Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / ext4 / ialloc.c
blob1b8024d26f654c5458c7e84db5a2c439adc6500e
1 /*
2 * linux/fs/ext4/ialloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <asm/byteorder.h>
26 #include "ext4.h"
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
31 #include <trace/events/ext4.h>
34 * ialloc.c contains the inodes allocation and deallocation routines
38 * The free inodes are managed by bitmaps. A file system contains several
39 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
40 * block for inodes, N blocks for the inode table and data blocks.
42 * The file system contains group descriptors which are located after the
43 * super block. Each descriptor contains the number of the bitmap block and
44 * the free blocks count in the block.
48 * To avoid calling the atomic setbit hundreds or thousands of times, we only
49 * need to use it within a single byte (to ensure we get endianness right).
50 * We can use memset for the rest of the bitmap as there are no other users.
52 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
54 int i;
56 if (start_bit >= end_bit)
57 return;
59 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
60 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
61 ext4_set_bit(i, bitmap);
62 if (i < end_bit)
63 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
66 /* Initializes an uninitialized inode bitmap */
67 static int ext4_init_inode_bitmap(struct super_block *sb,
68 struct buffer_head *bh,
69 ext4_group_t block_group,
70 struct ext4_group_desc *gdp)
72 struct ext4_group_info *grp;
73 struct ext4_sb_info *sbi = EXT4_SB(sb);
74 J_ASSERT_BH(bh, buffer_locked(bh));
76 /* If checksum is bad mark all blocks and inodes use to prevent
77 * allocation, essentially implementing a per-group read-only flag. */
78 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
79 ext4_error(sb, "Checksum bad for group %u", block_group);
80 grp = ext4_get_group_info(sb, block_group);
81 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
82 percpu_counter_sub(&sbi->s_freeclusters_counter,
83 grp->bb_free);
84 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
85 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
86 int count;
87 count = ext4_free_inodes_count(sb, gdp);
88 percpu_counter_sub(&sbi->s_freeinodes_counter,
89 count);
91 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
92 return -EFSBADCRC;
95 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
96 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
97 bh->b_data);
98 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
99 EXT4_INODES_PER_GROUP(sb) / 8);
100 ext4_group_desc_csum_set(sb, block_group, gdp);
102 return 0;
105 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
107 if (uptodate) {
108 set_buffer_uptodate(bh);
109 set_bitmap_uptodate(bh);
111 unlock_buffer(bh);
112 put_bh(bh);
115 static int ext4_validate_inode_bitmap(struct super_block *sb,
116 struct ext4_group_desc *desc,
117 ext4_group_t block_group,
118 struct buffer_head *bh)
120 ext4_fsblk_t blk;
121 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
122 struct ext4_sb_info *sbi = EXT4_SB(sb);
124 if (buffer_verified(bh))
125 return 0;
126 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
127 return -EFSCORRUPTED;
129 ext4_lock_group(sb, block_group);
130 blk = ext4_inode_bitmap(sb, desc);
131 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
132 EXT4_INODES_PER_GROUP(sb) / 8)) {
133 ext4_unlock_group(sb, block_group);
134 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
135 "inode_bitmap = %llu", block_group, blk);
136 grp = ext4_get_group_info(sb, block_group);
137 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
138 int count;
139 count = ext4_free_inodes_count(sb, desc);
140 percpu_counter_sub(&sbi->s_freeinodes_counter,
141 count);
143 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
144 return -EFSBADCRC;
146 set_buffer_verified(bh);
147 ext4_unlock_group(sb, block_group);
148 return 0;
152 * Read the inode allocation bitmap for a given block_group, reading
153 * into the specified slot in the superblock's bitmap cache.
155 * Return buffer_head of bitmap on success or NULL.
157 static struct buffer_head *
158 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
160 struct ext4_group_desc *desc;
161 struct buffer_head *bh = NULL;
162 ext4_fsblk_t bitmap_blk;
163 int err;
165 desc = ext4_get_group_desc(sb, block_group, NULL);
166 if (!desc)
167 return ERR_PTR(-EFSCORRUPTED);
169 bitmap_blk = ext4_inode_bitmap(sb, desc);
170 bh = sb_getblk(sb, bitmap_blk);
171 if (unlikely(!bh)) {
172 ext4_error(sb, "Cannot read inode bitmap - "
173 "block_group = %u, inode_bitmap = %llu",
174 block_group, bitmap_blk);
175 return ERR_PTR(-EIO);
177 if (bitmap_uptodate(bh))
178 goto verify;
180 lock_buffer(bh);
181 if (bitmap_uptodate(bh)) {
182 unlock_buffer(bh);
183 goto verify;
186 ext4_lock_group(sb, block_group);
187 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
188 err = ext4_init_inode_bitmap(sb, bh, block_group, desc);
189 set_bitmap_uptodate(bh);
190 set_buffer_uptodate(bh);
191 set_buffer_verified(bh);
192 ext4_unlock_group(sb, block_group);
193 unlock_buffer(bh);
194 if (err)
195 goto out;
196 return bh;
198 ext4_unlock_group(sb, block_group);
200 if (buffer_uptodate(bh)) {
202 * if not uninit if bh is uptodate,
203 * bitmap is also uptodate
205 set_bitmap_uptodate(bh);
206 unlock_buffer(bh);
207 goto verify;
210 * submit the buffer_head for reading
212 trace_ext4_load_inode_bitmap(sb, block_group);
213 bh->b_end_io = ext4_end_bitmap_read;
214 get_bh(bh);
215 submit_bh(READ | REQ_META | REQ_PRIO, bh);
216 wait_on_buffer(bh);
217 if (!buffer_uptodate(bh)) {
218 put_bh(bh);
219 ext4_error(sb, "Cannot read inode bitmap - "
220 "block_group = %u, inode_bitmap = %llu",
221 block_group, bitmap_blk);
222 return ERR_PTR(-EIO);
225 verify:
226 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
227 if (err)
228 goto out;
229 return bh;
230 out:
231 put_bh(bh);
232 return ERR_PTR(err);
236 * NOTE! When we get the inode, we're the only people
237 * that have access to it, and as such there are no
238 * race conditions we have to worry about. The inode
239 * is not on the hash-lists, and it cannot be reached
240 * through the filesystem because the directory entry
241 * has been deleted earlier.
243 * HOWEVER: we must make sure that we get no aliases,
244 * which means that we have to call "clear_inode()"
245 * _before_ we mark the inode not in use in the inode
246 * bitmaps. Otherwise a newly created file might use
247 * the same inode number (not actually the same pointer
248 * though), and then we'd have two inodes sharing the
249 * same inode number and space on the harddisk.
251 void ext4_free_inode(handle_t *handle, struct inode *inode)
253 struct super_block *sb = inode->i_sb;
254 int is_directory;
255 unsigned long ino;
256 struct buffer_head *bitmap_bh = NULL;
257 struct buffer_head *bh2;
258 ext4_group_t block_group;
259 unsigned long bit;
260 struct ext4_group_desc *gdp;
261 struct ext4_super_block *es;
262 struct ext4_sb_info *sbi;
263 int fatal = 0, err, count, cleared;
264 struct ext4_group_info *grp;
266 if (!sb) {
267 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
268 "nonexistent device\n", __func__, __LINE__);
269 return;
271 if (atomic_read(&inode->i_count) > 1) {
272 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
273 __func__, __LINE__, inode->i_ino,
274 atomic_read(&inode->i_count));
275 return;
277 if (inode->i_nlink) {
278 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
279 __func__, __LINE__, inode->i_ino, inode->i_nlink);
280 return;
282 sbi = EXT4_SB(sb);
284 ino = inode->i_ino;
285 ext4_debug("freeing inode %lu\n", ino);
286 trace_ext4_free_inode(inode);
289 * Note: we must free any quota before locking the superblock,
290 * as writing the quota to disk may need the lock as well.
292 dquot_initialize(inode);
293 ext4_xattr_delete_inode(handle, inode);
294 dquot_free_inode(inode);
295 dquot_drop(inode);
297 is_directory = S_ISDIR(inode->i_mode);
299 /* Do this BEFORE marking the inode not in use or returning an error */
300 ext4_clear_inode(inode);
302 es = EXT4_SB(sb)->s_es;
303 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
304 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
305 goto error_return;
307 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
308 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
309 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
310 /* Don't bother if the inode bitmap is corrupt. */
311 grp = ext4_get_group_info(sb, block_group);
312 if (IS_ERR(bitmap_bh)) {
313 fatal = PTR_ERR(bitmap_bh);
314 bitmap_bh = NULL;
315 goto error_return;
317 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
318 fatal = -EFSCORRUPTED;
319 goto error_return;
322 BUFFER_TRACE(bitmap_bh, "get_write_access");
323 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
324 if (fatal)
325 goto error_return;
327 fatal = -ESRCH;
328 gdp = ext4_get_group_desc(sb, block_group, &bh2);
329 if (gdp) {
330 BUFFER_TRACE(bh2, "get_write_access");
331 fatal = ext4_journal_get_write_access(handle, bh2);
333 ext4_lock_group(sb, block_group);
334 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
335 if (fatal || !cleared) {
336 ext4_unlock_group(sb, block_group);
337 goto out;
340 count = ext4_free_inodes_count(sb, gdp) + 1;
341 ext4_free_inodes_set(sb, gdp, count);
342 if (is_directory) {
343 count = ext4_used_dirs_count(sb, gdp) - 1;
344 ext4_used_dirs_set(sb, gdp, count);
345 percpu_counter_dec(&sbi->s_dirs_counter);
347 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
348 EXT4_INODES_PER_GROUP(sb) / 8);
349 ext4_group_desc_csum_set(sb, block_group, gdp);
350 ext4_unlock_group(sb, block_group);
352 percpu_counter_inc(&sbi->s_freeinodes_counter);
353 if (sbi->s_log_groups_per_flex) {
354 ext4_group_t f = ext4_flex_group(sbi, block_group);
356 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
357 if (is_directory)
358 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
360 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
361 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
362 out:
363 if (cleared) {
364 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
365 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
366 if (!fatal)
367 fatal = err;
368 } else {
369 ext4_error(sb, "bit already cleared for inode %lu", ino);
370 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
371 int count;
372 count = ext4_free_inodes_count(sb, gdp);
373 percpu_counter_sub(&sbi->s_freeinodes_counter,
374 count);
376 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
379 error_return:
380 brelse(bitmap_bh);
381 ext4_std_error(sb, fatal);
384 struct orlov_stats {
385 __u64 free_clusters;
386 __u32 free_inodes;
387 __u32 used_dirs;
391 * Helper function for Orlov's allocator; returns critical information
392 * for a particular block group or flex_bg. If flex_size is 1, then g
393 * is a block group number; otherwise it is flex_bg number.
395 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
396 int flex_size, struct orlov_stats *stats)
398 struct ext4_group_desc *desc;
399 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
401 if (flex_size > 1) {
402 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
403 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
404 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
405 return;
408 desc = ext4_get_group_desc(sb, g, NULL);
409 if (desc) {
410 stats->free_inodes = ext4_free_inodes_count(sb, desc);
411 stats->free_clusters = ext4_free_group_clusters(sb, desc);
412 stats->used_dirs = ext4_used_dirs_count(sb, desc);
413 } else {
414 stats->free_inodes = 0;
415 stats->free_clusters = 0;
416 stats->used_dirs = 0;
421 * Orlov's allocator for directories.
423 * We always try to spread first-level directories.
425 * If there are blockgroups with both free inodes and free blocks counts
426 * not worse than average we return one with smallest directory count.
427 * Otherwise we simply return a random group.
429 * For the rest rules look so:
431 * It's OK to put directory into a group unless
432 * it has too many directories already (max_dirs) or
433 * it has too few free inodes left (min_inodes) or
434 * it has too few free blocks left (min_blocks) or
435 * Parent's group is preferred, if it doesn't satisfy these
436 * conditions we search cyclically through the rest. If none
437 * of the groups look good we just look for a group with more
438 * free inodes than average (starting at parent's group).
441 static int find_group_orlov(struct super_block *sb, struct inode *parent,
442 ext4_group_t *group, umode_t mode,
443 const struct qstr *qstr)
445 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
446 struct ext4_sb_info *sbi = EXT4_SB(sb);
447 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
448 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
449 unsigned int freei, avefreei, grp_free;
450 ext4_fsblk_t freeb, avefreec;
451 unsigned int ndirs;
452 int max_dirs, min_inodes;
453 ext4_grpblk_t min_clusters;
454 ext4_group_t i, grp, g, ngroups;
455 struct ext4_group_desc *desc;
456 struct orlov_stats stats;
457 int flex_size = ext4_flex_bg_size(sbi);
458 struct dx_hash_info hinfo;
460 ngroups = real_ngroups;
461 if (flex_size > 1) {
462 ngroups = (real_ngroups + flex_size - 1) >>
463 sbi->s_log_groups_per_flex;
464 parent_group >>= sbi->s_log_groups_per_flex;
467 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
468 avefreei = freei / ngroups;
469 freeb = EXT4_C2B(sbi,
470 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
471 avefreec = freeb;
472 do_div(avefreec, ngroups);
473 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
475 if (S_ISDIR(mode) &&
476 ((parent == d_inode(sb->s_root)) ||
477 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
478 int best_ndir = inodes_per_group;
479 int ret = -1;
481 if (qstr) {
482 hinfo.hash_version = DX_HASH_HALF_MD4;
483 hinfo.seed = sbi->s_hash_seed;
484 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
485 grp = hinfo.hash;
486 } else
487 grp = prandom_u32();
488 parent_group = (unsigned)grp % ngroups;
489 for (i = 0; i < ngroups; i++) {
490 g = (parent_group + i) % ngroups;
491 get_orlov_stats(sb, g, flex_size, &stats);
492 if (!stats.free_inodes)
493 continue;
494 if (stats.used_dirs >= best_ndir)
495 continue;
496 if (stats.free_inodes < avefreei)
497 continue;
498 if (stats.free_clusters < avefreec)
499 continue;
500 grp = g;
501 ret = 0;
502 best_ndir = stats.used_dirs;
504 if (ret)
505 goto fallback;
506 found_flex_bg:
507 if (flex_size == 1) {
508 *group = grp;
509 return 0;
513 * We pack inodes at the beginning of the flexgroup's
514 * inode tables. Block allocation decisions will do
515 * something similar, although regular files will
516 * start at 2nd block group of the flexgroup. See
517 * ext4_ext_find_goal() and ext4_find_near().
519 grp *= flex_size;
520 for (i = 0; i < flex_size; i++) {
521 if (grp+i >= real_ngroups)
522 break;
523 desc = ext4_get_group_desc(sb, grp+i, NULL);
524 if (desc && ext4_free_inodes_count(sb, desc)) {
525 *group = grp+i;
526 return 0;
529 goto fallback;
532 max_dirs = ndirs / ngroups + inodes_per_group / 16;
533 min_inodes = avefreei - inodes_per_group*flex_size / 4;
534 if (min_inodes < 1)
535 min_inodes = 1;
536 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
539 * Start looking in the flex group where we last allocated an
540 * inode for this parent directory
542 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
543 parent_group = EXT4_I(parent)->i_last_alloc_group;
544 if (flex_size > 1)
545 parent_group >>= sbi->s_log_groups_per_flex;
548 for (i = 0; i < ngroups; i++) {
549 grp = (parent_group + i) % ngroups;
550 get_orlov_stats(sb, grp, flex_size, &stats);
551 if (stats.used_dirs >= max_dirs)
552 continue;
553 if (stats.free_inodes < min_inodes)
554 continue;
555 if (stats.free_clusters < min_clusters)
556 continue;
557 goto found_flex_bg;
560 fallback:
561 ngroups = real_ngroups;
562 avefreei = freei / ngroups;
563 fallback_retry:
564 parent_group = EXT4_I(parent)->i_block_group;
565 for (i = 0; i < ngroups; i++) {
566 grp = (parent_group + i) % ngroups;
567 desc = ext4_get_group_desc(sb, grp, NULL);
568 if (desc) {
569 grp_free = ext4_free_inodes_count(sb, desc);
570 if (grp_free && grp_free >= avefreei) {
571 *group = grp;
572 return 0;
577 if (avefreei) {
579 * The free-inodes counter is approximate, and for really small
580 * filesystems the above test can fail to find any blockgroups
582 avefreei = 0;
583 goto fallback_retry;
586 return -1;
589 static int find_group_other(struct super_block *sb, struct inode *parent,
590 ext4_group_t *group, umode_t mode)
592 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
593 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
594 struct ext4_group_desc *desc;
595 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
598 * Try to place the inode is the same flex group as its
599 * parent. If we can't find space, use the Orlov algorithm to
600 * find another flex group, and store that information in the
601 * parent directory's inode information so that use that flex
602 * group for future allocations.
604 if (flex_size > 1) {
605 int retry = 0;
607 try_again:
608 parent_group &= ~(flex_size-1);
609 last = parent_group + flex_size;
610 if (last > ngroups)
611 last = ngroups;
612 for (i = parent_group; i < last; i++) {
613 desc = ext4_get_group_desc(sb, i, NULL);
614 if (desc && ext4_free_inodes_count(sb, desc)) {
615 *group = i;
616 return 0;
619 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
620 retry = 1;
621 parent_group = EXT4_I(parent)->i_last_alloc_group;
622 goto try_again;
625 * If this didn't work, use the Orlov search algorithm
626 * to find a new flex group; we pass in the mode to
627 * avoid the topdir algorithms.
629 *group = parent_group + flex_size;
630 if (*group > ngroups)
631 *group = 0;
632 return find_group_orlov(sb, parent, group, mode, NULL);
636 * Try to place the inode in its parent directory
638 *group = parent_group;
639 desc = ext4_get_group_desc(sb, *group, NULL);
640 if (desc && ext4_free_inodes_count(sb, desc) &&
641 ext4_free_group_clusters(sb, desc))
642 return 0;
645 * We're going to place this inode in a different blockgroup from its
646 * parent. We want to cause files in a common directory to all land in
647 * the same blockgroup. But we want files which are in a different
648 * directory which shares a blockgroup with our parent to land in a
649 * different blockgroup.
651 * So add our directory's i_ino into the starting point for the hash.
653 *group = (*group + parent->i_ino) % ngroups;
656 * Use a quadratic hash to find a group with a free inode and some free
657 * blocks.
659 for (i = 1; i < ngroups; i <<= 1) {
660 *group += i;
661 if (*group >= ngroups)
662 *group -= ngroups;
663 desc = ext4_get_group_desc(sb, *group, NULL);
664 if (desc && ext4_free_inodes_count(sb, desc) &&
665 ext4_free_group_clusters(sb, desc))
666 return 0;
670 * That failed: try linear search for a free inode, even if that group
671 * has no free blocks.
673 *group = parent_group;
674 for (i = 0; i < ngroups; i++) {
675 if (++*group >= ngroups)
676 *group = 0;
677 desc = ext4_get_group_desc(sb, *group, NULL);
678 if (desc && ext4_free_inodes_count(sb, desc))
679 return 0;
682 return -1;
686 * In no journal mode, if an inode has recently been deleted, we want
687 * to avoid reusing it until we're reasonably sure the inode table
688 * block has been written back to disk. (Yes, these values are
689 * somewhat arbitrary...)
691 #define RECENTCY_MIN 5
692 #define RECENTCY_DIRTY 30
694 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
696 struct ext4_group_desc *gdp;
697 struct ext4_inode *raw_inode;
698 struct buffer_head *bh;
699 unsigned long dtime, now;
700 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
701 int offset, ret = 0, recentcy = RECENTCY_MIN;
703 gdp = ext4_get_group_desc(sb, group, NULL);
704 if (unlikely(!gdp))
705 return 0;
707 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
708 (ino / inodes_per_block));
709 if (unlikely(!bh) || !buffer_uptodate(bh))
711 * If the block is not in the buffer cache, then it
712 * must have been written out.
714 goto out;
716 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
717 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
718 dtime = le32_to_cpu(raw_inode->i_dtime);
719 now = get_seconds();
720 if (buffer_dirty(bh))
721 recentcy += RECENTCY_DIRTY;
723 if (dtime && (dtime < now) && (now < dtime + recentcy))
724 ret = 1;
725 out:
726 brelse(bh);
727 return ret;
731 * There are two policies for allocating an inode. If the new inode is
732 * a directory, then a forward search is made for a block group with both
733 * free space and a low directory-to-inode ratio; if that fails, then of
734 * the groups with above-average free space, that group with the fewest
735 * directories already is chosen.
737 * For other inodes, search forward from the parent directory's block
738 * group to find a free inode.
740 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
741 umode_t mode, const struct qstr *qstr,
742 __u32 goal, uid_t *owner, int handle_type,
743 unsigned int line_no, int nblocks)
745 struct super_block *sb;
746 struct buffer_head *inode_bitmap_bh = NULL;
747 struct buffer_head *group_desc_bh;
748 ext4_group_t ngroups, group = 0;
749 unsigned long ino = 0;
750 struct inode *inode;
751 struct ext4_group_desc *gdp = NULL;
752 struct ext4_inode_info *ei;
753 struct ext4_sb_info *sbi;
754 int ret2, err;
755 struct inode *ret;
756 ext4_group_t i;
757 ext4_group_t flex_group;
758 struct ext4_group_info *grp;
759 int encrypt = 0;
761 /* Cannot create files in a deleted directory */
762 if (!dir || !dir->i_nlink)
763 return ERR_PTR(-EPERM);
765 if ((ext4_encrypted_inode(dir) ||
766 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) &&
767 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
768 err = ext4_get_encryption_info(dir);
769 if (err)
770 return ERR_PTR(err);
771 if (ext4_encryption_info(dir) == NULL)
772 return ERR_PTR(-EPERM);
773 if (!handle)
774 nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb);
775 encrypt = 1;
778 sb = dir->i_sb;
779 ngroups = ext4_get_groups_count(sb);
780 trace_ext4_request_inode(dir, mode);
781 inode = new_inode(sb);
782 if (!inode)
783 return ERR_PTR(-ENOMEM);
784 ei = EXT4_I(inode);
785 sbi = EXT4_SB(sb);
788 * Initalize owners and quota early so that we don't have to account
789 * for quota initialization worst case in standard inode creating
790 * transaction
792 if (owner) {
793 inode->i_mode = mode;
794 i_uid_write(inode, owner[0]);
795 i_gid_write(inode, owner[1]);
796 } else if (test_opt(sb, GRPID)) {
797 inode->i_mode = mode;
798 inode->i_uid = current_fsuid();
799 inode->i_gid = dir->i_gid;
800 } else
801 inode_init_owner(inode, dir, mode);
802 err = dquot_initialize(inode);
803 if (err)
804 goto out;
806 if (!goal)
807 goal = sbi->s_inode_goal;
809 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
810 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
811 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
812 ret2 = 0;
813 goto got_group;
816 if (S_ISDIR(mode))
817 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
818 else
819 ret2 = find_group_other(sb, dir, &group, mode);
821 got_group:
822 EXT4_I(dir)->i_last_alloc_group = group;
823 err = -ENOSPC;
824 if (ret2 == -1)
825 goto out;
828 * Normally we will only go through one pass of this loop,
829 * unless we get unlucky and it turns out the group we selected
830 * had its last inode grabbed by someone else.
832 for (i = 0; i < ngroups; i++, ino = 0) {
833 err = -EIO;
835 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
836 if (!gdp)
837 goto out;
840 * Check free inodes count before loading bitmap.
842 if (ext4_free_inodes_count(sb, gdp) == 0) {
843 if (++group == ngroups)
844 group = 0;
845 continue;
848 grp = ext4_get_group_info(sb, group);
849 /* Skip groups with already-known suspicious inode tables */
850 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
851 if (++group == ngroups)
852 group = 0;
853 continue;
856 brelse(inode_bitmap_bh);
857 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
858 /* Skip groups with suspicious inode tables */
859 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
860 IS_ERR(inode_bitmap_bh)) {
861 inode_bitmap_bh = NULL;
862 if (++group == ngroups)
863 group = 0;
864 continue;
867 repeat_in_this_group:
868 ino = ext4_find_next_zero_bit((unsigned long *)
869 inode_bitmap_bh->b_data,
870 EXT4_INODES_PER_GROUP(sb), ino);
871 if (ino >= EXT4_INODES_PER_GROUP(sb))
872 goto next_group;
873 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
874 ext4_error(sb, "reserved inode found cleared - "
875 "inode=%lu", ino + 1);
876 continue;
878 if ((EXT4_SB(sb)->s_journal == NULL) &&
879 recently_deleted(sb, group, ino)) {
880 ino++;
881 goto next_inode;
883 if (!handle) {
884 BUG_ON(nblocks <= 0);
885 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
886 handle_type, nblocks,
888 if (IS_ERR(handle)) {
889 err = PTR_ERR(handle);
890 ext4_std_error(sb, err);
891 goto out;
894 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
895 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
896 if (err) {
897 ext4_std_error(sb, err);
898 goto out;
900 ext4_lock_group(sb, group);
901 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
902 ext4_unlock_group(sb, group);
903 ino++; /* the inode bitmap is zero-based */
904 if (!ret2)
905 goto got; /* we grabbed the inode! */
906 next_inode:
907 if (ino < EXT4_INODES_PER_GROUP(sb))
908 goto repeat_in_this_group;
909 next_group:
910 if (++group == ngroups)
911 group = 0;
913 err = -ENOSPC;
914 goto out;
916 got:
917 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
918 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
919 if (err) {
920 ext4_std_error(sb, err);
921 goto out;
924 BUFFER_TRACE(group_desc_bh, "get_write_access");
925 err = ext4_journal_get_write_access(handle, group_desc_bh);
926 if (err) {
927 ext4_std_error(sb, err);
928 goto out;
931 /* We may have to initialize the block bitmap if it isn't already */
932 if (ext4_has_group_desc_csum(sb) &&
933 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
934 struct buffer_head *block_bitmap_bh;
936 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
937 if (IS_ERR(block_bitmap_bh)) {
938 err = PTR_ERR(block_bitmap_bh);
939 goto out;
941 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
942 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
943 if (err) {
944 brelse(block_bitmap_bh);
945 ext4_std_error(sb, err);
946 goto out;
949 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
950 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
952 /* recheck and clear flag under lock if we still need to */
953 ext4_lock_group(sb, group);
954 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
955 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
956 ext4_free_group_clusters_set(sb, gdp,
957 ext4_free_clusters_after_init(sb, group, gdp));
958 ext4_block_bitmap_csum_set(sb, group, gdp,
959 block_bitmap_bh);
960 ext4_group_desc_csum_set(sb, group, gdp);
962 ext4_unlock_group(sb, group);
963 brelse(block_bitmap_bh);
965 if (err) {
966 ext4_std_error(sb, err);
967 goto out;
971 /* Update the relevant bg descriptor fields */
972 if (ext4_has_group_desc_csum(sb)) {
973 int free;
974 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
976 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
977 ext4_lock_group(sb, group); /* while we modify the bg desc */
978 free = EXT4_INODES_PER_GROUP(sb) -
979 ext4_itable_unused_count(sb, gdp);
980 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
981 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
982 free = 0;
985 * Check the relative inode number against the last used
986 * relative inode number in this group. if it is greater
987 * we need to update the bg_itable_unused count
989 if (ino > free)
990 ext4_itable_unused_set(sb, gdp,
991 (EXT4_INODES_PER_GROUP(sb) - ino));
992 up_read(&grp->alloc_sem);
993 } else {
994 ext4_lock_group(sb, group);
997 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
998 if (S_ISDIR(mode)) {
999 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1000 if (sbi->s_log_groups_per_flex) {
1001 ext4_group_t f = ext4_flex_group(sbi, group);
1003 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1006 if (ext4_has_group_desc_csum(sb)) {
1007 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1008 EXT4_INODES_PER_GROUP(sb) / 8);
1009 ext4_group_desc_csum_set(sb, group, gdp);
1011 ext4_unlock_group(sb, group);
1013 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1014 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1015 if (err) {
1016 ext4_std_error(sb, err);
1017 goto out;
1020 percpu_counter_dec(&sbi->s_freeinodes_counter);
1021 if (S_ISDIR(mode))
1022 percpu_counter_inc(&sbi->s_dirs_counter);
1024 if (sbi->s_log_groups_per_flex) {
1025 flex_group = ext4_flex_group(sbi, group);
1026 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1029 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1030 /* This is the optimal IO size (for stat), not the fs block size */
1031 inode->i_blocks = 0;
1032 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1033 ext4_current_time(inode);
1035 memset(ei->i_data, 0, sizeof(ei->i_data));
1036 ei->i_dir_start_lookup = 0;
1037 ei->i_disksize = 0;
1039 /* Don't inherit extent flag from directory, amongst others. */
1040 ei->i_flags =
1041 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1042 ei->i_file_acl = 0;
1043 ei->i_dtime = 0;
1044 ei->i_block_group = group;
1045 ei->i_last_alloc_group = ~0;
1047 ext4_set_inode_flags(inode);
1048 if (IS_DIRSYNC(inode))
1049 ext4_handle_sync(handle);
1050 if (insert_inode_locked(inode) < 0) {
1052 * Likely a bitmap corruption causing inode to be allocated
1053 * twice.
1055 err = -EIO;
1056 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1057 inode->i_ino);
1058 goto out;
1060 spin_lock(&sbi->s_next_gen_lock);
1061 inode->i_generation = sbi->s_next_generation++;
1062 spin_unlock(&sbi->s_next_gen_lock);
1064 /* Precompute checksum seed for inode metadata */
1065 if (ext4_has_metadata_csum(sb)) {
1066 __u32 csum;
1067 __le32 inum = cpu_to_le32(inode->i_ino);
1068 __le32 gen = cpu_to_le32(inode->i_generation);
1069 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1070 sizeof(inum));
1071 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1072 sizeof(gen));
1075 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1076 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1078 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1079 ei->i_inline_off = 0;
1080 if (ext4_has_feature_inline_data(sb))
1081 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1082 ret = inode;
1083 err = dquot_alloc_inode(inode);
1084 if (err)
1085 goto fail_drop;
1087 err = ext4_init_acl(handle, inode, dir);
1088 if (err)
1089 goto fail_free_drop;
1091 err = ext4_init_security(handle, inode, dir, qstr);
1092 if (err)
1093 goto fail_free_drop;
1095 if (ext4_has_feature_extents(sb)) {
1096 /* set extent flag only for directory, file and normal symlink*/
1097 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1098 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1099 ext4_ext_tree_init(handle, inode);
1103 if (ext4_handle_valid(handle)) {
1104 ei->i_sync_tid = handle->h_transaction->t_tid;
1105 ei->i_datasync_tid = handle->h_transaction->t_tid;
1108 if (encrypt) {
1109 err = ext4_inherit_context(dir, inode);
1110 if (err)
1111 goto fail_free_drop;
1114 err = ext4_mark_inode_dirty(handle, inode);
1115 if (err) {
1116 ext4_std_error(sb, err);
1117 goto fail_free_drop;
1120 ext4_debug("allocating inode %lu\n", inode->i_ino);
1121 trace_ext4_allocate_inode(inode, dir, mode);
1122 brelse(inode_bitmap_bh);
1123 return ret;
1125 fail_free_drop:
1126 dquot_free_inode(inode);
1127 fail_drop:
1128 clear_nlink(inode);
1129 unlock_new_inode(inode);
1130 out:
1131 dquot_drop(inode);
1132 inode->i_flags |= S_NOQUOTA;
1133 iput(inode);
1134 brelse(inode_bitmap_bh);
1135 return ERR_PTR(err);
1138 /* Verify that we are loading a valid orphan from disk */
1139 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1141 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1142 ext4_group_t block_group;
1143 int bit;
1144 struct buffer_head *bitmap_bh;
1145 struct inode *inode = NULL;
1146 long err = -EIO;
1148 /* Error cases - e2fsck has already cleaned up for us */
1149 if (ino > max_ino) {
1150 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
1151 err = -EFSCORRUPTED;
1152 goto error;
1155 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1156 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1157 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1158 if (IS_ERR(bitmap_bh)) {
1159 err = PTR_ERR(bitmap_bh);
1160 ext4_warning(sb, "inode bitmap error %ld for orphan %lu",
1161 ino, err);
1162 goto error;
1165 /* Having the inode bit set should be a 100% indicator that this
1166 * is a valid orphan (no e2fsck run on fs). Orphans also include
1167 * inodes that were being truncated, so we can't check i_nlink==0.
1169 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1170 goto bad_orphan;
1172 inode = ext4_iget(sb, ino);
1173 if (IS_ERR(inode))
1174 goto iget_failed;
1177 * If the orphans has i_nlinks > 0 then it should be able to be
1178 * truncated, otherwise it won't be removed from the orphan list
1179 * during processing and an infinite loop will result.
1181 if (inode->i_nlink && !ext4_can_truncate(inode))
1182 goto bad_orphan;
1184 if (NEXT_ORPHAN(inode) > max_ino)
1185 goto bad_orphan;
1186 brelse(bitmap_bh);
1187 return inode;
1189 iget_failed:
1190 err = PTR_ERR(inode);
1191 inode = NULL;
1192 bad_orphan:
1193 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
1194 printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1195 bit, (unsigned long long)bitmap_bh->b_blocknr,
1196 ext4_test_bit(bit, bitmap_bh->b_data));
1197 printk(KERN_WARNING "inode=%p\n", inode);
1198 if (inode) {
1199 printk(KERN_WARNING "is_bad_inode(inode)=%d\n",
1200 is_bad_inode(inode));
1201 printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n",
1202 NEXT_ORPHAN(inode));
1203 printk(KERN_WARNING "max_ino=%lu\n", max_ino);
1204 printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink);
1205 /* Avoid freeing blocks if we got a bad deleted inode */
1206 if (inode->i_nlink == 0)
1207 inode->i_blocks = 0;
1208 iput(inode);
1210 brelse(bitmap_bh);
1211 error:
1212 return ERR_PTR(err);
1215 unsigned long ext4_count_free_inodes(struct super_block *sb)
1217 unsigned long desc_count;
1218 struct ext4_group_desc *gdp;
1219 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1220 #ifdef EXT4FS_DEBUG
1221 struct ext4_super_block *es;
1222 unsigned long bitmap_count, x;
1223 struct buffer_head *bitmap_bh = NULL;
1225 es = EXT4_SB(sb)->s_es;
1226 desc_count = 0;
1227 bitmap_count = 0;
1228 gdp = NULL;
1229 for (i = 0; i < ngroups; i++) {
1230 gdp = ext4_get_group_desc(sb, i, NULL);
1231 if (!gdp)
1232 continue;
1233 desc_count += ext4_free_inodes_count(sb, gdp);
1234 brelse(bitmap_bh);
1235 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1236 if (IS_ERR(bitmap_bh)) {
1237 bitmap_bh = NULL;
1238 continue;
1241 x = ext4_count_free(bitmap_bh->b_data,
1242 EXT4_INODES_PER_GROUP(sb) / 8);
1243 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1244 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1245 bitmap_count += x;
1247 brelse(bitmap_bh);
1248 printk(KERN_DEBUG "ext4_count_free_inodes: "
1249 "stored = %u, computed = %lu, %lu\n",
1250 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1251 return desc_count;
1252 #else
1253 desc_count = 0;
1254 for (i = 0; i < ngroups; i++) {
1255 gdp = ext4_get_group_desc(sb, i, NULL);
1256 if (!gdp)
1257 continue;
1258 desc_count += ext4_free_inodes_count(sb, gdp);
1259 cond_resched();
1261 return desc_count;
1262 #endif
1265 /* Called at mount-time, super-block is locked */
1266 unsigned long ext4_count_dirs(struct super_block * sb)
1268 unsigned long count = 0;
1269 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1271 for (i = 0; i < ngroups; i++) {
1272 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1273 if (!gdp)
1274 continue;
1275 count += ext4_used_dirs_count(sb, gdp);
1277 return count;
1281 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1282 * inode table. Must be called without any spinlock held. The only place
1283 * where it is called from on active part of filesystem is ext4lazyinit
1284 * thread, so we do not need any special locks, however we have to prevent
1285 * inode allocation from the current group, so we take alloc_sem lock, to
1286 * block ext4_new_inode() until we are finished.
1288 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1289 int barrier)
1291 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1292 struct ext4_sb_info *sbi = EXT4_SB(sb);
1293 struct ext4_group_desc *gdp = NULL;
1294 struct buffer_head *group_desc_bh;
1295 handle_t *handle;
1296 ext4_fsblk_t blk;
1297 int num, ret = 0, used_blks = 0;
1299 /* This should not happen, but just to be sure check this */
1300 if (sb->s_flags & MS_RDONLY) {
1301 ret = 1;
1302 goto out;
1305 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1306 if (!gdp)
1307 goto out;
1310 * We do not need to lock this, because we are the only one
1311 * handling this flag.
1313 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1314 goto out;
1316 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1317 if (IS_ERR(handle)) {
1318 ret = PTR_ERR(handle);
1319 goto out;
1322 down_write(&grp->alloc_sem);
1324 * If inode bitmap was already initialized there may be some
1325 * used inodes so we need to skip blocks with used inodes in
1326 * inode table.
1328 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1329 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1330 ext4_itable_unused_count(sb, gdp)),
1331 sbi->s_inodes_per_block);
1333 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1334 ext4_error(sb, "Something is wrong with group %u: "
1335 "used itable blocks: %d; "
1336 "itable unused count: %u",
1337 group, used_blks,
1338 ext4_itable_unused_count(sb, gdp));
1339 ret = 1;
1340 goto err_out;
1343 blk = ext4_inode_table(sb, gdp) + used_blks;
1344 num = sbi->s_itb_per_group - used_blks;
1346 BUFFER_TRACE(group_desc_bh, "get_write_access");
1347 ret = ext4_journal_get_write_access(handle,
1348 group_desc_bh);
1349 if (ret)
1350 goto err_out;
1353 * Skip zeroout if the inode table is full. But we set the ZEROED
1354 * flag anyway, because obviously, when it is full it does not need
1355 * further zeroing.
1357 if (unlikely(num == 0))
1358 goto skip_zeroout;
1360 ext4_debug("going to zero out inode table in group %d\n",
1361 group);
1362 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1363 if (ret < 0)
1364 goto err_out;
1365 if (barrier)
1366 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1368 skip_zeroout:
1369 ext4_lock_group(sb, group);
1370 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1371 ext4_group_desc_csum_set(sb, group, gdp);
1372 ext4_unlock_group(sb, group);
1374 BUFFER_TRACE(group_desc_bh,
1375 "call ext4_handle_dirty_metadata");
1376 ret = ext4_handle_dirty_metadata(handle, NULL,
1377 group_desc_bh);
1379 err_out:
1380 up_write(&grp->alloc_sem);
1381 ext4_journal_stop(handle);
1382 out:
1383 return ret;