA_IN_STS_BS_HOST_READY
,
1191 /* disabled rx dma while descriptor update */
1193 /* stop RDE timer */
1194 if (timer_pending(&udc_timer
)) {
1196 mod_timer(&udc_timer
, jiffies
- 1);
1199 tmp
= readl(&dev
->regs
->ctl
);
1200 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1201 writel(tmp
, &dev
->regs
->ctl
);
1205 * if BNA occurred then let BNA dummy desc.
1206 * point to current desc.
1208 if (ep
->bna_occurred
) {
1209 VDBG(dev
, "copy to BNA dummy desc.\n");
1210 memcpy(ep
->bna_dummy_req
->td_data
,
1212 sizeof(struct udc_data_dma
));
1215 /* write desc pointer */
1216 writel(req
->td_phys
, &ep
->regs
->desptr
);
1218 /* clear NAK by writing CNAK */
1220 tmp
= readl(&ep
->regs
->ctl
);
1221 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1222 writel(tmp
, &ep
->regs
->ctl
);
1224 UDC_QUEUE_CNAK(ep
, ep
->num
);
1229 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1230 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1231 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1233 } else if (ep
->in
) {
1235 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1236 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1237 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1240 } else if (ep
->dma
) {
1243 * prep_dma not used for OUT ep's, this is not possible
1244 * for PPB modes, because of chain creation reasons
1247 retval
= prep_dma(ep
, req
, GFP_ATOMIC
);
1252 VDBG(dev
, "list_add\n");
1253 /* add request to ep queue */
1256 list_add_tail(&req
->queue
, &ep
->queue
);
1258 /* open rxfifo if out data queued */
1263 if (ep
->num
!= UDC_EP0OUT_IX
)
1264 dev
->data_ep_queued
= 1;
1266 /* stop OUT naking */
1268 if (!use_dma
&& udc_rxfifo_pending
) {
1269 DBG(dev
, "udc_queue(): pending bytes in "
1270 "rxfifo after nyet\n");
1272 * read pending bytes afer nyet:
1275 if (udc_rxfifo_read(ep
, req
)) {
1277 complete_req(ep
, req
, 0);
1279 udc_rxfifo_pending
= 0;
1286 spin_unlock_irqrestore(&dev
->lock
, iflags
);
1290 /* Empty request queue of an endpoint; caller holds spinlock */
1291 static void empty_req_queue(struct udc_ep
*ep
)
1293 struct udc_request
*req
;
1296 while (!list_empty(&ep
->queue
)) {
1297 req
= list_entry(ep
->queue
.next
,
1300 complete_req(ep
, req
, -ESHUTDOWN
);
1304 /* Dequeues a request packet, called by gadget driver */
1305 static int udc_dequeue(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
1308 struct udc_request
*req
;
1310 unsigned long iflags
;
1312 ep
= container_of(usbep
, struct udc_ep
, ep
);
1313 if (!usbep
|| !usbreq
|| (!ep
->ep
.desc
&& (ep
->num
!= 0
1314 && ep
->num
!= UDC_EP0OUT_IX
)))
1317 req
= container_of(usbreq
, struct udc_request
, req
);
1319 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
1320 halted
= ep
->halted
;
1322 /* request in processing or next one */
1323 if (ep
->queue
.next
== &req
->queue
) {
1324 if (ep
->dma
&& req
->dma_going
) {
1326 ep
->cancel_transfer
= 1;
1330 /* stop potential receive DMA */
1331 tmp
= readl(&udc
->regs
->ctl
);
1332 writel(tmp
& AMD_UNMASK_BIT(UDC_DEVCTL_RDE
),
1335 * Cancel transfer later in ISR
1336 * if descriptor was touched.
1338 dma_sts
= AMD_GETBITS(req
->td_data
->status
,
1339 UDC_DMA_OUT_STS_BS
);
1340 if (dma_sts
!= UDC_DMA_OUT_STS_BS_HOST_READY
)
1341 ep
->cancel_transfer
= 1;
1343 udc_init_bna_dummy(ep
->req
);
1344 writel(ep
->bna_dummy_req
->td_phys
,
1347 writel(tmp
, &udc
->regs
->ctl
);
1351 complete_req(ep
, req
, -ECONNRESET
);
1352 ep
->halted
= halted
;
1354 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
1358 /* Halt or clear halt of endpoint */
1360 udc_set_halt(struct usb_ep
*usbep
, int halt
)
1364 unsigned long iflags
;
1370 pr_debug("set_halt %s: halt=%d\n", usbep
->name
, halt
);
1372 ep
= container_of(usbep
, struct udc_ep
, ep
);
1373 if (!ep
->ep
.desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1375 if (!ep
->dev
->driver
|| ep
->dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1378 spin_lock_irqsave(&udc_stall_spinlock
, iflags
);
1379 /* halt or clear halt */
1382 ep
->dev
->stall_ep0in
= 1;
1386 * rxfifo empty not taken into acount
1388 tmp
= readl(&ep
->regs
->ctl
);
1389 tmp
|= AMD_BIT(UDC_EPCTL_S
);
1390 writel(tmp
, &ep
->regs
->ctl
);
1393 /* setup poll timer */
1394 if (!timer_pending(&udc_pollstall_timer
)) {
1395 udc_pollstall_timer
.expires
= jiffies
+
1396 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1398 if (!stop_pollstall_timer
) {
1399 DBG(ep
->dev
, "start polltimer\n");
1400 add_timer(&udc_pollstall_timer
);
1405 /* ep is halted by set_halt() before */
1407 tmp
= readl(&ep
->regs
->ctl
);
1408 /* clear stall bit */
1409 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
1410 /* clear NAK by writing CNAK */
1411 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1412 writel(tmp
, &ep
->regs
->ctl
);
1414 UDC_QUEUE_CNAK(ep
, ep
->num
);
1417 spin_unlock_irqrestore(&udc_stall_spinlock
, iflags
);
1421 /* gadget interface */
1422 static const struct usb_ep_ops udc_ep_ops
= {
1423 .enable
= udc_ep_enable
,
1424 .disable
= udc_ep_disable
,
1426 .alloc_request
= udc_alloc_request
,
1427 .free_request
= udc_free_request
,
1430 .dequeue
= udc_dequeue
,
1432 .set_halt
= udc_set_halt
,
1433 /* fifo ops not implemented */
1436 /*-------------------------------------------------------------------------*/
1438 /* Get frame counter (not implemented) */
1439 static int udc_get_frame(struct usb_gadget
*gadget
)
1444 /* Initiates a remote wakeup */
1445 static int udc_remote_wakeup(struct udc
*dev
)
1447 unsigned long flags
;
1450 DBG(dev
, "UDC initiates remote wakeup\n");
1452 spin_lock_irqsave(&dev
->lock
, flags
);
1454 tmp
= readl(&dev
->regs
->ctl
);
1455 tmp
|= AMD_BIT(UDC_DEVCTL_RES
);
1456 writel(tmp
, &dev
->regs
->ctl
);
1457 tmp
&= AMD_CLEAR_BIT(UDC_DEVCTL_RES
);
1458 writel(tmp
, &dev
->regs
->ctl
);
1460 spin_unlock_irqrestore(&dev
->lock
, flags
);
1464 /* Remote wakeup gadget interface */
1465 static int udc_wakeup(struct usb_gadget
*gadget
)
1471 dev
= container_of(gadget
, struct udc
, gadget
);
1472 udc_remote_wakeup(dev
);
1477 static int amd5536_udc_start(struct usb_gadget
*g
,
1478 struct usb_gadget_driver
*driver
);
1479 static int amd5536_udc_stop(struct usb_gadget
*g
);
1481 static const struct usb_gadget_ops udc_ops
= {
1482 .wakeup
= udc_wakeup
,
1483 .get_frame
= udc_get_frame
,
1484 .udc_start
= amd5536_udc_start
,
1485 .udc_stop
= amd5536_udc_stop
,
1488 /* Setups endpoint parameters, adds endpoints to linked list */
1489 static void make_ep_lists(struct udc
*dev
)
1491 /* make gadget ep lists */
1492 INIT_LIST_HEAD(&dev
->gadget
.ep_list
);
1493 list_add_tail(&dev
->ep
[UDC_EPIN_STATUS_IX
].ep
.ep_list
,
1494 &dev
->gadget
.ep_list
);
1495 list_add_tail(&dev
->ep
[UDC_EPIN_IX
].ep
.ep_list
,
1496 &dev
->gadget
.ep_list
);
1497 list_add_tail(&dev
->ep
[UDC_EPOUT_IX
].ep
.ep_list
,
1498 &dev
->gadget
.ep_list
);
1501 dev
->ep
[UDC_EPIN_STATUS_IX
].fifo_depth
= UDC_EPIN_SMALLINT_BUFF_SIZE
;
1502 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1503 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= UDC_FS_EPIN_BUFF_SIZE
;
1504 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1505 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= hs_tx_buf
;
1506 dev
->ep
[UDC_EPOUT_IX
].fifo_depth
= UDC_RXFIFO_SIZE
;
1509 /* Inits UDC context */
1510 static void udc_basic_init(struct udc
*dev
)
1514 DBG(dev
, "udc_basic_init()\n");
1516 dev
->gadget
.speed
= USB_SPEED_UNKNOWN
;
1518 /* stop RDE timer */
1519 if (timer_pending(&udc_timer
)) {
1521 mod_timer(&udc_timer
, jiffies
- 1);
1523 /* stop poll stall timer */
1524 if (timer_pending(&udc_pollstall_timer
))
1525 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1527 tmp
= readl(&dev
->regs
->ctl
);
1528 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1529 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_TDE
);
1530 writel(tmp
, &dev
->regs
->ctl
);
1532 /* enable dynamic CSR programming */
1533 tmp
= readl(&dev
->regs
->cfg
);
1534 tmp
|= AMD_BIT(UDC_DEVCFG_CSR_PRG
);
1535 /* set self powered */
1536 tmp
|= AMD_BIT(UDC_DEVCFG_SP
);
1537 /* set remote wakeupable */
1538 tmp
|= AMD_BIT(UDC_DEVCFG_RWKP
);
1539 writel(tmp
, &dev
->regs
->cfg
);
1543 dev
->data_ep_enabled
= 0;
1544 dev
->data_ep_queued
= 0;
1547 /* init registers at driver load time */
1548 static int startup_registers(struct udc
*dev
)
1552 /* init controller by soft reset */
1553 udc_soft_reset(dev
);
1555 /* mask not needed interrupts */
1556 udc_mask_unused_interrupts(dev
);
1558 /* put into initial config */
1559 udc_basic_init(dev
);
1560 /* link up all endpoints */
1561 udc_setup_endpoints(dev
);
1564 tmp
= readl(&dev
->regs
->cfg
);
1566 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1568 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_HS
, UDC_DEVCFG_SPD
);
1569 writel(tmp
, &dev
->regs
->cfg
);
1574 /* Sets initial endpoint parameters */
1575 static void udc_setup_endpoints(struct udc
*dev
)
1581 DBG(dev
, "udc_setup_endpoints()\n");
1583 /* read enum speed */
1584 tmp
= readl(&dev
->regs
->sts
);
1585 tmp
= AMD_GETBITS(tmp
, UDC_DEVSTS_ENUM_SPEED
);
1586 if (tmp
== UDC_DEVSTS_ENUM_SPEED_HIGH
)
1587 dev
->gadget
.speed
= USB_SPEED_HIGH
;
1588 else if (tmp
== UDC_DEVSTS_ENUM_SPEED_FULL
)
1589 dev
->gadget
.speed
= USB_SPEED_FULL
;
1591 /* set basic ep parameters */
1592 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1595 ep
->ep
.name
= ep_info
[tmp
].name
;
1596 ep
->ep
.caps
= ep_info
[tmp
].caps
;
1598 /* txfifo size is calculated at enable time */
1599 ep
->txfifo
= dev
->txfifo
;
1602 if (tmp
< UDC_EPIN_NUM
) {
1603 ep
->fifo_depth
= UDC_TXFIFO_SIZE
;
1606 ep
->fifo_depth
= UDC_RXFIFO_SIZE
;
1610 ep
->regs
= &dev
->ep_regs
[tmp
];
1612 * ep will be reset only if ep was not enabled before to avoid
1613 * disabling ep interrupts when ENUM interrupt occurs but ep is
1614 * not enabled by gadget driver
1617 ep_init(dev
->regs
, ep
);
1621 * ep->dma is not really used, just to indicate that
1622 * DMA is active: remove this
1623 * dma regs = dev control regs
1625 ep
->dma
= &dev
->regs
->ctl
;
1627 /* nak OUT endpoints until enable - not for ep0 */
1628 if (tmp
!= UDC_EP0IN_IX
&& tmp
!= UDC_EP0OUT_IX
1629 && tmp
> UDC_EPIN_NUM
) {
1631 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
1632 reg
|= AMD_BIT(UDC_EPCTL_SNAK
);
1633 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
1634 dev
->ep
[tmp
].naking
= 1;
1639 /* EP0 max packet */
1640 if (dev
->gadget
.speed
== USB_SPEED_FULL
) {
1641 usb_ep_set_maxpacket_limit(&dev
->ep
[UDC_EP0IN_IX
].ep
,
1642 UDC_FS_EP0IN_MAX_PKT_SIZE
);
1643 usb_ep_set_maxpacket_limit(&dev
->ep
[UDC_EP0OUT_IX
].ep
,
1644 UDC_FS_EP0OUT_MAX_PKT_SIZE
);
1645 } else if (dev
->gadget
.speed
== USB_SPEED_HIGH
) {
1646 usb_ep_set_maxpacket_limit(&dev
->ep
[UDC_EP0IN_IX
].ep
,
1647 UDC_EP0IN_MAX_PKT_SIZE
);
1648 usb_ep_set_maxpacket_limit(&dev
->ep
[UDC_EP0OUT_IX
].ep
,
1649 UDC_EP0OUT_MAX_PKT_SIZE
);
1653 * with suspend bug workaround, ep0 params for gadget driver
1654 * are set at gadget driver bind() call
1656 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
1657 dev
->ep
[UDC_EP0IN_IX
].halted
= 0;
1658 INIT_LIST_HEAD(&dev
->gadget
.ep0
->ep_list
);
1660 /* init cfg/alt/int */
1661 dev
->cur_config
= 0;
1666 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1667 static void usb_connect(struct udc
*dev
)
1670 dev_info(&dev
->pdev
->dev
, "USB Connect\n");
1674 /* put into initial config */
1675 udc_basic_init(dev
);
1677 /* enable device setup interrupts */
1678 udc_enable_dev_setup_interrupts(dev
);
1682 * Calls gadget with disconnect event and resets the UDC and makes
1683 * initial bringup to be ready for ep0 events
1685 static void usb_disconnect(struct udc
*dev
)
1688 dev_info(&dev
->pdev
->dev
, "USB Disconnect\n");
1692 /* mask interrupts */
1693 udc_mask_unused_interrupts(dev
);
1695 /* REVISIT there doesn't seem to be a point to having this
1696 * talk to a tasklet ... do it directly, we already hold
1697 * the spinlock needed to process the disconnect.
1700 tasklet_schedule(&disconnect_tasklet
);
1703 /* Tasklet for disconnect to be outside of interrupt context */
1704 static void udc_tasklet_disconnect(unsigned long par
)
1706 struct udc
*dev
= (struct udc
*)(*((struct udc
**) par
));
1709 DBG(dev
, "Tasklet disconnect\n");
1710 spin_lock_irq(&dev
->lock
);
1713 spin_unlock(&dev
->lock
);
1714 dev
->driver
->disconnect(&dev
->gadget
);
1715 spin_lock(&dev
->lock
);
1718 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++)
1719 empty_req_queue(&dev
->ep
[tmp
]);
1725 &dev
->ep
[UDC_EP0IN_IX
]);
1728 if (!soft_reset_occured
) {
1729 /* init controller by soft reset */
1730 udc_soft_reset(dev
);
1731 soft_reset_occured
++;
1734 /* re-enable dev interrupts */
1735 udc_enable_dev_setup_interrupts(dev
);
1736 /* back to full speed ? */
1737 if (use_fullspeed
) {
1738 tmp
= readl(&dev
->regs
->cfg
);
1739 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1740 writel(tmp
, &dev
->regs
->cfg
);
1743 spin_unlock_irq(&dev
->lock
);
1746 /* Reset the UDC core */
1747 static void udc_soft_reset(struct udc
*dev
)
1749 unsigned long flags
;
1751 DBG(dev
, "Soft reset\n");
1753 * reset possible waiting interrupts, because int.
1754 * status is lost after soft reset,
1755 * ep int. status reset
1757 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqsts
);
1758 /* device int. status reset */
1759 writel(UDC_DEV_MSK_DISABLE
, &dev
->regs
->irqsts
);
1761 spin_lock_irqsave(&udc_irq_spinlock
, flags
);
1762 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
1763 readl(&dev
->regs
->cfg
);
1764 spin_unlock_irqrestore(&udc_irq_spinlock
, flags
);
1768 /* RDE timer callback to set RDE bit */
1769 static void udc_timer_function(unsigned long v
)
1773 spin_lock_irq(&udc_irq_spinlock
);
1777 * open the fifo if fifo was filled on last timer call
1781 /* set RDE to receive setup data */
1782 tmp
= readl(&udc
->regs
->ctl
);
1783 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1784 writel(tmp
, &udc
->regs
->ctl
);
1786 } else if (readl(&udc
->regs
->sts
)
1787 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
1789 * if fifo empty setup polling, do not just
1792 udc_timer
.expires
= jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
1794 add_timer(&udc_timer
);
1797 * fifo contains data now, setup timer for opening
1798 * the fifo when timer expires to be able to receive
1799 * setup packets, when data packets gets queued by
1800 * gadget layer then timer will forced to expire with
1801 * set_rde=0 (RDE is set in udc_queue())
1804 /* debug: lhadmot_timer_start = 221070 */
1805 udc_timer
.expires
= jiffies
+ HZ
*UDC_RDE_TIMER_SECONDS
;
1807 add_timer(&udc_timer
);
1811 set_rde
= -1; /* RDE was set by udc_queue() */
1812 spin_unlock_irq(&udc_irq_spinlock
);
1818 /* Handle halt state, used in stall poll timer */
1819 static void udc_handle_halt_state(struct udc_ep
*ep
)
1822 /* set stall as long not halted */
1823 if (ep
->halted
== 1) {
1824 tmp
= readl(&ep
->regs
->ctl
);
1825 /* STALL cleared ? */
1826 if (!(tmp
& AMD_BIT(UDC_EPCTL_S
))) {
1828 * FIXME: MSC spec requires that stall remains
1829 * even on receivng of CLEAR_FEATURE HALT. So
1830 * we would set STALL again here to be compliant.
1831 * But with current mass storage drivers this does
1832 * not work (would produce endless host retries).
1833 * So we clear halt on CLEAR_FEATURE.
1835 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1836 tmp |= AMD_BIT(UDC_EPCTL_S);
1837 writel(tmp, &ep->regs->ctl);*/
1839 /* clear NAK by writing CNAK */
1840 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1841 writel(tmp
, &ep
->regs
->ctl
);
1843 UDC_QUEUE_CNAK(ep
, ep
->num
);
1848 /* Stall timer callback to poll S bit and set it again after */
1849 static void udc_pollstall_timer_function(unsigned long v
)
1854 spin_lock_irq(&udc_stall_spinlock
);
1856 * only one IN and OUT endpoints are handled
1859 ep
= &udc
->ep
[UDC_EPIN_IX
];
1860 udc_handle_halt_state(ep
);
1863 /* OUT poll stall */
1864 ep
= &udc
->ep
[UDC_EPOUT_IX
];
1865 udc_handle_halt_state(ep
);
1869 /* setup timer again when still halted */
1870 if (!stop_pollstall_timer
&& halted
) {
1871 udc_pollstall_timer
.expires
= jiffies
+
1872 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1874 add_timer(&udc_pollstall_timer
);
1876 spin_unlock_irq(&udc_stall_spinlock
);
1878 if (stop_pollstall_timer
)
1879 complete(&on_pollstall_exit
);
1882 /* Inits endpoint 0 so that SETUP packets are processed */
1883 static void activate_control_endpoints(struct udc
*dev
)
1887 DBG(dev
, "activate_control_endpoints\n");
1890 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1891 tmp
|= AMD_BIT(UDC_EPCTL_F
);
1892 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1894 /* set ep0 directions */
1895 dev
->ep
[UDC_EP0IN_IX
].in
= 1;
1896 dev
->ep
[UDC_EP0OUT_IX
].in
= 0;
1898 /* set buffer size (tx fifo entries) of EP0_IN */
1899 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1900 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1901 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EPIN0_BUFF_SIZE
,
1902 UDC_EPIN_BUFF_SIZE
);
1903 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1904 tmp
= AMD_ADDBITS(tmp
, UDC_EPIN0_BUFF_SIZE
,
1905 UDC_EPIN_BUFF_SIZE
);
1906 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1908 /* set max packet size of EP0_IN */
1909 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1910 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1911 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0IN_MAX_PKT_SIZE
,
1912 UDC_EP_MAX_PKT_SIZE
);
1913 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1914 tmp
= AMD_ADDBITS(tmp
, UDC_EP0IN_MAX_PKT_SIZE
,
1915 UDC_EP_MAX_PKT_SIZE
);
1916 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1918 /* set max packet size of EP0_OUT */
1919 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1920 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1921 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1922 UDC_EP_MAX_PKT_SIZE
);
1923 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1924 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1925 UDC_EP_MAX_PKT_SIZE
);
1926 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1928 /* set max packet size of EP0 in UDC CSR */
1929 tmp
= readl(&dev
->csr
->ne
[0]);
1930 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1931 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1932 UDC_CSR_NE_MAX_PKT
);
1933 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1934 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1935 UDC_CSR_NE_MAX_PKT
);
1936 writel(tmp
, &dev
->csr
->ne
[0]);
1939 dev
->ep
[UDC_EP0OUT_IX
].td
->status
|=
1940 AMD_BIT(UDC_DMA_OUT_STS_L
);
1941 /* write dma desc address */
1942 writel(dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
,
1943 &dev
->ep
[UDC_EP0OUT_IX
].regs
->subptr
);
1944 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
1945 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
1946 /* stop RDE timer */
1947 if (timer_pending(&udc_timer
)) {
1949 mod_timer(&udc_timer
, jiffies
- 1);
1951 /* stop pollstall timer */
1952 if (timer_pending(&udc_pollstall_timer
))
1953 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1955 tmp
= readl(&dev
->regs
->ctl
);
1956 tmp
|= AMD_BIT(UDC_DEVCTL_MODE
)
1957 | AMD_BIT(UDC_DEVCTL_RDE
)
1958 | AMD_BIT(UDC_DEVCTL_TDE
);
1959 if (use_dma_bufferfill_mode
)
1960 tmp
|= AMD_BIT(UDC_DEVCTL_BF
);
1961 else if (use_dma_ppb_du
)
1962 tmp
|= AMD_BIT(UDC_DEVCTL_DU
);
1963 writel(tmp
, &dev
->regs
->ctl
);
1966 /* clear NAK by writing CNAK for EP0IN */
1967 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1968 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1969 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1970 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1971 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
1973 /* clear NAK by writing CNAK for EP0OUT */
1974 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1975 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1976 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1977 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
1978 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
1981 /* Make endpoint 0 ready for control traffic */
1982 static int setup_ep0(struct udc
*dev
)
1984 activate_control_endpoints(dev
);
1985 /* enable ep0 interrupts */
1986 udc_enable_ep0_interrupts(dev
);
1987 /* enable device setup interrupts */
1988 udc_enable_dev_setup_interrupts(dev
);
1993 /* Called by gadget driver to register itself */
1994 static int amd5536_udc_start(struct usb_gadget
*g
,
1995 struct usb_gadget_driver
*driver
)
1997 struct udc
*dev
= to_amd5536_udc(g
);
2000 driver
->driver
.bus
= NULL
;
2001 dev
->driver
= driver
;
2003 /* Some gadget drivers use both ep0 directions.
2004 * NOTE: to gadget driver, ep0 is just one endpoint...
2006 dev
->ep
[UDC_EP0OUT_IX
].ep
.driver_data
=
2007 dev
->ep
[UDC_EP0IN_IX
].ep
.driver_data
;
2009 /* get ready for ep0 traffic */
2013 tmp
= readl(&dev
->regs
->ctl
);
2014 tmp
= tmp
& AMD_CLEAR_BIT(UDC_DEVCTL_SD
);
2015 writel(tmp
, &dev
->regs
->ctl
);
2022 /* shutdown requests and disconnect from gadget */
2024 shutdown(struct udc
*dev
, struct usb_gadget_driver
*driver
)
2025 __releases(dev
->lock
)
2026 __acquires(dev
->lock
)
2030 /* empty queues and init hardware */
2031 udc_basic_init(dev
);
2033 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++)
2034 empty_req_queue(&dev
->ep
[tmp
]);
2036 udc_setup_endpoints(dev
);
2039 /* Called by gadget driver to unregister itself */
2040 static int amd5536_udc_stop(struct usb_gadget
*g
)
2042 struct udc
*dev
= to_amd5536_udc(g
);
2043 unsigned long flags
;
2046 spin_lock_irqsave(&dev
->lock
, flags
);
2047 udc_mask_unused_interrupts(dev
);
2048 shutdown(dev
, NULL
);
2049 spin_unlock_irqrestore(&dev
->lock
, flags
);
2054 tmp
= readl(&dev
->regs
->ctl
);
2055 tmp
|= AMD_BIT(UDC_DEVCTL_SD
);
2056 writel(tmp
, &dev
->regs
->ctl
);
2061 /* Clear pending NAK bits */
2062 static void udc_process_cnak_queue(struct udc
*dev
)
2068 DBG(dev
, "CNAK pending queue processing\n");
2069 for (tmp
= 0; tmp
< UDC_EPIN_NUM_USED
; tmp
++) {
2070 if (cnak_pending
& (1 << tmp
)) {
2071 DBG(dev
, "CNAK pending for ep%d\n", tmp
);
2072 /* clear NAK by writing CNAK */
2073 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
2074 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2075 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
2076 dev
->ep
[tmp
].naking
= 0;
2077 UDC_QUEUE_CNAK(&dev
->ep
[tmp
], dev
->ep
[tmp
].num
);
2080 /* ... and ep0out */
2081 if (cnak_pending
& (1 << UDC_EP0OUT_IX
)) {
2082 DBG(dev
, "CNAK pending for ep%d\n", UDC_EP0OUT_IX
);
2083 /* clear NAK by writing CNAK */
2084 reg
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2085 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2086 writel(reg
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2087 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2088 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
],
2089 dev
->ep
[UDC_EP0OUT_IX
].num
);
2093 /* Enabling RX DMA after setup packet */
2094 static void udc_ep0_set_rde(struct udc
*dev
)
2098 * only enable RXDMA when no data endpoint enabled
2101 if (!dev
->data_ep_enabled
|| dev
->data_ep_queued
) {
2105 * setup timer for enabling RDE (to not enable
2106 * RXFIFO DMA for data endpoints to early)
2108 if (set_rde
!= 0 && !timer_pending(&udc_timer
)) {
2110 jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
2113 add_timer(&udc_timer
);
2120 /* Interrupt handler for data OUT traffic */
2121 static irqreturn_t
udc_data_out_isr(struct udc
*dev
, int ep_ix
)
2123 irqreturn_t ret_val
= IRQ_NONE
;
2126 struct udc_request
*req
;
2128 struct udc_data_dma
*td
= NULL
;
2131 VDBG(dev
, "ep%d irq\n", ep_ix
);
2132 ep
= &dev
->ep
[ep_ix
];
2134 tmp
= readl(&ep
->regs
->sts
);
2137 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2138 DBG(dev
, "BNA ep%dout occurred - DESPTR = %x\n",
2139 ep
->num
, readl(&ep
->regs
->desptr
));
2141 writel(tmp
| AMD_BIT(UDC_EPSTS_BNA
), &ep
->regs
->sts
);
2142 if (!ep
->cancel_transfer
)
2143 ep
->bna_occurred
= 1;
2145 ep
->cancel_transfer
= 0;
2146 ret_val
= IRQ_HANDLED
;
2151 if (tmp
& AMD_BIT(UDC_EPSTS_HE
)) {
2152 dev_err(&dev
->pdev
->dev
, "HE ep%dout occurred\n", ep
->num
);
2155 writel(tmp
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2156 ret_val
= IRQ_HANDLED
;
2160 if (!list_empty(&ep
->queue
)) {
2163 req
= list_entry(ep
->queue
.next
,
2164 struct udc_request
, queue
);
2167 udc_rxfifo_pending
= 1;
2169 VDBG(dev
, "req = %p\n", req
);
2174 if (req
&& udc_rxfifo_read(ep
, req
)) {
2175 ret_val
= IRQ_HANDLED
;
2178 complete_req(ep
, req
, 0);
2180 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2181 req
= list_entry(ep
->queue
.next
,
2182 struct udc_request
, queue
);
2188 } else if (!ep
->cancel_transfer
&& req
) {
2189 ret_val
= IRQ_HANDLED
;
2191 /* check for DMA done */
2193 dma_done
= AMD_GETBITS(req
->td_data
->status
,
2194 UDC_DMA_OUT_STS_BS
);
2195 /* packet per buffer mode - rx bytes */
2198 * if BNA occurred then recover desc. from
2201 if (ep
->bna_occurred
) {
2202 VDBG(dev
, "Recover desc. from BNA dummy\n");
2203 memcpy(req
->td_data
, ep
->bna_dummy_req
->td_data
,
2204 sizeof(struct udc_data_dma
));
2205 ep
->bna_occurred
= 0;
2206 udc_init_bna_dummy(ep
->req
);
2208 td
= udc_get_last_dma_desc(req
);
2209 dma_done
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_BS
);
2211 if (dma_done
== UDC_DMA_OUT_STS_BS_DMA_DONE
) {
2212 /* buffer fill mode - rx bytes */
2214 /* received number bytes */
2215 count
= AMD_GETBITS(req
->td_data
->status
,
2216 UDC_DMA_OUT_STS_RXBYTES
);
2217 VDBG(dev
, "rx bytes=%u\n", count
);
2218 /* packet per buffer mode - rx bytes */
2220 VDBG(dev
, "req->td_data=%p\n", req
->td_data
);
2221 VDBG(dev
, "last desc = %p\n", td
);
2222 /* received number bytes */
2223 if (use_dma_ppb_du
) {
2224 /* every desc. counts bytes */
2225 count
= udc_get_ppbdu_rxbytes(req
);
2227 /* last desc. counts bytes */
2228 count
= AMD_GETBITS(td
->status
,
2229 UDC_DMA_OUT_STS_RXBYTES
);
2230 if (!count
&& req
->req
.length
2231 == UDC_DMA_MAXPACKET
) {
2233 * on 64k packets the RXBYTES
2236 count
= UDC_DMA_MAXPACKET
;
2239 VDBG(dev
, "last desc rx bytes=%u\n", count
);
2242 tmp
= req
->req
.length
- req
->req
.actual
;
2244 if ((tmp
% ep
->ep
.maxpacket
) != 0) {
2245 DBG(dev
, "%s: rx %db, space=%db\n",
2246 ep
->ep
.name
, count
, tmp
);
2247 req
->req
.status
= -EOVERFLOW
;
2251 req
->req
.actual
+= count
;
2253 /* complete request */
2254 complete_req(ep
, req
, 0);
2257 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2258 req
= list_entry(ep
->queue
.next
,
2262 * DMA may be already started by udc_queue()
2263 * called by gadget drivers completion
2264 * routine. This happens when queue
2265 * holds one request only.
2267 if (req
->dma_going
== 0) {
2269 if (prep_dma(ep
, req
, GFP_ATOMIC
) != 0)
2271 /* write desc pointer */
2272 writel(req
->td_phys
,
2280 * implant BNA dummy descriptor to allow
2281 * RXFIFO opening by RDE
2283 if (ep
->bna_dummy_req
) {
2284 /* write desc pointer */
2285 writel(ep
->bna_dummy_req
->td_phys
,
2287 ep
->bna_occurred
= 0;
2291 * schedule timer for setting RDE if queue
2292 * remains empty to allow ep0 packets pass
2296 && !timer_pending(&udc_timer
)) {
2299 + HZ
*UDC_RDE_TIMER_SECONDS
;
2302 add_timer(&udc_timer
);
2304 if (ep
->num
!= UDC_EP0OUT_IX
)
2305 dev
->data_ep_queued
= 0;
2310 * RX DMA must be reenabled for each desc in PPBDU mode
2311 * and must be enabled for PPBNDU mode in case of BNA
2316 } else if (ep
->cancel_transfer
) {
2317 ret_val
= IRQ_HANDLED
;
2318 ep
->cancel_transfer
= 0;
2321 /* check pending CNAKS */
2323 /* CNAk processing when rxfifo empty only */
2324 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2325 udc_process_cnak_queue(dev
);
2328 /* clear OUT bits in ep status */
2329 writel(UDC_EPSTS_OUT_CLEAR
, &ep
->regs
->sts
);
2334 /* Interrupt handler for data IN traffic */
2335 static irqreturn_t
udc_data_in_isr(struct udc
*dev
, int ep_ix
)
2337 irqreturn_t ret_val
= IRQ_NONE
;
2341 struct udc_request
*req
;
2342 struct udc_data_dma
*td
;
2346 ep
= &dev
->ep
[ep_ix
];
2348 epsts
= readl(&ep
->regs
->sts
);
2351 if (epsts
& AMD_BIT(UDC_EPSTS_BNA
)) {
2352 dev_err(&dev
->pdev
->dev
,
2353 "BNA ep%din occurred - DESPTR = %08lx\n",
2355 (unsigned long) readl(&ep
->regs
->desptr
));
2358 writel(epsts
, &ep
->regs
->sts
);
2359 ret_val
= IRQ_HANDLED
;
2364 if (epsts
& AMD_BIT(UDC_EPSTS_HE
)) {
2365 dev_err(&dev
->pdev
->dev
,
2366 "HE ep%dn occurred - DESPTR = %08lx\n",
2367 ep
->num
, (unsigned long) readl(&ep
->regs
->desptr
));
2370 writel(epsts
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2371 ret_val
= IRQ_HANDLED
;
2375 /* DMA completion */
2376 if (epsts
& AMD_BIT(UDC_EPSTS_TDC
)) {
2377 VDBG(dev
, "TDC set- completion\n");
2378 ret_val
= IRQ_HANDLED
;
2379 if (!ep
->cancel_transfer
&& !list_empty(&ep
->queue
)) {
2380 req
= list_entry(ep
->queue
.next
,
2381 struct udc_request
, queue
);
2383 * length bytes transferred
2384 * check dma done of last desc. in PPBDU mode
2386 if (use_dma_ppb_du
) {
2387 td
= udc_get_last_dma_desc(req
);
2390 AMD_GETBITS(td
->status
,
2392 /* don't care DMA done */
2393 req
->req
.actual
= req
->req
.length
;
2396 /* assume all bytes transferred */
2397 req
->req
.actual
= req
->req
.length
;
2400 if (req
->req
.actual
== req
->req
.length
) {
2402 complete_req(ep
, req
, 0);
2404 /* further request available ? */
2405 if (list_empty(&ep
->queue
)) {
2406 /* disable interrupt */
2407 tmp
= readl(&dev
->regs
->ep_irqmsk
);
2408 tmp
|= AMD_BIT(ep
->num
);
2409 writel(tmp
, &dev
->regs
->ep_irqmsk
);
2413 ep
->cancel_transfer
= 0;
2417 * status reg has IN bit set and TDC not set (if TDC was handled,
2418 * IN must not be handled (UDC defect) ?
2420 if ((epsts
& AMD_BIT(UDC_EPSTS_IN
))
2421 && !(epsts
& AMD_BIT(UDC_EPSTS_TDC
))) {
2422 ret_val
= IRQ_HANDLED
;
2423 if (!list_empty(&ep
->queue
)) {
2425 req
= list_entry(ep
->queue
.next
,
2426 struct udc_request
, queue
);
2430 udc_txfifo_write(ep
, &req
->req
);
2431 len
= req
->req
.length
- req
->req
.actual
;
2432 if (len
> ep
->ep
.maxpacket
)
2433 len
= ep
->ep
.maxpacket
;
2434 req
->req
.actual
+= len
;
2435 if (req
->req
.actual
== req
->req
.length
2436 || (len
!= ep
->ep
.maxpacket
)) {
2438 complete_req(ep
, req
, 0);
2441 } else if (req
&& !req
->dma_going
) {
2442 VDBG(dev
, "IN DMA : req=%p req->td_data=%p\n",
2449 * unset L bit of first desc.
2452 if (use_dma_ppb
&& req
->req
.length
>
2454 req
->td_data
->status
&=
2459 /* write desc pointer */
2460 writel(req
->td_phys
, &ep
->regs
->desptr
);
2462 /* set HOST READY */
2463 req
->td_data
->status
=
2465 req
->td_data
->status
,
2466 UDC_DMA_IN_STS_BS_HOST_READY
,
2469 /* set poll demand bit */
2470 tmp
= readl(&ep
->regs
->ctl
);
2471 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2472 writel(tmp
, &ep
->regs
->ctl
);
2476 } else if (!use_dma
&& ep
->in
) {
2477 /* disable interrupt */
2479 &dev
->regs
->ep_irqmsk
);
2480 tmp
|= AMD_BIT(ep
->num
);
2482 &dev
->regs
->ep_irqmsk
);
2485 /* clear status bits */
2486 writel(epsts
, &ep
->regs
->sts
);
2493 /* Interrupt handler for Control OUT traffic */
2494 static irqreturn_t
udc_control_out_isr(struct udc
*dev
)
2495 __releases(dev
->lock
)
2496 __acquires(dev
->lock
)
2498 irqreturn_t ret_val
= IRQ_NONE
;
2500 int setup_supported
;
2504 struct udc_ep
*ep_tmp
;
2506 ep
= &dev
->ep
[UDC_EP0OUT_IX
];
2509 writel(AMD_BIT(UDC_EPINT_OUT_EP0
), &dev
->regs
->ep_irqsts
);
2511 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2512 /* check BNA and clear if set */
2513 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2514 VDBG(dev
, "ep0: BNA set\n");
2515 writel(AMD_BIT(UDC_EPSTS_BNA
),
2516 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2517 ep
->bna_occurred
= 1;
2518 ret_val
= IRQ_HANDLED
;
2522 /* type of data: SETUP or DATA 0 bytes */
2523 tmp
= AMD_GETBITS(tmp
, UDC_EPSTS_OUT
);
2524 VDBG(dev
, "data_typ = %x\n", tmp
);
2527 if (tmp
== UDC_EPSTS_OUT_SETUP
) {
2528 ret_val
= IRQ_HANDLED
;
2530 ep
->dev
->stall_ep0in
= 0;
2531 dev
->waiting_zlp_ack_ep0in
= 0;
2533 /* set NAK for EP0_IN */
2534 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2535 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
2536 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2537 dev
->ep
[UDC_EP0IN_IX
].naking
= 1;
2538 /* get setup data */
2541 /* clear OUT bits in ep status */
2542 writel(UDC_EPSTS_OUT_CLEAR
,
2543 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2545 setup_data
.data
[0] =
2546 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data12
;
2547 setup_data
.data
[1] =
2548 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data34
;
2549 /* set HOST READY */
2550 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->status
=
2551 UDC_DMA_STP_STS_BS_HOST_READY
;
2554 udc_rxfifo_read_dwords(dev
, setup_data
.data
, 2);
2557 /* determine direction of control data */
2558 if ((setup_data
.request
.bRequestType
& USB_DIR_IN
) != 0) {
2559 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
2561 udc_ep0_set_rde(dev
);
2564 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0OUT_IX
].ep
;
2566 * implant BNA dummy descriptor to allow RXFIFO opening
2569 if (ep
->bna_dummy_req
) {
2570 /* write desc pointer */
2571 writel(ep
->bna_dummy_req
->td_phys
,
2572 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2573 ep
->bna_occurred
= 0;
2577 dev
->ep
[UDC_EP0OUT_IX
].naking
= 1;
2579 * setup timer for enabling RDE (to not enable
2580 * RXFIFO DMA for data to early)
2583 if (!timer_pending(&udc_timer
)) {
2584 udc_timer
.expires
= jiffies
+
2585 HZ
/UDC_RDE_TIMER_DIV
;
2587 add_timer(&udc_timer
);
2592 * mass storage reset must be processed here because
2593 * next packet may be a CLEAR_FEATURE HALT which would not
2594 * clear the stall bit when no STALL handshake was received
2595 * before (autostall can cause this)
2597 if (setup_data
.data
[0] == UDC_MSCRES_DWORD0
2598 && setup_data
.data
[1] == UDC_MSCRES_DWORD1
) {
2599 DBG(dev
, "MSC Reset\n");
2602 * only one IN and OUT endpoints are handled
2604 ep_tmp
= &udc
->ep
[UDC_EPIN_IX
];
2605 udc_set_halt(&ep_tmp
->ep
, 0);
2606 ep_tmp
= &udc
->ep
[UDC_EPOUT_IX
];
2607 udc_set_halt(&ep_tmp
->ep
, 0);
2610 /* call gadget with setup data received */
2611 spin_unlock(&dev
->lock
);
2612 setup_supported
= dev
->driver
->setup(&dev
->gadget
,
2613 &setup_data
.request
);
2614 spin_lock(&dev
->lock
);
2616 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2617 /* ep0 in returns data (not zlp) on IN phase */
2618 if (setup_supported
>= 0 && setup_supported
<
2619 UDC_EP0IN_MAXPACKET
) {
2620 /* clear NAK by writing CNAK in EP0_IN */
2621 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2622 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2623 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
2624 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
2626 /* if unsupported request then stall */
2627 } else if (setup_supported
< 0) {
2628 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2629 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2631 dev
->waiting_zlp_ack_ep0in
= 1;
2634 /* clear NAK by writing CNAK in EP0_OUT */
2636 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2637 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2638 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2639 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2640 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
2644 /* clear OUT bits in ep status */
2645 writel(UDC_EPSTS_OUT_CLEAR
,
2646 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2649 /* data packet 0 bytes */
2650 } else if (tmp
== UDC_EPSTS_OUT_DATA
) {
2651 /* clear OUT bits in ep status */
2652 writel(UDC_EPSTS_OUT_CLEAR
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2654 /* get setup data: only 0 packet */
2656 /* no req if 0 packet, just reactivate */
2657 if (list_empty(&dev
->ep
[UDC_EP0OUT_IX
].queue
)) {
2660 /* set HOST READY */
2661 dev
->ep
[UDC_EP0OUT_IX
].td
->status
=
2663 dev
->ep
[UDC_EP0OUT_IX
].td
->status
,
2664 UDC_DMA_OUT_STS_BS_HOST_READY
,
2665 UDC_DMA_OUT_STS_BS
);
2667 udc_ep0_set_rde(dev
);
2668 ret_val
= IRQ_HANDLED
;
2672 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2673 /* re-program desc. pointer for possible ZLPs */
2674 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
2675 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2677 udc_ep0_set_rde(dev
);
2681 /* received number bytes */
2682 count
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2683 count
= AMD_GETBITS(count
, UDC_EPSTS_RX_PKT_SIZE
);
2684 /* out data for fifo mode not working */
2687 /* 0 packet or real data ? */
2689 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2691 /* dummy read confirm */
2692 readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->confirm
);
2693 ret_val
= IRQ_HANDLED
;
2698 /* check pending CNAKS */
2700 /* CNAk processing when rxfifo empty only */
2701 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2702 udc_process_cnak_queue(dev
);
2709 /* Interrupt handler for Control IN traffic */
2710 static irqreturn_t
udc_control_in_isr(struct udc
*dev
)
2712 irqreturn_t ret_val
= IRQ_NONE
;
2715 struct udc_request
*req
;
2718 ep
= &dev
->ep
[UDC_EP0IN_IX
];
2721 writel(AMD_BIT(UDC_EPINT_IN_EP0
), &dev
->regs
->ep_irqsts
);
2723 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2724 /* DMA completion */
2725 if (tmp
& AMD_BIT(UDC_EPSTS_TDC
)) {
2726 VDBG(dev
, "isr: TDC clear\n");
2727 ret_val
= IRQ_HANDLED
;
2730 writel(AMD_BIT(UDC_EPSTS_TDC
),
2731 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2733 /* status reg has IN bit set ? */
2734 } else if (tmp
& AMD_BIT(UDC_EPSTS_IN
)) {
2735 ret_val
= IRQ_HANDLED
;
2739 writel(AMD_BIT(UDC_EPSTS_IN
),
2740 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2742 if (dev
->stall_ep0in
) {
2743 DBG(dev
, "stall ep0in\n");
2745 tmp
= readl(&ep
->regs
->ctl
);
2746 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2747 writel(tmp
, &ep
->regs
->ctl
);
2749 if (!list_empty(&ep
->queue
)) {
2751 req
= list_entry(ep
->queue
.next
,
2752 struct udc_request
, queue
);
2755 /* write desc pointer */
2756 writel(req
->td_phys
, &ep
->regs
->desptr
);
2757 /* set HOST READY */
2758 req
->td_data
->status
=
2760 req
->td_data
->status
,
2761 UDC_DMA_STP_STS_BS_HOST_READY
,
2762 UDC_DMA_STP_STS_BS
);
2764 /* set poll demand bit */
2766 readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2767 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2769 &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2771 /* all bytes will be transferred */
2772 req
->req
.actual
= req
->req
.length
;
2775 complete_req(ep
, req
, 0);
2779 udc_txfifo_write(ep
, &req
->req
);
2781 /* lengh bytes transferred */
2782 len
= req
->req
.length
- req
->req
.actual
;
2783 if (len
> ep
->ep
.maxpacket
)
2784 len
= ep
->ep
.maxpacket
;
2786 req
->req
.actual
+= len
;
2787 if (req
->req
.actual
== req
->req
.length
2788 || (len
!= ep
->ep
.maxpacket
)) {
2790 complete_req(ep
, req
, 0);
2797 dev
->stall_ep0in
= 0;
2800 writel(AMD_BIT(UDC_EPSTS_IN
),
2801 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2809 /* Interrupt handler for global device events */
2810 static irqreturn_t
udc_dev_isr(struct udc
*dev
, u32 dev_irq
)
2811 __releases(dev
->lock
)
2812 __acquires(dev
->lock
)
2814 irqreturn_t ret_val
= IRQ_NONE
;
2821 /* SET_CONFIG irq ? */
2822 if (dev_irq
& AMD_BIT(UDC_DEVINT_SC
)) {
2823 ret_val
= IRQ_HANDLED
;
2825 /* read config value */
2826 tmp
= readl(&dev
->regs
->sts
);
2827 cfg
= AMD_GETBITS(tmp
, UDC_DEVSTS_CFG
);
2828 DBG(dev
, "SET_CONFIG interrupt: config=%d\n", cfg
);
2829 dev
->cur_config
= cfg
;
2830 dev
->set_cfg_not_acked
= 1;
2832 /* make usb request for gadget driver */
2833 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2834 setup_data
.request
.bRequest
= USB_REQ_SET_CONFIGURATION
;
2835 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_config
);
2837 /* programm the NE registers */
2838 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2842 /* ep ix in UDC CSR register space */
2843 udc_csr_epix
= ep
->num
;
2848 /* ep ix in UDC CSR register space */
2849 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2852 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2854 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
,
2857 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2859 /* clear stall bits */
2861 tmp
= readl(&ep
->regs
->ctl
);
2862 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2863 writel(tmp
, &ep
->regs
->ctl
);
2865 /* call gadget zero with setup data received */
2866 spin_unlock(&dev
->lock
);
2867 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2868 spin_lock(&dev
->lock
);
2870 } /* SET_INTERFACE ? */
2871 if (dev_irq
& AMD_BIT(UDC_DEVINT_SI
)) {
2872 ret_val
= IRQ_HANDLED
;
2874 dev
->set_cfg_not_acked
= 1;
2875 /* read interface and alt setting values */
2876 tmp
= readl(&dev
->regs
->sts
);
2877 dev
->cur_alt
= AMD_GETBITS(tmp
, UDC_DEVSTS_ALT
);
2878 dev
->cur_intf
= AMD_GETBITS(tmp
, UDC_DEVSTS_INTF
);
2880 /* make usb request for gadget driver */
2881 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2882 setup_data
.request
.bRequest
= USB_REQ_SET_INTERFACE
;
2883 setup_data
.request
.bRequestType
= USB_RECIP_INTERFACE
;
2884 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_alt
);
2885 setup_data
.request
.wIndex
= cpu_to_le16(dev
->cur_intf
);
2887 DBG(dev
, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2888 dev
->cur_alt
, dev
->cur_intf
);
2890 /* programm the NE registers */
2891 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2895 /* ep ix in UDC CSR register space */
2896 udc_csr_epix
= ep
->num
;
2901 /* ep ix in UDC CSR register space */
2902 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2907 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2909 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
,
2911 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2913 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
,
2916 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2918 /* clear stall bits */
2920 tmp
= readl(&ep
->regs
->ctl
);
2921 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2922 writel(tmp
, &ep
->regs
->ctl
);
2925 /* call gadget zero with setup data received */
2926 spin_unlock(&dev
->lock
);
2927 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2928 spin_lock(&dev
->lock
);
2931 if (dev_irq
& AMD_BIT(UDC_DEVINT_UR
)) {
2932 DBG(dev
, "USB Reset interrupt\n");
2933 ret_val
= IRQ_HANDLED
;
2935 /* allow soft reset when suspend occurs */
2936 soft_reset_occured
= 0;
2938 dev
->waiting_zlp_ack_ep0in
= 0;
2939 dev
->set_cfg_not_acked
= 0;
2941 /* mask not needed interrupts */
2942 udc_mask_unused_interrupts(dev
);
2944 /* call gadget to resume and reset configs etc. */
2945 spin_unlock(&dev
->lock
);
2946 if (dev
->sys_suspended
&& dev
->driver
->resume
) {
2947 dev
->driver
->resume(&dev
->gadget
);
2948 dev
->sys_suspended
= 0;
2950 usb_gadget_udc_reset(&dev
->gadget
, dev
->driver
);
2951 spin_lock(&dev
->lock
);
2953 /* disable ep0 to empty req queue */
2954 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
2955 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
2957 /* soft reset when rxfifo not empty */
2958 tmp
= readl(&dev
->regs
->sts
);
2959 if (!(tmp
& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2960 && !soft_reset_after_usbreset_occured
) {
2961 udc_soft_reset(dev
);
2962 soft_reset_after_usbreset_occured
++;
2966 * DMA reset to kill potential old DMA hw hang,
2967 * POLL bit is already reset by ep_init() through
2970 DBG(dev
, "DMA machine reset\n");
2971 tmp
= readl(&dev
->regs
->cfg
);
2972 writel(tmp
| AMD_BIT(UDC_DEVCFG_DMARST
), &dev
->regs
->cfg
);
2973 writel(tmp
, &dev
->regs
->cfg
);
2975 /* put into initial config */
2976 udc_basic_init(dev
);
2978 /* enable device setup interrupts */
2979 udc_enable_dev_setup_interrupts(dev
);
2981 /* enable suspend interrupt */
2982 tmp
= readl(&dev
->regs
->irqmsk
);
2983 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_US
);
2984 writel(tmp
, &dev
->regs
->irqmsk
);
2987 if (dev_irq
& AMD_BIT(UDC_DEVINT_US
)) {
2988 DBG(dev
, "USB Suspend interrupt\n");
2989 ret_val
= IRQ_HANDLED
;
2990 if (dev
->driver
->suspend
) {
2991 spin_unlock(&dev
->lock
);
2992 dev
->sys_suspended
= 1;
2993 dev
->driver
->suspend(&dev
->gadget
);
2994 spin_lock(&dev
->lock
);
2997 if (dev_irq
& AMD_BIT(UDC_DEVINT_ENUM
)) {
2998 DBG(dev
, "ENUM interrupt\n");
2999 ret_val
= IRQ_HANDLED
;
3000 soft_reset_after_usbreset_occured
= 0;
3002 /* disable ep0 to empty req queue */
3003 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
3004 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
3006 /* link up all endpoints */
3007 udc_setup_endpoints(dev
);
3008 dev_info(&dev
->pdev
->dev
, "Connect: %s\n",
3009 usb_speed_string(dev
->gadget
.speed
));
3012 activate_control_endpoints(dev
);
3014 /* enable ep0 interrupts */
3015 udc_enable_ep0_interrupts(dev
);
3017 /* session valid change interrupt */
3018 if (dev_irq
& AMD_BIT(UDC_DEVINT_SVC
)) {
3019 DBG(dev
, "USB SVC interrupt\n");
3020 ret_val
= IRQ_HANDLED
;
3022 /* check that session is not valid to detect disconnect */
3023 tmp
= readl(&dev
->regs
->sts
);
3024 if (!(tmp
& AMD_BIT(UDC_DEVSTS_SESSVLD
))) {
3025 /* disable suspend interrupt */
3026 tmp
= readl(&dev
->regs
->irqmsk
);
3027 tmp
|= AMD_BIT(UDC_DEVINT_US
);
3028 writel(tmp
, &dev
->regs
->irqmsk
);
3029 DBG(dev
, "USB Disconnect (session valid low)\n");
3030 /* cleanup on disconnect */
3031 usb_disconnect(udc
);
3039 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
3040 static irqreturn_t
udc_irq(int irq
, void *pdev
)
3042 struct udc
*dev
= pdev
;
3046 irqreturn_t ret_val
= IRQ_NONE
;
3048 spin_lock(&dev
->lock
);
3050 /* check for ep irq */
3051 reg
= readl(&dev
->regs
->ep_irqsts
);
3053 if (reg
& AMD_BIT(UDC_EPINT_OUT_EP0
))
3054 ret_val
|= udc_control_out_isr(dev
);
3055 if (reg
& AMD_BIT(UDC_EPINT_IN_EP0
))
3056 ret_val
|= udc_control_in_isr(dev
);
3062 for (i
= 1; i
< UDC_EP_NUM
; i
++) {
3064 if (!(reg
& ep_irq
) || i
== UDC_EPINT_OUT_EP0
)
3067 /* clear irq status */
3068 writel(ep_irq
, &dev
->regs
->ep_irqsts
);
3070 /* irq for out ep ? */
3071 if (i
> UDC_EPIN_NUM
)
3072 ret_val
|= udc_data_out_isr(dev
, i
);
3074 ret_val
|= udc_data_in_isr(dev
, i
);
3080 /* check for dev irq */
3081 reg
= readl(&dev
->regs
->irqsts
);
3084 writel(reg
, &dev
->regs
->irqsts
);
3085 ret_val
|= udc_dev_isr(dev
, reg
);
3089 spin_unlock(&dev
->lock
);
3093 /* Tears down device */
3094 static void gadget_release(struct device
*pdev
)
3096 struct amd5536udc
*dev
= dev_get_drvdata(pdev
);
3100 /* Cleanup on device remove */
3101 static void udc_remove(struct udc
*dev
)
3105 if (timer_pending(&udc_timer
))
3106 wait_for_completion(&on_exit
);
3108 del_timer_sync(&udc_timer
);
3109 /* remove pollstall timer */
3110 stop_pollstall_timer
++;
3111 if (timer_pending(&udc_pollstall_timer
))
3112 wait_for_completion(&on_pollstall_exit
);
3113 if (udc_pollstall_timer
.data
)
3114 del_timer_sync(&udc_pollstall_timer
);
3118 /* free all the dma pools */
3119 static void free_dma_pools(struct udc
*dev
)
3121 dma_pool_free(dev
->stp_requests
, dev
->ep
[UDC_EP0OUT_IX
].td
,
3122 dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3123 dma_pool_free(dev
->stp_requests
, dev
->ep
[UDC_EP0OUT_IX
].td_stp
,
3124 dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3125 dma_pool_destroy(dev
->stp_requests
);
3126 dma_pool_destroy(dev
->data_requests
);
3129 /* Reset all pci context */
3130 static void udc_pci_remove(struct pci_dev
*pdev
)
3134 dev
= pci_get_drvdata(pdev
);
3136 usb_del_gadget_udc(&udc
->gadget
);
3137 /* gadget driver must not be registered */
3138 if (WARN_ON(dev
->driver
))
3141 /* dma pool cleanup */
3142 free_dma_pools(dev
);
3144 /* reset controller */
3145 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
3146 free_irq(pdev
->irq
, dev
);
3147 iounmap(dev
->virt_addr
);
3148 release_mem_region(pci_resource_start(pdev
, 0),
3149 pci_resource_len(pdev
, 0));
3150 pci_disable_device(pdev
);
3155 /* create dma pools on init */
3156 static int init_dma_pools(struct udc
*dev
)
3158 struct udc_stp_dma
*td_stp
;
3159 struct udc_data_dma
*td_data
;
3162 /* consistent DMA mode setting ? */
3164 use_dma_bufferfill_mode
= 0;
3167 use_dma_bufferfill_mode
= 1;
3171 dev
->data_requests
= dma_pool_create("data_requests", NULL
,
3172 sizeof(struct udc_data_dma
), 0, 0);
3173 if (!dev
->data_requests
) {
3174 DBG(dev
, "can't get request data pool\n");
3178 /* EP0 in dma regs = dev control regs */
3179 dev
->ep
[UDC_EP0IN_IX
].dma
= &dev
->regs
->ctl
;
3181 /* dma desc for setup data */
3182 dev
->stp_requests
= dma_pool_create("setup requests", NULL
,
3183 sizeof(struct udc_stp_dma
), 0, 0);
3184 if (!dev
->stp_requests
) {
3185 DBG(dev
, "can't get stp request pool\n");
3187 goto err_create_dma_pool
;
3190 td_stp
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3191 &dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3196 dev
->ep
[UDC_EP0OUT_IX
].td_stp
= td_stp
;
3198 /* data: 0 packets !? */
3199 td_data
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3200 &dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3203 goto err_alloc_phys
;
3205 dev
->ep
[UDC_EP0OUT_IX
].td
= td_data
;
3209 dma_pool_free(dev
->stp_requests
, dev
->ep
[UDC_EP0OUT_IX
].td_stp
,
3210 dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3212 dma_pool_destroy(dev
->stp_requests
);
3213 dev
->stp_requests
= NULL
;
3214 err_create_dma_pool
:
3215 dma_pool_destroy(dev
->data_requests
);
3216 dev
->data_requests
= NULL
;
3221 static int udc_probe(struct udc
*dev
)
3227 /* mark timer as not initialized */
3229 udc_pollstall_timer
.data
= 0;
3231 /* device struct setup */
3232 dev
->gadget
.ops
= &udc_ops
;
3234 dev_set_name(&dev
->gadget
.dev
, "gadget");
3235 dev
->gadget
.name
= name
;
3236 dev
->gadget
.max_speed
= USB_SPEED_HIGH
;
3238 /* init registers, interrupts, ... */
3239 startup_registers(dev
);
3241 dev_info(&dev
->pdev
->dev
, "%s\n", mod_desc
);
3243 snprintf(tmp
, sizeof(tmp
), "%d", dev
->irq
);
3244 dev_info(&dev
->pdev
->dev
,
3245 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3246 tmp
, dev
->phys_addr
, dev
->chiprev
,
3247 (dev
->chiprev
== UDC_HSA0_REV
) ? "A0" : "B1");
3248 strcpy(tmp
, UDC_DRIVER_VERSION_STRING
);
3249 if (dev
->chiprev
== UDC_HSA0_REV
) {
3250 dev_err(&dev
->pdev
->dev
, "chip revision is A0; too old\n");
3254 dev_info(&dev
->pdev
->dev
,
3255 "driver version: %s(for Geode5536 B1)\n", tmp
);
3258 retval
= usb_add_gadget_udc_release(&udc
->pdev
->dev
, &dev
->gadget
,
3264 init_timer(&udc_timer
);
3265 udc_timer
.function
= udc_timer_function
;
3267 /* timer pollstall init */
3268 init_timer(&udc_pollstall_timer
);
3269 udc_pollstall_timer
.function
= udc_pollstall_timer_function
;
3270 udc_pollstall_timer
.data
= 1;
3273 reg
= readl(&dev
->regs
->ctl
);
3274 reg
|= AMD_BIT(UDC_DEVCTL_SD
);
3275 writel(reg
, &dev
->regs
->ctl
);
3277 /* print dev register info */
3286 /* Called by pci bus driver to init pci context */
3287 static int udc_pci_probe(
3288 struct pci_dev
*pdev
,
3289 const struct pci_device_id
*id
3293 unsigned long resource
;
3299 dev_dbg(&pdev
->dev
, "already probed\n");
3304 dev
= kzalloc(sizeof(struct udc
), GFP_KERNEL
);
3309 if (pci_enable_device(pdev
) < 0) {
3314 /* PCI resource allocation */
3315 resource
= pci_resource_start(pdev
, 0);
3316 len
= pci_resource_len(pdev
, 0);
3318 if (!request_mem_region(resource
, len
, name
)) {
3319 dev_dbg(&pdev
->dev
, "pci device used already\n");
3324 dev
->virt_addr
= ioremap_nocache(resource
, len
);
3325 if (!dev
->virt_addr
) {
3326 dev_dbg(&pdev
->dev
, "start address cannot be mapped\n");
3332 dev_err(&pdev
->dev
, "irq not set\n");
3337 spin_lock_init(&dev
->lock
);
3338 /* udc csr registers base */
3339 dev
->csr
= dev
->virt_addr
+ UDC_CSR_ADDR
;
3340 /* dev registers base */
3341 dev
->regs
= dev
->virt_addr
+ UDC_DEVCFG_ADDR
;
3342 /* ep registers base */
3343 dev
->ep_regs
= dev
->virt_addr
+ UDC_EPREGS_ADDR
;
3345 dev
->rxfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_RXFIFO_ADDR
);
3346 dev
->txfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_TXFIFO_ADDR
);
3348 if (request_irq(pdev
->irq
, udc_irq
, IRQF_SHARED
, name
, dev
) != 0) {
3349 dev_dbg(&pdev
->dev
, "request_irq(%d) fail\n", pdev
->irq
);
3354 pci_set_drvdata(pdev
, dev
);
3356 /* chip revision for Hs AMD5536 */
3357 dev
->chiprev
= pdev
->revision
;
3359 pci_set_master(pdev
);
3360 pci_try_set_mwi(pdev
);
3362 /* init dma pools */
3364 retval
= init_dma_pools(dev
);
3369 dev
->phys_addr
= resource
;
3370 dev
->irq
= pdev
->irq
;
3373 /* general probing */
3374 if (udc_probe(dev
)) {
3382 free_dma_pools(dev
);
3384 free_irq(pdev
->irq
, dev
);
3386 iounmap(dev
->virt_addr
);
3388 release_mem_region(resource
, len
);
3390 pci_disable_device(pdev
);
3396 /* PCI device parameters */
3397 static const struct pci_device_id pci_id
[] = {
3399 PCI_DEVICE(PCI_VENDOR_ID_AMD
, 0x2096),
3400 .class = (PCI_CLASS_SERIAL_USB
<< 8) | 0xfe,
3401 .class_mask
= 0xffffffff,
3405 MODULE_DEVICE_TABLE(pci
, pci_id
);
3408 static struct pci_driver udc_pci_driver
= {
3409 .name
= (char *) name
,
3411 .probe
= udc_pci_probe
,
3412 .remove
= udc_pci_remove
,
3415 module_pci_driver(udc_pci_driver
);
3417 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION
);
3418 MODULE_AUTHOR("Thomas Dahlmann");
3419 MODULE_LICENSE("GPL");