2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/dax.h>
39 #include <asm/uaccess.h>
40 #include <asm/param.h>
44 #define user_long_t long
46 #ifndef user_siginfo_t
47 #define user_siginfo_t siginfo_t
50 static int load_elf_binary(struct linux_binprm
*bprm
);
51 static unsigned long elf_map(struct file
*, unsigned long, struct elf_phdr
*,
52 int, int, unsigned long);
55 static int load_elf_library(struct file
*);
57 #define load_elf_library NULL
61 * If we don't support core dumping, then supply a NULL so we
64 #ifdef CONFIG_ELF_CORE
65 static int elf_core_dump(struct coredump_params
*cprm
);
67 #define elf_core_dump NULL
70 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
71 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
73 #define ELF_MIN_ALIGN PAGE_SIZE
76 #ifndef ELF_CORE_EFLAGS
77 #define ELF_CORE_EFLAGS 0
80 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
81 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
82 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
84 static struct linux_binfmt elf_format
= {
85 .module
= THIS_MODULE
,
86 .load_binary
= load_elf_binary
,
87 .load_shlib
= load_elf_library
,
88 .core_dump
= elf_core_dump
,
89 .min_coredump
= ELF_EXEC_PAGESIZE
,
92 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
94 static int set_brk(unsigned long start
, unsigned long end
)
96 start
= ELF_PAGEALIGN(start
);
97 end
= ELF_PAGEALIGN(end
);
100 addr
= vm_brk(start
, end
- start
);
104 current
->mm
->start_brk
= current
->mm
->brk
= end
;
108 /* We need to explicitly zero any fractional pages
109 after the data section (i.e. bss). This would
110 contain the junk from the file that should not
113 static int padzero(unsigned long elf_bss
)
117 nbyte
= ELF_PAGEOFFSET(elf_bss
);
119 nbyte
= ELF_MIN_ALIGN
- nbyte
;
120 if (clear_user((void __user
*) elf_bss
, nbyte
))
126 /* Let's use some macros to make this stack manipulation a little clearer */
127 #ifdef CONFIG_STACK_GROWSUP
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
129 #define STACK_ROUND(sp, items) \
130 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ \
132 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
135 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
136 #define STACK_ROUND(sp, items) \
137 (((unsigned long) (sp - items)) &~ 15UL)
138 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
141 #ifndef ELF_BASE_PLATFORM
143 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
144 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
145 * will be copied to the user stack in the same manner as AT_PLATFORM.
147 #define ELF_BASE_PLATFORM NULL
151 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
152 unsigned long load_addr
, unsigned long interp_load_addr
)
154 unsigned long p
= bprm
->p
;
155 int argc
= bprm
->argc
;
156 int envc
= bprm
->envc
;
157 elf_addr_t __user
*argv
;
158 elf_addr_t __user
*envp
;
159 elf_addr_t __user
*sp
;
160 elf_addr_t __user
*u_platform
;
161 elf_addr_t __user
*u_base_platform
;
162 elf_addr_t __user
*u_rand_bytes
;
163 const char *k_platform
= ELF_PLATFORM
;
164 const char *k_base_platform
= ELF_BASE_PLATFORM
;
165 unsigned char k_rand_bytes
[16];
167 elf_addr_t
*elf_info
;
169 const struct cred
*cred
= current_cred();
170 struct vm_area_struct
*vma
;
173 * In some cases (e.g. Hyper-Threading), we want to avoid L1
174 * evictions by the processes running on the same package. One
175 * thing we can do is to shuffle the initial stack for them.
178 p
= arch_align_stack(p
);
181 * If this architecture has a platform capability string, copy it
182 * to userspace. In some cases (Sparc), this info is impossible
183 * for userspace to get any other way, in others (i386) it is
188 size_t len
= strlen(k_platform
) + 1;
190 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
191 if (__copy_to_user(u_platform
, k_platform
, len
))
196 * If this architecture has a "base" platform capability
197 * string, copy it to userspace.
199 u_base_platform
= NULL
;
200 if (k_base_platform
) {
201 size_t len
= strlen(k_base_platform
) + 1;
203 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
204 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
209 * Generate 16 random bytes for userspace PRNG seeding.
211 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
212 u_rand_bytes
= (elf_addr_t __user
*)
213 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
214 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
217 /* Create the ELF interpreter info */
218 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
219 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
220 #define NEW_AUX_ENT(id, val) \
222 elf_info[ei_index++] = id; \
223 elf_info[ei_index++] = val; \
228 * ARCH_DLINFO must come first so PPC can do its special alignment of
230 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
231 * ARCH_DLINFO changes
235 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
236 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
237 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
238 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
239 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
240 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
241 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
242 NEW_AUX_ENT(AT_FLAGS
, 0);
243 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
244 NEW_AUX_ENT(AT_UID
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
245 NEW_AUX_ENT(AT_EUID
, from_kuid_munged(cred
->user_ns
, cred
->euid
));
246 NEW_AUX_ENT(AT_GID
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
247 NEW_AUX_ENT(AT_EGID
, from_kgid_munged(cred
->user_ns
, cred
->egid
));
248 NEW_AUX_ENT(AT_SECURE
, security_bprm_secureexec(bprm
));
249 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
251 NEW_AUX_ENT(AT_HWCAP2
, ELF_HWCAP2
);
253 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
255 NEW_AUX_ENT(AT_PLATFORM
,
256 (elf_addr_t
)(unsigned long)u_platform
);
258 if (k_base_platform
) {
259 NEW_AUX_ENT(AT_BASE_PLATFORM
,
260 (elf_addr_t
)(unsigned long)u_base_platform
);
262 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
263 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
266 /* AT_NULL is zero; clear the rest too */
267 memset(&elf_info
[ei_index
], 0,
268 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
270 /* And advance past the AT_NULL entry. */
273 sp
= STACK_ADD(p
, ei_index
);
275 items
= (argc
+ 1) + (envc
+ 1) + 1;
276 bprm
->p
= STACK_ROUND(sp
, items
);
278 /* Point sp at the lowest address on the stack */
279 #ifdef CONFIG_STACK_GROWSUP
280 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
281 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
283 sp
= (elf_addr_t __user
*)bprm
->p
;
288 * Grow the stack manually; some architectures have a limit on how
289 * far ahead a user-space access may be in order to grow the stack.
291 vma
= find_extend_vma(current
->mm
, bprm
->p
);
295 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
296 if (__put_user(argc
, sp
++))
299 envp
= argv
+ argc
+ 1;
301 /* Populate argv and envp */
302 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
305 if (__put_user((elf_addr_t
)p
, argv
++))
307 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
308 if (!len
|| len
> MAX_ARG_STRLEN
)
312 if (__put_user(0, argv
))
314 current
->mm
->arg_end
= current
->mm
->env_start
= p
;
317 if (__put_user((elf_addr_t
)p
, envp
++))
319 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
320 if (!len
|| len
> MAX_ARG_STRLEN
)
324 if (__put_user(0, envp
))
326 current
->mm
->env_end
= p
;
328 /* Put the elf_info on the stack in the right place. */
329 sp
= (elf_addr_t __user
*)envp
+ 1;
330 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
337 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
338 struct elf_phdr
*eppnt
, int prot
, int type
,
339 unsigned long total_size
)
341 unsigned long map_addr
;
342 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
343 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
344 addr
= ELF_PAGESTART(addr
);
345 size
= ELF_PAGEALIGN(size
);
347 /* mmap() will return -EINVAL if given a zero size, but a
348 * segment with zero filesize is perfectly valid */
353 * total_size is the size of the ELF (interpreter) image.
354 * The _first_ mmap needs to know the full size, otherwise
355 * randomization might put this image into an overlapping
356 * position with the ELF binary image. (since size < total_size)
357 * So we first map the 'big' image - and unmap the remainder at
358 * the end. (which unmap is needed for ELF images with holes.)
361 total_size
= ELF_PAGEALIGN(total_size
);
362 map_addr
= vm_mmap(filep
, addr
, total_size
, prot
, type
, off
);
363 if (!BAD_ADDR(map_addr
))
364 vm_munmap(map_addr
+size
, total_size
-size
);
366 map_addr
= vm_mmap(filep
, addr
, size
, prot
, type
, off
);
371 #endif /* !elf_map */
373 static unsigned long total_mapping_size(struct elf_phdr
*cmds
, int nr
)
375 int i
, first_idx
= -1, last_idx
= -1;
377 for (i
= 0; i
< nr
; i
++) {
378 if (cmds
[i
].p_type
== PT_LOAD
) {
387 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
388 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
392 * load_elf_phdrs() - load ELF program headers
393 * @elf_ex: ELF header of the binary whose program headers should be loaded
394 * @elf_file: the opened ELF binary file
396 * Loads ELF program headers from the binary file elf_file, which has the ELF
397 * header pointed to by elf_ex, into a newly allocated array. The caller is
398 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
400 static struct elf_phdr
*load_elf_phdrs(struct elfhdr
*elf_ex
,
401 struct file
*elf_file
)
403 struct elf_phdr
*elf_phdata
= NULL
;
404 int retval
, size
, err
= -1;
407 * If the size of this structure has changed, then punt, since
408 * we will be doing the wrong thing.
410 if (elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
413 /* Sanity check the number of program headers... */
414 if (elf_ex
->e_phnum
< 1 ||
415 elf_ex
->e_phnum
> 65536U / sizeof(struct elf_phdr
))
418 /* ...and their total size. */
419 size
= sizeof(struct elf_phdr
) * elf_ex
->e_phnum
;
420 if (size
> ELF_MIN_ALIGN
)
423 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
427 /* Read in the program headers */
428 retval
= kernel_read(elf_file
, elf_ex
->e_phoff
,
429 (char *)elf_phdata
, size
);
430 if (retval
!= size
) {
431 err
= (retval
< 0) ? retval
: -EIO
;
445 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
448 * struct arch_elf_state - arch-specific ELF loading state
450 * This structure is used to preserve architecture specific data during
451 * the loading of an ELF file, throughout the checking of architecture
452 * specific ELF headers & through to the point where the ELF load is
453 * known to be proceeding (ie. SET_PERSONALITY).
455 * This implementation is a dummy for architectures which require no
458 struct arch_elf_state
{
461 #define INIT_ARCH_ELF_STATE {}
464 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
465 * @ehdr: The main ELF header
466 * @phdr: The program header to check
467 * @elf: The open ELF file
468 * @is_interp: True if the phdr is from the interpreter of the ELF being
469 * loaded, else false.
470 * @state: Architecture-specific state preserved throughout the process
471 * of loading the ELF.
473 * Inspects the program header phdr to validate its correctness and/or
474 * suitability for the system. Called once per ELF program header in the
475 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
478 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
479 * with that return code.
481 static inline int arch_elf_pt_proc(struct elfhdr
*ehdr
,
482 struct elf_phdr
*phdr
,
483 struct file
*elf
, bool is_interp
,
484 struct arch_elf_state
*state
)
486 /* Dummy implementation, always proceed */
491 * arch_check_elf() - check an ELF executable
492 * @ehdr: The main ELF header
493 * @has_interp: True if the ELF has an interpreter, else false.
494 * @state: Architecture-specific state preserved throughout the process
495 * of loading the ELF.
497 * Provides a final opportunity for architecture code to reject the loading
498 * of the ELF & cause an exec syscall to return an error. This is called after
499 * all program headers to be checked by arch_elf_pt_proc have been.
501 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
502 * with that return code.
504 static inline int arch_check_elf(struct elfhdr
*ehdr
, bool has_interp
,
505 struct arch_elf_state
*state
)
507 /* Dummy implementation, always proceed */
511 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
513 /* This is much more generalized than the library routine read function,
514 so we keep this separate. Technically the library read function
515 is only provided so that we can read a.out libraries that have
518 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
519 struct file
*interpreter
, unsigned long *interp_map_addr
,
520 unsigned long no_base
, struct elf_phdr
*interp_elf_phdata
)
522 struct elf_phdr
*eppnt
;
523 unsigned long load_addr
= 0;
524 int load_addr_set
= 0;
525 unsigned long last_bss
= 0, elf_bss
= 0;
526 unsigned long error
= ~0UL;
527 unsigned long total_size
;
530 /* First of all, some simple consistency checks */
531 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
532 interp_elf_ex
->e_type
!= ET_DYN
)
534 if (!elf_check_arch(interp_elf_ex
))
536 if (!interpreter
->f_op
->mmap
)
539 total_size
= total_mapping_size(interp_elf_phdata
,
540 interp_elf_ex
->e_phnum
);
546 eppnt
= interp_elf_phdata
;
547 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
548 if (eppnt
->p_type
== PT_LOAD
) {
549 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
551 unsigned long vaddr
= 0;
552 unsigned long k
, map_addr
;
554 if (eppnt
->p_flags
& PF_R
)
555 elf_prot
= PROT_READ
;
556 if (eppnt
->p_flags
& PF_W
)
557 elf_prot
|= PROT_WRITE
;
558 if (eppnt
->p_flags
& PF_X
)
559 elf_prot
|= PROT_EXEC
;
560 vaddr
= eppnt
->p_vaddr
;
561 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
562 elf_type
|= MAP_FIXED
;
563 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
566 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
567 eppnt
, elf_prot
, elf_type
, total_size
);
569 if (!*interp_map_addr
)
570 *interp_map_addr
= map_addr
;
572 if (BAD_ADDR(map_addr
))
575 if (!load_addr_set
&&
576 interp_elf_ex
->e_type
== ET_DYN
) {
577 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
582 * Check to see if the section's size will overflow the
583 * allowed task size. Note that p_filesz must always be
584 * <= p_memsize so it's only necessary to check p_memsz.
586 k
= load_addr
+ eppnt
->p_vaddr
;
588 eppnt
->p_filesz
> eppnt
->p_memsz
||
589 eppnt
->p_memsz
> TASK_SIZE
||
590 TASK_SIZE
- eppnt
->p_memsz
< k
) {
596 * Find the end of the file mapping for this phdr, and
597 * keep track of the largest address we see for this.
599 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
604 * Do the same thing for the memory mapping - between
605 * elf_bss and last_bss is the bss section.
607 k
= load_addr
+ eppnt
->p_memsz
+ eppnt
->p_vaddr
;
613 if (last_bss
> elf_bss
) {
615 * Now fill out the bss section. First pad the last page up
616 * to the page boundary, and then perform a mmap to make sure
617 * that there are zero-mapped pages up to and including the
620 if (padzero(elf_bss
)) {
625 /* What we have mapped so far */
626 elf_bss
= ELF_PAGESTART(elf_bss
+ ELF_MIN_ALIGN
- 1);
628 /* Map the last of the bss segment */
629 error
= vm_brk(elf_bss
, last_bss
- elf_bss
);
640 * These are the functions used to load ELF style executables and shared
641 * libraries. There is no binary dependent code anywhere else.
644 #ifndef STACK_RND_MASK
645 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
648 static unsigned long randomize_stack_top(unsigned long stack_top
)
650 unsigned long random_variable
= 0;
652 if ((current
->flags
& PF_RANDOMIZE
) &&
653 !(current
->personality
& ADDR_NO_RANDOMIZE
)) {
654 random_variable
= (unsigned long) get_random_int();
655 random_variable
&= STACK_RND_MASK
;
656 random_variable
<<= PAGE_SHIFT
;
658 #ifdef CONFIG_STACK_GROWSUP
659 return PAGE_ALIGN(stack_top
) + random_variable
;
661 return PAGE_ALIGN(stack_top
) - random_variable
;
665 static int load_elf_binary(struct linux_binprm
*bprm
)
667 struct file
*interpreter
= NULL
; /* to shut gcc up */
668 unsigned long load_addr
= 0, load_bias
= 0;
669 int load_addr_set
= 0;
670 char * elf_interpreter
= NULL
;
672 struct elf_phdr
*elf_ppnt
, *elf_phdata
, *interp_elf_phdata
= NULL
;
673 unsigned long elf_bss
, elf_brk
;
675 unsigned long elf_entry
;
676 unsigned long interp_load_addr
= 0;
677 unsigned long start_code
, end_code
, start_data
, end_data
;
678 unsigned long reloc_func_desc __maybe_unused
= 0;
679 int executable_stack
= EXSTACK_DEFAULT
;
680 struct pt_regs
*regs
= current_pt_regs();
682 struct elfhdr elf_ex
;
683 struct elfhdr interp_elf_ex
;
685 struct arch_elf_state arch_state
= INIT_ARCH_ELF_STATE
;
687 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
693 /* Get the exec-header */
694 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
697 /* First of all, some simple consistency checks */
698 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
701 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
703 if (!elf_check_arch(&loc
->elf_ex
))
705 if (!bprm
->file
->f_op
->mmap
)
708 elf_phdata
= load_elf_phdrs(&loc
->elf_ex
, bprm
->file
);
712 elf_ppnt
= elf_phdata
;
721 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++) {
722 if (elf_ppnt
->p_type
== PT_INTERP
) {
723 /* This is the program interpreter used for
724 * shared libraries - for now assume that this
725 * is an a.out format binary
728 if (elf_ppnt
->p_filesz
> PATH_MAX
||
729 elf_ppnt
->p_filesz
< 2)
733 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
,
735 if (!elf_interpreter
)
738 retval
= kernel_read(bprm
->file
, elf_ppnt
->p_offset
,
741 if (retval
!= elf_ppnt
->p_filesz
) {
744 goto out_free_interp
;
746 /* make sure path is NULL terminated */
748 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
749 goto out_free_interp
;
751 interpreter
= open_exec(elf_interpreter
);
752 retval
= PTR_ERR(interpreter
);
753 if (IS_ERR(interpreter
))
754 goto out_free_interp
;
757 * If the binary is not readable then enforce
758 * mm->dumpable = 0 regardless of the interpreter's
761 would_dump(bprm
, interpreter
);
763 /* Get the exec headers */
764 retval
= kernel_read(interpreter
, 0,
765 (void *)&loc
->interp_elf_ex
,
766 sizeof(loc
->interp_elf_ex
));
767 if (retval
!= sizeof(loc
->interp_elf_ex
)) {
770 goto out_free_dentry
;
778 elf_ppnt
= elf_phdata
;
779 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
780 switch (elf_ppnt
->p_type
) {
782 if (elf_ppnt
->p_flags
& PF_X
)
783 executable_stack
= EXSTACK_ENABLE_X
;
785 executable_stack
= EXSTACK_DISABLE_X
;
788 case PT_LOPROC
... PT_HIPROC
:
789 retval
= arch_elf_pt_proc(&loc
->elf_ex
, elf_ppnt
,
793 goto out_free_dentry
;
797 /* Some simple consistency checks for the interpreter */
798 if (elf_interpreter
) {
800 /* Not an ELF interpreter */
801 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
802 goto out_free_dentry
;
803 /* Verify the interpreter has a valid arch */
804 if (!elf_check_arch(&loc
->interp_elf_ex
))
805 goto out_free_dentry
;
807 /* Load the interpreter program headers */
808 interp_elf_phdata
= load_elf_phdrs(&loc
->interp_elf_ex
,
810 if (!interp_elf_phdata
)
811 goto out_free_dentry
;
813 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
814 elf_ppnt
= interp_elf_phdata
;
815 for (i
= 0; i
< loc
->interp_elf_ex
.e_phnum
; i
++, elf_ppnt
++)
816 switch (elf_ppnt
->p_type
) {
817 case PT_LOPROC
... PT_HIPROC
:
818 retval
= arch_elf_pt_proc(&loc
->interp_elf_ex
,
819 elf_ppnt
, interpreter
,
822 goto out_free_dentry
;
828 * Allow arch code to reject the ELF at this point, whilst it's
829 * still possible to return an error to the code that invoked
832 retval
= arch_check_elf(&loc
->elf_ex
, !!interpreter
, &arch_state
);
834 goto out_free_dentry
;
836 /* Flush all traces of the currently running executable */
837 retval
= flush_old_exec(bprm
);
839 goto out_free_dentry
;
841 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
842 may depend on the personality. */
843 SET_PERSONALITY2(loc
->elf_ex
, &arch_state
);
844 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
845 current
->personality
|= READ_IMPLIES_EXEC
;
847 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
848 current
->flags
|= PF_RANDOMIZE
;
850 setup_new_exec(bprm
);
852 /* Do this so that we can load the interpreter, if need be. We will
853 change some of these later */
854 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
857 goto out_free_dentry
;
859 current
->mm
->start_stack
= bprm
->p
;
861 /* Now we do a little grungy work by mmapping the ELF image into
862 the correct location in memory. */
863 for(i
= 0, elf_ppnt
= elf_phdata
;
864 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
865 int elf_prot
= 0, elf_flags
;
866 unsigned long k
, vaddr
;
867 unsigned long total_size
= 0;
869 if (elf_ppnt
->p_type
!= PT_LOAD
)
872 if (unlikely (elf_brk
> elf_bss
)) {
875 /* There was a PT_LOAD segment with p_memsz > p_filesz
876 before this one. Map anonymous pages, if needed,
877 and clear the area. */
878 retval
= set_brk(elf_bss
+ load_bias
,
879 elf_brk
+ load_bias
);
881 goto out_free_dentry
;
882 nbyte
= ELF_PAGEOFFSET(elf_bss
);
884 nbyte
= ELF_MIN_ALIGN
- nbyte
;
885 if (nbyte
> elf_brk
- elf_bss
)
886 nbyte
= elf_brk
- elf_bss
;
887 if (clear_user((void __user
*)elf_bss
+
890 * This bss-zeroing can fail if the ELF
891 * file specifies odd protections. So
892 * we don't check the return value
898 if (elf_ppnt
->p_flags
& PF_R
)
899 elf_prot
|= PROT_READ
;
900 if (elf_ppnt
->p_flags
& PF_W
)
901 elf_prot
|= PROT_WRITE
;
902 if (elf_ppnt
->p_flags
& PF_X
)
903 elf_prot
|= PROT_EXEC
;
905 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
907 vaddr
= elf_ppnt
->p_vaddr
;
909 * If we are loading ET_EXEC or we have already performed
910 * the ET_DYN load_addr calculations, proceed normally.
912 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
913 elf_flags
|= MAP_FIXED
;
914 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
916 * This logic is run once for the first LOAD Program
917 * Header for ET_DYN binaries to calculate the
918 * randomization (load_bias) for all the LOAD
919 * Program Headers, and to calculate the entire
920 * size of the ELF mapping (total_size). (Note that
921 * load_addr_set is set to true later once the
922 * initial mapping is performed.)
924 * There are effectively two types of ET_DYN
925 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
926 * and loaders (ET_DYN without INTERP, since they
927 * _are_ the ELF interpreter). The loaders must
928 * be loaded away from programs since the program
929 * may otherwise collide with the loader (especially
930 * for ET_EXEC which does not have a randomized
931 * position). For example to handle invocations of
932 * "./ld.so someprog" to test out a new version of
933 * the loader, the subsequent program that the
934 * loader loads must avoid the loader itself, so
935 * they cannot share the same load range. Sufficient
936 * room for the brk must be allocated with the
937 * loader as well, since brk must be available with
940 * Therefore, programs are loaded offset from
941 * ELF_ET_DYN_BASE and loaders are loaded into the
942 * independently randomized mmap region (0 load_bias
943 * without MAP_FIXED).
945 if (elf_interpreter
) {
946 load_bias
= ELF_ET_DYN_BASE
;
947 if (current
->flags
& PF_RANDOMIZE
)
948 load_bias
+= arch_mmap_rnd();
949 elf_flags
|= MAP_FIXED
;
954 * Since load_bias is used for all subsequent loading
955 * calculations, we must lower it by the first vaddr
956 * so that the remaining calculations based on the
957 * ELF vaddrs will be correctly offset. The result
958 * is then page aligned.
960 load_bias
= ELF_PAGESTART(load_bias
- vaddr
);
962 total_size
= total_mapping_size(elf_phdata
,
963 loc
->elf_ex
.e_phnum
);
966 goto out_free_dentry
;
970 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
971 elf_prot
, elf_flags
, total_size
);
972 if (BAD_ADDR(error
)) {
973 retval
= IS_ERR((void *)error
) ?
974 PTR_ERR((void*)error
) : -EINVAL
;
975 goto out_free_dentry
;
978 if (!load_addr_set
) {
980 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
981 if (loc
->elf_ex
.e_type
== ET_DYN
) {
983 ELF_PAGESTART(load_bias
+ vaddr
);
984 load_addr
+= load_bias
;
985 reloc_func_desc
= load_bias
;
988 k
= elf_ppnt
->p_vaddr
;
995 * Check to see if the section's size will overflow the
996 * allowed task size. Note that p_filesz must always be
997 * <= p_memsz so it is only necessary to check p_memsz.
999 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
1000 elf_ppnt
->p_memsz
> TASK_SIZE
||
1001 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
1002 /* set_brk can never work. Avoid overflows. */
1004 goto out_free_dentry
;
1007 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
1011 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
1015 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
1020 loc
->elf_ex
.e_entry
+= load_bias
;
1021 elf_bss
+= load_bias
;
1022 elf_brk
+= load_bias
;
1023 start_code
+= load_bias
;
1024 end_code
+= load_bias
;
1025 start_data
+= load_bias
;
1026 end_data
+= load_bias
;
1028 /* Calling set_brk effectively mmaps the pages that we need
1029 * for the bss and break sections. We must do this before
1030 * mapping in the interpreter, to make sure it doesn't wind
1031 * up getting placed where the bss needs to go.
1033 retval
= set_brk(elf_bss
, elf_brk
);
1035 goto out_free_dentry
;
1036 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
1037 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
1038 goto out_free_dentry
;
1041 if (elf_interpreter
) {
1042 unsigned long interp_map_addr
= 0;
1044 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
1047 load_bias
, interp_elf_phdata
);
1048 if (!IS_ERR((void *)elf_entry
)) {
1050 * load_elf_interp() returns relocation
1053 interp_load_addr
= elf_entry
;
1054 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
1056 if (BAD_ADDR(elf_entry
)) {
1057 retval
= IS_ERR((void *)elf_entry
) ?
1058 (int)elf_entry
: -EINVAL
;
1059 goto out_free_dentry
;
1061 reloc_func_desc
= interp_load_addr
;
1063 allow_write_access(interpreter
);
1065 kfree(elf_interpreter
);
1067 elf_entry
= loc
->elf_ex
.e_entry
;
1068 if (BAD_ADDR(elf_entry
)) {
1070 goto out_free_dentry
;
1074 kfree(interp_elf_phdata
);
1077 set_binfmt(&elf_format
);
1079 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1080 retval
= arch_setup_additional_pages(bprm
, !!elf_interpreter
);
1083 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1085 install_exec_creds(bprm
);
1086 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
1087 load_addr
, interp_load_addr
);
1090 /* N.B. passed_fileno might not be initialized? */
1091 current
->mm
->end_code
= end_code
;
1092 current
->mm
->start_code
= start_code
;
1093 current
->mm
->start_data
= start_data
;
1094 current
->mm
->end_data
= end_data
;
1095 current
->mm
->start_stack
= bprm
->p
;
1097 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1)) {
1098 current
->mm
->brk
= current
->mm
->start_brk
=
1099 arch_randomize_brk(current
->mm
);
1100 #ifdef compat_brk_randomized
1101 current
->brk_randomized
= 1;
1105 if (current
->personality
& MMAP_PAGE_ZERO
) {
1106 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1107 and some applications "depend" upon this behavior.
1108 Since we do not have the power to recompile these, we
1109 emulate the SVr4 behavior. Sigh. */
1110 error
= vm_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
1111 MAP_FIXED
| MAP_PRIVATE
, 0);
1114 #ifdef ELF_PLAT_INIT
1116 * The ABI may specify that certain registers be set up in special
1117 * ways (on i386 %edx is the address of a DT_FINI function, for
1118 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1119 * that the e_entry field is the address of the function descriptor
1120 * for the startup routine, rather than the address of the startup
1121 * routine itself. This macro performs whatever initialization to
1122 * the regs structure is required as well as any relocations to the
1123 * function descriptor entries when executing dynamically links apps.
1125 ELF_PLAT_INIT(regs
, reloc_func_desc
);
1128 start_thread(regs
, elf_entry
, bprm
->p
);
1137 kfree(interp_elf_phdata
);
1138 allow_write_access(interpreter
);
1142 kfree(elf_interpreter
);
1148 #ifdef CONFIG_USELIB
1149 /* This is really simpleminded and specialized - we are loading an
1150 a.out library that is given an ELF header. */
1151 static int load_elf_library(struct file
*file
)
1153 struct elf_phdr
*elf_phdata
;
1154 struct elf_phdr
*eppnt
;
1155 unsigned long elf_bss
, bss
, len
;
1156 int retval
, error
, i
, j
;
1157 struct elfhdr elf_ex
;
1160 retval
= kernel_read(file
, 0, (char *)&elf_ex
, sizeof(elf_ex
));
1161 if (retval
!= sizeof(elf_ex
))
1164 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1167 /* First of all, some simple consistency checks */
1168 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1169 !elf_check_arch(&elf_ex
) || !file
->f_op
->mmap
)
1172 /* Now read in all of the header information */
1174 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1175 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1178 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1184 retval
= kernel_read(file
, elf_ex
.e_phoff
, (char *)eppnt
, j
);
1188 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1189 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1194 while (eppnt
->p_type
!= PT_LOAD
)
1197 /* Now use mmap to map the library into memory. */
1198 error
= vm_mmap(file
,
1199 ELF_PAGESTART(eppnt
->p_vaddr
),
1201 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1202 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1203 MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
,
1205 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1206 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1209 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1210 if (padzero(elf_bss
)) {
1215 len
= ELF_PAGESTART(eppnt
->p_filesz
+ eppnt
->p_vaddr
+
1217 bss
= eppnt
->p_memsz
+ eppnt
->p_vaddr
;
1219 vm_brk(len
, bss
- len
);
1227 #endif /* #ifdef CONFIG_USELIB */
1229 #ifdef CONFIG_ELF_CORE
1233 * Modelled on fs/exec.c:aout_core_dump()
1234 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1238 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1239 * that are useful for post-mortem analysis are included in every core dump.
1240 * In that way we ensure that the core dump is fully interpretable later
1241 * without matching up the same kernel and hardware config to see what PC values
1242 * meant. These special mappings include - vDSO, vsyscall, and other
1243 * architecture specific mappings
1245 static bool always_dump_vma(struct vm_area_struct
*vma
)
1247 /* Any vsyscall mappings? */
1248 if (vma
== get_gate_vma(vma
->vm_mm
))
1252 * Assume that all vmas with a .name op should always be dumped.
1253 * If this changes, a new vm_ops field can easily be added.
1255 if (vma
->vm_ops
&& vma
->vm_ops
->name
&& vma
->vm_ops
->name(vma
))
1259 * arch_vma_name() returns non-NULL for special architecture mappings,
1260 * such as vDSO sections.
1262 if (arch_vma_name(vma
))
1269 * Decide what to dump of a segment, part, all or none.
1271 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1272 unsigned long mm_flags
)
1274 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1276 /* always dump the vdso and vsyscall sections */
1277 if (always_dump_vma(vma
))
1280 if (vma
->vm_flags
& VM_DONTDUMP
)
1283 /* support for DAX */
1284 if (vma_is_dax(vma
)) {
1285 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(DAX_SHARED
))
1287 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(DAX_PRIVATE
))
1292 /* Hugetlb memory check */
1293 if (vma
->vm_flags
& VM_HUGETLB
) {
1294 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1296 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1301 /* Do not dump I/O mapped devices or special mappings */
1302 if (vma
->vm_flags
& VM_IO
)
1305 /* By default, dump shared memory if mapped from an anonymous file. */
1306 if (vma
->vm_flags
& VM_SHARED
) {
1307 if (file_inode(vma
->vm_file
)->i_nlink
== 0 ?
1308 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1313 /* Dump segments that have been written to. */
1314 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1316 if (vma
->vm_file
== NULL
)
1319 if (FILTER(MAPPED_PRIVATE
))
1323 * If this looks like the beginning of a DSO or executable mapping,
1324 * check for an ELF header. If we find one, dump the first page to
1325 * aid in determining what was mapped here.
1327 if (FILTER(ELF_HEADERS
) &&
1328 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1329 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1331 mm_segment_t fs
= get_fs();
1333 * Doing it this way gets the constant folded by GCC.
1337 char elfmag
[SELFMAG
];
1339 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1340 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1341 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1342 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1343 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1345 * Switch to the user "segment" for get_user(),
1346 * then put back what elf_core_dump() had in place.
1349 if (unlikely(get_user(word
, header
)))
1352 if (word
== magic
.cmp
)
1361 return vma
->vm_end
- vma
->vm_start
;
1364 /* An ELF note in memory */
1369 unsigned int datasz
;
1373 static int notesize(struct memelfnote
*en
)
1377 sz
= sizeof(struct elf_note
);
1378 sz
+= roundup(strlen(en
->name
) + 1, 4);
1379 sz
+= roundup(en
->datasz
, 4);
1384 static int writenote(struct memelfnote
*men
, struct coredump_params
*cprm
)
1387 en
.n_namesz
= strlen(men
->name
) + 1;
1388 en
.n_descsz
= men
->datasz
;
1389 en
.n_type
= men
->type
;
1391 return dump_emit(cprm
, &en
, sizeof(en
)) &&
1392 dump_emit(cprm
, men
->name
, en
.n_namesz
) && dump_align(cprm
, 4) &&
1393 dump_emit(cprm
, men
->data
, men
->datasz
) && dump_align(cprm
, 4);
1396 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1397 u16 machine
, u32 flags
)
1399 memset(elf
, 0, sizeof(*elf
));
1401 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1402 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1403 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1404 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1405 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1407 elf
->e_type
= ET_CORE
;
1408 elf
->e_machine
= machine
;
1409 elf
->e_version
= EV_CURRENT
;
1410 elf
->e_phoff
= sizeof(struct elfhdr
);
1411 elf
->e_flags
= flags
;
1412 elf
->e_ehsize
= sizeof(struct elfhdr
);
1413 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1414 elf
->e_phnum
= segs
;
1419 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1421 phdr
->p_type
= PT_NOTE
;
1422 phdr
->p_offset
= offset
;
1425 phdr
->p_filesz
= sz
;
1432 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1433 unsigned int sz
, void *data
)
1443 * fill up all the fields in prstatus from the given task struct, except
1444 * registers which need to be filled up separately.
1446 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1447 struct task_struct
*p
, long signr
)
1449 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1450 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1451 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1453 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1455 prstatus
->pr_pid
= task_pid_vnr(p
);
1456 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1457 prstatus
->pr_sid
= task_session_vnr(p
);
1458 if (thread_group_leader(p
)) {
1459 struct task_cputime cputime
;
1462 * This is the record for the group leader. It shows the
1463 * group-wide total, not its individual thread total.
1465 thread_group_cputime(p
, &cputime
);
1466 cputime_to_timeval(cputime
.utime
, &prstatus
->pr_utime
);
1467 cputime_to_timeval(cputime
.stime
, &prstatus
->pr_stime
);
1469 cputime_t utime
, stime
;
1471 task_cputime(p
, &utime
, &stime
);
1472 cputime_to_timeval(utime
, &prstatus
->pr_utime
);
1473 cputime_to_timeval(stime
, &prstatus
->pr_stime
);
1475 cputime_to_timeval(p
->signal
->cutime
, &prstatus
->pr_cutime
);
1476 cputime_to_timeval(p
->signal
->cstime
, &prstatus
->pr_cstime
);
1479 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1480 struct mm_struct
*mm
)
1482 const struct cred
*cred
;
1483 unsigned int i
, len
;
1485 /* first copy the parameters from user space */
1486 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1488 len
= mm
->arg_end
- mm
->arg_start
;
1489 if (len
>= ELF_PRARGSZ
)
1490 len
= ELF_PRARGSZ
-1;
1491 if (copy_from_user(&psinfo
->pr_psargs
,
1492 (const char __user
*)mm
->arg_start
, len
))
1494 for(i
= 0; i
< len
; i
++)
1495 if (psinfo
->pr_psargs
[i
] == 0)
1496 psinfo
->pr_psargs
[i
] = ' ';
1497 psinfo
->pr_psargs
[len
] = 0;
1500 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1502 psinfo
->pr_pid
= task_pid_vnr(p
);
1503 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1504 psinfo
->pr_sid
= task_session_vnr(p
);
1506 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1507 psinfo
->pr_state
= i
;
1508 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1509 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1510 psinfo
->pr_nice
= task_nice(p
);
1511 psinfo
->pr_flag
= p
->flags
;
1513 cred
= __task_cred(p
);
1514 SET_UID(psinfo
->pr_uid
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
1515 SET_GID(psinfo
->pr_gid
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
1517 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1522 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1524 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1528 while (auxv
[i
- 2] != AT_NULL
);
1529 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1532 static void fill_siginfo_note(struct memelfnote
*note
, user_siginfo_t
*csigdata
,
1533 const siginfo_t
*siginfo
)
1535 mm_segment_t old_fs
= get_fs();
1537 copy_siginfo_to_user((user_siginfo_t __user
*) csigdata
, siginfo
);
1539 fill_note(note
, "CORE", NT_SIGINFO
, sizeof(*csigdata
), csigdata
);
1542 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1544 * Format of NT_FILE note:
1546 * long count -- how many files are mapped
1547 * long page_size -- units for file_ofs
1548 * array of [COUNT] elements of
1552 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1554 static int fill_files_note(struct memelfnote
*note
)
1556 struct vm_area_struct
*vma
;
1557 unsigned count
, size
, names_ofs
, remaining
, n
;
1559 user_long_t
*start_end_ofs
;
1560 char *name_base
, *name_curpos
;
1562 /* *Estimated* file count and total data size needed */
1563 count
= current
->mm
->map_count
;
1566 names_ofs
= (2 + 3 * count
) * sizeof(data
[0]);
1568 if (size
>= MAX_FILE_NOTE_SIZE
) /* paranoia check */
1570 size
= round_up(size
, PAGE_SIZE
);
1571 data
= vmalloc(size
);
1575 start_end_ofs
= data
+ 2;
1576 name_base
= name_curpos
= ((char *)data
) + names_ofs
;
1577 remaining
= size
- names_ofs
;
1579 for (vma
= current
->mm
->mmap
; vma
!= NULL
; vma
= vma
->vm_next
) {
1581 const char *filename
;
1583 file
= vma
->vm_file
;
1586 filename
= file_path(file
, name_curpos
, remaining
);
1587 if (IS_ERR(filename
)) {
1588 if (PTR_ERR(filename
) == -ENAMETOOLONG
) {
1590 size
= size
* 5 / 4;
1596 /* file_path() fills at the end, move name down */
1597 /* n = strlen(filename) + 1: */
1598 n
= (name_curpos
+ remaining
) - filename
;
1599 remaining
= filename
- name_curpos
;
1600 memmove(name_curpos
, filename
, n
);
1603 *start_end_ofs
++ = vma
->vm_start
;
1604 *start_end_ofs
++ = vma
->vm_end
;
1605 *start_end_ofs
++ = vma
->vm_pgoff
;
1609 /* Now we know exact count of files, can store it */
1611 data
[1] = PAGE_SIZE
;
1613 * Count usually is less than current->mm->map_count,
1614 * we need to move filenames down.
1616 n
= current
->mm
->map_count
- count
;
1618 unsigned shift_bytes
= n
* 3 * sizeof(data
[0]);
1619 memmove(name_base
- shift_bytes
, name_base
,
1620 name_curpos
- name_base
);
1621 name_curpos
-= shift_bytes
;
1624 size
= name_curpos
- (char *)data
;
1625 fill_note(note
, "CORE", NT_FILE
, size
, data
);
1629 #ifdef CORE_DUMP_USE_REGSET
1630 #include <linux/regset.h>
1632 struct elf_thread_core_info
{
1633 struct elf_thread_core_info
*next
;
1634 struct task_struct
*task
;
1635 struct elf_prstatus prstatus
;
1636 struct memelfnote notes
[0];
1639 struct elf_note_info
{
1640 struct elf_thread_core_info
*thread
;
1641 struct memelfnote psinfo
;
1642 struct memelfnote signote
;
1643 struct memelfnote auxv
;
1644 struct memelfnote files
;
1645 user_siginfo_t csigdata
;
1651 * When a regset has a writeback hook, we call it on each thread before
1652 * dumping user memory. On register window machines, this makes sure the
1653 * user memory backing the register data is up to date before we read it.
1655 static void do_thread_regset_writeback(struct task_struct
*task
,
1656 const struct user_regset
*regset
)
1658 if (regset
->writeback
)
1659 regset
->writeback(task
, regset
, 1);
1663 #define PR_REG_SIZE(S) sizeof(S)
1666 #ifndef PRSTATUS_SIZE
1667 #define PRSTATUS_SIZE(S) sizeof(S)
1671 #define PR_REG_PTR(S) (&((S)->pr_reg))
1674 #ifndef SET_PR_FPVALID
1675 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1678 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1679 const struct user_regset_view
*view
,
1680 long signr
, size_t *total
)
1685 * NT_PRSTATUS is the one special case, because the regset data
1686 * goes into the pr_reg field inside the note contents, rather
1687 * than being the whole note contents. We fill the reset in here.
1688 * We assume that regset 0 is NT_PRSTATUS.
1690 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1691 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0],
1692 0, PR_REG_SIZE(t
->prstatus
.pr_reg
),
1693 PR_REG_PTR(&t
->prstatus
), NULL
);
1695 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1696 PRSTATUS_SIZE(t
->prstatus
), &t
->prstatus
);
1697 *total
+= notesize(&t
->notes
[0]);
1699 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1702 * Each other regset might generate a note too. For each regset
1703 * that has no core_note_type or is inactive, we leave t->notes[i]
1704 * all zero and we'll know to skip writing it later.
1706 for (i
= 1; i
< view
->n
; ++i
) {
1707 const struct user_regset
*regset
= &view
->regsets
[i
];
1708 do_thread_regset_writeback(t
->task
, regset
);
1709 if (regset
->core_note_type
&& regset
->get
&&
1710 (!regset
->active
|| regset
->active(t
->task
, regset
))) {
1712 size_t size
= regset
->n
* regset
->size
;
1713 void *data
= kmalloc(size
, GFP_KERNEL
);
1714 if (unlikely(!data
))
1716 ret
= regset
->get(t
->task
, regset
,
1717 0, size
, data
, NULL
);
1721 if (regset
->core_note_type
!= NT_PRFPREG
)
1722 fill_note(&t
->notes
[i
], "LINUX",
1723 regset
->core_note_type
,
1726 SET_PR_FPVALID(&t
->prstatus
, 1);
1727 fill_note(&t
->notes
[i
], "CORE",
1728 NT_PRFPREG
, size
, data
);
1730 *total
+= notesize(&t
->notes
[i
]);
1738 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1739 struct elf_note_info
*info
,
1740 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1742 struct task_struct
*dump_task
= current
;
1743 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1744 struct elf_thread_core_info
*t
;
1745 struct elf_prpsinfo
*psinfo
;
1746 struct core_thread
*ct
;
1750 info
->thread
= NULL
;
1752 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1753 if (psinfo
== NULL
) {
1754 info
->psinfo
.data
= NULL
; /* So we don't free this wrongly */
1758 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1761 * Figure out how many notes we're going to need for each thread.
1763 info
->thread_notes
= 0;
1764 for (i
= 0; i
< view
->n
; ++i
)
1765 if (view
->regsets
[i
].core_note_type
!= 0)
1766 ++info
->thread_notes
;
1769 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1770 * since it is our one special case.
1772 if (unlikely(info
->thread_notes
== 0) ||
1773 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1779 * Initialize the ELF file header.
1781 fill_elf_header(elf
, phdrs
,
1782 view
->e_machine
, view
->e_flags
);
1785 * Allocate a structure for each thread.
1787 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1788 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1789 notes
[info
->thread_notes
]),
1795 if (ct
->task
== dump_task
|| !info
->thread
) {
1796 t
->next
= info
->thread
;
1800 * Make sure to keep the original task at
1801 * the head of the list.
1803 t
->next
= info
->thread
->next
;
1804 info
->thread
->next
= t
;
1809 * Now fill in each thread's information.
1811 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1812 if (!fill_thread_core_info(t
, view
, siginfo
->si_signo
, &info
->size
))
1816 * Fill in the two process-wide notes.
1818 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1819 info
->size
+= notesize(&info
->psinfo
);
1821 fill_siginfo_note(&info
->signote
, &info
->csigdata
, siginfo
);
1822 info
->size
+= notesize(&info
->signote
);
1824 fill_auxv_note(&info
->auxv
, current
->mm
);
1825 info
->size
+= notesize(&info
->auxv
);
1827 if (fill_files_note(&info
->files
) == 0)
1828 info
->size
+= notesize(&info
->files
);
1833 static size_t get_note_info_size(struct elf_note_info
*info
)
1839 * Write all the notes for each thread. When writing the first thread, the
1840 * process-wide notes are interleaved after the first thread-specific note.
1842 static int write_note_info(struct elf_note_info
*info
,
1843 struct coredump_params
*cprm
)
1846 struct elf_thread_core_info
*t
= info
->thread
;
1851 if (!writenote(&t
->notes
[0], cprm
))
1854 if (first
&& !writenote(&info
->psinfo
, cprm
))
1856 if (first
&& !writenote(&info
->signote
, cprm
))
1858 if (first
&& !writenote(&info
->auxv
, cprm
))
1860 if (first
&& info
->files
.data
&&
1861 !writenote(&info
->files
, cprm
))
1864 for (i
= 1; i
< info
->thread_notes
; ++i
)
1865 if (t
->notes
[i
].data
&&
1866 !writenote(&t
->notes
[i
], cprm
))
1876 static void free_note_info(struct elf_note_info
*info
)
1878 struct elf_thread_core_info
*threads
= info
->thread
;
1881 struct elf_thread_core_info
*t
= threads
;
1883 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1884 for (i
= 1; i
< info
->thread_notes
; ++i
)
1885 kfree(t
->notes
[i
].data
);
1888 kfree(info
->psinfo
.data
);
1889 vfree(info
->files
.data
);
1894 /* Here is the structure in which status of each thread is captured. */
1895 struct elf_thread_status
1897 struct list_head list
;
1898 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1899 elf_fpregset_t fpu
; /* NT_PRFPREG */
1900 struct task_struct
*thread
;
1901 #ifdef ELF_CORE_COPY_XFPREGS
1902 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1904 struct memelfnote notes
[3];
1909 * In order to add the specific thread information for the elf file format,
1910 * we need to keep a linked list of every threads pr_status and then create
1911 * a single section for them in the final core file.
1913 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1916 struct task_struct
*p
= t
->thread
;
1919 fill_prstatus(&t
->prstatus
, p
, signr
);
1920 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1922 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1925 sz
+= notesize(&t
->notes
[0]);
1927 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1929 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1932 sz
+= notesize(&t
->notes
[1]);
1935 #ifdef ELF_CORE_COPY_XFPREGS
1936 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1937 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1938 sizeof(t
->xfpu
), &t
->xfpu
);
1940 sz
+= notesize(&t
->notes
[2]);
1946 struct elf_note_info
{
1947 struct memelfnote
*notes
;
1948 struct memelfnote
*notes_files
;
1949 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1950 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1951 struct list_head thread_list
;
1952 elf_fpregset_t
*fpu
;
1953 #ifdef ELF_CORE_COPY_XFPREGS
1954 elf_fpxregset_t
*xfpu
;
1956 user_siginfo_t csigdata
;
1957 int thread_status_size
;
1961 static int elf_note_info_init(struct elf_note_info
*info
)
1963 memset(info
, 0, sizeof(*info
));
1964 INIT_LIST_HEAD(&info
->thread_list
);
1966 /* Allocate space for ELF notes */
1967 info
->notes
= kmalloc(8 * sizeof(struct memelfnote
), GFP_KERNEL
);
1970 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1973 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1974 if (!info
->prstatus
)
1976 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
1979 #ifdef ELF_CORE_COPY_XFPREGS
1980 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
1987 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1988 struct elf_note_info
*info
,
1989 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1991 struct list_head
*t
;
1992 struct core_thread
*ct
;
1993 struct elf_thread_status
*ets
;
1995 if (!elf_note_info_init(info
))
1998 for (ct
= current
->mm
->core_state
->dumper
.next
;
1999 ct
; ct
= ct
->next
) {
2000 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
2004 ets
->thread
= ct
->task
;
2005 list_add(&ets
->list
, &info
->thread_list
);
2008 list_for_each(t
, &info
->thread_list
) {
2011 ets
= list_entry(t
, struct elf_thread_status
, list
);
2012 sz
= elf_dump_thread_status(siginfo
->si_signo
, ets
);
2013 info
->thread_status_size
+= sz
;
2015 /* now collect the dump for the current */
2016 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
2017 fill_prstatus(info
->prstatus
, current
, siginfo
->si_signo
);
2018 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
2021 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
);
2024 * Set up the notes in similar form to SVR4 core dumps made
2025 * with info from their /proc.
2028 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
2029 sizeof(*info
->prstatus
), info
->prstatus
);
2030 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
2031 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
2032 sizeof(*info
->psinfo
), info
->psinfo
);
2034 fill_siginfo_note(info
->notes
+ 2, &info
->csigdata
, siginfo
);
2035 fill_auxv_note(info
->notes
+ 3, current
->mm
);
2038 if (fill_files_note(info
->notes
+ info
->numnote
) == 0) {
2039 info
->notes_files
= info
->notes
+ info
->numnote
;
2043 /* Try to dump the FPU. */
2044 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
2046 if (info
->prstatus
->pr_fpvalid
)
2047 fill_note(info
->notes
+ info
->numnote
++,
2048 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
2049 #ifdef ELF_CORE_COPY_XFPREGS
2050 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
2051 fill_note(info
->notes
+ info
->numnote
++,
2052 "LINUX", ELF_CORE_XFPREG_TYPE
,
2053 sizeof(*info
->xfpu
), info
->xfpu
);
2059 static size_t get_note_info_size(struct elf_note_info
*info
)
2064 for (i
= 0; i
< info
->numnote
; i
++)
2065 sz
+= notesize(info
->notes
+ i
);
2067 sz
+= info
->thread_status_size
;
2072 static int write_note_info(struct elf_note_info
*info
,
2073 struct coredump_params
*cprm
)
2076 struct list_head
*t
;
2078 for (i
= 0; i
< info
->numnote
; i
++)
2079 if (!writenote(info
->notes
+ i
, cprm
))
2082 /* write out the thread status notes section */
2083 list_for_each(t
, &info
->thread_list
) {
2084 struct elf_thread_status
*tmp
=
2085 list_entry(t
, struct elf_thread_status
, list
);
2087 for (i
= 0; i
< tmp
->num_notes
; i
++)
2088 if (!writenote(&tmp
->notes
[i
], cprm
))
2095 static void free_note_info(struct elf_note_info
*info
)
2097 while (!list_empty(&info
->thread_list
)) {
2098 struct list_head
*tmp
= info
->thread_list
.next
;
2100 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
2103 /* Free data possibly allocated by fill_files_note(): */
2104 if (info
->notes_files
)
2105 vfree(info
->notes_files
->data
);
2107 kfree(info
->prstatus
);
2108 kfree(info
->psinfo
);
2111 #ifdef ELF_CORE_COPY_XFPREGS
2118 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
2119 struct vm_area_struct
*gate_vma
)
2121 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
2128 * Helper function for iterating across a vma list. It ensures that the caller
2129 * will visit `gate_vma' prior to terminating the search.
2131 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
2132 struct vm_area_struct
*gate_vma
)
2134 struct vm_area_struct
*ret
;
2136 ret
= this_vma
->vm_next
;
2139 if (this_vma
== gate_vma
)
2144 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
2145 elf_addr_t e_shoff
, int segs
)
2147 elf
->e_shoff
= e_shoff
;
2148 elf
->e_shentsize
= sizeof(*shdr4extnum
);
2150 elf
->e_shstrndx
= SHN_UNDEF
;
2152 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
2154 shdr4extnum
->sh_type
= SHT_NULL
;
2155 shdr4extnum
->sh_size
= elf
->e_shnum
;
2156 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
2157 shdr4extnum
->sh_info
= segs
;
2163 * This is a two-pass process; first we find the offsets of the bits,
2164 * and then they are actually written out. If we run out of core limit
2167 static int elf_core_dump(struct coredump_params
*cprm
)
2172 size_t vma_data_size
= 0;
2173 struct vm_area_struct
*vma
, *gate_vma
;
2174 struct elfhdr
*elf
= NULL
;
2175 loff_t offset
= 0, dataoff
;
2176 struct elf_note_info info
= { };
2177 struct elf_phdr
*phdr4note
= NULL
;
2178 struct elf_shdr
*shdr4extnum
= NULL
;
2181 elf_addr_t
*vma_filesz
= NULL
;
2184 * We no longer stop all VM operations.
2186 * This is because those proceses that could possibly change map_count
2187 * or the mmap / vma pages are now blocked in do_exit on current
2188 * finishing this core dump.
2190 * Only ptrace can touch these memory addresses, but it doesn't change
2191 * the map_count or the pages allocated. So no possibility of crashing
2192 * exists while dumping the mm->vm_next areas to the core file.
2195 /* alloc memory for large data structures: too large to be on stack */
2196 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
2200 * The number of segs are recored into ELF header as 16bit value.
2201 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2203 segs
= current
->mm
->map_count
;
2204 segs
+= elf_core_extra_phdrs();
2206 gate_vma
= get_gate_vma(current
->mm
);
2207 if (gate_vma
!= NULL
)
2210 /* for notes section */
2213 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2214 * this, kernel supports extended numbering. Have a look at
2215 * include/linux/elf.h for further information. */
2216 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
2219 * Collect all the non-memory information about the process for the
2220 * notes. This also sets up the file header.
2222 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->siginfo
, cprm
->regs
))
2230 offset
+= sizeof(*elf
); /* Elf header */
2231 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
2233 /* Write notes phdr entry */
2235 size_t sz
= get_note_info_size(&info
);
2237 sz
+= elf_coredump_extra_notes_size();
2239 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
2243 fill_elf_note_phdr(phdr4note
, sz
, offset
);
2247 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2249 vma_filesz
= kmalloc_array(segs
- 1, sizeof(*vma_filesz
), GFP_KERNEL
);
2253 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2254 vma
= next_vma(vma
, gate_vma
)) {
2255 unsigned long dump_size
;
2257 dump_size
= vma_dump_size(vma
, cprm
->mm_flags
);
2258 vma_filesz
[i
++] = dump_size
;
2259 vma_data_size
+= dump_size
;
2262 offset
+= vma_data_size
;
2263 offset
+= elf_core_extra_data_size();
2266 if (e_phnum
== PN_XNUM
) {
2267 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
2270 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
2275 if (!dump_emit(cprm
, elf
, sizeof(*elf
)))
2278 if (!dump_emit(cprm
, phdr4note
, sizeof(*phdr4note
)))
2281 /* Write program headers for segments dump */
2282 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2283 vma
= next_vma(vma
, gate_vma
)) {
2284 struct elf_phdr phdr
;
2286 phdr
.p_type
= PT_LOAD
;
2287 phdr
.p_offset
= offset
;
2288 phdr
.p_vaddr
= vma
->vm_start
;
2290 phdr
.p_filesz
= vma_filesz
[i
++];
2291 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
2292 offset
+= phdr
.p_filesz
;
2293 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
2294 if (vma
->vm_flags
& VM_WRITE
)
2295 phdr
.p_flags
|= PF_W
;
2296 if (vma
->vm_flags
& VM_EXEC
)
2297 phdr
.p_flags
|= PF_X
;
2298 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2300 if (!dump_emit(cprm
, &phdr
, sizeof(phdr
)))
2304 if (!elf_core_write_extra_phdrs(cprm
, offset
))
2307 /* write out the notes section */
2308 if (!write_note_info(&info
, cprm
))
2311 if (elf_coredump_extra_notes_write(cprm
))
2315 if (!dump_skip(cprm
, dataoff
- cprm
->written
))
2318 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2319 vma
= next_vma(vma
, gate_vma
)) {
2323 end
= vma
->vm_start
+ vma_filesz
[i
++];
2325 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2329 page
= get_dump_page(addr
);
2331 void *kaddr
= kmap(page
);
2332 stop
= !dump_emit(cprm
, kaddr
, PAGE_SIZE
);
2334 page_cache_release(page
);
2336 stop
= !dump_skip(cprm
, PAGE_SIZE
);
2341 dump_truncate(cprm
);
2343 if (!elf_core_write_extra_data(cprm
))
2346 if (e_phnum
== PN_XNUM
) {
2347 if (!dump_emit(cprm
, shdr4extnum
, sizeof(*shdr4extnum
)))
2355 free_note_info(&info
);
2364 #endif /* CONFIG_ELF_CORE */
2366 static int __init
init_elf_binfmt(void)
2368 register_binfmt(&elf_format
);
2372 static void __exit
exit_elf_binfmt(void)
2374 /* Remove the COFF and ELF loaders. */
2375 unregister_binfmt(&elf_format
);
2378 core_initcall(init_elf_binfmt
);
2379 module_exit(exit_elf_binfmt
);
2380 MODULE_LICENSE("GPL");