Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / mm / page-writeback.c
blobd15d88c8efa1e25bf76fe3bf07f6eeb08fd14fd5
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
42 #include "internal.h"
45 * Sleep at most 200ms at a time in balance_dirty_pages().
47 #define MAX_PAUSE max(HZ/5, 1)
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
56 * Estimate write bandwidth at 200ms intervals.
58 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60 #define RATELIMIT_CALC_SHIFT 10
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
66 static long ratelimit_pages = 32;
68 /* The following parameters are exported via /proc/sys/vm */
71 * Start background writeback (via writeback threads) at this percentage
73 int dirty_background_ratio = 10;
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
79 unsigned long dirty_background_bytes;
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 int vm_highmem_is_dirtyable;
88 * The generator of dirty data starts writeback at this percentage
90 int vm_dirty_ratio = 20;
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
96 unsigned long vm_dirty_bytes;
99 * The interval between `kupdate'-style writebacks
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
106 * The longest time for which data is allowed to remain dirty
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
111 * Flag that makes the machine dump writes/reads and block dirtyings.
113 int block_dump;
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
119 int laptop_mode;
121 EXPORT_SYMBOL(laptop_mode);
123 /* End of sysctl-exported parameters */
125 struct wb_domain global_wb_domain;
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
132 #endif
133 struct bdi_writeback *wb;
134 struct fprop_local_percpu *wb_completions;
136 unsigned long avail; /* dirtyable */
137 unsigned long dirty; /* file_dirty + write + nfs */
138 unsigned long thresh; /* dirty threshold */
139 unsigned long bg_thresh; /* dirty background threshold */
141 unsigned long wb_dirty; /* per-wb counterparts */
142 unsigned long wb_thresh;
143 unsigned long wb_bg_thresh;
145 unsigned long pos_ratio;
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155 #ifdef CONFIG_CGROUP_WRITEBACK
157 #define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
161 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
166 .gdtc = __gdtc
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
170 return dtc->dom;
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175 return dtc->dom;
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180 return mdtc->gdtc;
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185 return &wb->memcg_completions;
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189 unsigned long *minp, unsigned long *maxp)
191 unsigned long this_bw = wb->avg_write_bandwidth;
192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 unsigned long long min = wb->bdi->min_ratio;
194 unsigned long long max = wb->bdi->max_ratio;
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
200 if (this_bw < tot_bw) {
201 if (min) {
202 min *= this_bw;
203 do_div(min, tot_bw);
205 if (max < 100) {
206 max *= this_bw;
207 do_div(max, tot_bw);
211 *minp = min;
212 *maxp = max;
215 #else /* CONFIG_CGROUP_WRITEBACK */
217 #define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
224 return false;
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229 return &global_wb_domain;
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234 return NULL;
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239 return NULL;
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243 unsigned long *minp, unsigned long *maxp)
245 *minp = wb->bdi->min_ratio;
246 *maxp = wb->bdi->max_ratio;
249 #endif /* CONFIG_CGROUP_WRITEBACK */
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effictive number of pages that
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
270 * zone_dirtyable_memory - number of dirtyable pages in a zone
271 * @zone: the zone
273 * Returns the zone's number of pages potentially available for dirty
274 * page cache. This is the base value for the per-zone dirty limits.
276 static unsigned long zone_dirtyable_memory(struct zone *zone)
278 unsigned long nr_pages;
280 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
283 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
284 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
286 return nr_pages;
289 static unsigned long highmem_dirtyable_memory(unsigned long total)
291 #ifdef CONFIG_HIGHMEM
292 int node;
293 unsigned long x = 0;
295 for_each_node_state(node, N_HIGH_MEMORY) {
296 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
298 x += zone_dirtyable_memory(z);
301 * Unreclaimable memory (kernel memory or anonymous memory
302 * without swap) can bring down the dirtyable pages below
303 * the zone's dirty balance reserve and the above calculation
304 * will underflow. However we still want to add in nodes
305 * which are below threshold (negative values) to get a more
306 * accurate calculation but make sure that the total never
307 * underflows.
309 if ((long)x < 0)
310 x = 0;
313 * Make sure that the number of highmem pages is never larger
314 * than the number of the total dirtyable memory. This can only
315 * occur in very strange VM situations but we want to make sure
316 * that this does not occur.
318 return min(x, total);
319 #else
320 return 0;
321 #endif
325 * global_dirtyable_memory - number of globally dirtyable pages
327 * Returns the global number of pages potentially available for dirty
328 * page cache. This is the base value for the global dirty limits.
330 static unsigned long global_dirtyable_memory(void)
332 unsigned long x;
334 x = global_page_state(NR_FREE_PAGES);
335 x -= min(x, dirty_balance_reserve);
337 x += global_page_state(NR_INACTIVE_FILE);
338 x += global_page_state(NR_ACTIVE_FILE);
340 if (!vm_highmem_is_dirtyable)
341 x -= highmem_dirtyable_memory(x);
343 return x + 1; /* Ensure that we never return 0 */
347 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348 * @dtc: dirty_throttle_control of interest
350 * Calculate @dtc->thresh and ->bg_thresh considering
351 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
352 * must ensure that @dtc->avail is set before calling this function. The
353 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
354 * real-time tasks.
356 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
358 const unsigned long available_memory = dtc->avail;
359 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
360 unsigned long bytes = vm_dirty_bytes;
361 unsigned long bg_bytes = dirty_background_bytes;
362 unsigned long ratio = vm_dirty_ratio;
363 unsigned long bg_ratio = dirty_background_ratio;
364 unsigned long thresh;
365 unsigned long bg_thresh;
366 struct task_struct *tsk;
368 /* gdtc is !NULL iff @dtc is for memcg domain */
369 if (gdtc) {
370 unsigned long global_avail = gdtc->avail;
373 * The byte settings can't be applied directly to memcg
374 * domains. Convert them to ratios by scaling against
375 * globally available memory.
377 if (bytes)
378 ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
379 global_avail, 100UL);
380 if (bg_bytes)
381 bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
382 global_avail, 100UL);
383 bytes = bg_bytes = 0;
386 if (bytes)
387 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
388 else
389 thresh = (ratio * available_memory) / 100;
391 if (bg_bytes)
392 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
393 else
394 bg_thresh = (bg_ratio * available_memory) / 100;
396 if (bg_thresh >= thresh)
397 bg_thresh = thresh / 2;
398 tsk = current;
399 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
400 bg_thresh += bg_thresh / 4;
401 thresh += thresh / 4;
403 dtc->thresh = thresh;
404 dtc->bg_thresh = bg_thresh;
406 /* we should eventually report the domain in the TP */
407 if (!gdtc)
408 trace_global_dirty_state(bg_thresh, thresh);
412 * global_dirty_limits - background-writeback and dirty-throttling thresholds
413 * @pbackground: out parameter for bg_thresh
414 * @pdirty: out parameter for thresh
416 * Calculate bg_thresh and thresh for global_wb_domain. See
417 * domain_dirty_limits() for details.
419 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
421 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
423 gdtc.avail = global_dirtyable_memory();
424 domain_dirty_limits(&gdtc);
426 *pbackground = gdtc.bg_thresh;
427 *pdirty = gdtc.thresh;
431 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
432 * @zone: the zone
434 * Returns the maximum number of dirty pages allowed in a zone, based
435 * on the zone's dirtyable memory.
437 static unsigned long zone_dirty_limit(struct zone *zone)
439 unsigned long zone_memory = zone_dirtyable_memory(zone);
440 struct task_struct *tsk = current;
441 unsigned long dirty;
443 if (vm_dirty_bytes)
444 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
445 zone_memory / global_dirtyable_memory();
446 else
447 dirty = vm_dirty_ratio * zone_memory / 100;
449 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
450 dirty += dirty / 4;
452 return dirty;
456 * zone_dirty_ok - tells whether a zone is within its dirty limits
457 * @zone: the zone to check
459 * Returns %true when the dirty pages in @zone are within the zone's
460 * dirty limit, %false if the limit is exceeded.
462 bool zone_dirty_ok(struct zone *zone)
464 unsigned long limit = zone_dirty_limit(zone);
466 return zone_page_state(zone, NR_FILE_DIRTY) +
467 zone_page_state(zone, NR_UNSTABLE_NFS) +
468 zone_page_state(zone, NR_WRITEBACK) <= limit;
471 int dirty_background_ratio_handler(struct ctl_table *table, int write,
472 void __user *buffer, size_t *lenp,
473 loff_t *ppos)
475 int ret;
477 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
478 if (ret == 0 && write)
479 dirty_background_bytes = 0;
480 return ret;
483 int dirty_background_bytes_handler(struct ctl_table *table, int write,
484 void __user *buffer, size_t *lenp,
485 loff_t *ppos)
487 int ret;
489 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
490 if (ret == 0 && write)
491 dirty_background_ratio = 0;
492 return ret;
495 int dirty_ratio_handler(struct ctl_table *table, int write,
496 void __user *buffer, size_t *lenp,
497 loff_t *ppos)
499 int old_ratio = vm_dirty_ratio;
500 int ret;
502 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
503 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
504 writeback_set_ratelimit();
505 vm_dirty_bytes = 0;
507 return ret;
510 int dirty_bytes_handler(struct ctl_table *table, int write,
511 void __user *buffer, size_t *lenp,
512 loff_t *ppos)
514 unsigned long old_bytes = vm_dirty_bytes;
515 int ret;
517 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
518 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
519 writeback_set_ratelimit();
520 vm_dirty_ratio = 0;
522 return ret;
525 static unsigned long wp_next_time(unsigned long cur_time)
527 cur_time += VM_COMPLETIONS_PERIOD_LEN;
528 /* 0 has a special meaning... */
529 if (!cur_time)
530 return 1;
531 return cur_time;
534 static void wb_domain_writeout_inc(struct wb_domain *dom,
535 struct fprop_local_percpu *completions,
536 unsigned int max_prop_frac)
538 __fprop_inc_percpu_max(&dom->completions, completions,
539 max_prop_frac);
540 /* First event after period switching was turned off? */
541 if (!unlikely(dom->period_time)) {
543 * We can race with other __bdi_writeout_inc calls here but
544 * it does not cause any harm since the resulting time when
545 * timer will fire and what is in writeout_period_time will be
546 * roughly the same.
548 dom->period_time = wp_next_time(jiffies);
549 mod_timer(&dom->period_timer, dom->period_time);
554 * Increment @wb's writeout completion count and the global writeout
555 * completion count. Called from test_clear_page_writeback().
557 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
559 struct wb_domain *cgdom;
561 __inc_wb_stat(wb, WB_WRITTEN);
562 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
563 wb->bdi->max_prop_frac);
565 cgdom = mem_cgroup_wb_domain(wb);
566 if (cgdom)
567 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
568 wb->bdi->max_prop_frac);
571 void wb_writeout_inc(struct bdi_writeback *wb)
573 unsigned long flags;
575 local_irq_save(flags);
576 __wb_writeout_inc(wb);
577 local_irq_restore(flags);
579 EXPORT_SYMBOL_GPL(wb_writeout_inc);
582 * On idle system, we can be called long after we scheduled because we use
583 * deferred timers so count with missed periods.
585 static void writeout_period(unsigned long t)
587 struct wb_domain *dom = (void *)t;
588 int miss_periods = (jiffies - dom->period_time) /
589 VM_COMPLETIONS_PERIOD_LEN;
591 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
592 dom->period_time = wp_next_time(dom->period_time +
593 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
594 mod_timer(&dom->period_timer, dom->period_time);
595 } else {
597 * Aging has zeroed all fractions. Stop wasting CPU on period
598 * updates.
600 dom->period_time = 0;
604 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
606 memset(dom, 0, sizeof(*dom));
608 spin_lock_init(&dom->lock);
610 init_timer_deferrable(&dom->period_timer);
611 dom->period_timer.function = writeout_period;
612 dom->period_timer.data = (unsigned long)dom;
614 dom->dirty_limit_tstamp = jiffies;
616 return fprop_global_init(&dom->completions, gfp);
619 #ifdef CONFIG_CGROUP_WRITEBACK
620 void wb_domain_exit(struct wb_domain *dom)
622 del_timer_sync(&dom->period_timer);
623 fprop_global_destroy(&dom->completions);
625 #endif
628 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
629 * registered backing devices, which, for obvious reasons, can not
630 * exceed 100%.
632 static unsigned int bdi_min_ratio;
634 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
636 int ret = 0;
638 spin_lock_bh(&bdi_lock);
639 if (min_ratio > bdi->max_ratio) {
640 ret = -EINVAL;
641 } else {
642 min_ratio -= bdi->min_ratio;
643 if (bdi_min_ratio + min_ratio < 100) {
644 bdi_min_ratio += min_ratio;
645 bdi->min_ratio += min_ratio;
646 } else {
647 ret = -EINVAL;
650 spin_unlock_bh(&bdi_lock);
652 return ret;
655 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
657 int ret = 0;
659 if (max_ratio > 100)
660 return -EINVAL;
662 spin_lock_bh(&bdi_lock);
663 if (bdi->min_ratio > max_ratio) {
664 ret = -EINVAL;
665 } else {
666 bdi->max_ratio = max_ratio;
667 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
669 spin_unlock_bh(&bdi_lock);
671 return ret;
673 EXPORT_SYMBOL(bdi_set_max_ratio);
675 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
676 unsigned long bg_thresh)
678 return (thresh + bg_thresh) / 2;
681 static unsigned long hard_dirty_limit(struct wb_domain *dom,
682 unsigned long thresh)
684 return max(thresh, dom->dirty_limit);
688 * Memory which can be further allocated to a memcg domain is capped by
689 * system-wide clean memory excluding the amount being used in the domain.
691 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
692 unsigned long filepages, unsigned long headroom)
694 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
695 unsigned long clean = filepages - min(filepages, mdtc->dirty);
696 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
697 unsigned long other_clean = global_clean - min(global_clean, clean);
699 mdtc->avail = filepages + min(headroom, other_clean);
703 * __wb_calc_thresh - @wb's share of dirty throttling threshold
704 * @dtc: dirty_throttle_context of interest
706 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
707 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
709 * Note that balance_dirty_pages() will only seriously take it as a hard limit
710 * when sleeping max_pause per page is not enough to keep the dirty pages under
711 * control. For example, when the device is completely stalled due to some error
712 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
713 * In the other normal situations, it acts more gently by throttling the tasks
714 * more (rather than completely block them) when the wb dirty pages go high.
716 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
717 * - starving fast devices
718 * - piling up dirty pages (that will take long time to sync) on slow devices
720 * The wb's share of dirty limit will be adapting to its throughput and
721 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
723 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
725 struct wb_domain *dom = dtc_dom(dtc);
726 unsigned long thresh = dtc->thresh;
727 u64 wb_thresh;
728 long numerator, denominator;
729 unsigned long wb_min_ratio, wb_max_ratio;
732 * Calculate this BDI's share of the thresh ratio.
734 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
735 &numerator, &denominator);
737 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
738 wb_thresh *= numerator;
739 do_div(wb_thresh, denominator);
741 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
743 wb_thresh += (thresh * wb_min_ratio) / 100;
744 if (wb_thresh > (thresh * wb_max_ratio) / 100)
745 wb_thresh = thresh * wb_max_ratio / 100;
747 return wb_thresh;
750 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
752 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
753 .thresh = thresh };
754 return __wb_calc_thresh(&gdtc);
758 * setpoint - dirty 3
759 * f(dirty) := 1.0 + (----------------)
760 * limit - setpoint
762 * it's a 3rd order polynomial that subjects to
764 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
765 * (2) f(setpoint) = 1.0 => the balance point
766 * (3) f(limit) = 0 => the hard limit
767 * (4) df/dx <= 0 => negative feedback control
768 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
769 * => fast response on large errors; small oscillation near setpoint
771 static long long pos_ratio_polynom(unsigned long setpoint,
772 unsigned long dirty,
773 unsigned long limit)
775 long long pos_ratio;
776 long x;
778 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
779 (limit - setpoint) | 1);
780 pos_ratio = x;
781 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
782 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
783 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
785 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
789 * Dirty position control.
791 * (o) global/bdi setpoints
793 * We want the dirty pages be balanced around the global/wb setpoints.
794 * When the number of dirty pages is higher/lower than the setpoint, the
795 * dirty position control ratio (and hence task dirty ratelimit) will be
796 * decreased/increased to bring the dirty pages back to the setpoint.
798 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
800 * if (dirty < setpoint) scale up pos_ratio
801 * if (dirty > setpoint) scale down pos_ratio
803 * if (wb_dirty < wb_setpoint) scale up pos_ratio
804 * if (wb_dirty > wb_setpoint) scale down pos_ratio
806 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
808 * (o) global control line
810 * ^ pos_ratio
812 * | |<===== global dirty control scope ======>|
813 * 2.0 .............*
814 * | .*
815 * | . *
816 * | . *
817 * | . *
818 * | . *
819 * | . *
820 * 1.0 ................................*
821 * | . . *
822 * | . . *
823 * | . . *
824 * | . . *
825 * | . . *
826 * 0 +------------.------------------.----------------------*------------->
827 * freerun^ setpoint^ limit^ dirty pages
829 * (o) wb control line
831 * ^ pos_ratio
833 * | *
834 * | *
835 * | *
836 * | *
837 * | * |<=========== span ============>|
838 * 1.0 .......................*
839 * | . *
840 * | . *
841 * | . *
842 * | . *
843 * | . *
844 * | . *
845 * | . *
846 * | . *
847 * | . *
848 * | . *
849 * | . *
850 * 1/4 ...............................................* * * * * * * * * * * *
851 * | . .
852 * | . .
853 * | . .
854 * 0 +----------------------.-------------------------------.------------->
855 * wb_setpoint^ x_intercept^
857 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
858 * be smoothly throttled down to normal if it starts high in situations like
859 * - start writing to a slow SD card and a fast disk at the same time. The SD
860 * card's wb_dirty may rush to many times higher than wb_setpoint.
861 * - the wb dirty thresh drops quickly due to change of JBOD workload
863 static void wb_position_ratio(struct dirty_throttle_control *dtc)
865 struct bdi_writeback *wb = dtc->wb;
866 unsigned long write_bw = wb->avg_write_bandwidth;
867 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
868 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
869 unsigned long wb_thresh = dtc->wb_thresh;
870 unsigned long x_intercept;
871 unsigned long setpoint; /* dirty pages' target balance point */
872 unsigned long wb_setpoint;
873 unsigned long span;
874 long long pos_ratio; /* for scaling up/down the rate limit */
875 long x;
877 dtc->pos_ratio = 0;
879 if (unlikely(dtc->dirty >= limit))
880 return;
883 * global setpoint
885 * See comment for pos_ratio_polynom().
887 setpoint = (freerun + limit) / 2;
888 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
891 * The strictlimit feature is a tool preventing mistrusted filesystems
892 * from growing a large number of dirty pages before throttling. For
893 * such filesystems balance_dirty_pages always checks wb counters
894 * against wb limits. Even if global "nr_dirty" is under "freerun".
895 * This is especially important for fuse which sets bdi->max_ratio to
896 * 1% by default. Without strictlimit feature, fuse writeback may
897 * consume arbitrary amount of RAM because it is accounted in
898 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
900 * Here, in wb_position_ratio(), we calculate pos_ratio based on
901 * two values: wb_dirty and wb_thresh. Let's consider an example:
902 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
903 * limits are set by default to 10% and 20% (background and throttle).
904 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
905 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
906 * about ~6K pages (as the average of background and throttle wb
907 * limits). The 3rd order polynomial will provide positive feedback if
908 * wb_dirty is under wb_setpoint and vice versa.
910 * Note, that we cannot use global counters in these calculations
911 * because we want to throttle process writing to a strictlimit wb
912 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
913 * in the example above).
915 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
916 long long wb_pos_ratio;
918 if (dtc->wb_dirty < 8) {
919 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
920 2 << RATELIMIT_CALC_SHIFT);
921 return;
924 if (dtc->wb_dirty >= wb_thresh)
925 return;
927 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
928 dtc->wb_bg_thresh);
930 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
931 return;
933 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
934 wb_thresh);
937 * Typically, for strictlimit case, wb_setpoint << setpoint
938 * and pos_ratio >> wb_pos_ratio. In the other words global
939 * state ("dirty") is not limiting factor and we have to
940 * make decision based on wb counters. But there is an
941 * important case when global pos_ratio should get precedence:
942 * global limits are exceeded (e.g. due to activities on other
943 * wb's) while given strictlimit wb is below limit.
945 * "pos_ratio * wb_pos_ratio" would work for the case above,
946 * but it would look too non-natural for the case of all
947 * activity in the system coming from a single strictlimit wb
948 * with bdi->max_ratio == 100%.
950 * Note that min() below somewhat changes the dynamics of the
951 * control system. Normally, pos_ratio value can be well over 3
952 * (when globally we are at freerun and wb is well below wb
953 * setpoint). Now the maximum pos_ratio in the same situation
954 * is 2. We might want to tweak this if we observe the control
955 * system is too slow to adapt.
957 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
958 return;
962 * We have computed basic pos_ratio above based on global situation. If
963 * the wb is over/under its share of dirty pages, we want to scale
964 * pos_ratio further down/up. That is done by the following mechanism.
968 * wb setpoint
970 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
972 * x_intercept - wb_dirty
973 * := --------------------------
974 * x_intercept - wb_setpoint
976 * The main wb control line is a linear function that subjects to
978 * (1) f(wb_setpoint) = 1.0
979 * (2) k = - 1 / (8 * write_bw) (in single wb case)
980 * or equally: x_intercept = wb_setpoint + 8 * write_bw
982 * For single wb case, the dirty pages are observed to fluctuate
983 * regularly within range
984 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
985 * for various filesystems, where (2) can yield in a reasonable 12.5%
986 * fluctuation range for pos_ratio.
988 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
989 * own size, so move the slope over accordingly and choose a slope that
990 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
992 if (unlikely(wb_thresh > dtc->thresh))
993 wb_thresh = dtc->thresh;
995 * It's very possible that wb_thresh is close to 0 not because the
996 * device is slow, but that it has remained inactive for long time.
997 * Honour such devices a reasonable good (hopefully IO efficient)
998 * threshold, so that the occasional writes won't be blocked and active
999 * writes can rampup the threshold quickly.
1001 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1003 * scale global setpoint to wb's:
1004 * wb_setpoint = setpoint * wb_thresh / thresh
1006 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1007 wb_setpoint = setpoint * (u64)x >> 16;
1009 * Use span=(8*write_bw) in single wb case as indicated by
1010 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1012 * wb_thresh thresh - wb_thresh
1013 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1014 * thresh thresh
1016 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1017 x_intercept = wb_setpoint + span;
1019 if (dtc->wb_dirty < x_intercept - span / 4) {
1020 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1021 (x_intercept - wb_setpoint) | 1);
1022 } else
1023 pos_ratio /= 4;
1026 * wb reserve area, safeguard against dirty pool underrun and disk idle
1027 * It may push the desired control point of global dirty pages higher
1028 * than setpoint.
1030 x_intercept = wb_thresh / 2;
1031 if (dtc->wb_dirty < x_intercept) {
1032 if (dtc->wb_dirty > x_intercept / 8)
1033 pos_ratio = div_u64(pos_ratio * x_intercept,
1034 dtc->wb_dirty);
1035 else
1036 pos_ratio *= 8;
1039 dtc->pos_ratio = pos_ratio;
1042 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1043 unsigned long elapsed,
1044 unsigned long written)
1046 const unsigned long period = roundup_pow_of_two(3 * HZ);
1047 unsigned long avg = wb->avg_write_bandwidth;
1048 unsigned long old = wb->write_bandwidth;
1049 u64 bw;
1052 * bw = written * HZ / elapsed
1054 * bw * elapsed + write_bandwidth * (period - elapsed)
1055 * write_bandwidth = ---------------------------------------------------
1056 * period
1058 * @written may have decreased due to account_page_redirty().
1059 * Avoid underflowing @bw calculation.
1061 bw = written - min(written, wb->written_stamp);
1062 bw *= HZ;
1063 if (unlikely(elapsed > period)) {
1064 do_div(bw, elapsed);
1065 avg = bw;
1066 goto out;
1068 bw += (u64)wb->write_bandwidth * (period - elapsed);
1069 bw >>= ilog2(period);
1072 * one more level of smoothing, for filtering out sudden spikes
1074 if (avg > old && old >= (unsigned long)bw)
1075 avg -= (avg - old) >> 3;
1077 if (avg < old && old <= (unsigned long)bw)
1078 avg += (old - avg) >> 3;
1080 out:
1081 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1082 avg = max(avg, 1LU);
1083 if (wb_has_dirty_io(wb)) {
1084 long delta = avg - wb->avg_write_bandwidth;
1085 WARN_ON_ONCE(atomic_long_add_return(delta,
1086 &wb->bdi->tot_write_bandwidth) <= 0);
1088 wb->write_bandwidth = bw;
1089 wb->avg_write_bandwidth = avg;
1092 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1094 struct wb_domain *dom = dtc_dom(dtc);
1095 unsigned long thresh = dtc->thresh;
1096 unsigned long limit = dom->dirty_limit;
1099 * Follow up in one step.
1101 if (limit < thresh) {
1102 limit = thresh;
1103 goto update;
1107 * Follow down slowly. Use the higher one as the target, because thresh
1108 * may drop below dirty. This is exactly the reason to introduce
1109 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1111 thresh = max(thresh, dtc->dirty);
1112 if (limit > thresh) {
1113 limit -= (limit - thresh) >> 5;
1114 goto update;
1116 return;
1117 update:
1118 dom->dirty_limit = limit;
1121 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1122 unsigned long now)
1124 struct wb_domain *dom = dtc_dom(dtc);
1127 * check locklessly first to optimize away locking for the most time
1129 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1130 return;
1132 spin_lock(&dom->lock);
1133 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1134 update_dirty_limit(dtc);
1135 dom->dirty_limit_tstamp = now;
1137 spin_unlock(&dom->lock);
1141 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1143 * Normal wb tasks will be curbed at or below it in long term.
1144 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1146 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1147 unsigned long dirtied,
1148 unsigned long elapsed)
1150 struct bdi_writeback *wb = dtc->wb;
1151 unsigned long dirty = dtc->dirty;
1152 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1153 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1154 unsigned long setpoint = (freerun + limit) / 2;
1155 unsigned long write_bw = wb->avg_write_bandwidth;
1156 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1157 unsigned long dirty_rate;
1158 unsigned long task_ratelimit;
1159 unsigned long balanced_dirty_ratelimit;
1160 unsigned long step;
1161 unsigned long x;
1164 * The dirty rate will match the writeout rate in long term, except
1165 * when dirty pages are truncated by userspace or re-dirtied by FS.
1167 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1170 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1172 task_ratelimit = (u64)dirty_ratelimit *
1173 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1174 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1177 * A linear estimation of the "balanced" throttle rate. The theory is,
1178 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1179 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1180 * formula will yield the balanced rate limit (write_bw / N).
1182 * Note that the expanded form is not a pure rate feedback:
1183 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1184 * but also takes pos_ratio into account:
1185 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1187 * (1) is not realistic because pos_ratio also takes part in balancing
1188 * the dirty rate. Consider the state
1189 * pos_ratio = 0.5 (3)
1190 * rate = 2 * (write_bw / N) (4)
1191 * If (1) is used, it will stuck in that state! Because each dd will
1192 * be throttled at
1193 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1194 * yielding
1195 * dirty_rate = N * task_ratelimit = write_bw (6)
1196 * put (6) into (1) we get
1197 * rate_(i+1) = rate_(i) (7)
1199 * So we end up using (2) to always keep
1200 * rate_(i+1) ~= (write_bw / N) (8)
1201 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1202 * pos_ratio is able to drive itself to 1.0, which is not only where
1203 * the dirty count meet the setpoint, but also where the slope of
1204 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1206 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1207 dirty_rate | 1);
1209 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1211 if (unlikely(balanced_dirty_ratelimit > write_bw))
1212 balanced_dirty_ratelimit = write_bw;
1215 * We could safely do this and return immediately:
1217 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1219 * However to get a more stable dirty_ratelimit, the below elaborated
1220 * code makes use of task_ratelimit to filter out singular points and
1221 * limit the step size.
1223 * The below code essentially only uses the relative value of
1225 * task_ratelimit - dirty_ratelimit
1226 * = (pos_ratio - 1) * dirty_ratelimit
1228 * which reflects the direction and size of dirty position error.
1232 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1233 * task_ratelimit is on the same side of dirty_ratelimit, too.
1234 * For example, when
1235 * - dirty_ratelimit > balanced_dirty_ratelimit
1236 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1237 * lowering dirty_ratelimit will help meet both the position and rate
1238 * control targets. Otherwise, don't update dirty_ratelimit if it will
1239 * only help meet the rate target. After all, what the users ultimately
1240 * feel and care are stable dirty rate and small position error.
1242 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1243 * and filter out the singular points of balanced_dirty_ratelimit. Which
1244 * keeps jumping around randomly and can even leap far away at times
1245 * due to the small 200ms estimation period of dirty_rate (we want to
1246 * keep that period small to reduce time lags).
1248 step = 0;
1251 * For strictlimit case, calculations above were based on wb counters
1252 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1253 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1254 * Hence, to calculate "step" properly, we have to use wb_dirty as
1255 * "dirty" and wb_setpoint as "setpoint".
1257 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1258 * it's possible that wb_thresh is close to zero due to inactivity
1259 * of backing device.
1261 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1262 dirty = dtc->wb_dirty;
1263 if (dtc->wb_dirty < 8)
1264 setpoint = dtc->wb_dirty + 1;
1265 else
1266 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1269 if (dirty < setpoint) {
1270 x = min3(wb->balanced_dirty_ratelimit,
1271 balanced_dirty_ratelimit, task_ratelimit);
1272 if (dirty_ratelimit < x)
1273 step = x - dirty_ratelimit;
1274 } else {
1275 x = max3(wb->balanced_dirty_ratelimit,
1276 balanced_dirty_ratelimit, task_ratelimit);
1277 if (dirty_ratelimit > x)
1278 step = dirty_ratelimit - x;
1282 * Don't pursue 100% rate matching. It's impossible since the balanced
1283 * rate itself is constantly fluctuating. So decrease the track speed
1284 * when it gets close to the target. Helps eliminate pointless tremors.
1286 step >>= dirty_ratelimit / (2 * step + 1);
1288 * Limit the tracking speed to avoid overshooting.
1290 step = (step + 7) / 8;
1292 if (dirty_ratelimit < balanced_dirty_ratelimit)
1293 dirty_ratelimit += step;
1294 else
1295 dirty_ratelimit -= step;
1297 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1298 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1300 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1303 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1304 struct dirty_throttle_control *mdtc,
1305 unsigned long start_time,
1306 bool update_ratelimit)
1308 struct bdi_writeback *wb = gdtc->wb;
1309 unsigned long now = jiffies;
1310 unsigned long elapsed = now - wb->bw_time_stamp;
1311 unsigned long dirtied;
1312 unsigned long written;
1314 lockdep_assert_held(&wb->list_lock);
1317 * rate-limit, only update once every 200ms.
1319 if (elapsed < BANDWIDTH_INTERVAL)
1320 return;
1322 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1323 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1326 * Skip quiet periods when disk bandwidth is under-utilized.
1327 * (at least 1s idle time between two flusher runs)
1329 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1330 goto snapshot;
1332 if (update_ratelimit) {
1333 domain_update_bandwidth(gdtc, now);
1334 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1337 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1338 * compiler has no way to figure that out. Help it.
1340 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1341 domain_update_bandwidth(mdtc, now);
1342 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1345 wb_update_write_bandwidth(wb, elapsed, written);
1347 snapshot:
1348 wb->dirtied_stamp = dirtied;
1349 wb->written_stamp = written;
1350 wb->bw_time_stamp = now;
1353 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1355 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1357 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1361 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1362 * will look to see if it needs to start dirty throttling.
1364 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1365 * global_page_state() too often. So scale it near-sqrt to the safety margin
1366 * (the number of pages we may dirty without exceeding the dirty limits).
1368 static unsigned long dirty_poll_interval(unsigned long dirty,
1369 unsigned long thresh)
1371 if (thresh > dirty)
1372 return 1UL << (ilog2(thresh - dirty) >> 1);
1374 return 1;
1377 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1378 unsigned long wb_dirty)
1380 unsigned long bw = wb->avg_write_bandwidth;
1381 unsigned long t;
1384 * Limit pause time for small memory systems. If sleeping for too long
1385 * time, a small pool of dirty/writeback pages may go empty and disk go
1386 * idle.
1388 * 8 serves as the safety ratio.
1390 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1391 t++;
1393 return min_t(unsigned long, t, MAX_PAUSE);
1396 static long wb_min_pause(struct bdi_writeback *wb,
1397 long max_pause,
1398 unsigned long task_ratelimit,
1399 unsigned long dirty_ratelimit,
1400 int *nr_dirtied_pause)
1402 long hi = ilog2(wb->avg_write_bandwidth);
1403 long lo = ilog2(wb->dirty_ratelimit);
1404 long t; /* target pause */
1405 long pause; /* estimated next pause */
1406 int pages; /* target nr_dirtied_pause */
1408 /* target for 10ms pause on 1-dd case */
1409 t = max(1, HZ / 100);
1412 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1413 * overheads.
1415 * (N * 10ms) on 2^N concurrent tasks.
1417 if (hi > lo)
1418 t += (hi - lo) * (10 * HZ) / 1024;
1421 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1422 * on the much more stable dirty_ratelimit. However the next pause time
1423 * will be computed based on task_ratelimit and the two rate limits may
1424 * depart considerably at some time. Especially if task_ratelimit goes
1425 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1426 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1427 * result task_ratelimit won't be executed faithfully, which could
1428 * eventually bring down dirty_ratelimit.
1430 * We apply two rules to fix it up:
1431 * 1) try to estimate the next pause time and if necessary, use a lower
1432 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1433 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1434 * 2) limit the target pause time to max_pause/2, so that the normal
1435 * small fluctuations of task_ratelimit won't trigger rule (1) and
1436 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1438 t = min(t, 1 + max_pause / 2);
1439 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1442 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1443 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1444 * When the 16 consecutive reads are often interrupted by some dirty
1445 * throttling pause during the async writes, cfq will go into idles
1446 * (deadline is fine). So push nr_dirtied_pause as high as possible
1447 * until reaches DIRTY_POLL_THRESH=32 pages.
1449 if (pages < DIRTY_POLL_THRESH) {
1450 t = max_pause;
1451 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1452 if (pages > DIRTY_POLL_THRESH) {
1453 pages = DIRTY_POLL_THRESH;
1454 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1458 pause = HZ * pages / (task_ratelimit + 1);
1459 if (pause > max_pause) {
1460 t = max_pause;
1461 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1464 *nr_dirtied_pause = pages;
1466 * The minimal pause time will normally be half the target pause time.
1468 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1471 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1473 struct bdi_writeback *wb = dtc->wb;
1474 unsigned long wb_reclaimable;
1477 * wb_thresh is not treated as some limiting factor as
1478 * dirty_thresh, due to reasons
1479 * - in JBOD setup, wb_thresh can fluctuate a lot
1480 * - in a system with HDD and USB key, the USB key may somehow
1481 * go into state (wb_dirty >> wb_thresh) either because
1482 * wb_dirty starts high, or because wb_thresh drops low.
1483 * In this case we don't want to hard throttle the USB key
1484 * dirtiers for 100 seconds until wb_dirty drops under
1485 * wb_thresh. Instead the auxiliary wb control line in
1486 * wb_position_ratio() will let the dirtier task progress
1487 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1489 dtc->wb_thresh = __wb_calc_thresh(dtc);
1490 dtc->wb_bg_thresh = dtc->thresh ?
1491 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1494 * In order to avoid the stacked BDI deadlock we need
1495 * to ensure we accurately count the 'dirty' pages when
1496 * the threshold is low.
1498 * Otherwise it would be possible to get thresh+n pages
1499 * reported dirty, even though there are thresh-m pages
1500 * actually dirty; with m+n sitting in the percpu
1501 * deltas.
1503 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1504 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1505 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1506 } else {
1507 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1508 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1513 * balance_dirty_pages() must be called by processes which are generating dirty
1514 * data. It looks at the number of dirty pages in the machine and will force
1515 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1516 * If we're over `background_thresh' then the writeback threads are woken to
1517 * perform some writeout.
1519 static void balance_dirty_pages(struct address_space *mapping,
1520 struct bdi_writeback *wb,
1521 unsigned long pages_dirtied)
1523 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1524 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1525 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1526 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1527 &mdtc_stor : NULL;
1528 struct dirty_throttle_control *sdtc;
1529 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1530 long period;
1531 long pause;
1532 long max_pause;
1533 long min_pause;
1534 int nr_dirtied_pause;
1535 bool dirty_exceeded = false;
1536 unsigned long task_ratelimit;
1537 unsigned long dirty_ratelimit;
1538 struct backing_dev_info *bdi = wb->bdi;
1539 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1540 unsigned long start_time = jiffies;
1542 for (;;) {
1543 unsigned long now = jiffies;
1544 unsigned long dirty, thresh, bg_thresh;
1545 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1546 unsigned long m_thresh = 0;
1547 unsigned long m_bg_thresh = 0;
1550 * Unstable writes are a feature of certain networked
1551 * filesystems (i.e. NFS) in which data may have been
1552 * written to the server's write cache, but has not yet
1553 * been flushed to permanent storage.
1555 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1556 global_page_state(NR_UNSTABLE_NFS);
1557 gdtc->avail = global_dirtyable_memory();
1558 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1560 domain_dirty_limits(gdtc);
1562 if (unlikely(strictlimit)) {
1563 wb_dirty_limits(gdtc);
1565 dirty = gdtc->wb_dirty;
1566 thresh = gdtc->wb_thresh;
1567 bg_thresh = gdtc->wb_bg_thresh;
1568 } else {
1569 dirty = gdtc->dirty;
1570 thresh = gdtc->thresh;
1571 bg_thresh = gdtc->bg_thresh;
1574 if (mdtc) {
1575 unsigned long filepages, headroom, writeback;
1578 * If @wb belongs to !root memcg, repeat the same
1579 * basic calculations for the memcg domain.
1581 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1582 &mdtc->dirty, &writeback);
1583 mdtc->dirty += writeback;
1584 mdtc_calc_avail(mdtc, filepages, headroom);
1586 domain_dirty_limits(mdtc);
1588 if (unlikely(strictlimit)) {
1589 wb_dirty_limits(mdtc);
1590 m_dirty = mdtc->wb_dirty;
1591 m_thresh = mdtc->wb_thresh;
1592 m_bg_thresh = mdtc->wb_bg_thresh;
1593 } else {
1594 m_dirty = mdtc->dirty;
1595 m_thresh = mdtc->thresh;
1596 m_bg_thresh = mdtc->bg_thresh;
1601 * Throttle it only when the background writeback cannot
1602 * catch-up. This avoids (excessively) small writeouts
1603 * when the wb limits are ramping up in case of !strictlimit.
1605 * In strictlimit case make decision based on the wb counters
1606 * and limits. Small writeouts when the wb limits are ramping
1607 * up are the price we consciously pay for strictlimit-ing.
1609 * If memcg domain is in effect, @dirty should be under
1610 * both global and memcg freerun ceilings.
1612 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1613 (!mdtc ||
1614 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1615 unsigned long intv = dirty_poll_interval(dirty, thresh);
1616 unsigned long m_intv = ULONG_MAX;
1618 current->dirty_paused_when = now;
1619 current->nr_dirtied = 0;
1620 if (mdtc)
1621 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1622 current->nr_dirtied_pause = min(intv, m_intv);
1623 break;
1626 if (unlikely(!writeback_in_progress(wb)))
1627 wb_start_background_writeback(wb);
1630 * Calculate global domain's pos_ratio and select the
1631 * global dtc by default.
1633 if (!strictlimit)
1634 wb_dirty_limits(gdtc);
1636 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1637 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1639 wb_position_ratio(gdtc);
1640 sdtc = gdtc;
1642 if (mdtc) {
1644 * If memcg domain is in effect, calculate its
1645 * pos_ratio. @wb should satisfy constraints from
1646 * both global and memcg domains. Choose the one
1647 * w/ lower pos_ratio.
1649 if (!strictlimit)
1650 wb_dirty_limits(mdtc);
1652 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1653 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1655 wb_position_ratio(mdtc);
1656 if (mdtc->pos_ratio < gdtc->pos_ratio)
1657 sdtc = mdtc;
1660 if (dirty_exceeded && !wb->dirty_exceeded)
1661 wb->dirty_exceeded = 1;
1663 if (time_is_before_jiffies(wb->bw_time_stamp +
1664 BANDWIDTH_INTERVAL)) {
1665 spin_lock(&wb->list_lock);
1666 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1667 spin_unlock(&wb->list_lock);
1670 /* throttle according to the chosen dtc */
1671 dirty_ratelimit = wb->dirty_ratelimit;
1672 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1673 RATELIMIT_CALC_SHIFT;
1674 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1675 min_pause = wb_min_pause(wb, max_pause,
1676 task_ratelimit, dirty_ratelimit,
1677 &nr_dirtied_pause);
1679 if (unlikely(task_ratelimit == 0)) {
1680 period = max_pause;
1681 pause = max_pause;
1682 goto pause;
1684 period = HZ * pages_dirtied / task_ratelimit;
1685 pause = period;
1686 if (current->dirty_paused_when)
1687 pause -= now - current->dirty_paused_when;
1689 * For less than 1s think time (ext3/4 may block the dirtier
1690 * for up to 800ms from time to time on 1-HDD; so does xfs,
1691 * however at much less frequency), try to compensate it in
1692 * future periods by updating the virtual time; otherwise just
1693 * do a reset, as it may be a light dirtier.
1695 if (pause < min_pause) {
1696 trace_balance_dirty_pages(wb,
1697 sdtc->thresh,
1698 sdtc->bg_thresh,
1699 sdtc->dirty,
1700 sdtc->wb_thresh,
1701 sdtc->wb_dirty,
1702 dirty_ratelimit,
1703 task_ratelimit,
1704 pages_dirtied,
1705 period,
1706 min(pause, 0L),
1707 start_time);
1708 if (pause < -HZ) {
1709 current->dirty_paused_when = now;
1710 current->nr_dirtied = 0;
1711 } else if (period) {
1712 current->dirty_paused_when += period;
1713 current->nr_dirtied = 0;
1714 } else if (current->nr_dirtied_pause <= pages_dirtied)
1715 current->nr_dirtied_pause += pages_dirtied;
1716 break;
1718 if (unlikely(pause > max_pause)) {
1719 /* for occasional dropped task_ratelimit */
1720 now += min(pause - max_pause, max_pause);
1721 pause = max_pause;
1724 pause:
1725 trace_balance_dirty_pages(wb,
1726 sdtc->thresh,
1727 sdtc->bg_thresh,
1728 sdtc->dirty,
1729 sdtc->wb_thresh,
1730 sdtc->wb_dirty,
1731 dirty_ratelimit,
1732 task_ratelimit,
1733 pages_dirtied,
1734 period,
1735 pause,
1736 start_time);
1737 __set_current_state(TASK_KILLABLE);
1738 io_schedule_timeout(pause);
1740 current->dirty_paused_when = now + pause;
1741 current->nr_dirtied = 0;
1742 current->nr_dirtied_pause = nr_dirtied_pause;
1745 * This is typically equal to (dirty < thresh) and can also
1746 * keep "1000+ dd on a slow USB stick" under control.
1748 if (task_ratelimit)
1749 break;
1752 * In the case of an unresponding NFS server and the NFS dirty
1753 * pages exceeds dirty_thresh, give the other good wb's a pipe
1754 * to go through, so that tasks on them still remain responsive.
1756 * In theory 1 page is enough to keep the comsumer-producer
1757 * pipe going: the flusher cleans 1 page => the task dirties 1
1758 * more page. However wb_dirty has accounting errors. So use
1759 * the larger and more IO friendly wb_stat_error.
1761 if (sdtc->wb_dirty <= wb_stat_error(wb))
1762 break;
1764 if (fatal_signal_pending(current))
1765 break;
1768 if (!dirty_exceeded && wb->dirty_exceeded)
1769 wb->dirty_exceeded = 0;
1771 if (writeback_in_progress(wb))
1772 return;
1775 * In laptop mode, we wait until hitting the higher threshold before
1776 * starting background writeout, and then write out all the way down
1777 * to the lower threshold. So slow writers cause minimal disk activity.
1779 * In normal mode, we start background writeout at the lower
1780 * background_thresh, to keep the amount of dirty memory low.
1782 if (laptop_mode)
1783 return;
1785 if (nr_reclaimable > gdtc->bg_thresh)
1786 wb_start_background_writeback(wb);
1789 static DEFINE_PER_CPU(int, bdp_ratelimits);
1792 * Normal tasks are throttled by
1793 * loop {
1794 * dirty tsk->nr_dirtied_pause pages;
1795 * take a snap in balance_dirty_pages();
1797 * However there is a worst case. If every task exit immediately when dirtied
1798 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1799 * called to throttle the page dirties. The solution is to save the not yet
1800 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1801 * randomly into the running tasks. This works well for the above worst case,
1802 * as the new task will pick up and accumulate the old task's leaked dirty
1803 * count and eventually get throttled.
1805 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1808 * balance_dirty_pages_ratelimited - balance dirty memory state
1809 * @mapping: address_space which was dirtied
1811 * Processes which are dirtying memory should call in here once for each page
1812 * which was newly dirtied. The function will periodically check the system's
1813 * dirty state and will initiate writeback if needed.
1815 * On really big machines, get_writeback_state is expensive, so try to avoid
1816 * calling it too often (ratelimiting). But once we're over the dirty memory
1817 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1818 * from overshooting the limit by (ratelimit_pages) each.
1820 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1822 struct inode *inode = mapping->host;
1823 struct backing_dev_info *bdi = inode_to_bdi(inode);
1824 struct bdi_writeback *wb = NULL;
1825 int ratelimit;
1826 int *p;
1828 if (!bdi_cap_account_dirty(bdi))
1829 return;
1831 if (inode_cgwb_enabled(inode))
1832 wb = wb_get_create_current(bdi, GFP_KERNEL);
1833 if (!wb)
1834 wb = &bdi->wb;
1836 ratelimit = current->nr_dirtied_pause;
1837 if (wb->dirty_exceeded)
1838 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1840 preempt_disable();
1842 * This prevents one CPU to accumulate too many dirtied pages without
1843 * calling into balance_dirty_pages(), which can happen when there are
1844 * 1000+ tasks, all of them start dirtying pages at exactly the same
1845 * time, hence all honoured too large initial task->nr_dirtied_pause.
1847 p = this_cpu_ptr(&bdp_ratelimits);
1848 if (unlikely(current->nr_dirtied >= ratelimit))
1849 *p = 0;
1850 else if (unlikely(*p >= ratelimit_pages)) {
1851 *p = 0;
1852 ratelimit = 0;
1855 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1856 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1857 * the dirty throttling and livelock other long-run dirtiers.
1859 p = this_cpu_ptr(&dirty_throttle_leaks);
1860 if (*p > 0 && current->nr_dirtied < ratelimit) {
1861 unsigned long nr_pages_dirtied;
1862 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1863 *p -= nr_pages_dirtied;
1864 current->nr_dirtied += nr_pages_dirtied;
1866 preempt_enable();
1868 if (unlikely(current->nr_dirtied >= ratelimit))
1869 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1871 wb_put(wb);
1873 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1876 * wb_over_bg_thresh - does @wb need to be written back?
1877 * @wb: bdi_writeback of interest
1879 * Determines whether background writeback should keep writing @wb or it's
1880 * clean enough. Returns %true if writeback should continue.
1882 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1884 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1885 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1886 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1887 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1888 &mdtc_stor : NULL;
1891 * Similar to balance_dirty_pages() but ignores pages being written
1892 * as we're trying to decide whether to put more under writeback.
1894 gdtc->avail = global_dirtyable_memory();
1895 gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1896 global_page_state(NR_UNSTABLE_NFS);
1897 domain_dirty_limits(gdtc);
1899 if (gdtc->dirty > gdtc->bg_thresh)
1900 return true;
1902 if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
1903 return true;
1905 if (mdtc) {
1906 unsigned long filepages, headroom, writeback;
1908 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1909 &writeback);
1910 mdtc_calc_avail(mdtc, filepages, headroom);
1911 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1913 if (mdtc->dirty > mdtc->bg_thresh)
1914 return true;
1916 if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(mdtc))
1917 return true;
1920 return false;
1923 void throttle_vm_writeout(gfp_t gfp_mask)
1925 unsigned long background_thresh;
1926 unsigned long dirty_thresh;
1928 for ( ; ; ) {
1929 global_dirty_limits(&background_thresh, &dirty_thresh);
1930 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1933 * Boost the allowable dirty threshold a bit for page
1934 * allocators so they don't get DoS'ed by heavy writers
1936 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1938 if (global_page_state(NR_UNSTABLE_NFS) +
1939 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1940 break;
1941 congestion_wait(BLK_RW_ASYNC, HZ/10);
1944 * The caller might hold locks which can prevent IO completion
1945 * or progress in the filesystem. So we cannot just sit here
1946 * waiting for IO to complete.
1948 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1949 break;
1954 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1956 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1957 void __user *buffer, size_t *length, loff_t *ppos)
1959 proc_dointvec(table, write, buffer, length, ppos);
1960 return 0;
1963 #ifdef CONFIG_BLOCK
1964 void laptop_mode_timer_fn(unsigned long data)
1966 struct request_queue *q = (struct request_queue *)data;
1967 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1968 global_page_state(NR_UNSTABLE_NFS);
1969 struct bdi_writeback *wb;
1972 * We want to write everything out, not just down to the dirty
1973 * threshold
1975 if (!bdi_has_dirty_io(&q->backing_dev_info))
1976 return;
1978 rcu_read_lock();
1979 list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1980 if (wb_has_dirty_io(wb))
1981 wb_start_writeback(wb, nr_pages, true,
1982 WB_REASON_LAPTOP_TIMER);
1983 rcu_read_unlock();
1987 * We've spun up the disk and we're in laptop mode: schedule writeback
1988 * of all dirty data a few seconds from now. If the flush is already scheduled
1989 * then push it back - the user is still using the disk.
1991 void laptop_io_completion(struct backing_dev_info *info)
1993 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1997 * We're in laptop mode and we've just synced. The sync's writes will have
1998 * caused another writeback to be scheduled by laptop_io_completion.
1999 * Nothing needs to be written back anymore, so we unschedule the writeback.
2001 void laptop_sync_completion(void)
2003 struct backing_dev_info *bdi;
2005 rcu_read_lock();
2007 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2008 del_timer(&bdi->laptop_mode_wb_timer);
2010 rcu_read_unlock();
2012 #endif
2015 * If ratelimit_pages is too high then we can get into dirty-data overload
2016 * if a large number of processes all perform writes at the same time.
2017 * If it is too low then SMP machines will call the (expensive)
2018 * get_writeback_state too often.
2020 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2021 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2022 * thresholds.
2025 void writeback_set_ratelimit(void)
2027 struct wb_domain *dom = &global_wb_domain;
2028 unsigned long background_thresh;
2029 unsigned long dirty_thresh;
2031 global_dirty_limits(&background_thresh, &dirty_thresh);
2032 dom->dirty_limit = dirty_thresh;
2033 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2034 if (ratelimit_pages < 16)
2035 ratelimit_pages = 16;
2038 static int
2039 ratelimit_handler(struct notifier_block *self, unsigned long action,
2040 void *hcpu)
2043 switch (action & ~CPU_TASKS_FROZEN) {
2044 case CPU_ONLINE:
2045 case CPU_DEAD:
2046 writeback_set_ratelimit();
2047 return NOTIFY_OK;
2048 default:
2049 return NOTIFY_DONE;
2053 static struct notifier_block ratelimit_nb = {
2054 .notifier_call = ratelimit_handler,
2055 .next = NULL,
2059 * Called early on to tune the page writeback dirty limits.
2061 * We used to scale dirty pages according to how total memory
2062 * related to pages that could be allocated for buffers (by
2063 * comparing nr_free_buffer_pages() to vm_total_pages.
2065 * However, that was when we used "dirty_ratio" to scale with
2066 * all memory, and we don't do that any more. "dirty_ratio"
2067 * is now applied to total non-HIGHPAGE memory (by subtracting
2068 * totalhigh_pages from vm_total_pages), and as such we can't
2069 * get into the old insane situation any more where we had
2070 * large amounts of dirty pages compared to a small amount of
2071 * non-HIGHMEM memory.
2073 * But we might still want to scale the dirty_ratio by how
2074 * much memory the box has..
2076 void __init page_writeback_init(void)
2078 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2080 writeback_set_ratelimit();
2081 register_cpu_notifier(&ratelimit_nb);
2085 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2086 * @mapping: address space structure to write
2087 * @start: starting page index
2088 * @end: ending page index (inclusive)
2090 * This function scans the page range from @start to @end (inclusive) and tags
2091 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2092 * that write_cache_pages (or whoever calls this function) will then use
2093 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2094 * used to avoid livelocking of writeback by a process steadily creating new
2095 * dirty pages in the file (thus it is important for this function to be quick
2096 * so that it can tag pages faster than a dirtying process can create them).
2099 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2101 void tag_pages_for_writeback(struct address_space *mapping,
2102 pgoff_t start, pgoff_t end)
2104 #define WRITEBACK_TAG_BATCH 4096
2105 unsigned long tagged;
2107 do {
2108 spin_lock_irq(&mapping->tree_lock);
2109 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2110 &start, end, WRITEBACK_TAG_BATCH,
2111 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2112 spin_unlock_irq(&mapping->tree_lock);
2113 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2114 cond_resched();
2115 /* We check 'start' to handle wrapping when end == ~0UL */
2116 } while (tagged >= WRITEBACK_TAG_BATCH && start);
2118 EXPORT_SYMBOL(tag_pages_for_writeback);
2121 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2122 * @mapping: address space structure to write
2123 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2124 * @writepage: function called for each page
2125 * @data: data passed to writepage function
2127 * If a page is already under I/O, write_cache_pages() skips it, even
2128 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2129 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2130 * and msync() need to guarantee that all the data which was dirty at the time
2131 * the call was made get new I/O started against them. If wbc->sync_mode is
2132 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2133 * existing IO to complete.
2135 * To avoid livelocks (when other process dirties new pages), we first tag
2136 * pages which should be written back with TOWRITE tag and only then start
2137 * writing them. For data-integrity sync we have to be careful so that we do
2138 * not miss some pages (e.g., because some other process has cleared TOWRITE
2139 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2140 * by the process clearing the DIRTY tag (and submitting the page for IO).
2142 int write_cache_pages(struct address_space *mapping,
2143 struct writeback_control *wbc, writepage_t writepage,
2144 void *data)
2146 int ret = 0;
2147 int done = 0;
2148 struct pagevec pvec;
2149 int nr_pages;
2150 pgoff_t uninitialized_var(writeback_index);
2151 pgoff_t index;
2152 pgoff_t end; /* Inclusive */
2153 pgoff_t done_index;
2154 int cycled;
2155 int range_whole = 0;
2156 int tag;
2158 pagevec_init(&pvec, 0);
2159 if (wbc->range_cyclic) {
2160 writeback_index = mapping->writeback_index; /* prev offset */
2161 index = writeback_index;
2162 if (index == 0)
2163 cycled = 1;
2164 else
2165 cycled = 0;
2166 end = -1;
2167 } else {
2168 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2169 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2170 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2171 range_whole = 1;
2172 cycled = 1; /* ignore range_cyclic tests */
2174 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2175 tag = PAGECACHE_TAG_TOWRITE;
2176 else
2177 tag = PAGECACHE_TAG_DIRTY;
2178 retry:
2179 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2180 tag_pages_for_writeback(mapping, index, end);
2181 done_index = index;
2182 while (!done && (index <= end)) {
2183 int i;
2185 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2186 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2187 if (nr_pages == 0)
2188 break;
2190 for (i = 0; i < nr_pages; i++) {
2191 struct page *page = pvec.pages[i];
2194 * At this point, the page may be truncated or
2195 * invalidated (changing page->mapping to NULL), or
2196 * even swizzled back from swapper_space to tmpfs file
2197 * mapping. However, page->index will not change
2198 * because we have a reference on the page.
2200 if (page->index > end) {
2202 * can't be range_cyclic (1st pass) because
2203 * end == -1 in that case.
2205 done = 1;
2206 break;
2209 done_index = page->index;
2211 lock_page(page);
2214 * Page truncated or invalidated. We can freely skip it
2215 * then, even for data integrity operations: the page
2216 * has disappeared concurrently, so there could be no
2217 * real expectation of this data interity operation
2218 * even if there is now a new, dirty page at the same
2219 * pagecache address.
2221 if (unlikely(page->mapping != mapping)) {
2222 continue_unlock:
2223 unlock_page(page);
2224 continue;
2227 if (!PageDirty(page)) {
2228 /* someone wrote it for us */
2229 goto continue_unlock;
2232 if (PageWriteback(page)) {
2233 if (wbc->sync_mode != WB_SYNC_NONE)
2234 wait_on_page_writeback(page);
2235 else
2236 goto continue_unlock;
2239 BUG_ON(PageWriteback(page));
2240 if (!clear_page_dirty_for_io(page))
2241 goto continue_unlock;
2243 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2244 ret = (*writepage)(page, wbc, data);
2245 if (unlikely(ret)) {
2246 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2247 unlock_page(page);
2248 ret = 0;
2249 } else {
2251 * done_index is set past this page,
2252 * so media errors will not choke
2253 * background writeout for the entire
2254 * file. This has consequences for
2255 * range_cyclic semantics (ie. it may
2256 * not be suitable for data integrity
2257 * writeout).
2259 done_index = page->index + 1;
2260 done = 1;
2261 break;
2266 * We stop writing back only if we are not doing
2267 * integrity sync. In case of integrity sync we have to
2268 * keep going until we have written all the pages
2269 * we tagged for writeback prior to entering this loop.
2271 if (--wbc->nr_to_write <= 0 &&
2272 wbc->sync_mode == WB_SYNC_NONE) {
2273 done = 1;
2274 break;
2277 pagevec_release(&pvec);
2278 cond_resched();
2280 if (!cycled && !done) {
2282 * range_cyclic:
2283 * We hit the last page and there is more work to be done: wrap
2284 * back to the start of the file
2286 cycled = 1;
2287 index = 0;
2288 end = writeback_index - 1;
2289 goto retry;
2291 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2292 mapping->writeback_index = done_index;
2294 return ret;
2296 EXPORT_SYMBOL(write_cache_pages);
2299 * Function used by generic_writepages to call the real writepage
2300 * function and set the mapping flags on error
2302 static int __writepage(struct page *page, struct writeback_control *wbc,
2303 void *data)
2305 struct address_space *mapping = data;
2306 int ret = mapping->a_ops->writepage(page, wbc);
2307 mapping_set_error(mapping, ret);
2308 return ret;
2312 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2313 * @mapping: address space structure to write
2314 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2316 * This is a library function, which implements the writepages()
2317 * address_space_operation.
2319 int generic_writepages(struct address_space *mapping,
2320 struct writeback_control *wbc)
2322 struct blk_plug plug;
2323 int ret;
2325 /* deal with chardevs and other special file */
2326 if (!mapping->a_ops->writepage)
2327 return 0;
2329 blk_start_plug(&plug);
2330 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2331 blk_finish_plug(&plug);
2332 return ret;
2335 EXPORT_SYMBOL(generic_writepages);
2337 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2339 int ret;
2341 if (wbc->nr_to_write <= 0)
2342 return 0;
2343 if (mapping->a_ops->writepages)
2344 ret = mapping->a_ops->writepages(mapping, wbc);
2345 else
2346 ret = generic_writepages(mapping, wbc);
2347 return ret;
2351 * write_one_page - write out a single page and optionally wait on I/O
2352 * @page: the page to write
2353 * @wait: if true, wait on writeout
2355 * The page must be locked by the caller and will be unlocked upon return.
2357 * write_one_page() returns a negative error code if I/O failed.
2359 int write_one_page(struct page *page, int wait)
2361 struct address_space *mapping = page->mapping;
2362 int ret = 0;
2363 struct writeback_control wbc = {
2364 .sync_mode = WB_SYNC_ALL,
2365 .nr_to_write = 1,
2368 BUG_ON(!PageLocked(page));
2370 if (wait)
2371 wait_on_page_writeback(page);
2373 if (clear_page_dirty_for_io(page)) {
2374 page_cache_get(page);
2375 ret = mapping->a_ops->writepage(page, &wbc);
2376 if (ret == 0 && wait) {
2377 wait_on_page_writeback(page);
2378 if (PageError(page))
2379 ret = -EIO;
2381 page_cache_release(page);
2382 } else {
2383 unlock_page(page);
2385 return ret;
2387 EXPORT_SYMBOL(write_one_page);
2390 * For address_spaces which do not use buffers nor write back.
2392 int __set_page_dirty_no_writeback(struct page *page)
2394 if (!PageDirty(page))
2395 return !TestSetPageDirty(page);
2396 return 0;
2400 * Helper function for set_page_dirty family.
2402 * Caller must hold mem_cgroup_begin_page_stat().
2404 * NOTE: This relies on being atomic wrt interrupts.
2406 void account_page_dirtied(struct page *page, struct address_space *mapping,
2407 struct mem_cgroup *memcg)
2409 struct inode *inode = mapping->host;
2411 trace_writeback_dirty_page(page, mapping);
2413 if (mapping_cap_account_dirty(mapping)) {
2414 struct bdi_writeback *wb;
2416 inode_attach_wb(inode, page);
2417 wb = inode_to_wb(inode);
2419 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2420 __inc_zone_page_state(page, NR_FILE_DIRTY);
2421 __inc_zone_page_state(page, NR_DIRTIED);
2422 __inc_wb_stat(wb, WB_RECLAIMABLE);
2423 __inc_wb_stat(wb, WB_DIRTIED);
2424 task_io_account_write(PAGE_CACHE_SIZE);
2425 current->nr_dirtied++;
2426 this_cpu_inc(bdp_ratelimits);
2429 EXPORT_SYMBOL(account_page_dirtied);
2432 * Helper function for deaccounting dirty page without writeback.
2434 * Caller must hold mem_cgroup_begin_page_stat().
2436 void account_page_cleaned(struct page *page, struct address_space *mapping,
2437 struct mem_cgroup *memcg, struct bdi_writeback *wb)
2439 if (mapping_cap_account_dirty(mapping)) {
2440 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2441 dec_zone_page_state(page, NR_FILE_DIRTY);
2442 dec_wb_stat(wb, WB_RECLAIMABLE);
2443 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2448 * For address_spaces which do not use buffers. Just tag the page as dirty in
2449 * its radix tree.
2451 * This is also used when a single buffer is being dirtied: we want to set the
2452 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2453 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2455 * The caller must ensure this doesn't race with truncation. Most will simply
2456 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2457 * the pte lock held, which also locks out truncation.
2459 int __set_page_dirty_nobuffers(struct page *page)
2461 struct mem_cgroup *memcg;
2463 memcg = mem_cgroup_begin_page_stat(page);
2464 if (!TestSetPageDirty(page)) {
2465 struct address_space *mapping = page_mapping(page);
2466 unsigned long flags;
2468 if (!mapping) {
2469 mem_cgroup_end_page_stat(memcg);
2470 return 1;
2473 spin_lock_irqsave(&mapping->tree_lock, flags);
2474 BUG_ON(page_mapping(page) != mapping);
2475 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2476 account_page_dirtied(page, mapping, memcg);
2477 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2478 PAGECACHE_TAG_DIRTY);
2479 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2480 mem_cgroup_end_page_stat(memcg);
2482 if (mapping->host) {
2483 /* !PageAnon && !swapper_space */
2484 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2486 return 1;
2488 mem_cgroup_end_page_stat(memcg);
2489 return 0;
2491 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2494 * Call this whenever redirtying a page, to de-account the dirty counters
2495 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2496 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2497 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2498 * control.
2500 void account_page_redirty(struct page *page)
2502 struct address_space *mapping = page->mapping;
2504 if (mapping && mapping_cap_account_dirty(mapping)) {
2505 struct inode *inode = mapping->host;
2506 struct bdi_writeback *wb;
2507 bool locked;
2509 wb = unlocked_inode_to_wb_begin(inode, &locked);
2510 current->nr_dirtied--;
2511 dec_zone_page_state(page, NR_DIRTIED);
2512 dec_wb_stat(wb, WB_DIRTIED);
2513 unlocked_inode_to_wb_end(inode, locked);
2516 EXPORT_SYMBOL(account_page_redirty);
2519 * When a writepage implementation decides that it doesn't want to write this
2520 * page for some reason, it should redirty the locked page via
2521 * redirty_page_for_writepage() and it should then unlock the page and return 0
2523 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2525 int ret;
2527 wbc->pages_skipped++;
2528 ret = __set_page_dirty_nobuffers(page);
2529 account_page_redirty(page);
2530 return ret;
2532 EXPORT_SYMBOL(redirty_page_for_writepage);
2535 * Dirty a page.
2537 * For pages with a mapping this should be done under the page lock
2538 * for the benefit of asynchronous memory errors who prefer a consistent
2539 * dirty state. This rule can be broken in some special cases,
2540 * but should be better not to.
2542 * If the mapping doesn't provide a set_page_dirty a_op, then
2543 * just fall through and assume that it wants buffer_heads.
2545 int set_page_dirty(struct page *page)
2547 struct address_space *mapping = page_mapping(page);
2549 if (likely(mapping)) {
2550 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2552 * readahead/lru_deactivate_page could remain
2553 * PG_readahead/PG_reclaim due to race with end_page_writeback
2554 * About readahead, if the page is written, the flags would be
2555 * reset. So no problem.
2556 * About lru_deactivate_page, if the page is redirty, the flag
2557 * will be reset. So no problem. but if the page is used by readahead
2558 * it will confuse readahead and make it restart the size rampup
2559 * process. But it's a trivial problem.
2561 if (PageReclaim(page))
2562 ClearPageReclaim(page);
2563 #ifdef CONFIG_BLOCK
2564 if (!spd)
2565 spd = __set_page_dirty_buffers;
2566 #endif
2567 return (*spd)(page);
2569 if (!PageDirty(page)) {
2570 if (!TestSetPageDirty(page))
2571 return 1;
2573 return 0;
2575 EXPORT_SYMBOL(set_page_dirty);
2578 * set_page_dirty() is racy if the caller has no reference against
2579 * page->mapping->host, and if the page is unlocked. This is because another
2580 * CPU could truncate the page off the mapping and then free the mapping.
2582 * Usually, the page _is_ locked, or the caller is a user-space process which
2583 * holds a reference on the inode by having an open file.
2585 * In other cases, the page should be locked before running set_page_dirty().
2587 int set_page_dirty_lock(struct page *page)
2589 int ret;
2591 lock_page(page);
2592 ret = set_page_dirty(page);
2593 unlock_page(page);
2594 return ret;
2596 EXPORT_SYMBOL(set_page_dirty_lock);
2599 * This cancels just the dirty bit on the kernel page itself, it does NOT
2600 * actually remove dirty bits on any mmap's that may be around. It also
2601 * leaves the page tagged dirty, so any sync activity will still find it on
2602 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2603 * look at the dirty bits in the VM.
2605 * Doing this should *normally* only ever be done when a page is truncated,
2606 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2607 * this when it notices that somebody has cleaned out all the buffers on a
2608 * page without actually doing it through the VM. Can you say "ext3 is
2609 * horribly ugly"? Thought you could.
2611 void cancel_dirty_page(struct page *page)
2613 struct address_space *mapping = page_mapping(page);
2615 if (mapping_cap_account_dirty(mapping)) {
2616 struct inode *inode = mapping->host;
2617 struct bdi_writeback *wb;
2618 struct mem_cgroup *memcg;
2619 bool locked;
2621 memcg = mem_cgroup_begin_page_stat(page);
2622 wb = unlocked_inode_to_wb_begin(inode, &locked);
2624 if (TestClearPageDirty(page))
2625 account_page_cleaned(page, mapping, memcg, wb);
2627 unlocked_inode_to_wb_end(inode, locked);
2628 mem_cgroup_end_page_stat(memcg);
2629 } else {
2630 ClearPageDirty(page);
2633 EXPORT_SYMBOL(cancel_dirty_page);
2636 * Clear a page's dirty flag, while caring for dirty memory accounting.
2637 * Returns true if the page was previously dirty.
2639 * This is for preparing to put the page under writeout. We leave the page
2640 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2641 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2642 * implementation will run either set_page_writeback() or set_page_dirty(),
2643 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2644 * back into sync.
2646 * This incoherency between the page's dirty flag and radix-tree tag is
2647 * unfortunate, but it only exists while the page is locked.
2649 int clear_page_dirty_for_io(struct page *page)
2651 struct address_space *mapping = page_mapping(page);
2652 int ret = 0;
2654 BUG_ON(!PageLocked(page));
2656 if (mapping && mapping_cap_account_dirty(mapping)) {
2657 struct inode *inode = mapping->host;
2658 struct bdi_writeback *wb;
2659 struct mem_cgroup *memcg;
2660 bool locked;
2663 * Yes, Virginia, this is indeed insane.
2665 * We use this sequence to make sure that
2666 * (a) we account for dirty stats properly
2667 * (b) we tell the low-level filesystem to
2668 * mark the whole page dirty if it was
2669 * dirty in a pagetable. Only to then
2670 * (c) clean the page again and return 1 to
2671 * cause the writeback.
2673 * This way we avoid all nasty races with the
2674 * dirty bit in multiple places and clearing
2675 * them concurrently from different threads.
2677 * Note! Normally the "set_page_dirty(page)"
2678 * has no effect on the actual dirty bit - since
2679 * that will already usually be set. But we
2680 * need the side effects, and it can help us
2681 * avoid races.
2683 * We basically use the page "master dirty bit"
2684 * as a serialization point for all the different
2685 * threads doing their things.
2687 if (page_mkclean(page))
2688 set_page_dirty(page);
2690 * We carefully synchronise fault handlers against
2691 * installing a dirty pte and marking the page dirty
2692 * at this point. We do this by having them hold the
2693 * page lock while dirtying the page, and pages are
2694 * always locked coming in here, so we get the desired
2695 * exclusion.
2697 memcg = mem_cgroup_begin_page_stat(page);
2698 wb = unlocked_inode_to_wb_begin(inode, &locked);
2699 if (TestClearPageDirty(page)) {
2700 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2701 dec_zone_page_state(page, NR_FILE_DIRTY);
2702 dec_wb_stat(wb, WB_RECLAIMABLE);
2703 ret = 1;
2705 unlocked_inode_to_wb_end(inode, locked);
2706 mem_cgroup_end_page_stat(memcg);
2707 return ret;
2709 return TestClearPageDirty(page);
2711 EXPORT_SYMBOL(clear_page_dirty_for_io);
2713 int test_clear_page_writeback(struct page *page)
2715 struct address_space *mapping = page_mapping(page);
2716 struct mem_cgroup *memcg;
2717 int ret;
2719 memcg = mem_cgroup_begin_page_stat(page);
2720 if (mapping) {
2721 struct inode *inode = mapping->host;
2722 struct backing_dev_info *bdi = inode_to_bdi(inode);
2723 unsigned long flags;
2725 spin_lock_irqsave(&mapping->tree_lock, flags);
2726 ret = TestClearPageWriteback(page);
2727 if (ret) {
2728 radix_tree_tag_clear(&mapping->page_tree,
2729 page_index(page),
2730 PAGECACHE_TAG_WRITEBACK);
2731 if (bdi_cap_account_writeback(bdi)) {
2732 struct bdi_writeback *wb = inode_to_wb(inode);
2734 __dec_wb_stat(wb, WB_WRITEBACK);
2735 __wb_writeout_inc(wb);
2738 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2739 } else {
2740 ret = TestClearPageWriteback(page);
2742 if (ret) {
2743 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2744 dec_zone_page_state(page, NR_WRITEBACK);
2745 inc_zone_page_state(page, NR_WRITTEN);
2747 mem_cgroup_end_page_stat(memcg);
2748 return ret;
2751 int __test_set_page_writeback(struct page *page, bool keep_write)
2753 struct address_space *mapping = page_mapping(page);
2754 struct mem_cgroup *memcg;
2755 int ret;
2757 memcg = mem_cgroup_begin_page_stat(page);
2758 if (mapping) {
2759 struct inode *inode = mapping->host;
2760 struct backing_dev_info *bdi = inode_to_bdi(inode);
2761 unsigned long flags;
2763 spin_lock_irqsave(&mapping->tree_lock, flags);
2764 ret = TestSetPageWriteback(page);
2765 if (!ret) {
2766 radix_tree_tag_set(&mapping->page_tree,
2767 page_index(page),
2768 PAGECACHE_TAG_WRITEBACK);
2769 if (bdi_cap_account_writeback(bdi))
2770 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2772 if (!PageDirty(page))
2773 radix_tree_tag_clear(&mapping->page_tree,
2774 page_index(page),
2775 PAGECACHE_TAG_DIRTY);
2776 if (!keep_write)
2777 radix_tree_tag_clear(&mapping->page_tree,
2778 page_index(page),
2779 PAGECACHE_TAG_TOWRITE);
2780 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2781 } else {
2782 ret = TestSetPageWriteback(page);
2784 if (!ret) {
2785 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2786 inc_zone_page_state(page, NR_WRITEBACK);
2788 mem_cgroup_end_page_stat(memcg);
2789 return ret;
2792 EXPORT_SYMBOL(__test_set_page_writeback);
2795 * Return true if any of the pages in the mapping are marked with the
2796 * passed tag.
2798 int mapping_tagged(struct address_space *mapping, int tag)
2800 return radix_tree_tagged(&mapping->page_tree, tag);
2802 EXPORT_SYMBOL(mapping_tagged);
2805 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2806 * @page: The page to wait on.
2808 * This function determines if the given page is related to a backing device
2809 * that requires page contents to be held stable during writeback. If so, then
2810 * it will wait for any pending writeback to complete.
2812 void wait_for_stable_page(struct page *page)
2814 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2815 wait_on_page_writeback(page);
2817 EXPORT_SYMBOL_GPL(wait_for_stable_page);