4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
24 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
27 #define IS_CURSEG(sbi, seg) \
28 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
35 #define IS_CURSEC(sbi, secno) \
36 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
37 sbi->segs_per_sec) || \
38 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
39 sbi->segs_per_sec) || \
40 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
49 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
50 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
52 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
53 #define MAIN_SECS(sbi) (sbi->total_sections)
55 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
56 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
58 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
59 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
60 sbi->log_blocks_per_seg))
62 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
63 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
65 #define NEXT_FREE_BLKADDR(sbi, curseg) \
66 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
68 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
69 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
70 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
71 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
72 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
74 #define GET_SEGNO(sbi, blk_addr) \
75 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
76 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
77 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
78 #define GET_SECNO(sbi, segno) \
79 ((segno) / sbi->segs_per_sec)
80 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
81 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
83 #define GET_SUM_BLOCK(sbi, segno) \
84 ((sbi->sm_info->ssa_blkaddr) + segno)
86 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
87 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
89 #define SIT_ENTRY_OFFSET(sit_i, segno) \
90 (segno % sit_i->sents_per_block)
91 #define SIT_BLOCK_OFFSET(segno) \
92 (segno / SIT_ENTRY_PER_BLOCK)
93 #define START_SEGNO(segno) \
94 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
95 #define SIT_BLK_CNT(sbi) \
96 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
97 #define f2fs_bitmap_size(nr) \
98 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
100 #define SECTOR_FROM_BLOCK(blk_addr) \
101 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102 #define SECTOR_TO_BLOCK(sectors) \
103 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104 #define MAX_BIO_BLOCKS(sbi) \
105 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
108 * indicate a block allocation direction: RIGHT and LEFT.
109 * RIGHT means allocating new sections towards the end of volume.
110 * LEFT means the opposite direction.
118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119 * LFS writes data sequentially with cleaning operations.
120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129 * GC_CB is based on cost-benefit algorithm.
130 * GC_GREEDY is based on greedy algorithm.
138 * BG_GC means the background cleaning job.
139 * FG_GC means the on-demand cleaning job.
140 * FORCE_FG_GC means on-demand cleaning job in background.
148 /* for a function parameter to select a victim segment */
149 struct victim_sel_policy
{
150 int alloc_mode
; /* LFS or SSR */
151 int gc_mode
; /* GC_CB or GC_GREEDY */
152 unsigned long *dirty_segmap
; /* dirty segment bitmap */
153 unsigned int max_search
; /* maximum # of segments to search */
154 unsigned int offset
; /* last scanned bitmap offset */
155 unsigned int ofs_unit
; /* bitmap search unit */
156 unsigned int min_cost
; /* minimum cost */
157 unsigned int min_segno
; /* segment # having min. cost */
161 unsigned short valid_blocks
; /* # of valid blocks */
162 unsigned char *cur_valid_map
; /* validity bitmap of blocks */
164 * # of valid blocks and the validity bitmap stored in the the last
165 * checkpoint pack. This information is used by the SSR mode.
167 unsigned short ckpt_valid_blocks
;
168 unsigned char *ckpt_valid_map
;
169 unsigned char *discard_map
;
170 unsigned char type
; /* segment type like CURSEG_XXX_TYPE */
171 unsigned long long mtime
; /* modification time of the segment */
175 unsigned int valid_blocks
; /* # of valid blocks in a section */
178 struct segment_allocation
{
179 void (*allocate_segment
)(struct f2fs_sb_info
*, int, bool);
183 * this value is set in page as a private data which indicate that
184 * the page is atomically written, and it is in inmem_pages list.
186 #define ATOMIC_WRITTEN_PAGE 0x0000ffff
188 #define IS_ATOMIC_WRITTEN_PAGE(page) \
189 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
192 struct list_head list
;
197 const struct segment_allocation
*s_ops
;
199 block_t sit_base_addr
; /* start block address of SIT area */
200 block_t sit_blocks
; /* # of blocks used by SIT area */
201 block_t written_valid_blocks
; /* # of valid blocks in main area */
202 char *sit_bitmap
; /* SIT bitmap pointer */
203 unsigned int bitmap_size
; /* SIT bitmap size */
205 unsigned long *tmp_map
; /* bitmap for temporal use */
206 unsigned long *dirty_sentries_bitmap
; /* bitmap for dirty sentries */
207 unsigned int dirty_sentries
; /* # of dirty sentries */
208 unsigned int sents_per_block
; /* # of SIT entries per block */
209 struct mutex sentry_lock
; /* to protect SIT cache */
210 struct seg_entry
*sentries
; /* SIT segment-level cache */
211 struct sec_entry
*sec_entries
; /* SIT section-level cache */
213 /* for cost-benefit algorithm in cleaning procedure */
214 unsigned long long elapsed_time
; /* elapsed time after mount */
215 unsigned long long mounted_time
; /* mount time */
216 unsigned long long min_mtime
; /* min. modification time */
217 unsigned long long max_mtime
; /* max. modification time */
220 struct free_segmap_info
{
221 unsigned int start_segno
; /* start segment number logically */
222 unsigned int free_segments
; /* # of free segments */
223 unsigned int free_sections
; /* # of free sections */
224 spinlock_t segmap_lock
; /* free segmap lock */
225 unsigned long *free_segmap
; /* free segment bitmap */
226 unsigned long *free_secmap
; /* free section bitmap */
229 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
231 DIRTY_HOT_DATA
, /* dirty segments assigned as hot data logs */
232 DIRTY_WARM_DATA
, /* dirty segments assigned as warm data logs */
233 DIRTY_COLD_DATA
, /* dirty segments assigned as cold data logs */
234 DIRTY_HOT_NODE
, /* dirty segments assigned as hot node logs */
235 DIRTY_WARM_NODE
, /* dirty segments assigned as warm node logs */
236 DIRTY_COLD_NODE
, /* dirty segments assigned as cold node logs */
237 DIRTY
, /* to count # of dirty segments */
238 PRE
, /* to count # of entirely obsolete segments */
242 struct dirty_seglist_info
{
243 const struct victim_selection
*v_ops
; /* victim selction operation */
244 unsigned long *dirty_segmap
[NR_DIRTY_TYPE
];
245 struct mutex seglist_lock
; /* lock for segment bitmaps */
246 int nr_dirty
[NR_DIRTY_TYPE
]; /* # of dirty segments */
247 unsigned long *victim_secmap
; /* background GC victims */
250 /* victim selection function for cleaning and SSR */
251 struct victim_selection
{
252 int (*get_victim
)(struct f2fs_sb_info
*, unsigned int *,
256 /* for active log information */
258 struct mutex curseg_mutex
; /* lock for consistency */
259 struct f2fs_summary_block
*sum_blk
; /* cached summary block */
260 unsigned char alloc_type
; /* current allocation type */
261 unsigned int segno
; /* current segment number */
262 unsigned short next_blkoff
; /* next block offset to write */
263 unsigned int zone
; /* current zone number */
264 unsigned int next_segno
; /* preallocated segment */
267 struct sit_entry_set
{
268 struct list_head set_list
; /* link with all sit sets */
269 unsigned int start_segno
; /* start segno of sits in set */
270 unsigned int entry_cnt
; /* the # of sit entries in set */
276 static inline struct curseg_info
*CURSEG_I(struct f2fs_sb_info
*sbi
, int type
)
278 return (struct curseg_info
*)(SM_I(sbi
)->curseg_array
+ type
);
281 static inline struct seg_entry
*get_seg_entry(struct f2fs_sb_info
*sbi
,
284 struct sit_info
*sit_i
= SIT_I(sbi
);
285 return &sit_i
->sentries
[segno
];
288 static inline struct sec_entry
*get_sec_entry(struct f2fs_sb_info
*sbi
,
291 struct sit_info
*sit_i
= SIT_I(sbi
);
292 return &sit_i
->sec_entries
[GET_SECNO(sbi
, segno
)];
295 static inline unsigned int get_valid_blocks(struct f2fs_sb_info
*sbi
,
296 unsigned int segno
, int section
)
299 * In order to get # of valid blocks in a section instantly from many
300 * segments, f2fs manages two counting structures separately.
303 return get_sec_entry(sbi
, segno
)->valid_blocks
;
305 return get_seg_entry(sbi
, segno
)->valid_blocks
;
308 static inline void seg_info_from_raw_sit(struct seg_entry
*se
,
309 struct f2fs_sit_entry
*rs
)
311 se
->valid_blocks
= GET_SIT_VBLOCKS(rs
);
312 se
->ckpt_valid_blocks
= GET_SIT_VBLOCKS(rs
);
313 memcpy(se
->cur_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
314 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
315 se
->type
= GET_SIT_TYPE(rs
);
316 se
->mtime
= le64_to_cpu(rs
->mtime
);
319 static inline void seg_info_to_raw_sit(struct seg_entry
*se
,
320 struct f2fs_sit_entry
*rs
)
322 unsigned short raw_vblocks
= (se
->type
<< SIT_VBLOCKS_SHIFT
) |
324 rs
->vblocks
= cpu_to_le16(raw_vblocks
);
325 memcpy(rs
->valid_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
326 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
327 se
->ckpt_valid_blocks
= se
->valid_blocks
;
328 rs
->mtime
= cpu_to_le64(se
->mtime
);
331 static inline unsigned int find_next_inuse(struct free_segmap_info
*free_i
,
332 unsigned int max
, unsigned int segno
)
335 spin_lock(&free_i
->segmap_lock
);
336 ret
= find_next_bit(free_i
->free_segmap
, max
, segno
);
337 spin_unlock(&free_i
->segmap_lock
);
341 static inline void __set_free(struct f2fs_sb_info
*sbi
, unsigned int segno
)
343 struct free_segmap_info
*free_i
= FREE_I(sbi
);
344 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
345 unsigned int start_segno
= secno
* sbi
->segs_per_sec
;
348 spin_lock(&free_i
->segmap_lock
);
349 clear_bit(segno
, free_i
->free_segmap
);
350 free_i
->free_segments
++;
352 next
= find_next_bit(free_i
->free_segmap
,
353 start_segno
+ sbi
->segs_per_sec
, start_segno
);
354 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
355 clear_bit(secno
, free_i
->free_secmap
);
356 free_i
->free_sections
++;
358 spin_unlock(&free_i
->segmap_lock
);
361 static inline void __set_inuse(struct f2fs_sb_info
*sbi
,
364 struct free_segmap_info
*free_i
= FREE_I(sbi
);
365 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
366 set_bit(segno
, free_i
->free_segmap
);
367 free_i
->free_segments
--;
368 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
369 free_i
->free_sections
--;
372 static inline void __set_test_and_free(struct f2fs_sb_info
*sbi
,
375 struct free_segmap_info
*free_i
= FREE_I(sbi
);
376 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
377 unsigned int start_segno
= secno
* sbi
->segs_per_sec
;
380 spin_lock(&free_i
->segmap_lock
);
381 if (test_and_clear_bit(segno
, free_i
->free_segmap
)) {
382 free_i
->free_segments
++;
384 next
= find_next_bit(free_i
->free_segmap
,
385 start_segno
+ sbi
->segs_per_sec
, start_segno
);
386 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
387 if (test_and_clear_bit(secno
, free_i
->free_secmap
))
388 free_i
->free_sections
++;
391 spin_unlock(&free_i
->segmap_lock
);
394 static inline void __set_test_and_inuse(struct f2fs_sb_info
*sbi
,
397 struct free_segmap_info
*free_i
= FREE_I(sbi
);
398 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
399 spin_lock(&free_i
->segmap_lock
);
400 if (!test_and_set_bit(segno
, free_i
->free_segmap
)) {
401 free_i
->free_segments
--;
402 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
403 free_i
->free_sections
--;
405 spin_unlock(&free_i
->segmap_lock
);
408 static inline void get_sit_bitmap(struct f2fs_sb_info
*sbi
,
411 struct sit_info
*sit_i
= SIT_I(sbi
);
412 memcpy(dst_addr
, sit_i
->sit_bitmap
, sit_i
->bitmap_size
);
415 static inline block_t
written_block_count(struct f2fs_sb_info
*sbi
)
417 return SIT_I(sbi
)->written_valid_blocks
;
420 static inline unsigned int free_segments(struct f2fs_sb_info
*sbi
)
422 return FREE_I(sbi
)->free_segments
;
425 static inline int reserved_segments(struct f2fs_sb_info
*sbi
)
427 return SM_I(sbi
)->reserved_segments
;
430 static inline unsigned int free_sections(struct f2fs_sb_info
*sbi
)
432 return FREE_I(sbi
)->free_sections
;
435 static inline unsigned int prefree_segments(struct f2fs_sb_info
*sbi
)
437 return DIRTY_I(sbi
)->nr_dirty
[PRE
];
440 static inline unsigned int dirty_segments(struct f2fs_sb_info
*sbi
)
442 return DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_DATA
] +
443 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_DATA
] +
444 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_DATA
] +
445 DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_NODE
] +
446 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_NODE
] +
447 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_NODE
];
450 static inline int overprovision_segments(struct f2fs_sb_info
*sbi
)
452 return SM_I(sbi
)->ovp_segments
;
455 static inline int overprovision_sections(struct f2fs_sb_info
*sbi
)
457 return ((unsigned int) overprovision_segments(sbi
)) / sbi
->segs_per_sec
;
460 static inline int reserved_sections(struct f2fs_sb_info
*sbi
)
462 return ((unsigned int) reserved_segments(sbi
)) / sbi
->segs_per_sec
;
465 static inline bool need_SSR(struct f2fs_sb_info
*sbi
)
467 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
468 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
469 return free_sections(sbi
) <= (node_secs
+ 2 * dent_secs
+
470 reserved_sections(sbi
) + 1);
473 static inline bool has_not_enough_free_secs(struct f2fs_sb_info
*sbi
, int freed
)
475 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
476 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
478 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
481 return (free_sections(sbi
) + freed
) <= (node_secs
+ 2 * dent_secs
+
482 reserved_sections(sbi
));
485 static inline bool excess_prefree_segs(struct f2fs_sb_info
*sbi
)
487 return prefree_segments(sbi
) > SM_I(sbi
)->rec_prefree_segments
;
490 static inline int utilization(struct f2fs_sb_info
*sbi
)
492 return div_u64((u64
)valid_user_blocks(sbi
) * 100,
493 sbi
->user_block_count
);
497 * Sometimes f2fs may be better to drop out-of-place update policy.
498 * And, users can control the policy through sysfs entries.
499 * There are five policies with triggering conditions as follows.
500 * F2FS_IPU_FORCE - all the time,
501 * F2FS_IPU_SSR - if SSR mode is activated,
502 * F2FS_IPU_UTIL - if FS utilization is over threashold,
503 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
505 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
506 * storages. IPU will be triggered only if the # of dirty
507 * pages over min_fsync_blocks.
508 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
510 #define DEF_MIN_IPU_UTIL 70
511 #define DEF_MIN_FSYNC_BLOCKS 8
521 static inline bool need_inplace_update(struct inode
*inode
)
523 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
524 unsigned int policy
= SM_I(sbi
)->ipu_policy
;
526 /* IPU can be done only for the user data */
527 if (S_ISDIR(inode
->i_mode
) || f2fs_is_atomic_file(inode
))
530 if (policy
& (0x1 << F2FS_IPU_FORCE
))
532 if (policy
& (0x1 << F2FS_IPU_SSR
) && need_SSR(sbi
))
534 if (policy
& (0x1 << F2FS_IPU_UTIL
) &&
535 utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
537 if (policy
& (0x1 << F2FS_IPU_SSR_UTIL
) && need_SSR(sbi
) &&
538 utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
541 /* this is only set during fdatasync */
542 if (policy
& (0x1 << F2FS_IPU_FSYNC
) &&
543 is_inode_flag_set(F2FS_I(inode
), FI_NEED_IPU
))
549 static inline unsigned int curseg_segno(struct f2fs_sb_info
*sbi
,
552 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
553 return curseg
->segno
;
556 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info
*sbi
,
559 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
560 return curseg
->alloc_type
;
563 static inline unsigned short curseg_blkoff(struct f2fs_sb_info
*sbi
, int type
)
565 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
566 return curseg
->next_blkoff
;
569 static inline void check_seg_range(struct f2fs_sb_info
*sbi
, unsigned int segno
)
571 f2fs_bug_on(sbi
, segno
> TOTAL_SEGS(sbi
) - 1);
574 static inline void verify_block_addr(struct f2fs_sb_info
*sbi
, block_t blk_addr
)
576 f2fs_bug_on(sbi
, blk_addr
< SEG0_BLKADDR(sbi
)
577 || blk_addr
>= MAX_BLKADDR(sbi
));
581 * Summary block is always treated as an invalid block
583 static inline void check_block_count(struct f2fs_sb_info
*sbi
,
584 int segno
, struct f2fs_sit_entry
*raw_sit
)
586 #ifdef CONFIG_F2FS_CHECK_FS
587 bool is_valid
= test_bit_le(0, raw_sit
->valid_map
) ? true : false;
588 int valid_blocks
= 0;
589 int cur_pos
= 0, next_pos
;
591 /* check bitmap with valid block count */
594 next_pos
= find_next_zero_bit_le(&raw_sit
->valid_map
,
597 valid_blocks
+= next_pos
- cur_pos
;
599 next_pos
= find_next_bit_le(&raw_sit
->valid_map
,
603 is_valid
= !is_valid
;
604 } while (cur_pos
< sbi
->blocks_per_seg
);
605 BUG_ON(GET_SIT_VBLOCKS(raw_sit
) != valid_blocks
);
607 /* check segment usage, and check boundary of a given segment number */
608 f2fs_bug_on(sbi
, GET_SIT_VBLOCKS(raw_sit
) > sbi
->blocks_per_seg
609 || segno
> TOTAL_SEGS(sbi
) - 1);
612 static inline pgoff_t
current_sit_addr(struct f2fs_sb_info
*sbi
,
615 struct sit_info
*sit_i
= SIT_I(sbi
);
616 unsigned int offset
= SIT_BLOCK_OFFSET(start
);
617 block_t blk_addr
= sit_i
->sit_base_addr
+ offset
;
619 check_seg_range(sbi
, start
);
621 /* calculate sit block address */
622 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
))
623 blk_addr
+= sit_i
->sit_blocks
;
628 static inline pgoff_t
next_sit_addr(struct f2fs_sb_info
*sbi
,
631 struct sit_info
*sit_i
= SIT_I(sbi
);
632 block_addr
-= sit_i
->sit_base_addr
;
633 if (block_addr
< sit_i
->sit_blocks
)
634 block_addr
+= sit_i
->sit_blocks
;
636 block_addr
-= sit_i
->sit_blocks
;
638 return block_addr
+ sit_i
->sit_base_addr
;
641 static inline void set_to_next_sit(struct sit_info
*sit_i
, unsigned int start
)
643 unsigned int block_off
= SIT_BLOCK_OFFSET(start
);
645 f2fs_change_bit(block_off
, sit_i
->sit_bitmap
);
648 static inline unsigned long long get_mtime(struct f2fs_sb_info
*sbi
)
650 struct sit_info
*sit_i
= SIT_I(sbi
);
651 return sit_i
->elapsed_time
+ CURRENT_TIME_SEC
.tv_sec
-
655 static inline void set_summary(struct f2fs_summary
*sum
, nid_t nid
,
656 unsigned int ofs_in_node
, unsigned char version
)
658 sum
->nid
= cpu_to_le32(nid
);
659 sum
->ofs_in_node
= cpu_to_le16(ofs_in_node
);
660 sum
->version
= version
;
663 static inline block_t
start_sum_block(struct f2fs_sb_info
*sbi
)
665 return __start_cp_addr(sbi
) +
666 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_start_sum
);
669 static inline block_t
sum_blk_addr(struct f2fs_sb_info
*sbi
, int base
, int type
)
671 return __start_cp_addr(sbi
) +
672 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_total_block_count
)
676 static inline bool sec_usage_check(struct f2fs_sb_info
*sbi
, unsigned int secno
)
678 if (IS_CURSEC(sbi
, secno
) || (sbi
->cur_victim_sec
== secno
))
683 static inline unsigned int max_hw_blocks(struct f2fs_sb_info
*sbi
)
685 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
686 struct request_queue
*q
= bdev_get_queue(bdev
);
687 return SECTOR_TO_BLOCK(queue_max_sectors(q
));
691 * It is very important to gather dirty pages and write at once, so that we can
692 * submit a big bio without interfering other data writes.
693 * By default, 512 pages for directory data,
694 * 512 pages (2MB) * 3 for three types of nodes, and
695 * max_bio_blocks for meta are set.
697 static inline int nr_pages_to_skip(struct f2fs_sb_info
*sbi
, int type
)
699 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
703 return sbi
->blocks_per_seg
;
704 else if (type
== NODE
)
705 return 3 * sbi
->blocks_per_seg
;
706 else if (type
== META
)
707 return MAX_BIO_BLOCKS(sbi
);
713 * When writing pages, it'd better align nr_to_write for segment size.
715 static inline long nr_pages_to_write(struct f2fs_sb_info
*sbi
, int type
,
716 struct writeback_control
*wbc
)
718 long nr_to_write
, desired
;
720 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
723 nr_to_write
= wbc
->nr_to_write
;
727 else if (type
== NODE
)
728 desired
= 3 * max_hw_blocks(sbi
);
730 desired
= MAX_BIO_BLOCKS(sbi
);
732 wbc
->nr_to_write
= desired
;
733 return desired
- nr_to_write
;