4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
27 static struct kmem_cache
*nat_entry_slab
;
28 static struct kmem_cache
*free_nid_slab
;
29 static struct kmem_cache
*nat_entry_set_slab
;
31 bool available_free_memory(struct f2fs_sb_info
*sbi
, int type
)
33 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
35 unsigned long avail_ram
;
36 unsigned long mem_size
= 0;
41 /* only uses low memory */
42 avail_ram
= val
.totalram
- val
.totalhigh
;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type
== FREE_NIDS
) {
48 mem_size
= (nm_i
->fcnt
* sizeof(struct free_nid
)) >>
50 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
51 } else if (type
== NAT_ENTRIES
) {
52 mem_size
= (nm_i
->nat_cnt
* sizeof(struct nat_entry
)) >>
54 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
55 } else if (type
== DIRTY_DENTS
) {
56 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
58 mem_size
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
59 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
60 } else if (type
== INO_ENTRIES
) {
63 for (i
= 0; i
<= UPDATE_INO
; i
++)
64 mem_size
+= (sbi
->im
[i
].ino_num
*
65 sizeof(struct ino_entry
)) >> PAGE_CACHE_SHIFT
;
66 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
67 } else if (type
== EXTENT_CACHE
) {
68 mem_size
= (sbi
->total_ext_tree
* sizeof(struct extent_tree
) +
69 atomic_read(&sbi
->total_ext_node
) *
70 sizeof(struct extent_node
)) >> PAGE_CACHE_SHIFT
;
71 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
73 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
79 static void clear_node_page_dirty(struct page
*page
)
81 struct address_space
*mapping
= page
->mapping
;
82 unsigned int long flags
;
84 if (PageDirty(page
)) {
85 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
86 radix_tree_tag_clear(&mapping
->page_tree
,
89 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
91 clear_page_dirty_for_io(page
);
92 dec_page_count(F2FS_M_SB(mapping
), F2FS_DIRTY_NODES
);
94 ClearPageUptodate(page
);
97 static struct page
*get_current_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
99 pgoff_t index
= current_nat_addr(sbi
, nid
);
100 return get_meta_page(sbi
, index
);
103 static struct page
*get_next_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
105 struct page
*src_page
;
106 struct page
*dst_page
;
111 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
113 src_off
= current_nat_addr(sbi
, nid
);
114 dst_off
= next_nat_addr(sbi
, src_off
);
116 /* get current nat block page with lock */
117 src_page
= get_meta_page(sbi
, src_off
);
118 dst_page
= grab_meta_page(sbi
, dst_off
);
119 f2fs_bug_on(sbi
, PageDirty(src_page
));
121 src_addr
= page_address(src_page
);
122 dst_addr
= page_address(dst_page
);
123 memcpy(dst_addr
, src_addr
, PAGE_CACHE_SIZE
);
124 set_page_dirty(dst_page
);
125 f2fs_put_page(src_page
, 1);
127 set_to_next_nat(nm_i
, nid
);
132 static struct nat_entry
*__lookup_nat_cache(struct f2fs_nm_info
*nm_i
, nid_t n
)
134 return radix_tree_lookup(&nm_i
->nat_root
, n
);
137 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info
*nm_i
,
138 nid_t start
, unsigned int nr
, struct nat_entry
**ep
)
140 return radix_tree_gang_lookup(&nm_i
->nat_root
, (void **)ep
, start
, nr
);
143 static void __del_from_nat_cache(struct f2fs_nm_info
*nm_i
, struct nat_entry
*e
)
146 radix_tree_delete(&nm_i
->nat_root
, nat_get_nid(e
));
148 kmem_cache_free(nat_entry_slab
, e
);
151 static void __set_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
152 struct nat_entry
*ne
)
154 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
155 struct nat_entry_set
*head
;
157 if (get_nat_flag(ne
, IS_DIRTY
))
160 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
162 head
= f2fs_kmem_cache_alloc(nat_entry_set_slab
, GFP_NOFS
);
164 INIT_LIST_HEAD(&head
->entry_list
);
165 INIT_LIST_HEAD(&head
->set_list
);
168 f2fs_radix_tree_insert(&nm_i
->nat_set_root
, set
, head
);
170 list_move_tail(&ne
->list
, &head
->entry_list
);
171 nm_i
->dirty_nat_cnt
++;
173 set_nat_flag(ne
, IS_DIRTY
, true);
176 static void __clear_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
177 struct nat_entry
*ne
)
179 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
180 struct nat_entry_set
*head
;
182 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
184 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
185 set_nat_flag(ne
, IS_DIRTY
, false);
187 nm_i
->dirty_nat_cnt
--;
191 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info
*nm_i
,
192 nid_t start
, unsigned int nr
, struct nat_entry_set
**ep
)
194 return radix_tree_gang_lookup(&nm_i
->nat_set_root
, (void **)ep
,
198 int need_dentry_mark(struct f2fs_sb_info
*sbi
, nid_t nid
)
200 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
204 down_read(&nm_i
->nat_tree_lock
);
205 e
= __lookup_nat_cache(nm_i
, nid
);
207 if (!get_nat_flag(e
, IS_CHECKPOINTED
) &&
208 !get_nat_flag(e
, HAS_FSYNCED_INODE
))
211 up_read(&nm_i
->nat_tree_lock
);
215 bool is_checkpointed_node(struct f2fs_sb_info
*sbi
, nid_t nid
)
217 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
221 down_read(&nm_i
->nat_tree_lock
);
222 e
= __lookup_nat_cache(nm_i
, nid
);
223 if (e
&& !get_nat_flag(e
, IS_CHECKPOINTED
))
225 up_read(&nm_i
->nat_tree_lock
);
229 bool need_inode_block_update(struct f2fs_sb_info
*sbi
, nid_t ino
)
231 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
233 bool need_update
= true;
235 down_read(&nm_i
->nat_tree_lock
);
236 e
= __lookup_nat_cache(nm_i
, ino
);
237 if (e
&& get_nat_flag(e
, HAS_LAST_FSYNC
) &&
238 (get_nat_flag(e
, IS_CHECKPOINTED
) ||
239 get_nat_flag(e
, HAS_FSYNCED_INODE
)))
241 up_read(&nm_i
->nat_tree_lock
);
245 static struct nat_entry
*grab_nat_entry(struct f2fs_nm_info
*nm_i
, nid_t nid
)
247 struct nat_entry
*new;
249 new = f2fs_kmem_cache_alloc(nat_entry_slab
, GFP_NOFS
);
250 f2fs_radix_tree_insert(&nm_i
->nat_root
, nid
, new);
251 memset(new, 0, sizeof(struct nat_entry
));
252 nat_set_nid(new, nid
);
254 list_add_tail(&new->list
, &nm_i
->nat_entries
);
259 static void cache_nat_entry(struct f2fs_nm_info
*nm_i
, nid_t nid
,
260 struct f2fs_nat_entry
*ne
)
264 down_write(&nm_i
->nat_tree_lock
);
265 e
= __lookup_nat_cache(nm_i
, nid
);
267 e
= grab_nat_entry(nm_i
, nid
);
268 node_info_from_raw_nat(&e
->ni
, ne
);
270 up_write(&nm_i
->nat_tree_lock
);
273 static void set_node_addr(struct f2fs_sb_info
*sbi
, struct node_info
*ni
,
274 block_t new_blkaddr
, bool fsync_done
)
276 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
279 down_write(&nm_i
->nat_tree_lock
);
280 e
= __lookup_nat_cache(nm_i
, ni
->nid
);
282 e
= grab_nat_entry(nm_i
, ni
->nid
);
283 copy_node_info(&e
->ni
, ni
);
284 f2fs_bug_on(sbi
, ni
->blk_addr
== NEW_ADDR
);
285 } else if (new_blkaddr
== NEW_ADDR
) {
287 * when nid is reallocated,
288 * previous nat entry can be remained in nat cache.
289 * So, reinitialize it with new information.
291 copy_node_info(&e
->ni
, ni
);
292 f2fs_bug_on(sbi
, ni
->blk_addr
!= NULL_ADDR
);
296 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != ni
->blk_addr
);
297 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NULL_ADDR
&&
298 new_blkaddr
== NULL_ADDR
);
299 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NEW_ADDR
&&
300 new_blkaddr
== NEW_ADDR
);
301 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != NEW_ADDR
&&
302 nat_get_blkaddr(e
) != NULL_ADDR
&&
303 new_blkaddr
== NEW_ADDR
);
305 /* increment version no as node is removed */
306 if (nat_get_blkaddr(e
) != NEW_ADDR
&& new_blkaddr
== NULL_ADDR
) {
307 unsigned char version
= nat_get_version(e
);
308 nat_set_version(e
, inc_node_version(version
));
310 /* in order to reuse the nid */
311 if (nm_i
->next_scan_nid
> ni
->nid
)
312 nm_i
->next_scan_nid
= ni
->nid
;
316 nat_set_blkaddr(e
, new_blkaddr
);
317 if (new_blkaddr
== NEW_ADDR
|| new_blkaddr
== NULL_ADDR
)
318 set_nat_flag(e
, IS_CHECKPOINTED
, false);
319 __set_nat_cache_dirty(nm_i
, e
);
321 /* update fsync_mark if its inode nat entry is still alive */
322 if (ni
->nid
!= ni
->ino
)
323 e
= __lookup_nat_cache(nm_i
, ni
->ino
);
325 if (fsync_done
&& ni
->nid
== ni
->ino
)
326 set_nat_flag(e
, HAS_FSYNCED_INODE
, true);
327 set_nat_flag(e
, HAS_LAST_FSYNC
, fsync_done
);
329 up_write(&nm_i
->nat_tree_lock
);
332 int try_to_free_nats(struct f2fs_sb_info
*sbi
, int nr_shrink
)
334 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
337 if (!down_write_trylock(&nm_i
->nat_tree_lock
))
340 while (nr_shrink
&& !list_empty(&nm_i
->nat_entries
)) {
341 struct nat_entry
*ne
;
342 ne
= list_first_entry(&nm_i
->nat_entries
,
343 struct nat_entry
, list
);
344 __del_from_nat_cache(nm_i
, ne
);
347 up_write(&nm_i
->nat_tree_lock
);
348 return nr
- nr_shrink
;
352 * This function always returns success
354 void get_node_info(struct f2fs_sb_info
*sbi
, nid_t nid
, struct node_info
*ni
)
356 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
357 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
358 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
359 nid_t start_nid
= START_NID(nid
);
360 struct f2fs_nat_block
*nat_blk
;
361 struct page
*page
= NULL
;
362 struct f2fs_nat_entry ne
;
368 /* Check nat cache */
369 down_read(&nm_i
->nat_tree_lock
);
370 e
= __lookup_nat_cache(nm_i
, nid
);
372 ni
->ino
= nat_get_ino(e
);
373 ni
->blk_addr
= nat_get_blkaddr(e
);
374 ni
->version
= nat_get_version(e
);
376 up_read(&nm_i
->nat_tree_lock
);
380 memset(&ne
, 0, sizeof(struct f2fs_nat_entry
));
382 /* Check current segment summary */
383 mutex_lock(&curseg
->curseg_mutex
);
384 i
= lookup_journal_in_cursum(sum
, NAT_JOURNAL
, nid
, 0);
386 ne
= nat_in_journal(sum
, i
);
387 node_info_from_raw_nat(ni
, &ne
);
389 mutex_unlock(&curseg
->curseg_mutex
);
393 /* Fill node_info from nat page */
394 page
= get_current_nat_page(sbi
, start_nid
);
395 nat_blk
= (struct f2fs_nat_block
*)page_address(page
);
396 ne
= nat_blk
->entries
[nid
- start_nid
];
397 node_info_from_raw_nat(ni
, &ne
);
398 f2fs_put_page(page
, 1);
400 /* cache nat entry */
401 cache_nat_entry(NM_I(sbi
), nid
, &ne
);
405 * The maximum depth is four.
406 * Offset[0] will have raw inode offset.
408 static int get_node_path(struct f2fs_inode_info
*fi
, long block
,
409 int offset
[4], unsigned int noffset
[4])
411 const long direct_index
= ADDRS_PER_INODE(fi
);
412 const long direct_blks
= ADDRS_PER_BLOCK
;
413 const long dptrs_per_blk
= NIDS_PER_BLOCK
;
414 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
415 const long dindirect_blks
= indirect_blks
* NIDS_PER_BLOCK
;
421 if (block
< direct_index
) {
425 block
-= direct_index
;
426 if (block
< direct_blks
) {
427 offset
[n
++] = NODE_DIR1_BLOCK
;
433 block
-= direct_blks
;
434 if (block
< direct_blks
) {
435 offset
[n
++] = NODE_DIR2_BLOCK
;
441 block
-= direct_blks
;
442 if (block
< indirect_blks
) {
443 offset
[n
++] = NODE_IND1_BLOCK
;
445 offset
[n
++] = block
/ direct_blks
;
446 noffset
[n
] = 4 + offset
[n
- 1];
447 offset
[n
] = block
% direct_blks
;
451 block
-= indirect_blks
;
452 if (block
< indirect_blks
) {
453 offset
[n
++] = NODE_IND2_BLOCK
;
454 noffset
[n
] = 4 + dptrs_per_blk
;
455 offset
[n
++] = block
/ direct_blks
;
456 noffset
[n
] = 5 + dptrs_per_blk
+ offset
[n
- 1];
457 offset
[n
] = block
% direct_blks
;
461 block
-= indirect_blks
;
462 if (block
< dindirect_blks
) {
463 offset
[n
++] = NODE_DIND_BLOCK
;
464 noffset
[n
] = 5 + (dptrs_per_blk
* 2);
465 offset
[n
++] = block
/ indirect_blks
;
466 noffset
[n
] = 6 + (dptrs_per_blk
* 2) +
467 offset
[n
- 1] * (dptrs_per_blk
+ 1);
468 offset
[n
++] = (block
/ direct_blks
) % dptrs_per_blk
;
469 noffset
[n
] = 7 + (dptrs_per_blk
* 2) +
470 offset
[n
- 2] * (dptrs_per_blk
+ 1) +
472 offset
[n
] = block
% direct_blks
;
483 * Caller should call f2fs_put_dnode(dn).
484 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
485 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
486 * In the case of RDONLY_NODE, we don't need to care about mutex.
488 int get_dnode_of_data(struct dnode_of_data
*dn
, pgoff_t index
, int mode
)
490 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
491 struct page
*npage
[4];
492 struct page
*parent
= NULL
;
494 unsigned int noffset
[4];
499 level
= get_node_path(F2FS_I(dn
->inode
), index
, offset
, noffset
);
501 nids
[0] = dn
->inode
->i_ino
;
502 npage
[0] = dn
->inode_page
;
505 npage
[0] = get_node_page(sbi
, nids
[0]);
506 if (IS_ERR(npage
[0]))
507 return PTR_ERR(npage
[0]);
510 /* if inline_data is set, should not report any block indices */
511 if (f2fs_has_inline_data(dn
->inode
) && index
) {
513 f2fs_put_page(npage
[0], 1);
519 nids
[1] = get_nid(parent
, offset
[0], true);
520 dn
->inode_page
= npage
[0];
521 dn
->inode_page_locked
= true;
523 /* get indirect or direct nodes */
524 for (i
= 1; i
<= level
; i
++) {
527 if (!nids
[i
] && mode
== ALLOC_NODE
) {
529 if (!alloc_nid(sbi
, &(nids
[i
]))) {
535 npage
[i
] = new_node_page(dn
, noffset
[i
], NULL
);
536 if (IS_ERR(npage
[i
])) {
537 alloc_nid_failed(sbi
, nids
[i
]);
538 err
= PTR_ERR(npage
[i
]);
542 set_nid(parent
, offset
[i
- 1], nids
[i
], i
== 1);
543 alloc_nid_done(sbi
, nids
[i
]);
545 } else if (mode
== LOOKUP_NODE_RA
&& i
== level
&& level
> 1) {
546 npage
[i
] = get_node_page_ra(parent
, offset
[i
- 1]);
547 if (IS_ERR(npage
[i
])) {
548 err
= PTR_ERR(npage
[i
]);
554 dn
->inode_page_locked
= false;
557 f2fs_put_page(parent
, 1);
561 npage
[i
] = get_node_page(sbi
, nids
[i
]);
562 if (IS_ERR(npage
[i
])) {
563 err
= PTR_ERR(npage
[i
]);
564 f2fs_put_page(npage
[0], 0);
570 nids
[i
+ 1] = get_nid(parent
, offset
[i
], false);
573 dn
->nid
= nids
[level
];
574 dn
->ofs_in_node
= offset
[level
];
575 dn
->node_page
= npage
[level
];
576 dn
->data_blkaddr
= datablock_addr(dn
->node_page
, dn
->ofs_in_node
);
580 f2fs_put_page(parent
, 1);
582 f2fs_put_page(npage
[0], 0);
584 dn
->inode_page
= NULL
;
585 dn
->node_page
= NULL
;
589 static void truncate_node(struct dnode_of_data
*dn
)
591 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
594 get_node_info(sbi
, dn
->nid
, &ni
);
595 if (dn
->inode
->i_blocks
== 0) {
596 f2fs_bug_on(sbi
, ni
.blk_addr
!= NULL_ADDR
);
599 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
601 /* Deallocate node address */
602 invalidate_blocks(sbi
, ni
.blk_addr
);
603 dec_valid_node_count(sbi
, dn
->inode
);
604 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
606 if (dn
->nid
== dn
->inode
->i_ino
) {
607 remove_orphan_inode(sbi
, dn
->nid
);
608 dec_valid_inode_count(sbi
);
613 clear_node_page_dirty(dn
->node_page
);
614 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
616 f2fs_put_page(dn
->node_page
, 1);
618 invalidate_mapping_pages(NODE_MAPPING(sbi
),
619 dn
->node_page
->index
, dn
->node_page
->index
);
621 dn
->node_page
= NULL
;
622 trace_f2fs_truncate_node(dn
->inode
, dn
->nid
, ni
.blk_addr
);
625 static int truncate_dnode(struct dnode_of_data
*dn
)
632 /* get direct node */
633 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
634 if (IS_ERR(page
) && PTR_ERR(page
) == -ENOENT
)
636 else if (IS_ERR(page
))
637 return PTR_ERR(page
);
639 /* Make dnode_of_data for parameter */
640 dn
->node_page
= page
;
642 truncate_data_blocks(dn
);
647 static int truncate_nodes(struct dnode_of_data
*dn
, unsigned int nofs
,
650 struct dnode_of_data rdn
= *dn
;
652 struct f2fs_node
*rn
;
654 unsigned int child_nofs
;
659 return NIDS_PER_BLOCK
+ 1;
661 trace_f2fs_truncate_nodes_enter(dn
->inode
, dn
->nid
, dn
->data_blkaddr
);
663 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
665 trace_f2fs_truncate_nodes_exit(dn
->inode
, PTR_ERR(page
));
666 return PTR_ERR(page
);
669 rn
= F2FS_NODE(page
);
671 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++, freed
++) {
672 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
676 ret
= truncate_dnode(&rdn
);
679 set_nid(page
, i
, 0, false);
682 child_nofs
= nofs
+ ofs
* (NIDS_PER_BLOCK
+ 1) + 1;
683 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++) {
684 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
685 if (child_nid
== 0) {
686 child_nofs
+= NIDS_PER_BLOCK
+ 1;
690 ret
= truncate_nodes(&rdn
, child_nofs
, 0, depth
- 1);
691 if (ret
== (NIDS_PER_BLOCK
+ 1)) {
692 set_nid(page
, i
, 0, false);
694 } else if (ret
< 0 && ret
!= -ENOENT
) {
702 /* remove current indirect node */
703 dn
->node_page
= page
;
707 f2fs_put_page(page
, 1);
709 trace_f2fs_truncate_nodes_exit(dn
->inode
, freed
);
713 f2fs_put_page(page
, 1);
714 trace_f2fs_truncate_nodes_exit(dn
->inode
, ret
);
718 static int truncate_partial_nodes(struct dnode_of_data
*dn
,
719 struct f2fs_inode
*ri
, int *offset
, int depth
)
721 struct page
*pages
[2];
728 nid
[0] = le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
732 /* get indirect nodes in the path */
733 for (i
= 0; i
< idx
+ 1; i
++) {
734 /* reference count'll be increased */
735 pages
[i
] = get_node_page(F2FS_I_SB(dn
->inode
), nid
[i
]);
736 if (IS_ERR(pages
[i
])) {
737 err
= PTR_ERR(pages
[i
]);
741 nid
[i
+ 1] = get_nid(pages
[i
], offset
[i
+ 1], false);
744 /* free direct nodes linked to a partial indirect node */
745 for (i
= offset
[idx
+ 1]; i
< NIDS_PER_BLOCK
; i
++) {
746 child_nid
= get_nid(pages
[idx
], i
, false);
750 err
= truncate_dnode(dn
);
753 set_nid(pages
[idx
], i
, 0, false);
756 if (offset
[idx
+ 1] == 0) {
757 dn
->node_page
= pages
[idx
];
761 f2fs_put_page(pages
[idx
], 1);
767 for (i
= idx
; i
>= 0; i
--)
768 f2fs_put_page(pages
[i
], 1);
770 trace_f2fs_truncate_partial_nodes(dn
->inode
, nid
, depth
, err
);
776 * All the block addresses of data and nodes should be nullified.
778 int truncate_inode_blocks(struct inode
*inode
, pgoff_t from
)
780 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
781 int err
= 0, cont
= 1;
782 int level
, offset
[4], noffset
[4];
783 unsigned int nofs
= 0;
784 struct f2fs_inode
*ri
;
785 struct dnode_of_data dn
;
788 trace_f2fs_truncate_inode_blocks_enter(inode
, from
);
790 level
= get_node_path(F2FS_I(inode
), from
, offset
, noffset
);
792 page
= get_node_page(sbi
, inode
->i_ino
);
794 trace_f2fs_truncate_inode_blocks_exit(inode
, PTR_ERR(page
));
795 return PTR_ERR(page
);
798 set_new_dnode(&dn
, inode
, page
, NULL
, 0);
801 ri
= F2FS_INODE(page
);
809 if (!offset
[level
- 1])
811 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
812 if (err
< 0 && err
!= -ENOENT
)
814 nofs
+= 1 + NIDS_PER_BLOCK
;
817 nofs
= 5 + 2 * NIDS_PER_BLOCK
;
818 if (!offset
[level
- 1])
820 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
821 if (err
< 0 && err
!= -ENOENT
)
830 dn
.nid
= le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
832 case NODE_DIR1_BLOCK
:
833 case NODE_DIR2_BLOCK
:
834 err
= truncate_dnode(&dn
);
837 case NODE_IND1_BLOCK
:
838 case NODE_IND2_BLOCK
:
839 err
= truncate_nodes(&dn
, nofs
, offset
[1], 2);
842 case NODE_DIND_BLOCK
:
843 err
= truncate_nodes(&dn
, nofs
, offset
[1], 3);
850 if (err
< 0 && err
!= -ENOENT
)
852 if (offset
[1] == 0 &&
853 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]) {
855 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
856 f2fs_put_page(page
, 1);
859 f2fs_wait_on_page_writeback(page
, NODE
);
860 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
] = 0;
861 set_page_dirty(page
);
869 f2fs_put_page(page
, 0);
870 trace_f2fs_truncate_inode_blocks_exit(inode
, err
);
871 return err
> 0 ? 0 : err
;
874 int truncate_xattr_node(struct inode
*inode
, struct page
*page
)
876 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
877 nid_t nid
= F2FS_I(inode
)->i_xattr_nid
;
878 struct dnode_of_data dn
;
884 npage
= get_node_page(sbi
, nid
);
886 return PTR_ERR(npage
);
888 F2FS_I(inode
)->i_xattr_nid
= 0;
890 /* need to do checkpoint during fsync */
891 F2FS_I(inode
)->xattr_ver
= cur_cp_version(F2FS_CKPT(sbi
));
893 set_new_dnode(&dn
, inode
, page
, npage
, nid
);
896 dn
.inode_page_locked
= true;
902 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
905 int remove_inode_page(struct inode
*inode
)
907 struct dnode_of_data dn
;
910 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
911 err
= get_dnode_of_data(&dn
, 0, LOOKUP_NODE
);
915 err
= truncate_xattr_node(inode
, dn
.inode_page
);
921 /* remove potential inline_data blocks */
922 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
923 S_ISLNK(inode
->i_mode
))
924 truncate_data_blocks_range(&dn
, 1);
926 /* 0 is possible, after f2fs_new_inode() has failed */
927 f2fs_bug_on(F2FS_I_SB(inode
),
928 inode
->i_blocks
!= 0 && inode
->i_blocks
!= 1);
930 /* will put inode & node pages */
935 struct page
*new_inode_page(struct inode
*inode
)
937 struct dnode_of_data dn
;
939 /* allocate inode page for new inode */
940 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
942 /* caller should f2fs_put_page(page, 1); */
943 return new_node_page(&dn
, 0, NULL
);
946 struct page
*new_node_page(struct dnode_of_data
*dn
,
947 unsigned int ofs
, struct page
*ipage
)
949 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
950 struct node_info old_ni
, new_ni
;
954 if (unlikely(is_inode_flag_set(F2FS_I(dn
->inode
), FI_NO_ALLOC
)))
955 return ERR_PTR(-EPERM
);
957 page
= grab_cache_page(NODE_MAPPING(sbi
), dn
->nid
);
959 return ERR_PTR(-ENOMEM
);
961 if (unlikely(!inc_valid_node_count(sbi
, dn
->inode
))) {
966 get_node_info(sbi
, dn
->nid
, &old_ni
);
968 /* Reinitialize old_ni with new node page */
969 f2fs_bug_on(sbi
, old_ni
.blk_addr
!= NULL_ADDR
);
971 new_ni
.ino
= dn
->inode
->i_ino
;
972 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
974 f2fs_wait_on_page_writeback(page
, NODE
);
975 fill_node_footer(page
, dn
->nid
, dn
->inode
->i_ino
, ofs
, true);
976 set_cold_node(dn
->inode
, page
);
977 SetPageUptodate(page
);
978 set_page_dirty(page
);
980 if (f2fs_has_xattr_block(ofs
))
981 F2FS_I(dn
->inode
)->i_xattr_nid
= dn
->nid
;
983 dn
->node_page
= page
;
985 update_inode(dn
->inode
, ipage
);
989 inc_valid_inode_count(sbi
);
994 clear_node_page_dirty(page
);
995 f2fs_put_page(page
, 1);
1000 * Caller should do after getting the following values.
1001 * 0: f2fs_put_page(page, 0)
1002 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1004 static int read_node_page(struct page
*page
, int rw
)
1006 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1007 struct node_info ni
;
1008 struct f2fs_io_info fio
= {
1013 .encrypted_page
= NULL
,
1016 get_node_info(sbi
, page
->index
, &ni
);
1018 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1019 ClearPageUptodate(page
);
1023 if (PageUptodate(page
))
1026 fio
.blk_addr
= ni
.blk_addr
;
1027 return f2fs_submit_page_bio(&fio
);
1031 * Readahead a node page
1033 void ra_node_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
1038 apage
= find_get_page(NODE_MAPPING(sbi
), nid
);
1039 if (apage
&& PageUptodate(apage
)) {
1040 f2fs_put_page(apage
, 0);
1043 f2fs_put_page(apage
, 0);
1045 apage
= grab_cache_page(NODE_MAPPING(sbi
), nid
);
1049 err
= read_node_page(apage
, READA
);
1050 f2fs_put_page(apage
, err
? 1 : 0);
1053 struct page
*get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
)
1058 page
= grab_cache_page(NODE_MAPPING(sbi
), nid
);
1060 return ERR_PTR(-ENOMEM
);
1062 err
= read_node_page(page
, READ_SYNC
);
1064 f2fs_put_page(page
, 1);
1065 return ERR_PTR(err
);
1066 } else if (err
!= LOCKED_PAGE
) {
1070 if (unlikely(!PageUptodate(page
) || nid
!= nid_of_node(page
))) {
1071 ClearPageUptodate(page
);
1072 f2fs_put_page(page
, 1);
1073 return ERR_PTR(-EIO
);
1075 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1076 f2fs_put_page(page
, 1);
1083 * Return a locked page for the desired node page.
1084 * And, readahead MAX_RA_NODE number of node pages.
1086 struct page
*get_node_page_ra(struct page
*parent
, int start
)
1088 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
1089 struct blk_plug plug
;
1094 /* First, try getting the desired direct node. */
1095 nid
= get_nid(parent
, start
, false);
1097 return ERR_PTR(-ENOENT
);
1099 page
= grab_cache_page(NODE_MAPPING(sbi
), nid
);
1101 return ERR_PTR(-ENOMEM
);
1103 err
= read_node_page(page
, READ_SYNC
);
1105 f2fs_put_page(page
, 1);
1106 return ERR_PTR(err
);
1107 } else if (err
== LOCKED_PAGE
) {
1111 blk_start_plug(&plug
);
1113 /* Then, try readahead for siblings of the desired node */
1114 end
= start
+ MAX_RA_NODE
;
1115 end
= min(end
, NIDS_PER_BLOCK
);
1116 for (i
= start
+ 1; i
< end
; i
++) {
1117 nid
= get_nid(parent
, i
, false);
1120 ra_node_page(sbi
, nid
);
1123 blk_finish_plug(&plug
);
1126 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1127 f2fs_put_page(page
, 1);
1131 if (unlikely(!PageUptodate(page
))) {
1132 f2fs_put_page(page
, 1);
1133 return ERR_PTR(-EIO
);
1138 void sync_inode_page(struct dnode_of_data
*dn
)
1140 if (IS_INODE(dn
->node_page
) || dn
->inode_page
== dn
->node_page
) {
1141 update_inode(dn
->inode
, dn
->node_page
);
1142 } else if (dn
->inode_page
) {
1143 if (!dn
->inode_page_locked
)
1144 lock_page(dn
->inode_page
);
1145 update_inode(dn
->inode
, dn
->inode_page
);
1146 if (!dn
->inode_page_locked
)
1147 unlock_page(dn
->inode_page
);
1149 update_inode_page(dn
->inode
);
1153 int sync_node_pages(struct f2fs_sb_info
*sbi
, nid_t ino
,
1154 struct writeback_control
*wbc
)
1157 struct pagevec pvec
;
1158 int step
= ino
? 2 : 0;
1159 int nwritten
= 0, wrote
= 0;
1161 pagevec_init(&pvec
, 0);
1167 while (index
<= end
) {
1169 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1170 PAGECACHE_TAG_DIRTY
,
1171 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1175 for (i
= 0; i
< nr_pages
; i
++) {
1176 struct page
*page
= pvec
.pages
[i
];
1179 * flushing sequence with step:
1184 if (step
== 0 && IS_DNODE(page
))
1186 if (step
== 1 && (!IS_DNODE(page
) ||
1187 is_cold_node(page
)))
1189 if (step
== 2 && (!IS_DNODE(page
) ||
1190 !is_cold_node(page
)))
1195 * we should not skip writing node pages.
1197 if (ino
&& ino_of_node(page
) == ino
)
1199 else if (!trylock_page(page
))
1202 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1207 if (ino
&& ino_of_node(page
) != ino
)
1208 goto continue_unlock
;
1210 if (!PageDirty(page
)) {
1211 /* someone wrote it for us */
1212 goto continue_unlock
;
1215 if (!clear_page_dirty_for_io(page
))
1216 goto continue_unlock
;
1218 /* called by fsync() */
1219 if (ino
&& IS_DNODE(page
)) {
1220 set_fsync_mark(page
, 1);
1222 set_dentry_mark(page
,
1223 need_dentry_mark(sbi
, ino
));
1226 set_fsync_mark(page
, 0);
1227 set_dentry_mark(page
, 0);
1230 if (NODE_MAPPING(sbi
)->a_ops
->writepage(page
, wbc
))
1235 if (--wbc
->nr_to_write
== 0)
1238 pagevec_release(&pvec
);
1241 if (wbc
->nr_to_write
== 0) {
1253 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1257 int wait_on_node_pages_writeback(struct f2fs_sb_info
*sbi
, nid_t ino
)
1259 pgoff_t index
= 0, end
= LONG_MAX
;
1260 struct pagevec pvec
;
1261 int ret2
= 0, ret
= 0;
1263 pagevec_init(&pvec
, 0);
1265 while (index
<= end
) {
1267 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1268 PAGECACHE_TAG_WRITEBACK
,
1269 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1273 for (i
= 0; i
< nr_pages
; i
++) {
1274 struct page
*page
= pvec
.pages
[i
];
1276 /* until radix tree lookup accepts end_index */
1277 if (unlikely(page
->index
> end
))
1280 if (ino
&& ino_of_node(page
) == ino
) {
1281 f2fs_wait_on_page_writeback(page
, NODE
);
1282 if (TestClearPageError(page
))
1286 pagevec_release(&pvec
);
1290 if (unlikely(test_and_clear_bit(AS_ENOSPC
, &NODE_MAPPING(sbi
)->flags
)))
1292 if (unlikely(test_and_clear_bit(AS_EIO
, &NODE_MAPPING(sbi
)->flags
)))
1299 static int f2fs_write_node_page(struct page
*page
,
1300 struct writeback_control
*wbc
)
1302 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1304 struct node_info ni
;
1305 struct f2fs_io_info fio
= {
1308 .rw
= (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: WRITE
,
1310 .encrypted_page
= NULL
,
1313 trace_f2fs_writepage(page
, NODE
);
1315 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1317 if (unlikely(f2fs_cp_error(sbi
)))
1320 f2fs_wait_on_page_writeback(page
, NODE
);
1322 /* get old block addr of this node page */
1323 nid
= nid_of_node(page
);
1324 f2fs_bug_on(sbi
, page
->index
!= nid
);
1326 if (wbc
->for_reclaim
) {
1327 if (!down_read_trylock(&sbi
->node_write
))
1330 down_read(&sbi
->node_write
);
1333 get_node_info(sbi
, nid
, &ni
);
1335 /* This page is already truncated */
1336 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1337 ClearPageUptodate(page
);
1338 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1339 up_read(&sbi
->node_write
);
1344 set_page_writeback(page
);
1345 fio
.blk_addr
= ni
.blk_addr
;
1346 write_node_page(nid
, &fio
);
1347 set_node_addr(sbi
, &ni
, fio
.blk_addr
, is_fsync_dnode(page
));
1348 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1349 up_read(&sbi
->node_write
);
1352 if (wbc
->for_reclaim
)
1353 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1358 redirty_page_for_writepage(wbc
, page
);
1359 return AOP_WRITEPAGE_ACTIVATE
;
1362 static int f2fs_write_node_pages(struct address_space
*mapping
,
1363 struct writeback_control
*wbc
)
1365 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
1368 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1370 /* balancing f2fs's metadata in background */
1371 f2fs_balance_fs_bg(sbi
);
1373 /* collect a number of dirty node pages and write together */
1374 if (get_pages(sbi
, F2FS_DIRTY_NODES
) < nr_pages_to_skip(sbi
, NODE
))
1377 diff
= nr_pages_to_write(sbi
, NODE
, wbc
);
1378 wbc
->sync_mode
= WB_SYNC_NONE
;
1379 sync_node_pages(sbi
, 0, wbc
);
1380 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
1384 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_NODES
);
1388 static int f2fs_set_node_page_dirty(struct page
*page
)
1390 trace_f2fs_set_page_dirty(page
, NODE
);
1392 SetPageUptodate(page
);
1393 if (!PageDirty(page
)) {
1394 __set_page_dirty_nobuffers(page
);
1395 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
1396 SetPagePrivate(page
);
1397 f2fs_trace_pid(page
);
1404 * Structure of the f2fs node operations
1406 const struct address_space_operations f2fs_node_aops
= {
1407 .writepage
= f2fs_write_node_page
,
1408 .writepages
= f2fs_write_node_pages
,
1409 .set_page_dirty
= f2fs_set_node_page_dirty
,
1410 .invalidatepage
= f2fs_invalidate_page
,
1411 .releasepage
= f2fs_release_page
,
1414 static struct free_nid
*__lookup_free_nid_list(struct f2fs_nm_info
*nm_i
,
1417 return radix_tree_lookup(&nm_i
->free_nid_root
, n
);
1420 static void __del_from_free_nid_list(struct f2fs_nm_info
*nm_i
,
1424 radix_tree_delete(&nm_i
->free_nid_root
, i
->nid
);
1427 static int add_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
, bool build
)
1429 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1431 struct nat_entry
*ne
;
1432 bool allocated
= false;
1434 if (!available_free_memory(sbi
, FREE_NIDS
))
1437 /* 0 nid should not be used */
1438 if (unlikely(nid
== 0))
1442 /* do not add allocated nids */
1443 down_read(&nm_i
->nat_tree_lock
);
1444 ne
= __lookup_nat_cache(nm_i
, nid
);
1446 (!get_nat_flag(ne
, IS_CHECKPOINTED
) ||
1447 nat_get_blkaddr(ne
) != NULL_ADDR
))
1449 up_read(&nm_i
->nat_tree_lock
);
1454 i
= f2fs_kmem_cache_alloc(free_nid_slab
, GFP_NOFS
);
1458 if (radix_tree_preload(GFP_NOFS
)) {
1459 kmem_cache_free(free_nid_slab
, i
);
1463 spin_lock(&nm_i
->free_nid_list_lock
);
1464 if (radix_tree_insert(&nm_i
->free_nid_root
, i
->nid
, i
)) {
1465 spin_unlock(&nm_i
->free_nid_list_lock
);
1466 radix_tree_preload_end();
1467 kmem_cache_free(free_nid_slab
, i
);
1470 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
1472 spin_unlock(&nm_i
->free_nid_list_lock
);
1473 radix_tree_preload_end();
1477 static void remove_free_nid(struct f2fs_nm_info
*nm_i
, nid_t nid
)
1480 bool need_free
= false;
1482 spin_lock(&nm_i
->free_nid_list_lock
);
1483 i
= __lookup_free_nid_list(nm_i
, nid
);
1484 if (i
&& i
->state
== NID_NEW
) {
1485 __del_from_free_nid_list(nm_i
, i
);
1489 spin_unlock(&nm_i
->free_nid_list_lock
);
1492 kmem_cache_free(free_nid_slab
, i
);
1495 static void scan_nat_page(struct f2fs_sb_info
*sbi
,
1496 struct page
*nat_page
, nid_t start_nid
)
1498 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1499 struct f2fs_nat_block
*nat_blk
= page_address(nat_page
);
1503 i
= start_nid
% NAT_ENTRY_PER_BLOCK
;
1505 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++, start_nid
++) {
1507 if (unlikely(start_nid
>= nm_i
->max_nid
))
1510 blk_addr
= le32_to_cpu(nat_blk
->entries
[i
].block_addr
);
1511 f2fs_bug_on(sbi
, blk_addr
== NEW_ADDR
);
1512 if (blk_addr
== NULL_ADDR
) {
1513 if (add_free_nid(sbi
, start_nid
, true) < 0)
1519 static void build_free_nids(struct f2fs_sb_info
*sbi
)
1521 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1522 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1523 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1525 nid_t nid
= nm_i
->next_scan_nid
;
1527 /* Enough entries */
1528 if (nm_i
->fcnt
> NAT_ENTRY_PER_BLOCK
)
1531 /* readahead nat pages to be scanned */
1532 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), FREE_NID_PAGES
,
1536 struct page
*page
= get_current_nat_page(sbi
, nid
);
1538 scan_nat_page(sbi
, page
, nid
);
1539 f2fs_put_page(page
, 1);
1541 nid
+= (NAT_ENTRY_PER_BLOCK
- (nid
% NAT_ENTRY_PER_BLOCK
));
1542 if (unlikely(nid
>= nm_i
->max_nid
))
1545 if (++i
>= FREE_NID_PAGES
)
1549 /* go to the next free nat pages to find free nids abundantly */
1550 nm_i
->next_scan_nid
= nid
;
1552 /* find free nids from current sum_pages */
1553 mutex_lock(&curseg
->curseg_mutex
);
1554 for (i
= 0; i
< nats_in_cursum(sum
); i
++) {
1555 block_t addr
= le32_to_cpu(nat_in_journal(sum
, i
).block_addr
);
1556 nid
= le32_to_cpu(nid_in_journal(sum
, i
));
1557 if (addr
== NULL_ADDR
)
1558 add_free_nid(sbi
, nid
, true);
1560 remove_free_nid(nm_i
, nid
);
1562 mutex_unlock(&curseg
->curseg_mutex
);
1564 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nm_i
->next_scan_nid
),
1565 nm_i
->ra_nid_pages
, META_NAT
, false);
1569 * If this function returns success, caller can obtain a new nid
1570 * from second parameter of this function.
1571 * The returned nid could be used ino as well as nid when inode is created.
1573 bool alloc_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
1575 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1576 struct free_nid
*i
= NULL
;
1578 if (unlikely(sbi
->total_valid_node_count
+ 1 > nm_i
->available_nids
))
1581 spin_lock(&nm_i
->free_nid_list_lock
);
1583 /* We should not use stale free nids created by build_free_nids */
1584 if (nm_i
->fcnt
&& !on_build_free_nids(nm_i
)) {
1585 struct node_info ni
;
1587 f2fs_bug_on(sbi
, list_empty(&nm_i
->free_nid_list
));
1588 list_for_each_entry(i
, &nm_i
->free_nid_list
, list
)
1589 if (i
->state
== NID_NEW
)
1592 f2fs_bug_on(sbi
, i
->state
!= NID_NEW
);
1594 i
->state
= NID_ALLOC
;
1596 spin_unlock(&nm_i
->free_nid_list_lock
);
1598 /* check nid is allocated already */
1599 get_node_info(sbi
, *nid
, &ni
);
1600 if (ni
.blk_addr
!= NULL_ADDR
) {
1601 alloc_nid_done(sbi
, *nid
);
1606 spin_unlock(&nm_i
->free_nid_list_lock
);
1608 /* Let's scan nat pages and its caches to get free nids */
1609 mutex_lock(&nm_i
->build_lock
);
1610 build_free_nids(sbi
);
1611 mutex_unlock(&nm_i
->build_lock
);
1616 * alloc_nid() should be called prior to this function.
1618 void alloc_nid_done(struct f2fs_sb_info
*sbi
, nid_t nid
)
1620 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1623 spin_lock(&nm_i
->free_nid_list_lock
);
1624 i
= __lookup_free_nid_list(nm_i
, nid
);
1625 f2fs_bug_on(sbi
, !i
|| i
->state
!= NID_ALLOC
);
1626 __del_from_free_nid_list(nm_i
, i
);
1627 spin_unlock(&nm_i
->free_nid_list_lock
);
1629 kmem_cache_free(free_nid_slab
, i
);
1633 * alloc_nid() should be called prior to this function.
1635 void alloc_nid_failed(struct f2fs_sb_info
*sbi
, nid_t nid
)
1637 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1639 bool need_free
= false;
1644 spin_lock(&nm_i
->free_nid_list_lock
);
1645 i
= __lookup_free_nid_list(nm_i
, nid
);
1646 f2fs_bug_on(sbi
, !i
|| i
->state
!= NID_ALLOC
);
1647 if (!available_free_memory(sbi
, FREE_NIDS
)) {
1648 __del_from_free_nid_list(nm_i
, i
);
1654 spin_unlock(&nm_i
->free_nid_list_lock
);
1657 kmem_cache_free(free_nid_slab
, i
);
1660 int try_to_free_nids(struct f2fs_sb_info
*sbi
, int nr_shrink
)
1662 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1663 struct free_nid
*i
, *next
;
1666 if (!mutex_trylock(&nm_i
->build_lock
))
1669 spin_lock(&nm_i
->free_nid_list_lock
);
1670 list_for_each_entry_safe(i
, next
, &nm_i
->free_nid_list
, list
) {
1671 if (nr_shrink
<= 0 || nm_i
->fcnt
<= NAT_ENTRY_PER_BLOCK
)
1673 if (i
->state
== NID_ALLOC
)
1675 __del_from_free_nid_list(nm_i
, i
);
1676 kmem_cache_free(free_nid_slab
, i
);
1680 spin_unlock(&nm_i
->free_nid_list_lock
);
1681 mutex_unlock(&nm_i
->build_lock
);
1683 return nr
- nr_shrink
;
1686 void recover_inline_xattr(struct inode
*inode
, struct page
*page
)
1688 void *src_addr
, *dst_addr
;
1691 struct f2fs_inode
*ri
;
1693 ipage
= get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
1694 f2fs_bug_on(F2FS_I_SB(inode
), IS_ERR(ipage
));
1696 ri
= F2FS_INODE(page
);
1697 if (!(ri
->i_inline
& F2FS_INLINE_XATTR
)) {
1698 clear_inode_flag(F2FS_I(inode
), FI_INLINE_XATTR
);
1702 dst_addr
= inline_xattr_addr(ipage
);
1703 src_addr
= inline_xattr_addr(page
);
1704 inline_size
= inline_xattr_size(inode
);
1706 f2fs_wait_on_page_writeback(ipage
, NODE
);
1707 memcpy(dst_addr
, src_addr
, inline_size
);
1709 update_inode(inode
, ipage
);
1710 f2fs_put_page(ipage
, 1);
1713 void recover_xattr_data(struct inode
*inode
, struct page
*page
, block_t blkaddr
)
1715 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1716 nid_t prev_xnid
= F2FS_I(inode
)->i_xattr_nid
;
1717 nid_t new_xnid
= nid_of_node(page
);
1718 struct node_info ni
;
1720 /* 1: invalidate the previous xattr nid */
1724 /* Deallocate node address */
1725 get_node_info(sbi
, prev_xnid
, &ni
);
1726 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
1727 invalidate_blocks(sbi
, ni
.blk_addr
);
1728 dec_valid_node_count(sbi
, inode
);
1729 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
1732 /* 2: allocate new xattr nid */
1733 if (unlikely(!inc_valid_node_count(sbi
, inode
)))
1734 f2fs_bug_on(sbi
, 1);
1736 remove_free_nid(NM_I(sbi
), new_xnid
);
1737 get_node_info(sbi
, new_xnid
, &ni
);
1738 ni
.ino
= inode
->i_ino
;
1739 set_node_addr(sbi
, &ni
, NEW_ADDR
, false);
1740 F2FS_I(inode
)->i_xattr_nid
= new_xnid
;
1742 /* 3: update xattr blkaddr */
1743 refresh_sit_entry(sbi
, NEW_ADDR
, blkaddr
);
1744 set_node_addr(sbi
, &ni
, blkaddr
, false);
1746 update_inode_page(inode
);
1749 int recover_inode_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1751 struct f2fs_inode
*src
, *dst
;
1752 nid_t ino
= ino_of_node(page
);
1753 struct node_info old_ni
, new_ni
;
1756 get_node_info(sbi
, ino
, &old_ni
);
1758 if (unlikely(old_ni
.blk_addr
!= NULL_ADDR
))
1761 ipage
= grab_cache_page(NODE_MAPPING(sbi
), ino
);
1765 /* Should not use this inode from free nid list */
1766 remove_free_nid(NM_I(sbi
), ino
);
1768 SetPageUptodate(ipage
);
1769 fill_node_footer(ipage
, ino
, ino
, 0, true);
1771 src
= F2FS_INODE(page
);
1772 dst
= F2FS_INODE(ipage
);
1774 memcpy(dst
, src
, (unsigned long)&src
->i_ext
- (unsigned long)src
);
1776 dst
->i_blocks
= cpu_to_le64(1);
1777 dst
->i_links
= cpu_to_le32(1);
1778 dst
->i_xattr_nid
= 0;
1779 dst
->i_inline
= src
->i_inline
& F2FS_INLINE_XATTR
;
1784 if (unlikely(!inc_valid_node_count(sbi
, NULL
)))
1786 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
1787 inc_valid_inode_count(sbi
);
1788 set_page_dirty(ipage
);
1789 f2fs_put_page(ipage
, 1);
1793 int restore_node_summary(struct f2fs_sb_info
*sbi
,
1794 unsigned int segno
, struct f2fs_summary_block
*sum
)
1796 struct f2fs_node
*rn
;
1797 struct f2fs_summary
*sum_entry
;
1799 int bio_blocks
= MAX_BIO_BLOCKS(sbi
);
1800 int i
, idx
, last_offset
, nrpages
;
1802 /* scan the node segment */
1803 last_offset
= sbi
->blocks_per_seg
;
1804 addr
= START_BLOCK(sbi
, segno
);
1805 sum_entry
= &sum
->entries
[0];
1807 for (i
= 0; i
< last_offset
; i
+= nrpages
, addr
+= nrpages
) {
1808 nrpages
= min(last_offset
- i
, bio_blocks
);
1810 /* readahead node pages */
1811 ra_meta_pages(sbi
, addr
, nrpages
, META_POR
, true);
1813 for (idx
= addr
; idx
< addr
+ nrpages
; idx
++) {
1814 struct page
*page
= get_tmp_page(sbi
, idx
);
1816 rn
= F2FS_NODE(page
);
1817 sum_entry
->nid
= rn
->footer
.nid
;
1818 sum_entry
->version
= 0;
1819 sum_entry
->ofs_in_node
= 0;
1821 f2fs_put_page(page
, 1);
1824 invalidate_mapping_pages(META_MAPPING(sbi
), addr
,
1830 static void remove_nats_in_journal(struct f2fs_sb_info
*sbi
)
1832 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1833 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1834 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1837 mutex_lock(&curseg
->curseg_mutex
);
1838 for (i
= 0; i
< nats_in_cursum(sum
); i
++) {
1839 struct nat_entry
*ne
;
1840 struct f2fs_nat_entry raw_ne
;
1841 nid_t nid
= le32_to_cpu(nid_in_journal(sum
, i
));
1843 raw_ne
= nat_in_journal(sum
, i
);
1845 down_write(&nm_i
->nat_tree_lock
);
1846 ne
= __lookup_nat_cache(nm_i
, nid
);
1848 ne
= grab_nat_entry(nm_i
, nid
);
1849 node_info_from_raw_nat(&ne
->ni
, &raw_ne
);
1851 __set_nat_cache_dirty(nm_i
, ne
);
1852 up_write(&nm_i
->nat_tree_lock
);
1854 update_nats_in_cursum(sum
, -i
);
1855 mutex_unlock(&curseg
->curseg_mutex
);
1858 static void __adjust_nat_entry_set(struct nat_entry_set
*nes
,
1859 struct list_head
*head
, int max
)
1861 struct nat_entry_set
*cur
;
1863 if (nes
->entry_cnt
>= max
)
1866 list_for_each_entry(cur
, head
, set_list
) {
1867 if (cur
->entry_cnt
>= nes
->entry_cnt
) {
1868 list_add(&nes
->set_list
, cur
->set_list
.prev
);
1873 list_add_tail(&nes
->set_list
, head
);
1876 static void __flush_nat_entry_set(struct f2fs_sb_info
*sbi
,
1877 struct nat_entry_set
*set
)
1879 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1880 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1881 nid_t start_nid
= set
->set
* NAT_ENTRY_PER_BLOCK
;
1882 bool to_journal
= true;
1883 struct f2fs_nat_block
*nat_blk
;
1884 struct nat_entry
*ne
, *cur
;
1885 struct page
*page
= NULL
;
1886 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1889 * there are two steps to flush nat entries:
1890 * #1, flush nat entries to journal in current hot data summary block.
1891 * #2, flush nat entries to nat page.
1893 if (!__has_cursum_space(sum
, set
->entry_cnt
, NAT_JOURNAL
))
1897 mutex_lock(&curseg
->curseg_mutex
);
1899 page
= get_next_nat_page(sbi
, start_nid
);
1900 nat_blk
= page_address(page
);
1901 f2fs_bug_on(sbi
, !nat_blk
);
1904 /* flush dirty nats in nat entry set */
1905 list_for_each_entry_safe(ne
, cur
, &set
->entry_list
, list
) {
1906 struct f2fs_nat_entry
*raw_ne
;
1907 nid_t nid
= nat_get_nid(ne
);
1910 if (nat_get_blkaddr(ne
) == NEW_ADDR
)
1914 offset
= lookup_journal_in_cursum(sum
,
1915 NAT_JOURNAL
, nid
, 1);
1916 f2fs_bug_on(sbi
, offset
< 0);
1917 raw_ne
= &nat_in_journal(sum
, offset
);
1918 nid_in_journal(sum
, offset
) = cpu_to_le32(nid
);
1920 raw_ne
= &nat_blk
->entries
[nid
- start_nid
];
1922 raw_nat_from_node_info(raw_ne
, &ne
->ni
);
1924 down_write(&NM_I(sbi
)->nat_tree_lock
);
1926 __clear_nat_cache_dirty(NM_I(sbi
), ne
);
1927 up_write(&NM_I(sbi
)->nat_tree_lock
);
1929 if (nat_get_blkaddr(ne
) == NULL_ADDR
)
1930 add_free_nid(sbi
, nid
, false);
1934 mutex_unlock(&curseg
->curseg_mutex
);
1936 f2fs_put_page(page
, 1);
1938 f2fs_bug_on(sbi
, set
->entry_cnt
);
1940 down_write(&nm_i
->nat_tree_lock
);
1941 radix_tree_delete(&NM_I(sbi
)->nat_set_root
, set
->set
);
1942 up_write(&nm_i
->nat_tree_lock
);
1943 kmem_cache_free(nat_entry_set_slab
, set
);
1947 * This function is called during the checkpointing process.
1949 void flush_nat_entries(struct f2fs_sb_info
*sbi
)
1951 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1952 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1953 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1954 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
1955 struct nat_entry_set
*set
, *tmp
;
1960 if (!nm_i
->dirty_nat_cnt
)
1963 * if there are no enough space in journal to store dirty nat
1964 * entries, remove all entries from journal and merge them
1965 * into nat entry set.
1967 if (!__has_cursum_space(sum
, nm_i
->dirty_nat_cnt
, NAT_JOURNAL
))
1968 remove_nats_in_journal(sbi
);
1970 down_write(&nm_i
->nat_tree_lock
);
1971 while ((found
= __gang_lookup_nat_set(nm_i
,
1972 set_idx
, SETVEC_SIZE
, setvec
))) {
1974 set_idx
= setvec
[found
- 1]->set
+ 1;
1975 for (idx
= 0; idx
< found
; idx
++)
1976 __adjust_nat_entry_set(setvec
[idx
], &sets
,
1977 MAX_NAT_JENTRIES(sum
));
1979 up_write(&nm_i
->nat_tree_lock
);
1981 /* flush dirty nats in nat entry set */
1982 list_for_each_entry_safe(set
, tmp
, &sets
, set_list
)
1983 __flush_nat_entry_set(sbi
, set
);
1985 f2fs_bug_on(sbi
, nm_i
->dirty_nat_cnt
);
1988 static int init_node_manager(struct f2fs_sb_info
*sbi
)
1990 struct f2fs_super_block
*sb_raw
= F2FS_RAW_SUPER(sbi
);
1991 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1992 unsigned char *version_bitmap
;
1993 unsigned int nat_segs
, nat_blocks
;
1995 nm_i
->nat_blkaddr
= le32_to_cpu(sb_raw
->nat_blkaddr
);
1997 /* segment_count_nat includes pair segment so divide to 2. */
1998 nat_segs
= le32_to_cpu(sb_raw
->segment_count_nat
) >> 1;
1999 nat_blocks
= nat_segs
<< le32_to_cpu(sb_raw
->log_blocks_per_seg
);
2001 nm_i
->max_nid
= NAT_ENTRY_PER_BLOCK
* nat_blocks
;
2003 /* not used nids: 0, node, meta, (and root counted as valid node) */
2004 nm_i
->available_nids
= nm_i
->max_nid
- F2FS_RESERVED_NODE_NUM
;
2007 nm_i
->ram_thresh
= DEF_RAM_THRESHOLD
;
2008 nm_i
->ra_nid_pages
= DEF_RA_NID_PAGES
;
2010 INIT_RADIX_TREE(&nm_i
->free_nid_root
, GFP_ATOMIC
);
2011 INIT_LIST_HEAD(&nm_i
->free_nid_list
);
2012 INIT_RADIX_TREE(&nm_i
->nat_root
, GFP_NOIO
);
2013 INIT_RADIX_TREE(&nm_i
->nat_set_root
, GFP_NOIO
);
2014 INIT_LIST_HEAD(&nm_i
->nat_entries
);
2016 mutex_init(&nm_i
->build_lock
);
2017 spin_lock_init(&nm_i
->free_nid_list_lock
);
2018 init_rwsem(&nm_i
->nat_tree_lock
);
2020 nm_i
->next_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
2021 nm_i
->bitmap_size
= __bitmap_size(sbi
, NAT_BITMAP
);
2022 version_bitmap
= __bitmap_ptr(sbi
, NAT_BITMAP
);
2023 if (!version_bitmap
)
2026 nm_i
->nat_bitmap
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
2028 if (!nm_i
->nat_bitmap
)
2033 int build_node_manager(struct f2fs_sb_info
*sbi
)
2037 sbi
->nm_info
= kzalloc(sizeof(struct f2fs_nm_info
), GFP_KERNEL
);
2041 err
= init_node_manager(sbi
);
2045 build_free_nids(sbi
);
2049 void destroy_node_manager(struct f2fs_sb_info
*sbi
)
2051 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2052 struct free_nid
*i
, *next_i
;
2053 struct nat_entry
*natvec
[NATVEC_SIZE
];
2054 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2061 /* destroy free nid list */
2062 spin_lock(&nm_i
->free_nid_list_lock
);
2063 list_for_each_entry_safe(i
, next_i
, &nm_i
->free_nid_list
, list
) {
2064 f2fs_bug_on(sbi
, i
->state
== NID_ALLOC
);
2065 __del_from_free_nid_list(nm_i
, i
);
2067 spin_unlock(&nm_i
->free_nid_list_lock
);
2068 kmem_cache_free(free_nid_slab
, i
);
2069 spin_lock(&nm_i
->free_nid_list_lock
);
2071 f2fs_bug_on(sbi
, nm_i
->fcnt
);
2072 spin_unlock(&nm_i
->free_nid_list_lock
);
2074 /* destroy nat cache */
2075 down_write(&nm_i
->nat_tree_lock
);
2076 while ((found
= __gang_lookup_nat_cache(nm_i
,
2077 nid
, NATVEC_SIZE
, natvec
))) {
2080 nid
= nat_get_nid(natvec
[found
- 1]) + 1;
2081 for (idx
= 0; idx
< found
; idx
++)
2082 __del_from_nat_cache(nm_i
, natvec
[idx
]);
2084 f2fs_bug_on(sbi
, nm_i
->nat_cnt
);
2086 /* destroy nat set cache */
2088 while ((found
= __gang_lookup_nat_set(nm_i
,
2089 nid
, SETVEC_SIZE
, setvec
))) {
2092 nid
= setvec
[found
- 1]->set
+ 1;
2093 for (idx
= 0; idx
< found
; idx
++) {
2094 /* entry_cnt is not zero, when cp_error was occurred */
2095 f2fs_bug_on(sbi
, !list_empty(&setvec
[idx
]->entry_list
));
2096 radix_tree_delete(&nm_i
->nat_set_root
, setvec
[idx
]->set
);
2097 kmem_cache_free(nat_entry_set_slab
, setvec
[idx
]);
2100 up_write(&nm_i
->nat_tree_lock
);
2102 kfree(nm_i
->nat_bitmap
);
2103 sbi
->nm_info
= NULL
;
2107 int __init
create_node_manager_caches(void)
2109 nat_entry_slab
= f2fs_kmem_cache_create("nat_entry",
2110 sizeof(struct nat_entry
));
2111 if (!nat_entry_slab
)
2114 free_nid_slab
= f2fs_kmem_cache_create("free_nid",
2115 sizeof(struct free_nid
));
2117 goto destroy_nat_entry
;
2119 nat_entry_set_slab
= f2fs_kmem_cache_create("nat_entry_set",
2120 sizeof(struct nat_entry_set
));
2121 if (!nat_entry_set_slab
)
2122 goto destroy_free_nid
;
2126 kmem_cache_destroy(free_nid_slab
);
2128 kmem_cache_destroy(nat_entry_slab
);
2133 void destroy_node_manager_caches(void)
2135 kmem_cache_destroy(nat_entry_set_slab
);
2136 kmem_cache_destroy(free_nid_slab
);
2137 kmem_cache_destroy(nat_entry_slab
);