1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/freezer.h>
6 #include <linux/stat.h>
7 #include <linux/fcntl.h>
8 #include <linux/swap.h>
9 #include <linux/string.h>
10 #include <linux/init.h>
11 #include <linux/pagemap.h>
12 #include <linux/perf_event.h>
13 #include <linux/highmem.h>
14 #include <linux/spinlock.h>
15 #include <linux/key.h>
16 #include <linux/personality.h>
17 #include <linux/binfmts.h>
18 #include <linux/coredump.h>
19 #include <linux/utsname.h>
20 #include <linux/pid_namespace.h>
21 #include <linux/module.h>
22 #include <linux/namei.h>
23 #include <linux/mount.h>
24 #include <linux/security.h>
25 #include <linux/syscalls.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/cn_proc.h>
28 #include <linux/audit.h>
29 #include <linux/tracehook.h>
30 #include <linux/kmod.h>
31 #include <linux/fsnotify.h>
32 #include <linux/fs_struct.h>
33 #include <linux/pipe_fs_i.h>
34 #include <linux/oom.h>
35 #include <linux/compat.h>
36 #include <linux/sched.h>
38 #include <linux/path.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
45 #include <trace/events/task.h>
48 #include <trace/events/sched.h>
51 unsigned int core_pipe_limit
;
52 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
53 static int core_name_size
= CORENAME_MAX_SIZE
;
60 /* The maximal length of core_pattern is also specified in sysctl.c */
62 static int expand_corename(struct core_name
*cn
, int size
)
64 char *corename
= krealloc(cn
->corename
, size
, GFP_KERNEL
);
69 if (size
> core_name_size
) /* racy but harmless */
70 core_name_size
= size
;
72 cn
->size
= ksize(corename
);
73 cn
->corename
= corename
;
77 static __printf(2, 0) int cn_vprintf(struct core_name
*cn
, const char *fmt
,
84 free
= cn
->size
- cn
->used
;
86 va_copy(arg_copy
, arg
);
87 need
= vsnprintf(cn
->corename
+ cn
->used
, free
, fmt
, arg_copy
);
95 if (!expand_corename(cn
, cn
->size
+ need
- free
+ 1))
101 static __printf(2, 3) int cn_printf(struct core_name
*cn
, const char *fmt
, ...)
107 ret
= cn_vprintf(cn
, fmt
, arg
);
113 static __printf(2, 3)
114 int cn_esc_printf(struct core_name
*cn
, const char *fmt
, ...)
121 ret
= cn_vprintf(cn
, fmt
, arg
);
124 for (; cur
< cn
->used
; ++cur
) {
125 if (cn
->corename
[cur
] == '/')
126 cn
->corename
[cur
] = '!';
131 static int cn_print_exe_file(struct core_name
*cn
)
133 struct file
*exe_file
;
134 char *pathbuf
, *path
;
137 exe_file
= get_mm_exe_file(current
->mm
);
139 return cn_esc_printf(cn
, "%s (path unknown)", current
->comm
);
141 pathbuf
= kmalloc(PATH_MAX
, GFP_TEMPORARY
);
147 path
= file_path(exe_file
, pathbuf
, PATH_MAX
);
153 ret
= cn_esc_printf(cn
, "%s", path
);
162 /* format_corename will inspect the pattern parameter, and output a
163 * name into corename, which must have space for at least
164 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
166 static int format_corename(struct core_name
*cn
, struct coredump_params
*cprm
)
168 const struct cred
*cred
= current_cred();
169 const char *pat_ptr
= core_pattern
;
170 int ispipe
= (*pat_ptr
== '|');
171 int pid_in_pattern
= 0;
176 if (expand_corename(cn
, core_name_size
))
178 cn
->corename
[0] = '\0';
183 /* Repeat as long as we have more pattern to process and more output
186 if (*pat_ptr
!= '%') {
187 err
= cn_printf(cn
, "%c", *pat_ptr
++);
189 switch (*++pat_ptr
) {
190 /* single % at the end, drop that */
193 /* Double percent, output one percent */
195 err
= cn_printf(cn
, "%c", '%');
200 err
= cn_printf(cn
, "%d",
201 task_tgid_vnr(current
));
205 err
= cn_printf(cn
, "%d",
206 task_tgid_nr(current
));
209 err
= cn_printf(cn
, "%d",
210 task_pid_vnr(current
));
213 err
= cn_printf(cn
, "%d",
214 task_pid_nr(current
));
218 err
= cn_printf(cn
, "%u",
219 from_kuid(&init_user_ns
,
224 err
= cn_printf(cn
, "%u",
225 from_kgid(&init_user_ns
,
229 err
= cn_printf(cn
, "%d",
230 __get_dumpable(cprm
->mm_flags
));
232 /* signal that caused the coredump */
234 err
= cn_printf(cn
, "%d",
235 cprm
->siginfo
->si_signo
);
237 /* UNIX time of coredump */
240 do_gettimeofday(&tv
);
241 err
= cn_printf(cn
, "%lu", tv
.tv_sec
);
247 err
= cn_esc_printf(cn
, "%s",
248 utsname()->nodename
);
253 err
= cn_esc_printf(cn
, "%s", current
->comm
);
256 err
= cn_print_exe_file(cn
);
258 /* core limit size */
260 err
= cn_printf(cn
, "%lu",
261 rlimit(RLIMIT_CORE
));
274 /* Backward compatibility with core_uses_pid:
276 * If core_pattern does not include a %p (as is the default)
277 * and core_uses_pid is set, then .%pid will be appended to
278 * the filename. Do not do this for piped commands. */
279 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
280 err
= cn_printf(cn
, ".%d", task_tgid_vnr(current
));
287 static int zap_process(struct task_struct
*start
, int exit_code
, int flags
)
289 struct task_struct
*t
;
292 /* ignore all signals except SIGKILL, see prepare_signal() */
293 start
->signal
->flags
= SIGNAL_GROUP_COREDUMP
| flags
;
294 start
->signal
->group_exit_code
= exit_code
;
295 start
->signal
->group_stop_count
= 0;
297 for_each_thread(start
, t
) {
298 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
299 if (t
!= current
&& t
->mm
) {
300 sigaddset(&t
->pending
.signal
, SIGKILL
);
301 signal_wake_up(t
, 1);
309 static int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
310 struct core_state
*core_state
, int exit_code
)
312 struct task_struct
*g
, *p
;
316 spin_lock_irq(&tsk
->sighand
->siglock
);
317 if (!signal_group_exit(tsk
->signal
)) {
318 mm
->core_state
= core_state
;
319 tsk
->signal
->group_exit_task
= tsk
;
320 nr
= zap_process(tsk
, exit_code
, 0);
321 clear_tsk_thread_flag(tsk
, TIF_SIGPENDING
);
323 spin_unlock_irq(&tsk
->sighand
->siglock
);
324 if (unlikely(nr
< 0))
327 tsk
->flags
|= PF_DUMPCORE
;
328 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
331 * We should find and kill all tasks which use this mm, and we should
332 * count them correctly into ->nr_threads. We don't take tasklist
333 * lock, but this is safe wrt:
336 * None of sub-threads can fork after zap_process(leader). All
337 * processes which were created before this point should be
338 * visible to zap_threads() because copy_process() adds the new
339 * process to the tail of init_task.tasks list, and lock/unlock
340 * of ->siglock provides a memory barrier.
343 * The caller holds mm->mmap_sem. This means that the task which
344 * uses this mm can't pass exit_mm(), so it can't exit or clear
348 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
349 * we must see either old or new leader, this does not matter.
350 * However, it can change p->sighand, so lock_task_sighand(p)
351 * must be used. Since p->mm != NULL and we hold ->mmap_sem
354 * Note also that "g" can be the old leader with ->mm == NULL
355 * and already unhashed and thus removed from ->thread_group.
356 * This is OK, __unhash_process()->list_del_rcu() does not
357 * clear the ->next pointer, we will find the new leader via
361 for_each_process(g
) {
362 if (g
== tsk
->group_leader
)
364 if (g
->flags
& PF_KTHREAD
)
367 for_each_thread(g
, p
) {
368 if (unlikely(!p
->mm
))
370 if (unlikely(p
->mm
== mm
)) {
371 lock_task_sighand(p
, &flags
);
372 nr
+= zap_process(p
, exit_code
,
374 unlock_task_sighand(p
, &flags
);
381 atomic_set(&core_state
->nr_threads
, nr
);
385 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
387 struct task_struct
*tsk
= current
;
388 struct mm_struct
*mm
= tsk
->mm
;
389 int core_waiters
= -EBUSY
;
391 init_completion(&core_state
->startup
);
392 core_state
->dumper
.task
= tsk
;
393 core_state
->dumper
.next
= NULL
;
395 down_write(&mm
->mmap_sem
);
397 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
398 up_write(&mm
->mmap_sem
);
400 if (core_waiters
> 0) {
401 struct core_thread
*ptr
;
403 freezer_do_not_count();
404 wait_for_completion(&core_state
->startup
);
407 * Wait for all the threads to become inactive, so that
408 * all the thread context (extended register state, like
409 * fpu etc) gets copied to the memory.
411 ptr
= core_state
->dumper
.next
;
412 while (ptr
!= NULL
) {
413 wait_task_inactive(ptr
->task
, 0);
421 static void coredump_finish(struct mm_struct
*mm
, bool core_dumped
)
423 struct core_thread
*curr
, *next
;
424 struct task_struct
*task
;
426 spin_lock_irq(¤t
->sighand
->siglock
);
427 if (core_dumped
&& !__fatal_signal_pending(current
))
428 current
->signal
->group_exit_code
|= 0x80;
429 current
->signal
->group_exit_task
= NULL
;
430 current
->signal
->flags
= SIGNAL_GROUP_EXIT
;
431 spin_unlock_irq(¤t
->sighand
->siglock
);
433 next
= mm
->core_state
->dumper
.next
;
434 while ((curr
= next
) != NULL
) {
438 * see exit_mm(), curr->task must not see
439 * ->task == NULL before we read ->next.
443 wake_up_process(task
);
446 mm
->core_state
= NULL
;
449 static bool dump_interrupted(void)
452 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
453 * can do try_to_freeze() and check __fatal_signal_pending(),
454 * but then we need to teach dump_write() to restart and clear
457 return signal_pending(current
);
460 static void wait_for_dump_helpers(struct file
*file
)
462 struct pipe_inode_info
*pipe
= file
->private_data
;
467 wake_up_interruptible_sync(&pipe
->wait
);
468 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
472 * We actually want wait_event_freezable() but then we need
473 * to clear TIF_SIGPENDING and improve dump_interrupted().
475 wait_event_interruptible(pipe
->wait
, pipe
->readers
== 1);
485 * helper function to customize the process used
486 * to collect the core in userspace. Specifically
487 * it sets up a pipe and installs it as fd 0 (stdin)
488 * for the process. Returns 0 on success, or
489 * PTR_ERR on failure.
490 * Note that it also sets the core limit to 1. This
491 * is a special value that we use to trap recursive
494 static int umh_pipe_setup(struct subprocess_info
*info
, struct cred
*new)
496 struct file
*files
[2];
497 struct coredump_params
*cp
= (struct coredump_params
*)info
->data
;
498 int err
= create_pipe_files(files
, 0);
504 err
= replace_fd(0, files
[0], 0);
506 /* and disallow core files too */
507 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){1, 1};
512 void do_coredump(const siginfo_t
*siginfo
)
514 struct core_state core_state
;
516 struct mm_struct
*mm
= current
->mm
;
517 struct linux_binfmt
* binfmt
;
518 const struct cred
*old_cred
;
522 struct files_struct
*displaced
;
523 /* require nonrelative corefile path and be extra careful */
524 bool need_suid_safe
= false;
525 bool core_dumped
= false;
526 static atomic_t core_dump_count
= ATOMIC_INIT(0);
527 struct coredump_params cprm
= {
529 .regs
= signal_pt_regs(),
530 .limit
= rlimit(RLIMIT_CORE
),
532 * We must use the same mm->flags while dumping core to avoid
533 * inconsistency of bit flags, since this flag is not protected
536 .mm_flags
= mm
->flags
,
539 audit_core_dumps(siginfo
->si_signo
);
542 if (!binfmt
|| !binfmt
->core_dump
)
544 if (!__get_dumpable(cprm
.mm_flags
))
547 cred
= prepare_creds();
551 * We cannot trust fsuid as being the "true" uid of the process
552 * nor do we know its entire history. We only know it was tainted
553 * so we dump it as root in mode 2, and only into a controlled
554 * environment (pipe handler or fully qualified path).
556 if (__get_dumpable(cprm
.mm_flags
) == SUID_DUMP_ROOT
) {
557 /* Setuid core dump mode */
558 cred
->fsuid
= GLOBAL_ROOT_UID
; /* Dump root private */
559 need_suid_safe
= true;
562 retval
= coredump_wait(siginfo
->si_signo
, &core_state
);
566 old_cred
= override_creds(cred
);
568 ispipe
= format_corename(&cn
, &cprm
);
573 struct subprocess_info
*sub_info
;
576 printk(KERN_WARNING
"format_corename failed\n");
577 printk(KERN_WARNING
"Aborting core\n");
581 if (cprm
.limit
== 1) {
582 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
584 * Normally core limits are irrelevant to pipes, since
585 * we're not writing to the file system, but we use
586 * cprm.limit of 1 here as a special value, this is a
587 * consistent way to catch recursive crashes.
588 * We can still crash if the core_pattern binary sets
589 * RLIM_CORE = !1, but it runs as root, and can do
590 * lots of stupid things.
592 * Note that we use task_tgid_vnr here to grab the pid
593 * of the process group leader. That way we get the
594 * right pid if a thread in a multi-threaded
595 * core_pattern process dies.
598 "Process %d(%s) has RLIMIT_CORE set to 1\n",
599 task_tgid_vnr(current
), current
->comm
);
600 printk(KERN_WARNING
"Aborting core\n");
603 cprm
.limit
= RLIM_INFINITY
;
605 dump_count
= atomic_inc_return(&core_dump_count
);
606 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
607 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
608 task_tgid_vnr(current
), current
->comm
);
609 printk(KERN_WARNING
"Skipping core dump\n");
613 helper_argv
= argv_split(GFP_KERNEL
, cn
.corename
, NULL
);
615 printk(KERN_WARNING
"%s failed to allocate memory\n",
621 sub_info
= call_usermodehelper_setup(helper_argv
[0],
622 helper_argv
, NULL
, GFP_KERNEL
,
623 umh_pipe_setup
, NULL
, &cprm
);
625 retval
= call_usermodehelper_exec(sub_info
,
628 argv_free(helper_argv
);
630 printk(KERN_INFO
"Core dump to |%s pipe failed\n",
636 int open_flags
= O_CREAT
| O_RDWR
| O_NOFOLLOW
|
637 O_LARGEFILE
| O_EXCL
;
639 if (cprm
.limit
< binfmt
->min_coredump
)
642 if (need_suid_safe
&& cn
.corename
[0] != '/') {
643 printk(KERN_WARNING
"Pid %d(%s) can only dump core "\
644 "to fully qualified path!\n",
645 task_tgid_vnr(current
), current
->comm
);
646 printk(KERN_WARNING
"Skipping core dump\n");
651 * Unlink the file if it exists unless this is a SUID
652 * binary - in that case, we're running around with root
653 * privs and don't want to unlink another user's coredump.
655 if (!need_suid_safe
) {
661 * If it doesn't exist, that's fine. If there's some
662 * other problem, we'll catch it at the filp_open().
664 (void) sys_unlink((const char __user
*)cn
.corename
);
669 * There is a race between unlinking and creating the
670 * file, but if that causes an EEXIST here, that's
671 * fine - another process raced with us while creating
672 * the corefile, and the other process won. To userspace,
673 * what matters is that at least one of the two processes
674 * writes its coredump successfully, not which one.
676 if (need_suid_safe
) {
678 * Using user namespaces, normal user tasks can change
679 * their current->fs->root to point to arbitrary
680 * directories. Since the intention of the "only dump
681 * with a fully qualified path" rule is to control where
682 * coredumps may be placed using root privileges,
683 * current->fs->root must not be used. Instead, use the
684 * root directory of init_task.
688 task_lock(&init_task
);
689 get_fs_root(init_task
.fs
, &root
);
690 task_unlock(&init_task
);
691 cprm
.file
= file_open_root(root
.dentry
, root
.mnt
,
692 cn
.corename
, open_flags
, 0600);
695 cprm
.file
= filp_open(cn
.corename
, open_flags
, 0600);
697 if (IS_ERR(cprm
.file
))
700 inode
= file_inode(cprm
.file
);
701 if (inode
->i_nlink
> 1)
703 if (d_unhashed(cprm
.file
->f_path
.dentry
))
706 * AK: actually i see no reason to not allow this for named
707 * pipes etc, but keep the previous behaviour for now.
709 if (!S_ISREG(inode
->i_mode
))
712 * Don't dump core if the filesystem changed owner or mode
713 * of the file during file creation. This is an issue when
714 * a process dumps core while its cwd is e.g. on a vfat
717 if (!uid_eq(inode
->i_uid
, current_fsuid()))
719 if ((inode
->i_mode
& 0677) != 0600)
721 if (!(cprm
.file
->f_mode
& FMODE_CAN_WRITE
))
723 if (do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
))
727 /* get us an unshared descriptor table; almost always a no-op */
728 retval
= unshare_files(&displaced
);
732 put_files_struct(displaced
);
733 if (!dump_interrupted()) {
734 file_start_write(cprm
.file
);
735 core_dumped
= binfmt
->core_dump(&cprm
);
736 file_end_write(cprm
.file
);
738 if (ispipe
&& core_pipe_limit
)
739 wait_for_dump_helpers(cprm
.file
);
742 filp_close(cprm
.file
, NULL
);
745 atomic_dec(&core_dump_count
);
748 coredump_finish(mm
, core_dumped
);
749 revert_creds(old_cred
);
757 * Core dumping helper functions. These are the only things you should
758 * do on a core-file: use only these functions to write out all the
761 int dump_emit(struct coredump_params
*cprm
, const void *addr
, int nr
)
763 struct file
*file
= cprm
->file
;
764 loff_t pos
= file
->f_pos
;
766 if (cprm
->written
+ nr
> cprm
->limit
)
769 if (dump_interrupted())
771 n
= __kernel_write(file
, addr
, nr
, &pos
);
780 EXPORT_SYMBOL(dump_emit
);
782 int dump_skip(struct coredump_params
*cprm
, size_t nr
)
784 static char zeroes
[PAGE_SIZE
];
785 struct file
*file
= cprm
->file
;
786 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
787 if (cprm
->written
+ nr
> cprm
->limit
)
789 if (dump_interrupted() ||
790 file
->f_op
->llseek(file
, nr
, SEEK_CUR
) < 0)
795 while (nr
> PAGE_SIZE
) {
796 if (!dump_emit(cprm
, zeroes
, PAGE_SIZE
))
800 return dump_emit(cprm
, zeroes
, nr
);
803 EXPORT_SYMBOL(dump_skip
);
805 int dump_align(struct coredump_params
*cprm
, int align
)
807 unsigned mod
= cprm
->written
& (align
- 1);
808 if (align
& (align
- 1))
810 return mod
? dump_skip(cprm
, align
- mod
) : 1;
812 EXPORT_SYMBOL(dump_align
);
815 * Ensures that file size is big enough to contain the current file
816 * postion. This prevents gdb from complaining about a truncated file
817 * if the last "write" to the file was dump_skip.
819 void dump_truncate(struct coredump_params
*cprm
)
821 struct file
*file
= cprm
->file
;
824 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
825 offset
= file
->f_op
->llseek(file
, 0, SEEK_CUR
);
826 if (i_size_read(file
->f_mapping
->host
) < offset
)
827 do_truncate(file
->f_path
.dentry
, offset
, 0, file
);
830 EXPORT_SYMBOL(dump_truncate
);