ALSA: aloop: Release cable upon open error path
[linux/fpc-iii.git] / fs / namei.c
blob3f96ae087488843f4267de4447dc72a26f21fa82
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
40 #include "internal.h"
41 #include "mount.h"
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
91 * [10-Sep-98 Alan Modra] Another symlink change.
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
127 struct filename *result;
128 char *kname;
129 int len;
131 result = audit_reusename(filename);
132 if (result)
133 return result;
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
143 kname = (char *)result->iname;
144 result->name = kname;
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
203 struct filename *
204 getname(const char __user * filename)
206 return getname_flags(filename, 0, NULL);
209 struct filename *
210 getname_kernel(const char * filename)
212 struct filename *result;
213 int len = strlen(filename) + 1;
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
241 return result;
244 void putname(struct filename *name)
246 BUG_ON(name->refcnt <= 0);
248 if (--name->refcnt > 0)
249 return;
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
258 static int check_acl(struct inode *inode, int mask)
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
281 #endif
283 return -EAGAIN;
287 * This does the basic permission checking
289 static int acl_permission_check(struct inode *inode, int mask)
291 unsigned int mode = inode->i_mode;
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
307 * If the DACs are ok we don't need any capability check.
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
328 int generic_permission(struct inode *inode, int mask)
330 int ret;
333 * Do the basic permission checks.
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
359 * Searching includes executable on directories, else just read.
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
366 return -EACCES;
368 EXPORT_SYMBOL(generic_permission);
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
376 static inline int do_inode_permission(struct inode *inode, int mask)
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
387 return generic_permission(inode, mask);
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
395 * Check for read/write/execute permissions on an inode.
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
402 int __inode_permission(struct inode *inode, int mask)
404 int retval;
406 if (unlikely(mask & MAY_WRITE)) {
408 * Nobody gets write access to an immutable file.
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
422 return security_inode_permission(inode, mask);
424 EXPORT_SYMBOL(__inode_permission);
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432 * Separate out file-system wide checks from inode-specific permission checks.
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
444 return 0;
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
458 int inode_permission(struct inode *inode, int mask)
460 int retval;
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
467 EXPORT_SYMBOL(inode_permission);
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
473 * Given a path increment the reference count to the dentry and the vfsmount.
475 void path_get(const struct path *path)
477 mntget(path->mnt);
478 dget(path->dentry);
480 EXPORT_SYMBOL(path_get);
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
486 * Given a path decrement the reference count to the dentry and the vfsmount.
488 void path_put(const struct path *path)
490 dput(path->dentry);
491 mntput(path->mnt);
493 EXPORT_SYMBOL(path_put);
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 void *cookie;
509 const char *name;
510 struct inode *inode;
511 unsigned seq;
512 } *stack, internal[EMBEDDED_LEVELS];
513 struct filename *name;
514 struct nameidata *saved;
515 unsigned root_seq;
516 int dfd;
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
530 static void restore_nameidata(void)
532 struct nameidata *now = current->nameidata, *old = now->saved;
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal) {
538 kfree(now->stack);
539 now->stack = now->internal;
543 static int __nd_alloc_stack(struct nameidata *nd)
545 struct saved *p;
547 if (nd->flags & LOOKUP_RCU) {
548 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
549 GFP_ATOMIC);
550 if (unlikely(!p))
551 return -ECHILD;
552 } else {
553 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
554 GFP_KERNEL);
555 if (unlikely(!p))
556 return -ENOMEM;
558 memcpy(p, nd->internal, sizeof(nd->internal));
559 nd->stack = p;
560 return 0;
564 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
565 * @path: nameidate to verify
567 * Rename can sometimes move a file or directory outside of a bind
568 * mount, path_connected allows those cases to be detected.
570 static bool path_connected(const struct path *path)
572 struct vfsmount *mnt = path->mnt;
574 /* Only bind mounts can have disconnected paths */
575 if (mnt->mnt_root == mnt->mnt_sb->s_root)
576 return true;
578 return is_subdir(path->dentry, mnt->mnt_root);
581 static inline int nd_alloc_stack(struct nameidata *nd)
583 if (likely(nd->depth != EMBEDDED_LEVELS))
584 return 0;
585 if (likely(nd->stack != nd->internal))
586 return 0;
587 return __nd_alloc_stack(nd);
590 static void drop_links(struct nameidata *nd)
592 int i = nd->depth;
593 while (i--) {
594 struct saved *last = nd->stack + i;
595 struct inode *inode = last->inode;
596 if (last->cookie && inode->i_op->put_link) {
597 inode->i_op->put_link(inode, last->cookie);
598 last->cookie = NULL;
603 static void terminate_walk(struct nameidata *nd)
605 drop_links(nd);
606 if (!(nd->flags & LOOKUP_RCU)) {
607 int i;
608 path_put(&nd->path);
609 for (i = 0; i < nd->depth; i++)
610 path_put(&nd->stack[i].link);
611 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
612 path_put(&nd->root);
613 nd->root.mnt = NULL;
615 } else {
616 nd->flags &= ~LOOKUP_RCU;
617 if (!(nd->flags & LOOKUP_ROOT))
618 nd->root.mnt = NULL;
619 rcu_read_unlock();
621 nd->depth = 0;
624 /* path_put is needed afterwards regardless of success or failure */
625 static bool legitimize_path(struct nameidata *nd,
626 struct path *path, unsigned seq)
628 int res = __legitimize_mnt(path->mnt, nd->m_seq);
629 if (unlikely(res)) {
630 if (res > 0)
631 path->mnt = NULL;
632 path->dentry = NULL;
633 return false;
635 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
636 path->dentry = NULL;
637 return false;
639 return !read_seqcount_retry(&path->dentry->d_seq, seq);
642 static bool legitimize_links(struct nameidata *nd)
644 int i;
645 for (i = 0; i < nd->depth; i++) {
646 struct saved *last = nd->stack + i;
647 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
648 drop_links(nd);
649 nd->depth = i + 1;
650 return false;
653 return true;
657 * Path walking has 2 modes, rcu-walk and ref-walk (see
658 * Documentation/filesystems/path-lookup.txt). In situations when we can't
659 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
660 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
661 * mode. Refcounts are grabbed at the last known good point before rcu-walk
662 * got stuck, so ref-walk may continue from there. If this is not successful
663 * (eg. a seqcount has changed), then failure is returned and it's up to caller
664 * to restart the path walk from the beginning in ref-walk mode.
668 * unlazy_walk - try to switch to ref-walk mode.
669 * @nd: nameidata pathwalk data
670 * @dentry: child of nd->path.dentry or NULL
671 * @seq: seq number to check dentry against
672 * Returns: 0 on success, -ECHILD on failure
674 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
675 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
676 * @nd or NULL. Must be called from rcu-walk context.
677 * Nothing should touch nameidata between unlazy_walk() failure and
678 * terminate_walk().
680 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
682 struct dentry *parent = nd->path.dentry;
684 BUG_ON(!(nd->flags & LOOKUP_RCU));
686 nd->flags &= ~LOOKUP_RCU;
687 if (unlikely(!legitimize_links(nd)))
688 goto out2;
689 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
690 goto out2;
691 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
692 goto out1;
695 * For a negative lookup, the lookup sequence point is the parents
696 * sequence point, and it only needs to revalidate the parent dentry.
698 * For a positive lookup, we need to move both the parent and the
699 * dentry from the RCU domain to be properly refcounted. And the
700 * sequence number in the dentry validates *both* dentry counters,
701 * since we checked the sequence number of the parent after we got
702 * the child sequence number. So we know the parent must still
703 * be valid if the child sequence number is still valid.
705 if (!dentry) {
706 if (read_seqcount_retry(&parent->d_seq, nd->seq))
707 goto out;
708 BUG_ON(nd->inode != parent->d_inode);
709 } else {
710 if (!lockref_get_not_dead(&dentry->d_lockref))
711 goto out;
712 if (read_seqcount_retry(&dentry->d_seq, seq))
713 goto drop_dentry;
717 * Sequence counts matched. Now make sure that the root is
718 * still valid and get it if required.
720 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
721 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
722 rcu_read_unlock();
723 dput(dentry);
724 return -ECHILD;
728 rcu_read_unlock();
729 return 0;
731 drop_dentry:
732 rcu_read_unlock();
733 dput(dentry);
734 goto drop_root_mnt;
735 out2:
736 nd->path.mnt = NULL;
737 out1:
738 nd->path.dentry = NULL;
739 out:
740 rcu_read_unlock();
741 drop_root_mnt:
742 if (!(nd->flags & LOOKUP_ROOT))
743 nd->root.mnt = NULL;
744 return -ECHILD;
747 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
749 if (unlikely(!legitimize_path(nd, link, seq))) {
750 drop_links(nd);
751 nd->depth = 0;
752 nd->flags &= ~LOOKUP_RCU;
753 nd->path.mnt = NULL;
754 nd->path.dentry = NULL;
755 if (!(nd->flags & LOOKUP_ROOT))
756 nd->root.mnt = NULL;
757 rcu_read_unlock();
758 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
759 return 0;
761 path_put(link);
762 return -ECHILD;
765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
767 return dentry->d_op->d_revalidate(dentry, flags);
771 * complete_walk - successful completion of path walk
772 * @nd: pointer nameidata
774 * If we had been in RCU mode, drop out of it and legitimize nd->path.
775 * Revalidate the final result, unless we'd already done that during
776 * the path walk or the filesystem doesn't ask for it. Return 0 on
777 * success, -error on failure. In case of failure caller does not
778 * need to drop nd->path.
780 static int complete_walk(struct nameidata *nd)
782 struct dentry *dentry = nd->path.dentry;
783 int status;
785 if (nd->flags & LOOKUP_RCU) {
786 if (!(nd->flags & LOOKUP_ROOT))
787 nd->root.mnt = NULL;
788 if (unlikely(unlazy_walk(nd, NULL, 0)))
789 return -ECHILD;
792 if (likely(!(nd->flags & LOOKUP_JUMPED)))
793 return 0;
795 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
796 return 0;
798 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
799 if (status > 0)
800 return 0;
802 if (!status)
803 status = -ESTALE;
805 return status;
808 static void set_root(struct nameidata *nd)
810 get_fs_root(current->fs, &nd->root);
813 static void set_root_rcu(struct nameidata *nd)
815 struct fs_struct *fs = current->fs;
816 unsigned seq;
818 do {
819 seq = read_seqcount_begin(&fs->seq);
820 nd->root = fs->root;
821 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
822 } while (read_seqcount_retry(&fs->seq, seq));
825 static void path_put_conditional(struct path *path, struct nameidata *nd)
827 dput(path->dentry);
828 if (path->mnt != nd->path.mnt)
829 mntput(path->mnt);
832 static inline void path_to_nameidata(const struct path *path,
833 struct nameidata *nd)
835 if (!(nd->flags & LOOKUP_RCU)) {
836 dput(nd->path.dentry);
837 if (nd->path.mnt != path->mnt)
838 mntput(nd->path.mnt);
840 nd->path.mnt = path->mnt;
841 nd->path.dentry = path->dentry;
845 * Helper to directly jump to a known parsed path from ->follow_link,
846 * caller must have taken a reference to path beforehand.
848 void nd_jump_link(struct path *path)
850 struct nameidata *nd = current->nameidata;
851 path_put(&nd->path);
853 nd->path = *path;
854 nd->inode = nd->path.dentry->d_inode;
855 nd->flags |= LOOKUP_JUMPED;
858 static inline void put_link(struct nameidata *nd)
860 struct saved *last = nd->stack + --nd->depth;
861 struct inode *inode = last->inode;
862 if (last->cookie && inode->i_op->put_link)
863 inode->i_op->put_link(inode, last->cookie);
864 if (!(nd->flags & LOOKUP_RCU))
865 path_put(&last->link);
868 int sysctl_protected_symlinks __read_mostly = 0;
869 int sysctl_protected_hardlinks __read_mostly = 0;
872 * may_follow_link - Check symlink following for unsafe situations
873 * @nd: nameidata pathwalk data
875 * In the case of the sysctl_protected_symlinks sysctl being enabled,
876 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
877 * in a sticky world-writable directory. This is to protect privileged
878 * processes from failing races against path names that may change out
879 * from under them by way of other users creating malicious symlinks.
880 * It will permit symlinks to be followed only when outside a sticky
881 * world-writable directory, or when the uid of the symlink and follower
882 * match, or when the directory owner matches the symlink's owner.
884 * Returns 0 if following the symlink is allowed, -ve on error.
886 static inline int may_follow_link(struct nameidata *nd)
888 const struct inode *inode;
889 const struct inode *parent;
890 kuid_t puid;
892 if (!sysctl_protected_symlinks)
893 return 0;
895 /* Allowed if owner and follower match. */
896 inode = nd->stack[0].inode;
897 if (uid_eq(current_cred()->fsuid, inode->i_uid))
898 return 0;
900 /* Allowed if parent directory not sticky and world-writable. */
901 parent = nd->inode;
902 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
903 return 0;
905 /* Allowed if parent directory and link owner match. */
906 puid = parent->i_uid;
907 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
908 return 0;
910 if (nd->flags & LOOKUP_RCU)
911 return -ECHILD;
913 audit_log_link_denied("follow_link", &nd->stack[0].link);
914 return -EACCES;
918 * safe_hardlink_source - Check for safe hardlink conditions
919 * @inode: the source inode to hardlink from
921 * Return false if at least one of the following conditions:
922 * - inode is not a regular file
923 * - inode is setuid
924 * - inode is setgid and group-exec
925 * - access failure for read and write
927 * Otherwise returns true.
929 static bool safe_hardlink_source(struct inode *inode)
931 umode_t mode = inode->i_mode;
933 /* Special files should not get pinned to the filesystem. */
934 if (!S_ISREG(mode))
935 return false;
937 /* Setuid files should not get pinned to the filesystem. */
938 if (mode & S_ISUID)
939 return false;
941 /* Executable setgid files should not get pinned to the filesystem. */
942 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
943 return false;
945 /* Hardlinking to unreadable or unwritable sources is dangerous. */
946 if (inode_permission(inode, MAY_READ | MAY_WRITE))
947 return false;
949 return true;
953 * may_linkat - Check permissions for creating a hardlink
954 * @link: the source to hardlink from
956 * Block hardlink when all of:
957 * - sysctl_protected_hardlinks enabled
958 * - fsuid does not match inode
959 * - hardlink source is unsafe (see safe_hardlink_source() above)
960 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
962 * Returns 0 if successful, -ve on error.
964 static int may_linkat(struct path *link)
966 struct inode *inode;
968 if (!sysctl_protected_hardlinks)
969 return 0;
971 inode = link->dentry->d_inode;
973 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
974 * otherwise, it must be a safe source.
976 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
977 return 0;
979 audit_log_link_denied("linkat", link);
980 return -EPERM;
983 static __always_inline
984 const char *get_link(struct nameidata *nd)
986 struct saved *last = nd->stack + nd->depth - 1;
987 struct dentry *dentry = last->link.dentry;
988 struct inode *inode = last->inode;
989 int error;
990 const char *res;
992 if (!(nd->flags & LOOKUP_RCU)) {
993 touch_atime(&last->link);
994 cond_resched();
995 } else if (atime_needs_update(&last->link, inode)) {
996 if (unlikely(unlazy_walk(nd, NULL, 0)))
997 return ERR_PTR(-ECHILD);
998 touch_atime(&last->link);
1001 error = security_inode_follow_link(dentry, inode,
1002 nd->flags & LOOKUP_RCU);
1003 if (unlikely(error))
1004 return ERR_PTR(error);
1006 nd->last_type = LAST_BIND;
1007 res = inode->i_link;
1008 if (!res) {
1009 if (nd->flags & LOOKUP_RCU) {
1010 if (unlikely(unlazy_walk(nd, NULL, 0)))
1011 return ERR_PTR(-ECHILD);
1013 res = inode->i_op->follow_link(dentry, &last->cookie);
1014 if (IS_ERR_OR_NULL(res)) {
1015 last->cookie = NULL;
1016 return res;
1019 if (*res == '/') {
1020 if (nd->flags & LOOKUP_RCU) {
1021 struct dentry *d;
1022 if (!nd->root.mnt)
1023 set_root_rcu(nd);
1024 nd->path = nd->root;
1025 d = nd->path.dentry;
1026 nd->inode = d->d_inode;
1027 nd->seq = nd->root_seq;
1028 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
1029 return ERR_PTR(-ECHILD);
1030 } else {
1031 if (!nd->root.mnt)
1032 set_root(nd);
1033 path_put(&nd->path);
1034 nd->path = nd->root;
1035 path_get(&nd->root);
1036 nd->inode = nd->path.dentry->d_inode;
1038 nd->flags |= LOOKUP_JUMPED;
1039 while (unlikely(*++res == '/'))
1042 if (!*res)
1043 res = NULL;
1044 return res;
1048 * follow_up - Find the mountpoint of path's vfsmount
1050 * Given a path, find the mountpoint of its source file system.
1051 * Replace @path with the path of the mountpoint in the parent mount.
1052 * Up is towards /.
1054 * Return 1 if we went up a level and 0 if we were already at the
1055 * root.
1057 int follow_up(struct path *path)
1059 struct mount *mnt = real_mount(path->mnt);
1060 struct mount *parent;
1061 struct dentry *mountpoint;
1063 read_seqlock_excl(&mount_lock);
1064 parent = mnt->mnt_parent;
1065 if (parent == mnt) {
1066 read_sequnlock_excl(&mount_lock);
1067 return 0;
1069 mntget(&parent->mnt);
1070 mountpoint = dget(mnt->mnt_mountpoint);
1071 read_sequnlock_excl(&mount_lock);
1072 dput(path->dentry);
1073 path->dentry = mountpoint;
1074 mntput(path->mnt);
1075 path->mnt = &parent->mnt;
1076 return 1;
1078 EXPORT_SYMBOL(follow_up);
1081 * Perform an automount
1082 * - return -EISDIR to tell follow_managed() to stop and return the path we
1083 * were called with.
1085 static int follow_automount(struct path *path, struct nameidata *nd,
1086 bool *need_mntput)
1088 struct vfsmount *mnt;
1089 int err;
1091 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1092 return -EREMOTE;
1094 /* We don't want to mount if someone's just doing a stat -
1095 * unless they're stat'ing a directory and appended a '/' to
1096 * the name.
1098 * We do, however, want to mount if someone wants to open or
1099 * create a file of any type under the mountpoint, wants to
1100 * traverse through the mountpoint or wants to open the
1101 * mounted directory. Also, autofs may mark negative dentries
1102 * as being automount points. These will need the attentions
1103 * of the daemon to instantiate them before they can be used.
1105 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1106 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1107 path->dentry->d_inode)
1108 return -EISDIR;
1110 nd->total_link_count++;
1111 if (nd->total_link_count >= 40)
1112 return -ELOOP;
1114 mnt = path->dentry->d_op->d_automount(path);
1115 if (IS_ERR(mnt)) {
1117 * The filesystem is allowed to return -EISDIR here to indicate
1118 * it doesn't want to automount. For instance, autofs would do
1119 * this so that its userspace daemon can mount on this dentry.
1121 * However, we can only permit this if it's a terminal point in
1122 * the path being looked up; if it wasn't then the remainder of
1123 * the path is inaccessible and we should say so.
1125 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1126 return -EREMOTE;
1127 return PTR_ERR(mnt);
1130 if (!mnt) /* mount collision */
1131 return 0;
1133 if (!*need_mntput) {
1134 /* lock_mount() may release path->mnt on error */
1135 mntget(path->mnt);
1136 *need_mntput = true;
1138 err = finish_automount(mnt, path);
1140 switch (err) {
1141 case -EBUSY:
1142 /* Someone else made a mount here whilst we were busy */
1143 return 0;
1144 case 0:
1145 path_put(path);
1146 path->mnt = mnt;
1147 path->dentry = dget(mnt->mnt_root);
1148 return 0;
1149 default:
1150 return err;
1156 * Handle a dentry that is managed in some way.
1157 * - Flagged for transit management (autofs)
1158 * - Flagged as mountpoint
1159 * - Flagged as automount point
1161 * This may only be called in refwalk mode.
1163 * Serialization is taken care of in namespace.c
1165 static int follow_managed(struct path *path, struct nameidata *nd)
1167 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1168 unsigned managed;
1169 bool need_mntput = false;
1170 int ret = 0;
1172 /* Given that we're not holding a lock here, we retain the value in a
1173 * local variable for each dentry as we look at it so that we don't see
1174 * the components of that value change under us */
1175 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1176 managed &= DCACHE_MANAGED_DENTRY,
1177 unlikely(managed != 0)) {
1178 /* Allow the filesystem to manage the transit without i_mutex
1179 * being held. */
1180 if (managed & DCACHE_MANAGE_TRANSIT) {
1181 BUG_ON(!path->dentry->d_op);
1182 BUG_ON(!path->dentry->d_op->d_manage);
1183 ret = path->dentry->d_op->d_manage(path->dentry, false);
1184 if (ret < 0)
1185 break;
1188 /* Transit to a mounted filesystem. */
1189 if (managed & DCACHE_MOUNTED) {
1190 struct vfsmount *mounted = lookup_mnt(path);
1191 if (mounted) {
1192 dput(path->dentry);
1193 if (need_mntput)
1194 mntput(path->mnt);
1195 path->mnt = mounted;
1196 path->dentry = dget(mounted->mnt_root);
1197 need_mntput = true;
1198 continue;
1201 /* Something is mounted on this dentry in another
1202 * namespace and/or whatever was mounted there in this
1203 * namespace got unmounted before lookup_mnt() could
1204 * get it */
1207 /* Handle an automount point */
1208 if (managed & DCACHE_NEED_AUTOMOUNT) {
1209 ret = follow_automount(path, nd, &need_mntput);
1210 if (ret < 0)
1211 break;
1212 continue;
1215 /* We didn't change the current path point */
1216 break;
1219 if (need_mntput && path->mnt == mnt)
1220 mntput(path->mnt);
1221 if (ret == -EISDIR)
1222 ret = 0;
1223 if (need_mntput)
1224 nd->flags |= LOOKUP_JUMPED;
1225 if (unlikely(ret < 0))
1226 path_put_conditional(path, nd);
1227 return ret;
1230 int follow_down_one(struct path *path)
1232 struct vfsmount *mounted;
1234 mounted = lookup_mnt(path);
1235 if (mounted) {
1236 dput(path->dentry);
1237 mntput(path->mnt);
1238 path->mnt = mounted;
1239 path->dentry = dget(mounted->mnt_root);
1240 return 1;
1242 return 0;
1244 EXPORT_SYMBOL(follow_down_one);
1246 static inline int managed_dentry_rcu(struct dentry *dentry)
1248 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1249 dentry->d_op->d_manage(dentry, true) : 0;
1253 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1254 * we meet a managed dentry that would need blocking.
1256 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1257 struct inode **inode, unsigned *seqp)
1259 for (;;) {
1260 struct mount *mounted;
1262 * Don't forget we might have a non-mountpoint managed dentry
1263 * that wants to block transit.
1265 switch (managed_dentry_rcu(path->dentry)) {
1266 case -ECHILD:
1267 default:
1268 return false;
1269 case -EISDIR:
1270 return true;
1271 case 0:
1272 break;
1275 if (!d_mountpoint(path->dentry))
1276 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1278 mounted = __lookup_mnt(path->mnt, path->dentry);
1279 if (!mounted)
1280 break;
1281 path->mnt = &mounted->mnt;
1282 path->dentry = mounted->mnt.mnt_root;
1283 nd->flags |= LOOKUP_JUMPED;
1284 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1286 * Update the inode too. We don't need to re-check the
1287 * dentry sequence number here after this d_inode read,
1288 * because a mount-point is always pinned.
1290 *inode = path->dentry->d_inode;
1292 return !read_seqretry(&mount_lock, nd->m_seq) &&
1293 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 static int follow_dotdot_rcu(struct nameidata *nd)
1298 struct inode *inode = nd->inode;
1299 if (!nd->root.mnt)
1300 set_root_rcu(nd);
1302 while (1) {
1303 if (path_equal(&nd->path, &nd->root))
1304 break;
1305 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 struct dentry *old = nd->path.dentry;
1307 struct dentry *parent = old->d_parent;
1308 unsigned seq;
1310 inode = parent->d_inode;
1311 seq = read_seqcount_begin(&parent->d_seq);
1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313 return -ECHILD;
1314 nd->path.dentry = parent;
1315 nd->seq = seq;
1316 if (unlikely(!path_connected(&nd->path)))
1317 return -ENOENT;
1318 break;
1319 } else {
1320 struct mount *mnt = real_mount(nd->path.mnt);
1321 struct mount *mparent = mnt->mnt_parent;
1322 struct dentry *mountpoint = mnt->mnt_mountpoint;
1323 struct inode *inode2 = mountpoint->d_inode;
1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326 return -ECHILD;
1327 if (&mparent->mnt == nd->path.mnt)
1328 break;
1329 /* we know that mountpoint was pinned */
1330 nd->path.dentry = mountpoint;
1331 nd->path.mnt = &mparent->mnt;
1332 inode = inode2;
1333 nd->seq = seq;
1336 while (unlikely(d_mountpoint(nd->path.dentry))) {
1337 struct mount *mounted;
1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340 return -ECHILD;
1341 if (!mounted)
1342 break;
1343 nd->path.mnt = &mounted->mnt;
1344 nd->path.dentry = mounted->mnt.mnt_root;
1345 inode = nd->path.dentry->d_inode;
1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1348 nd->inode = inode;
1349 return 0;
1353 * Follow down to the covering mount currently visible to userspace. At each
1354 * point, the filesystem owning that dentry may be queried as to whether the
1355 * caller is permitted to proceed or not.
1357 int follow_down(struct path *path)
1359 unsigned managed;
1360 int ret;
1362 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364 /* Allow the filesystem to manage the transit without i_mutex
1365 * being held.
1367 * We indicate to the filesystem if someone is trying to mount
1368 * something here. This gives autofs the chance to deny anyone
1369 * other than its daemon the right to mount on its
1370 * superstructure.
1372 * The filesystem may sleep at this point.
1374 if (managed & DCACHE_MANAGE_TRANSIT) {
1375 BUG_ON(!path->dentry->d_op);
1376 BUG_ON(!path->dentry->d_op->d_manage);
1377 ret = path->dentry->d_op->d_manage(
1378 path->dentry, false);
1379 if (ret < 0)
1380 return ret == -EISDIR ? 0 : ret;
1383 /* Transit to a mounted filesystem. */
1384 if (managed & DCACHE_MOUNTED) {
1385 struct vfsmount *mounted = lookup_mnt(path);
1386 if (!mounted)
1387 break;
1388 dput(path->dentry);
1389 mntput(path->mnt);
1390 path->mnt = mounted;
1391 path->dentry = dget(mounted->mnt_root);
1392 continue;
1395 /* Don't handle automount points here */
1396 break;
1398 return 0;
1400 EXPORT_SYMBOL(follow_down);
1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1405 static void follow_mount(struct path *path)
1407 while (d_mountpoint(path->dentry)) {
1408 struct vfsmount *mounted = lookup_mnt(path);
1409 if (!mounted)
1410 break;
1411 dput(path->dentry);
1412 mntput(path->mnt);
1413 path->mnt = mounted;
1414 path->dentry = dget(mounted->mnt_root);
1418 static int follow_dotdot(struct nameidata *nd)
1420 if (!nd->root.mnt)
1421 set_root(nd);
1423 while(1) {
1424 struct dentry *old = nd->path.dentry;
1426 if (nd->path.dentry == nd->root.dentry &&
1427 nd->path.mnt == nd->root.mnt) {
1428 break;
1430 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1431 /* rare case of legitimate dget_parent()... */
1432 nd->path.dentry = dget_parent(nd->path.dentry);
1433 dput(old);
1434 if (unlikely(!path_connected(&nd->path)))
1435 return -ENOENT;
1436 break;
1438 if (!follow_up(&nd->path))
1439 break;
1441 follow_mount(&nd->path);
1442 nd->inode = nd->path.dentry->d_inode;
1443 return 0;
1447 * This looks up the name in dcache, possibly revalidates the old dentry and
1448 * allocates a new one if not found or not valid. In the need_lookup argument
1449 * returns whether i_op->lookup is necessary.
1451 * dir->d_inode->i_mutex must be held
1453 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1454 unsigned int flags, bool *need_lookup)
1456 struct dentry *dentry;
1457 int error;
1459 *need_lookup = false;
1460 dentry = d_lookup(dir, name);
1461 if (dentry) {
1462 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1463 error = d_revalidate(dentry, flags);
1464 if (unlikely(error <= 0)) {
1465 if (error < 0) {
1466 dput(dentry);
1467 return ERR_PTR(error);
1468 } else {
1469 d_invalidate(dentry);
1470 dput(dentry);
1471 dentry = NULL;
1477 if (!dentry) {
1478 dentry = d_alloc(dir, name);
1479 if (unlikely(!dentry))
1480 return ERR_PTR(-ENOMEM);
1482 *need_lookup = true;
1484 return dentry;
1488 * Call i_op->lookup on the dentry. The dentry must be negative and
1489 * unhashed.
1491 * dir->d_inode->i_mutex must be held
1493 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1494 unsigned int flags)
1496 struct dentry *old;
1498 /* Don't create child dentry for a dead directory. */
1499 if (unlikely(IS_DEADDIR(dir))) {
1500 dput(dentry);
1501 return ERR_PTR(-ENOENT);
1504 old = dir->i_op->lookup(dir, dentry, flags);
1505 if (unlikely(old)) {
1506 dput(dentry);
1507 dentry = old;
1509 return dentry;
1512 static struct dentry *__lookup_hash(struct qstr *name,
1513 struct dentry *base, unsigned int flags)
1515 bool need_lookup;
1516 struct dentry *dentry;
1518 dentry = lookup_dcache(name, base, flags, &need_lookup);
1519 if (!need_lookup)
1520 return dentry;
1522 return lookup_real(base->d_inode, dentry, flags);
1526 * It's more convoluted than I'd like it to be, but... it's still fairly
1527 * small and for now I'd prefer to have fast path as straight as possible.
1528 * It _is_ time-critical.
1530 static int lookup_fast(struct nameidata *nd,
1531 struct path *path, struct inode **inode,
1532 unsigned *seqp)
1534 struct vfsmount *mnt = nd->path.mnt;
1535 struct dentry *dentry, *parent = nd->path.dentry;
1536 int need_reval = 1;
1537 int status = 1;
1538 int err;
1541 * Rename seqlock is not required here because in the off chance
1542 * of a false negative due to a concurrent rename, we're going to
1543 * do the non-racy lookup, below.
1545 if (nd->flags & LOOKUP_RCU) {
1546 unsigned seq;
1547 bool negative;
1548 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1549 if (!dentry)
1550 goto unlazy;
1553 * This sequence count validates that the inode matches
1554 * the dentry name information from lookup.
1556 *inode = d_backing_inode(dentry);
1557 negative = d_is_negative(dentry);
1558 if (read_seqcount_retry(&dentry->d_seq, seq))
1559 return -ECHILD;
1562 * This sequence count validates that the parent had no
1563 * changes while we did the lookup of the dentry above.
1565 * The memory barrier in read_seqcount_begin of child is
1566 * enough, we can use __read_seqcount_retry here.
1568 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1569 return -ECHILD;
1571 *seqp = seq;
1572 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1573 status = d_revalidate(dentry, nd->flags);
1574 if (unlikely(status <= 0)) {
1575 if (status != -ECHILD)
1576 need_reval = 0;
1577 goto unlazy;
1581 * Note: do negative dentry check after revalidation in
1582 * case that drops it.
1584 if (negative)
1585 return -ENOENT;
1586 path->mnt = mnt;
1587 path->dentry = dentry;
1588 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1589 return 0;
1590 unlazy:
1591 if (unlazy_walk(nd, dentry, seq))
1592 return -ECHILD;
1593 } else {
1594 dentry = __d_lookup(parent, &nd->last);
1597 if (unlikely(!dentry))
1598 goto need_lookup;
1600 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1601 status = d_revalidate(dentry, nd->flags);
1602 if (unlikely(status <= 0)) {
1603 if (status < 0) {
1604 dput(dentry);
1605 return status;
1607 d_invalidate(dentry);
1608 dput(dentry);
1609 goto need_lookup;
1612 if (unlikely(d_is_negative(dentry))) {
1613 dput(dentry);
1614 return -ENOENT;
1616 path->mnt = mnt;
1617 path->dentry = dentry;
1618 err = follow_managed(path, nd);
1619 if (likely(!err))
1620 *inode = d_backing_inode(path->dentry);
1621 return err;
1623 need_lookup:
1624 return 1;
1627 /* Fast lookup failed, do it the slow way */
1628 static int lookup_slow(struct nameidata *nd, struct path *path)
1630 struct dentry *dentry, *parent;
1632 parent = nd->path.dentry;
1633 BUG_ON(nd->inode != parent->d_inode);
1635 mutex_lock(&parent->d_inode->i_mutex);
1636 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1637 mutex_unlock(&parent->d_inode->i_mutex);
1638 if (IS_ERR(dentry))
1639 return PTR_ERR(dentry);
1640 path->mnt = nd->path.mnt;
1641 path->dentry = dentry;
1642 return follow_managed(path, nd);
1645 static inline int may_lookup(struct nameidata *nd)
1647 if (nd->flags & LOOKUP_RCU) {
1648 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1649 if (err != -ECHILD)
1650 return err;
1651 if (unlazy_walk(nd, NULL, 0))
1652 return -ECHILD;
1654 return inode_permission(nd->inode, MAY_EXEC);
1657 static inline int handle_dots(struct nameidata *nd, int type)
1659 if (type == LAST_DOTDOT) {
1660 if (nd->flags & LOOKUP_RCU) {
1661 return follow_dotdot_rcu(nd);
1662 } else
1663 return follow_dotdot(nd);
1665 return 0;
1668 static int pick_link(struct nameidata *nd, struct path *link,
1669 struct inode *inode, unsigned seq)
1671 int error;
1672 struct saved *last;
1673 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1674 path_to_nameidata(link, nd);
1675 return -ELOOP;
1677 if (!(nd->flags & LOOKUP_RCU)) {
1678 if (link->mnt == nd->path.mnt)
1679 mntget(link->mnt);
1681 error = nd_alloc_stack(nd);
1682 if (unlikely(error)) {
1683 if (error == -ECHILD) {
1684 if (unlikely(unlazy_link(nd, link, seq)))
1685 return -ECHILD;
1686 error = nd_alloc_stack(nd);
1688 if (error) {
1689 path_put(link);
1690 return error;
1694 last = nd->stack + nd->depth++;
1695 last->link = *link;
1696 last->cookie = NULL;
1697 last->inode = inode;
1698 last->seq = seq;
1699 return 1;
1703 * Do we need to follow links? We _really_ want to be able
1704 * to do this check without having to look at inode->i_op,
1705 * so we keep a cache of "no, this doesn't need follow_link"
1706 * for the common case.
1708 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1709 int follow,
1710 struct inode *inode, unsigned seq)
1712 if (likely(!d_is_symlink(link->dentry)))
1713 return 0;
1714 if (!follow)
1715 return 0;
1716 /* make sure that d_is_symlink above matches inode */
1717 if (nd->flags & LOOKUP_RCU) {
1718 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1719 return -ECHILD;
1721 return pick_link(nd, link, inode, seq);
1724 enum {WALK_GET = 1, WALK_PUT = 2};
1726 static int walk_component(struct nameidata *nd, int flags)
1728 struct path path;
1729 struct inode *inode;
1730 unsigned seq;
1731 int err;
1733 * "." and ".." are special - ".." especially so because it has
1734 * to be able to know about the current root directory and
1735 * parent relationships.
1737 if (unlikely(nd->last_type != LAST_NORM)) {
1738 err = handle_dots(nd, nd->last_type);
1739 if (flags & WALK_PUT)
1740 put_link(nd);
1741 return err;
1743 err = lookup_fast(nd, &path, &inode, &seq);
1744 if (unlikely(err)) {
1745 if (err < 0)
1746 return err;
1748 err = lookup_slow(nd, &path);
1749 if (err < 0)
1750 return err;
1752 seq = 0; /* we are already out of RCU mode */
1753 err = -ENOENT;
1754 if (d_is_negative(path.dentry))
1755 goto out_path_put;
1756 inode = d_backing_inode(path.dentry);
1759 if (flags & WALK_PUT)
1760 put_link(nd);
1761 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1762 if (unlikely(err))
1763 return err;
1764 path_to_nameidata(&path, nd);
1765 nd->inode = inode;
1766 nd->seq = seq;
1767 return 0;
1769 out_path_put:
1770 path_to_nameidata(&path, nd);
1771 return err;
1775 * We can do the critical dentry name comparison and hashing
1776 * operations one word at a time, but we are limited to:
1778 * - Architectures with fast unaligned word accesses. We could
1779 * do a "get_unaligned()" if this helps and is sufficiently
1780 * fast.
1782 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1783 * do not trap on the (extremely unlikely) case of a page
1784 * crossing operation.
1786 * - Furthermore, we need an efficient 64-bit compile for the
1787 * 64-bit case in order to generate the "number of bytes in
1788 * the final mask". Again, that could be replaced with a
1789 * efficient population count instruction or similar.
1791 #ifdef CONFIG_DCACHE_WORD_ACCESS
1793 #include <asm/word-at-a-time.h>
1795 #ifdef CONFIG_64BIT
1797 static inline unsigned int fold_hash(unsigned long hash)
1799 return hash_64(hash, 32);
1802 #else /* 32-bit case */
1804 #define fold_hash(x) (x)
1806 #endif
1808 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1810 unsigned long a, mask;
1811 unsigned long hash = 0;
1813 for (;;) {
1814 a = load_unaligned_zeropad(name);
1815 if (len < sizeof(unsigned long))
1816 break;
1817 hash += a;
1818 hash *= 9;
1819 name += sizeof(unsigned long);
1820 len -= sizeof(unsigned long);
1821 if (!len)
1822 goto done;
1824 mask = bytemask_from_count(len);
1825 hash += mask & a;
1826 done:
1827 return fold_hash(hash);
1829 EXPORT_SYMBOL(full_name_hash);
1832 * Calculate the length and hash of the path component, and
1833 * return the "hash_len" as the result.
1835 static inline u64 hash_name(const char *name)
1837 unsigned long a, b, adata, bdata, mask, hash, len;
1838 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1840 hash = a = 0;
1841 len = -sizeof(unsigned long);
1842 do {
1843 hash = (hash + a) * 9;
1844 len += sizeof(unsigned long);
1845 a = load_unaligned_zeropad(name+len);
1846 b = a ^ REPEAT_BYTE('/');
1847 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1849 adata = prep_zero_mask(a, adata, &constants);
1850 bdata = prep_zero_mask(b, bdata, &constants);
1852 mask = create_zero_mask(adata | bdata);
1854 hash += a & zero_bytemask(mask);
1855 len += find_zero(mask);
1856 return hashlen_create(fold_hash(hash), len);
1859 #else
1861 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1863 unsigned long hash = init_name_hash();
1864 while (len--)
1865 hash = partial_name_hash(*name++, hash);
1866 return end_name_hash(hash);
1868 EXPORT_SYMBOL(full_name_hash);
1871 * We know there's a real path component here of at least
1872 * one character.
1874 static inline u64 hash_name(const char *name)
1876 unsigned long hash = init_name_hash();
1877 unsigned long len = 0, c;
1879 c = (unsigned char)*name;
1880 do {
1881 len++;
1882 hash = partial_name_hash(c, hash);
1883 c = (unsigned char)name[len];
1884 } while (c && c != '/');
1885 return hashlen_create(end_name_hash(hash), len);
1888 #endif
1891 * Name resolution.
1892 * This is the basic name resolution function, turning a pathname into
1893 * the final dentry. We expect 'base' to be positive and a directory.
1895 * Returns 0 and nd will have valid dentry and mnt on success.
1896 * Returns error and drops reference to input namei data on failure.
1898 static int link_path_walk(const char *name, struct nameidata *nd)
1900 int err;
1902 while (*name=='/')
1903 name++;
1904 if (!*name)
1905 return 0;
1907 /* At this point we know we have a real path component. */
1908 for(;;) {
1909 u64 hash_len;
1910 int type;
1912 err = may_lookup(nd);
1913 if (err)
1914 return err;
1916 hash_len = hash_name(name);
1918 type = LAST_NORM;
1919 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1920 case 2:
1921 if (name[1] == '.') {
1922 type = LAST_DOTDOT;
1923 nd->flags |= LOOKUP_JUMPED;
1925 break;
1926 case 1:
1927 type = LAST_DOT;
1929 if (likely(type == LAST_NORM)) {
1930 struct dentry *parent = nd->path.dentry;
1931 nd->flags &= ~LOOKUP_JUMPED;
1932 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1933 struct qstr this = { { .hash_len = hash_len }, .name = name };
1934 err = parent->d_op->d_hash(parent, &this);
1935 if (err < 0)
1936 return err;
1937 hash_len = this.hash_len;
1938 name = this.name;
1942 nd->last.hash_len = hash_len;
1943 nd->last.name = name;
1944 nd->last_type = type;
1946 name += hashlen_len(hash_len);
1947 if (!*name)
1948 goto OK;
1950 * If it wasn't NUL, we know it was '/'. Skip that
1951 * slash, and continue until no more slashes.
1953 do {
1954 name++;
1955 } while (unlikely(*name == '/'));
1956 if (unlikely(!*name)) {
1958 /* pathname body, done */
1959 if (!nd->depth)
1960 return 0;
1961 name = nd->stack[nd->depth - 1].name;
1962 /* trailing symlink, done */
1963 if (!name)
1964 return 0;
1965 /* last component of nested symlink */
1966 err = walk_component(nd, WALK_GET | WALK_PUT);
1967 } else {
1968 err = walk_component(nd, WALK_GET);
1970 if (err < 0)
1971 return err;
1973 if (err) {
1974 const char *s = get_link(nd);
1976 if (IS_ERR(s))
1977 return PTR_ERR(s);
1978 err = 0;
1979 if (unlikely(!s)) {
1980 /* jumped */
1981 put_link(nd);
1982 } else {
1983 nd->stack[nd->depth - 1].name = name;
1984 name = s;
1985 continue;
1988 if (unlikely(!d_can_lookup(nd->path.dentry))) {
1989 if (nd->flags & LOOKUP_RCU) {
1990 if (unlazy_walk(nd, NULL, 0))
1991 return -ECHILD;
1993 return -ENOTDIR;
1998 static const char *path_init(struct nameidata *nd, unsigned flags)
2000 int retval = 0;
2001 const char *s = nd->name->name;
2003 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2004 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2005 nd->depth = 0;
2006 if (flags & LOOKUP_ROOT) {
2007 struct dentry *root = nd->root.dentry;
2008 struct inode *inode = root->d_inode;
2009 if (*s) {
2010 if (!d_can_lookup(root))
2011 return ERR_PTR(-ENOTDIR);
2012 retval = inode_permission(inode, MAY_EXEC);
2013 if (retval)
2014 return ERR_PTR(retval);
2016 nd->path = nd->root;
2017 nd->inode = inode;
2018 if (flags & LOOKUP_RCU) {
2019 rcu_read_lock();
2020 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2021 nd->root_seq = nd->seq;
2022 nd->m_seq = read_seqbegin(&mount_lock);
2023 } else {
2024 path_get(&nd->path);
2026 return s;
2029 nd->root.mnt = NULL;
2031 nd->m_seq = read_seqbegin(&mount_lock);
2032 if (*s == '/') {
2033 if (flags & LOOKUP_RCU) {
2034 rcu_read_lock();
2035 set_root_rcu(nd);
2036 nd->seq = nd->root_seq;
2037 } else {
2038 set_root(nd);
2039 path_get(&nd->root);
2041 nd->path = nd->root;
2042 } else if (nd->dfd == AT_FDCWD) {
2043 if (flags & LOOKUP_RCU) {
2044 struct fs_struct *fs = current->fs;
2045 unsigned seq;
2047 rcu_read_lock();
2049 do {
2050 seq = read_seqcount_begin(&fs->seq);
2051 nd->path = fs->pwd;
2052 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2053 } while (read_seqcount_retry(&fs->seq, seq));
2054 } else {
2055 get_fs_pwd(current->fs, &nd->path);
2057 } else {
2058 /* Caller must check execute permissions on the starting path component */
2059 struct fd f = fdget_raw(nd->dfd);
2060 struct dentry *dentry;
2062 if (!f.file)
2063 return ERR_PTR(-EBADF);
2065 dentry = f.file->f_path.dentry;
2067 if (*s) {
2068 if (!d_can_lookup(dentry)) {
2069 fdput(f);
2070 return ERR_PTR(-ENOTDIR);
2074 nd->path = f.file->f_path;
2075 if (flags & LOOKUP_RCU) {
2076 rcu_read_lock();
2077 nd->inode = nd->path.dentry->d_inode;
2078 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2079 } else {
2080 path_get(&nd->path);
2081 nd->inode = nd->path.dentry->d_inode;
2083 fdput(f);
2084 return s;
2087 nd->inode = nd->path.dentry->d_inode;
2088 if (!(flags & LOOKUP_RCU))
2089 return s;
2090 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2091 return s;
2092 if (!(nd->flags & LOOKUP_ROOT))
2093 nd->root.mnt = NULL;
2094 rcu_read_unlock();
2095 return ERR_PTR(-ECHILD);
2098 static const char *trailing_symlink(struct nameidata *nd)
2100 const char *s;
2101 int error = may_follow_link(nd);
2102 if (unlikely(error))
2103 return ERR_PTR(error);
2104 nd->flags |= LOOKUP_PARENT;
2105 nd->stack[0].name = NULL;
2106 s = get_link(nd);
2107 return s ? s : "";
2110 static inline int lookup_last(struct nameidata *nd)
2112 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2113 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2115 nd->flags &= ~LOOKUP_PARENT;
2116 return walk_component(nd,
2117 nd->flags & LOOKUP_FOLLOW
2118 ? nd->depth
2119 ? WALK_PUT | WALK_GET
2120 : WALK_GET
2121 : 0);
2124 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2125 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2127 const char *s = path_init(nd, flags);
2128 int err;
2130 if (IS_ERR(s))
2131 return PTR_ERR(s);
2132 while (!(err = link_path_walk(s, nd))
2133 && ((err = lookup_last(nd)) > 0)) {
2134 s = trailing_symlink(nd);
2135 if (IS_ERR(s)) {
2136 err = PTR_ERR(s);
2137 break;
2140 if (!err)
2141 err = complete_walk(nd);
2143 if (!err && nd->flags & LOOKUP_DIRECTORY)
2144 if (!d_can_lookup(nd->path.dentry))
2145 err = -ENOTDIR;
2146 if (!err) {
2147 *path = nd->path;
2148 nd->path.mnt = NULL;
2149 nd->path.dentry = NULL;
2151 terminate_walk(nd);
2152 return err;
2155 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2156 struct path *path, struct path *root)
2158 int retval;
2159 struct nameidata nd;
2160 if (IS_ERR(name))
2161 return PTR_ERR(name);
2162 if (unlikely(root)) {
2163 nd.root = *root;
2164 flags |= LOOKUP_ROOT;
2166 set_nameidata(&nd, dfd, name);
2167 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2168 if (unlikely(retval == -ECHILD))
2169 retval = path_lookupat(&nd, flags, path);
2170 if (unlikely(retval == -ESTALE))
2171 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2173 if (likely(!retval))
2174 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2175 restore_nameidata();
2176 putname(name);
2177 return retval;
2180 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2181 static int path_parentat(struct nameidata *nd, unsigned flags,
2182 struct path *parent)
2184 const char *s = path_init(nd, flags);
2185 int err;
2186 if (IS_ERR(s))
2187 return PTR_ERR(s);
2188 err = link_path_walk(s, nd);
2189 if (!err)
2190 err = complete_walk(nd);
2191 if (!err) {
2192 *parent = nd->path;
2193 nd->path.mnt = NULL;
2194 nd->path.dentry = NULL;
2196 terminate_walk(nd);
2197 return err;
2200 static struct filename *filename_parentat(int dfd, struct filename *name,
2201 unsigned int flags, struct path *parent,
2202 struct qstr *last, int *type)
2204 int retval;
2205 struct nameidata nd;
2207 if (IS_ERR(name))
2208 return name;
2209 set_nameidata(&nd, dfd, name);
2210 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2211 if (unlikely(retval == -ECHILD))
2212 retval = path_parentat(&nd, flags, parent);
2213 if (unlikely(retval == -ESTALE))
2214 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2215 if (likely(!retval)) {
2216 *last = nd.last;
2217 *type = nd.last_type;
2218 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2219 } else {
2220 putname(name);
2221 name = ERR_PTR(retval);
2223 restore_nameidata();
2224 return name;
2227 /* does lookup, returns the object with parent locked */
2228 struct dentry *kern_path_locked(const char *name, struct path *path)
2230 struct filename *filename;
2231 struct dentry *d;
2232 struct qstr last;
2233 int type;
2235 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2236 &last, &type);
2237 if (IS_ERR(filename))
2238 return ERR_CAST(filename);
2239 if (unlikely(type != LAST_NORM)) {
2240 path_put(path);
2241 putname(filename);
2242 return ERR_PTR(-EINVAL);
2244 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2245 d = __lookup_hash(&last, path->dentry, 0);
2246 if (IS_ERR(d)) {
2247 mutex_unlock(&path->dentry->d_inode->i_mutex);
2248 path_put(path);
2250 putname(filename);
2251 return d;
2254 int kern_path(const char *name, unsigned int flags, struct path *path)
2256 return filename_lookup(AT_FDCWD, getname_kernel(name),
2257 flags, path, NULL);
2259 EXPORT_SYMBOL(kern_path);
2262 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2263 * @dentry: pointer to dentry of the base directory
2264 * @mnt: pointer to vfs mount of the base directory
2265 * @name: pointer to file name
2266 * @flags: lookup flags
2267 * @path: pointer to struct path to fill
2269 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2270 const char *name, unsigned int flags,
2271 struct path *path)
2273 struct path root = {.mnt = mnt, .dentry = dentry};
2274 /* the first argument of filename_lookup() is ignored with root */
2275 return filename_lookup(AT_FDCWD, getname_kernel(name),
2276 flags , path, &root);
2278 EXPORT_SYMBOL(vfs_path_lookup);
2281 * lookup_one_len - filesystem helper to lookup single pathname component
2282 * @name: pathname component to lookup
2283 * @base: base directory to lookup from
2284 * @len: maximum length @len should be interpreted to
2286 * Note that this routine is purely a helper for filesystem usage and should
2287 * not be called by generic code.
2289 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2291 struct qstr this;
2292 unsigned int c;
2293 int err;
2295 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2297 this.name = name;
2298 this.len = len;
2299 this.hash = full_name_hash(name, len);
2300 if (!len)
2301 return ERR_PTR(-EACCES);
2303 if (unlikely(name[0] == '.')) {
2304 if (len < 2 || (len == 2 && name[1] == '.'))
2305 return ERR_PTR(-EACCES);
2308 while (len--) {
2309 c = *(const unsigned char *)name++;
2310 if (c == '/' || c == '\0')
2311 return ERR_PTR(-EACCES);
2314 * See if the low-level filesystem might want
2315 * to use its own hash..
2317 if (base->d_flags & DCACHE_OP_HASH) {
2318 int err = base->d_op->d_hash(base, &this);
2319 if (err < 0)
2320 return ERR_PTR(err);
2323 err = inode_permission(base->d_inode, MAY_EXEC);
2324 if (err)
2325 return ERR_PTR(err);
2327 return __lookup_hash(&this, base, 0);
2329 EXPORT_SYMBOL(lookup_one_len);
2331 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2332 struct path *path, int *empty)
2334 return filename_lookup(dfd, getname_flags(name, flags, empty),
2335 flags, path, NULL);
2337 EXPORT_SYMBOL(user_path_at_empty);
2340 * NB: most callers don't do anything directly with the reference to the
2341 * to struct filename, but the nd->last pointer points into the name string
2342 * allocated by getname. So we must hold the reference to it until all
2343 * path-walking is complete.
2345 static inline struct filename *
2346 user_path_parent(int dfd, const char __user *path,
2347 struct path *parent,
2348 struct qstr *last,
2349 int *type,
2350 unsigned int flags)
2352 /* only LOOKUP_REVAL is allowed in extra flags */
2353 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2354 parent, last, type);
2358 * mountpoint_last - look up last component for umount
2359 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2360 * @path: pointer to container for result
2362 * This is a special lookup_last function just for umount. In this case, we
2363 * need to resolve the path without doing any revalidation.
2365 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2366 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2367 * in almost all cases, this lookup will be served out of the dcache. The only
2368 * cases where it won't are if nd->last refers to a symlink or the path is
2369 * bogus and it doesn't exist.
2371 * Returns:
2372 * -error: if there was an error during lookup. This includes -ENOENT if the
2373 * lookup found a negative dentry. The nd->path reference will also be
2374 * put in this case.
2376 * 0: if we successfully resolved nd->path and found it to not to be a
2377 * symlink that needs to be followed. "path" will also be populated.
2378 * The nd->path reference will also be put.
2380 * 1: if we successfully resolved nd->last and found it to be a symlink
2381 * that needs to be followed. "path" will be populated with the path
2382 * to the link, and nd->path will *not* be put.
2384 static int
2385 mountpoint_last(struct nameidata *nd, struct path *path)
2387 int error = 0;
2388 struct dentry *dentry;
2389 struct dentry *dir = nd->path.dentry;
2391 /* If we're in rcuwalk, drop out of it to handle last component */
2392 if (nd->flags & LOOKUP_RCU) {
2393 if (unlazy_walk(nd, NULL, 0))
2394 return -ECHILD;
2397 nd->flags &= ~LOOKUP_PARENT;
2399 if (unlikely(nd->last_type != LAST_NORM)) {
2400 error = handle_dots(nd, nd->last_type);
2401 if (error)
2402 return error;
2403 dentry = dget(nd->path.dentry);
2404 goto done;
2407 mutex_lock(&dir->d_inode->i_mutex);
2408 dentry = d_lookup(dir, &nd->last);
2409 if (!dentry) {
2411 * No cached dentry. Mounted dentries are pinned in the cache,
2412 * so that means that this dentry is probably a symlink or the
2413 * path doesn't actually point to a mounted dentry.
2415 dentry = d_alloc(dir, &nd->last);
2416 if (!dentry) {
2417 mutex_unlock(&dir->d_inode->i_mutex);
2418 return -ENOMEM;
2420 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2421 if (IS_ERR(dentry)) {
2422 mutex_unlock(&dir->d_inode->i_mutex);
2423 return PTR_ERR(dentry);
2426 mutex_unlock(&dir->d_inode->i_mutex);
2428 done:
2429 if (d_is_negative(dentry)) {
2430 dput(dentry);
2431 return -ENOENT;
2433 if (nd->depth)
2434 put_link(nd);
2435 path->dentry = dentry;
2436 path->mnt = nd->path.mnt;
2437 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2438 d_backing_inode(dentry), 0);
2439 if (unlikely(error))
2440 return error;
2441 mntget(path->mnt);
2442 follow_mount(path);
2443 return 0;
2447 * path_mountpoint - look up a path to be umounted
2448 * @nd: lookup context
2449 * @flags: lookup flags
2450 * @path: pointer to container for result
2452 * Look up the given name, but don't attempt to revalidate the last component.
2453 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2455 static int
2456 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2458 const char *s = path_init(nd, flags);
2459 int err;
2460 if (IS_ERR(s))
2461 return PTR_ERR(s);
2462 while (!(err = link_path_walk(s, nd)) &&
2463 (err = mountpoint_last(nd, path)) > 0) {
2464 s = trailing_symlink(nd);
2465 if (IS_ERR(s)) {
2466 err = PTR_ERR(s);
2467 break;
2470 terminate_walk(nd);
2471 return err;
2474 static int
2475 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2476 unsigned int flags)
2478 struct nameidata nd;
2479 int error;
2480 if (IS_ERR(name))
2481 return PTR_ERR(name);
2482 set_nameidata(&nd, dfd, name);
2483 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2484 if (unlikely(error == -ECHILD))
2485 error = path_mountpoint(&nd, flags, path);
2486 if (unlikely(error == -ESTALE))
2487 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2488 if (likely(!error))
2489 audit_inode(name, path->dentry, 0);
2490 restore_nameidata();
2491 putname(name);
2492 return error;
2496 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2497 * @dfd: directory file descriptor
2498 * @name: pathname from userland
2499 * @flags: lookup flags
2500 * @path: pointer to container to hold result
2502 * A umount is a special case for path walking. We're not actually interested
2503 * in the inode in this situation, and ESTALE errors can be a problem. We
2504 * simply want track down the dentry and vfsmount attached at the mountpoint
2505 * and avoid revalidating the last component.
2507 * Returns 0 and populates "path" on success.
2510 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2511 struct path *path)
2513 return filename_mountpoint(dfd, getname(name), path, flags);
2517 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2518 unsigned int flags)
2520 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2522 EXPORT_SYMBOL(kern_path_mountpoint);
2524 int __check_sticky(struct inode *dir, struct inode *inode)
2526 kuid_t fsuid = current_fsuid();
2528 if (uid_eq(inode->i_uid, fsuid))
2529 return 0;
2530 if (uid_eq(dir->i_uid, fsuid))
2531 return 0;
2532 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2534 EXPORT_SYMBOL(__check_sticky);
2537 * Check whether we can remove a link victim from directory dir, check
2538 * whether the type of victim is right.
2539 * 1. We can't do it if dir is read-only (done in permission())
2540 * 2. We should have write and exec permissions on dir
2541 * 3. We can't remove anything from append-only dir
2542 * 4. We can't do anything with immutable dir (done in permission())
2543 * 5. If the sticky bit on dir is set we should either
2544 * a. be owner of dir, or
2545 * b. be owner of victim, or
2546 * c. have CAP_FOWNER capability
2547 * 6. If the victim is append-only or immutable we can't do antyhing with
2548 * links pointing to it.
2549 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2550 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2551 * 9. We can't remove a root or mountpoint.
2552 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2553 * nfs_async_unlink().
2555 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2557 struct inode *inode = d_backing_inode(victim);
2558 int error;
2560 if (d_is_negative(victim))
2561 return -ENOENT;
2562 BUG_ON(!inode);
2564 BUG_ON(victim->d_parent->d_inode != dir);
2565 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2567 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2568 if (error)
2569 return error;
2570 if (IS_APPEND(dir))
2571 return -EPERM;
2573 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2574 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2575 return -EPERM;
2576 if (isdir) {
2577 if (!d_is_dir(victim))
2578 return -ENOTDIR;
2579 if (IS_ROOT(victim))
2580 return -EBUSY;
2581 } else if (d_is_dir(victim))
2582 return -EISDIR;
2583 if (IS_DEADDIR(dir))
2584 return -ENOENT;
2585 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2586 return -EBUSY;
2587 return 0;
2590 /* Check whether we can create an object with dentry child in directory
2591 * dir.
2592 * 1. We can't do it if child already exists (open has special treatment for
2593 * this case, but since we are inlined it's OK)
2594 * 2. We can't do it if dir is read-only (done in permission())
2595 * 3. We should have write and exec permissions on dir
2596 * 4. We can't do it if dir is immutable (done in permission())
2598 static inline int may_create(struct inode *dir, struct dentry *child)
2600 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2601 if (child->d_inode)
2602 return -EEXIST;
2603 if (IS_DEADDIR(dir))
2604 return -ENOENT;
2605 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2609 * p1 and p2 should be directories on the same fs.
2611 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2613 struct dentry *p;
2615 if (p1 == p2) {
2616 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2617 return NULL;
2620 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2622 p = d_ancestor(p2, p1);
2623 if (p) {
2624 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2625 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2626 return p;
2629 p = d_ancestor(p1, p2);
2630 if (p) {
2631 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2632 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2633 return p;
2636 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2637 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2638 return NULL;
2640 EXPORT_SYMBOL(lock_rename);
2642 void unlock_rename(struct dentry *p1, struct dentry *p2)
2644 mutex_unlock(&p1->d_inode->i_mutex);
2645 if (p1 != p2) {
2646 mutex_unlock(&p2->d_inode->i_mutex);
2647 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2650 EXPORT_SYMBOL(unlock_rename);
2652 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2653 bool want_excl)
2655 int error = may_create(dir, dentry);
2656 if (error)
2657 return error;
2659 if (!dir->i_op->create)
2660 return -EACCES; /* shouldn't it be ENOSYS? */
2661 mode &= S_IALLUGO;
2662 mode |= S_IFREG;
2663 error = security_inode_create(dir, dentry, mode);
2664 if (error)
2665 return error;
2666 error = dir->i_op->create(dir, dentry, mode, want_excl);
2667 if (!error)
2668 fsnotify_create(dir, dentry);
2669 return error;
2671 EXPORT_SYMBOL(vfs_create);
2673 static int may_open(struct path *path, int acc_mode, int flag)
2675 struct dentry *dentry = path->dentry;
2676 struct inode *inode = dentry->d_inode;
2677 int error;
2679 /* O_PATH? */
2680 if (!acc_mode)
2681 return 0;
2683 if (!inode)
2684 return -ENOENT;
2686 switch (inode->i_mode & S_IFMT) {
2687 case S_IFLNK:
2688 return -ELOOP;
2689 case S_IFDIR:
2690 if (acc_mode & MAY_WRITE)
2691 return -EISDIR;
2692 break;
2693 case S_IFBLK:
2694 case S_IFCHR:
2695 if (path->mnt->mnt_flags & MNT_NODEV)
2696 return -EACCES;
2697 /*FALLTHRU*/
2698 case S_IFIFO:
2699 case S_IFSOCK:
2700 flag &= ~O_TRUNC;
2701 break;
2704 error = inode_permission(inode, acc_mode);
2705 if (error)
2706 return error;
2709 * An append-only file must be opened in append mode for writing.
2711 if (IS_APPEND(inode)) {
2712 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2713 return -EPERM;
2714 if (flag & O_TRUNC)
2715 return -EPERM;
2718 /* O_NOATIME can only be set by the owner or superuser */
2719 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2720 return -EPERM;
2722 return 0;
2725 static int handle_truncate(struct file *filp)
2727 struct path *path = &filp->f_path;
2728 struct inode *inode = path->dentry->d_inode;
2729 int error = get_write_access(inode);
2730 if (error)
2731 return error;
2733 * Refuse to truncate files with mandatory locks held on them.
2735 error = locks_verify_locked(filp);
2736 if (!error)
2737 error = security_path_truncate(path);
2738 if (!error) {
2739 error = do_truncate(path->dentry, 0,
2740 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2741 filp);
2743 put_write_access(inode);
2744 return error;
2747 static inline int open_to_namei_flags(int flag)
2749 if ((flag & O_ACCMODE) == 3)
2750 flag--;
2751 return flag;
2754 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2756 int error = security_path_mknod(dir, dentry, mode, 0);
2757 if (error)
2758 return error;
2760 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2761 if (error)
2762 return error;
2764 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2768 * Attempt to atomically look up, create and open a file from a negative
2769 * dentry.
2771 * Returns 0 if successful. The file will have been created and attached to
2772 * @file by the filesystem calling finish_open().
2774 * Returns 1 if the file was looked up only or didn't need creating. The
2775 * caller will need to perform the open themselves. @path will have been
2776 * updated to point to the new dentry. This may be negative.
2778 * Returns an error code otherwise.
2780 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2781 struct path *path, struct file *file,
2782 const struct open_flags *op,
2783 bool got_write, bool need_lookup,
2784 int *opened)
2786 struct inode *dir = nd->path.dentry->d_inode;
2787 unsigned open_flag = open_to_namei_flags(op->open_flag);
2788 umode_t mode;
2789 int error;
2790 int acc_mode;
2791 int create_error = 0;
2792 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2793 bool excl;
2795 BUG_ON(dentry->d_inode);
2797 /* Don't create child dentry for a dead directory. */
2798 if (unlikely(IS_DEADDIR(dir))) {
2799 error = -ENOENT;
2800 goto out;
2803 mode = op->mode;
2804 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2805 mode &= ~current_umask();
2807 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2808 if (excl)
2809 open_flag &= ~O_TRUNC;
2812 * Checking write permission is tricky, bacuse we don't know if we are
2813 * going to actually need it: O_CREAT opens should work as long as the
2814 * file exists. But checking existence breaks atomicity. The trick is
2815 * to check access and if not granted clear O_CREAT from the flags.
2817 * Another problem is returing the "right" error value (e.g. for an
2818 * O_EXCL open we want to return EEXIST not EROFS).
2820 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2821 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2822 if (!(open_flag & O_CREAT)) {
2824 * No O_CREATE -> atomicity not a requirement -> fall
2825 * back to lookup + open
2827 goto no_open;
2828 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2829 /* Fall back and fail with the right error */
2830 create_error = -EROFS;
2831 goto no_open;
2832 } else {
2833 /* No side effects, safe to clear O_CREAT */
2834 create_error = -EROFS;
2835 open_flag &= ~O_CREAT;
2839 if (open_flag & O_CREAT) {
2840 error = may_o_create(&nd->path, dentry, mode);
2841 if (error) {
2842 create_error = error;
2843 if (open_flag & O_EXCL)
2844 goto no_open;
2845 open_flag &= ~O_CREAT;
2849 if (nd->flags & LOOKUP_DIRECTORY)
2850 open_flag |= O_DIRECTORY;
2852 file->f_path.dentry = DENTRY_NOT_SET;
2853 file->f_path.mnt = nd->path.mnt;
2854 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2855 opened);
2856 if (error < 0) {
2857 if (create_error && error == -ENOENT)
2858 error = create_error;
2859 goto out;
2862 if (error) { /* returned 1, that is */
2863 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2864 error = -EIO;
2865 goto out;
2867 if (file->f_path.dentry) {
2868 dput(dentry);
2869 dentry = file->f_path.dentry;
2871 if (*opened & FILE_CREATED)
2872 fsnotify_create(dir, dentry);
2873 if (!dentry->d_inode) {
2874 WARN_ON(*opened & FILE_CREATED);
2875 if (create_error) {
2876 error = create_error;
2877 goto out;
2879 } else {
2880 if (excl && !(*opened & FILE_CREATED)) {
2881 error = -EEXIST;
2882 goto out;
2885 goto looked_up;
2889 * We didn't have the inode before the open, so check open permission
2890 * here.
2892 acc_mode = op->acc_mode;
2893 if (*opened & FILE_CREATED) {
2894 WARN_ON(!(open_flag & O_CREAT));
2895 fsnotify_create(dir, dentry);
2896 acc_mode = MAY_OPEN;
2898 error = may_open(&file->f_path, acc_mode, open_flag);
2899 if (error)
2900 fput(file);
2902 out:
2903 dput(dentry);
2904 return error;
2906 no_open:
2907 if (need_lookup) {
2908 dentry = lookup_real(dir, dentry, nd->flags);
2909 if (IS_ERR(dentry))
2910 return PTR_ERR(dentry);
2912 if (create_error && !dentry->d_inode) {
2913 error = create_error;
2914 goto out;
2916 looked_up:
2917 path->dentry = dentry;
2918 path->mnt = nd->path.mnt;
2919 return 1;
2923 * Look up and maybe create and open the last component.
2925 * Must be called with i_mutex held on parent.
2927 * Returns 0 if the file was successfully atomically created (if necessary) and
2928 * opened. In this case the file will be returned attached to @file.
2930 * Returns 1 if the file was not completely opened at this time, though lookups
2931 * and creations will have been performed and the dentry returned in @path will
2932 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2933 * specified then a negative dentry may be returned.
2935 * An error code is returned otherwise.
2937 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2938 * cleared otherwise prior to returning.
2940 static int lookup_open(struct nameidata *nd, struct path *path,
2941 struct file *file,
2942 const struct open_flags *op,
2943 bool got_write, int *opened)
2945 struct dentry *dir = nd->path.dentry;
2946 struct inode *dir_inode = dir->d_inode;
2947 struct dentry *dentry;
2948 int error;
2949 bool need_lookup;
2951 *opened &= ~FILE_CREATED;
2952 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2953 if (IS_ERR(dentry))
2954 return PTR_ERR(dentry);
2956 /* Cached positive dentry: will open in f_op->open */
2957 if (!need_lookup && dentry->d_inode)
2958 goto out_no_open;
2960 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2961 return atomic_open(nd, dentry, path, file, op, got_write,
2962 need_lookup, opened);
2965 if (need_lookup) {
2966 BUG_ON(dentry->d_inode);
2968 dentry = lookup_real(dir_inode, dentry, nd->flags);
2969 if (IS_ERR(dentry))
2970 return PTR_ERR(dentry);
2973 /* Negative dentry, just create the file */
2974 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2975 umode_t mode = op->mode;
2976 if (!IS_POSIXACL(dir->d_inode))
2977 mode &= ~current_umask();
2979 * This write is needed to ensure that a
2980 * rw->ro transition does not occur between
2981 * the time when the file is created and when
2982 * a permanent write count is taken through
2983 * the 'struct file' in finish_open().
2985 if (!got_write) {
2986 error = -EROFS;
2987 goto out_dput;
2989 *opened |= FILE_CREATED;
2990 error = security_path_mknod(&nd->path, dentry, mode, 0);
2991 if (error)
2992 goto out_dput;
2993 error = vfs_create(dir->d_inode, dentry, mode,
2994 nd->flags & LOOKUP_EXCL);
2995 if (error)
2996 goto out_dput;
2998 out_no_open:
2999 path->dentry = dentry;
3000 path->mnt = nd->path.mnt;
3001 return 1;
3003 out_dput:
3004 dput(dentry);
3005 return error;
3009 * Handle the last step of open()
3011 static int do_last(struct nameidata *nd,
3012 struct file *file, const struct open_flags *op,
3013 int *opened)
3015 struct dentry *dir = nd->path.dentry;
3016 int open_flag = op->open_flag;
3017 bool will_truncate = (open_flag & O_TRUNC) != 0;
3018 bool got_write = false;
3019 int acc_mode = op->acc_mode;
3020 unsigned seq;
3021 struct inode *inode;
3022 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3023 struct path path;
3024 bool retried = false;
3025 int error;
3027 nd->flags &= ~LOOKUP_PARENT;
3028 nd->flags |= op->intent;
3030 if (nd->last_type != LAST_NORM) {
3031 error = handle_dots(nd, nd->last_type);
3032 if (unlikely(error))
3033 return error;
3034 goto finish_open;
3037 if (!(open_flag & O_CREAT)) {
3038 if (nd->last.name[nd->last.len])
3039 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3040 /* we _can_ be in RCU mode here */
3041 error = lookup_fast(nd, &path, &inode, &seq);
3042 if (likely(!error))
3043 goto finish_lookup;
3045 if (error < 0)
3046 return error;
3048 BUG_ON(nd->inode != dir->d_inode);
3049 } else {
3050 /* create side of things */
3052 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3053 * has been cleared when we got to the last component we are
3054 * about to look up
3056 error = complete_walk(nd);
3057 if (error)
3058 return error;
3060 audit_inode(nd->name, dir, LOOKUP_PARENT);
3061 /* trailing slashes? */
3062 if (unlikely(nd->last.name[nd->last.len]))
3063 return -EISDIR;
3066 retry_lookup:
3067 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3068 error = mnt_want_write(nd->path.mnt);
3069 if (!error)
3070 got_write = true;
3072 * do _not_ fail yet - we might not need that or fail with
3073 * a different error; let lookup_open() decide; we'll be
3074 * dropping this one anyway.
3077 mutex_lock(&dir->d_inode->i_mutex);
3078 error = lookup_open(nd, &path, file, op, got_write, opened);
3079 mutex_unlock(&dir->d_inode->i_mutex);
3081 if (error <= 0) {
3082 if (error)
3083 goto out;
3085 if ((*opened & FILE_CREATED) ||
3086 !S_ISREG(file_inode(file)->i_mode))
3087 will_truncate = false;
3089 audit_inode(nd->name, file->f_path.dentry, 0);
3090 goto opened;
3093 if (*opened & FILE_CREATED) {
3094 /* Don't check for write permission, don't truncate */
3095 open_flag &= ~O_TRUNC;
3096 will_truncate = false;
3097 acc_mode = MAY_OPEN;
3098 path_to_nameidata(&path, nd);
3099 goto finish_open_created;
3103 * create/update audit record if it already exists.
3105 if (d_is_positive(path.dentry))
3106 audit_inode(nd->name, path.dentry, 0);
3109 * If atomic_open() acquired write access it is dropped now due to
3110 * possible mount and symlink following (this might be optimized away if
3111 * necessary...)
3113 if (got_write) {
3114 mnt_drop_write(nd->path.mnt);
3115 got_write = false;
3118 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3119 path_to_nameidata(&path, nd);
3120 return -EEXIST;
3123 error = follow_managed(&path, nd);
3124 if (unlikely(error < 0))
3125 return error;
3127 BUG_ON(nd->flags & LOOKUP_RCU);
3128 seq = 0; /* out of RCU mode, so the value doesn't matter */
3129 if (unlikely(d_is_negative(path.dentry))) {
3130 path_to_nameidata(&path, nd);
3131 return -ENOENT;
3133 inode = d_backing_inode(path.dentry);
3134 finish_lookup:
3135 if (nd->depth)
3136 put_link(nd);
3137 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3138 inode, seq);
3139 if (unlikely(error))
3140 return error;
3142 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3143 path_to_nameidata(&path, nd);
3144 } else {
3145 save_parent.dentry = nd->path.dentry;
3146 save_parent.mnt = mntget(path.mnt);
3147 nd->path.dentry = path.dentry;
3150 nd->inode = inode;
3151 nd->seq = seq;
3152 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3153 finish_open:
3154 error = complete_walk(nd);
3155 if (error) {
3156 path_put(&save_parent);
3157 return error;
3159 audit_inode(nd->name, nd->path.dentry, 0);
3160 if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3161 error = -ELOOP;
3162 goto out;
3164 error = -EISDIR;
3165 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3166 goto out;
3167 error = -ENOTDIR;
3168 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3169 goto out;
3170 if (!d_is_reg(nd->path.dentry))
3171 will_truncate = false;
3173 if (will_truncate) {
3174 error = mnt_want_write(nd->path.mnt);
3175 if (error)
3176 goto out;
3177 got_write = true;
3179 finish_open_created:
3180 error = may_open(&nd->path, acc_mode, open_flag);
3181 if (error)
3182 goto out;
3184 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3185 error = vfs_open(&nd->path, file, current_cred());
3186 if (!error) {
3187 *opened |= FILE_OPENED;
3188 } else {
3189 if (error == -EOPENSTALE)
3190 goto stale_open;
3191 goto out;
3193 opened:
3194 error = open_check_o_direct(file);
3195 if (error)
3196 goto exit_fput;
3197 error = ima_file_check(file, op->acc_mode, *opened);
3198 if (error)
3199 goto exit_fput;
3201 if (will_truncate) {
3202 error = handle_truncate(file);
3203 if (error)
3204 goto exit_fput;
3206 out:
3207 if (unlikely(error > 0)) {
3208 WARN_ON(1);
3209 error = -EINVAL;
3211 if (got_write)
3212 mnt_drop_write(nd->path.mnt);
3213 path_put(&save_parent);
3214 return error;
3216 exit_fput:
3217 fput(file);
3218 goto out;
3220 stale_open:
3221 /* If no saved parent or already retried then can't retry */
3222 if (!save_parent.dentry || retried)
3223 goto out;
3225 BUG_ON(save_parent.dentry != dir);
3226 path_put(&nd->path);
3227 nd->path = save_parent;
3228 nd->inode = dir->d_inode;
3229 save_parent.mnt = NULL;
3230 save_parent.dentry = NULL;
3231 if (got_write) {
3232 mnt_drop_write(nd->path.mnt);
3233 got_write = false;
3235 retried = true;
3236 goto retry_lookup;
3239 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3240 const struct open_flags *op,
3241 struct file *file, int *opened)
3243 static const struct qstr name = QSTR_INIT("/", 1);
3244 struct dentry *child;
3245 struct inode *dir;
3246 struct path path;
3247 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3248 if (unlikely(error))
3249 return error;
3250 error = mnt_want_write(path.mnt);
3251 if (unlikely(error))
3252 goto out;
3253 dir = path.dentry->d_inode;
3254 /* we want directory to be writable */
3255 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3256 if (error)
3257 goto out2;
3258 if (!dir->i_op->tmpfile) {
3259 error = -EOPNOTSUPP;
3260 goto out2;
3262 child = d_alloc(path.dentry, &name);
3263 if (unlikely(!child)) {
3264 error = -ENOMEM;
3265 goto out2;
3267 dput(path.dentry);
3268 path.dentry = child;
3269 error = dir->i_op->tmpfile(dir, child, op->mode);
3270 if (error)
3271 goto out2;
3272 audit_inode(nd->name, child, 0);
3273 /* Don't check for other permissions, the inode was just created */
3274 error = may_open(&path, MAY_OPEN, op->open_flag);
3275 if (error)
3276 goto out2;
3277 file->f_path.mnt = path.mnt;
3278 error = finish_open(file, child, NULL, opened);
3279 if (error)
3280 goto out2;
3281 error = open_check_o_direct(file);
3282 if (error) {
3283 fput(file);
3284 } else if (!(op->open_flag & O_EXCL)) {
3285 struct inode *inode = file_inode(file);
3286 spin_lock(&inode->i_lock);
3287 inode->i_state |= I_LINKABLE;
3288 spin_unlock(&inode->i_lock);
3290 out2:
3291 mnt_drop_write(path.mnt);
3292 out:
3293 path_put(&path);
3294 return error;
3297 static struct file *path_openat(struct nameidata *nd,
3298 const struct open_flags *op, unsigned flags)
3300 const char *s;
3301 struct file *file;
3302 int opened = 0;
3303 int error;
3305 file = get_empty_filp();
3306 if (IS_ERR(file))
3307 return file;
3309 file->f_flags = op->open_flag;
3311 if (unlikely(file->f_flags & __O_TMPFILE)) {
3312 error = do_tmpfile(nd, flags, op, file, &opened);
3313 goto out2;
3316 s = path_init(nd, flags);
3317 if (IS_ERR(s)) {
3318 put_filp(file);
3319 return ERR_CAST(s);
3321 while (!(error = link_path_walk(s, nd)) &&
3322 (error = do_last(nd, file, op, &opened)) > 0) {
3323 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3324 s = trailing_symlink(nd);
3325 if (IS_ERR(s)) {
3326 error = PTR_ERR(s);
3327 break;
3330 terminate_walk(nd);
3331 out2:
3332 if (!(opened & FILE_OPENED)) {
3333 BUG_ON(!error);
3334 put_filp(file);
3336 if (unlikely(error)) {
3337 if (error == -EOPENSTALE) {
3338 if (flags & LOOKUP_RCU)
3339 error = -ECHILD;
3340 else
3341 error = -ESTALE;
3343 file = ERR_PTR(error);
3345 return file;
3348 struct file *do_filp_open(int dfd, struct filename *pathname,
3349 const struct open_flags *op)
3351 struct nameidata nd;
3352 int flags = op->lookup_flags;
3353 struct file *filp;
3355 set_nameidata(&nd, dfd, pathname);
3356 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3357 if (unlikely(filp == ERR_PTR(-ECHILD)))
3358 filp = path_openat(&nd, op, flags);
3359 if (unlikely(filp == ERR_PTR(-ESTALE)))
3360 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3361 restore_nameidata();
3362 return filp;
3365 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3366 const char *name, const struct open_flags *op)
3368 struct nameidata nd;
3369 struct file *file;
3370 struct filename *filename;
3371 int flags = op->lookup_flags | LOOKUP_ROOT;
3373 nd.root.mnt = mnt;
3374 nd.root.dentry = dentry;
3376 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3377 return ERR_PTR(-ELOOP);
3379 filename = getname_kernel(name);
3380 if (IS_ERR(filename))
3381 return ERR_CAST(filename);
3383 set_nameidata(&nd, -1, filename);
3384 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3385 if (unlikely(file == ERR_PTR(-ECHILD)))
3386 file = path_openat(&nd, op, flags);
3387 if (unlikely(file == ERR_PTR(-ESTALE)))
3388 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3389 restore_nameidata();
3390 putname(filename);
3391 return file;
3394 static struct dentry *filename_create(int dfd, struct filename *name,
3395 struct path *path, unsigned int lookup_flags)
3397 struct dentry *dentry = ERR_PTR(-EEXIST);
3398 struct qstr last;
3399 int type;
3400 int err2;
3401 int error;
3402 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3405 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3406 * other flags passed in are ignored!
3408 lookup_flags &= LOOKUP_REVAL;
3410 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3411 if (IS_ERR(name))
3412 return ERR_CAST(name);
3415 * Yucky last component or no last component at all?
3416 * (foo/., foo/.., /////)
3418 if (unlikely(type != LAST_NORM))
3419 goto out;
3421 /* don't fail immediately if it's r/o, at least try to report other errors */
3422 err2 = mnt_want_write(path->mnt);
3424 * Do the final lookup.
3426 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3427 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3428 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3429 if (IS_ERR(dentry))
3430 goto unlock;
3432 error = -EEXIST;
3433 if (d_is_positive(dentry))
3434 goto fail;
3437 * Special case - lookup gave negative, but... we had foo/bar/
3438 * From the vfs_mknod() POV we just have a negative dentry -
3439 * all is fine. Let's be bastards - you had / on the end, you've
3440 * been asking for (non-existent) directory. -ENOENT for you.
3442 if (unlikely(!is_dir && last.name[last.len])) {
3443 error = -ENOENT;
3444 goto fail;
3446 if (unlikely(err2)) {
3447 error = err2;
3448 goto fail;
3450 putname(name);
3451 return dentry;
3452 fail:
3453 dput(dentry);
3454 dentry = ERR_PTR(error);
3455 unlock:
3456 mutex_unlock(&path->dentry->d_inode->i_mutex);
3457 if (!err2)
3458 mnt_drop_write(path->mnt);
3459 out:
3460 path_put(path);
3461 putname(name);
3462 return dentry;
3465 struct dentry *kern_path_create(int dfd, const char *pathname,
3466 struct path *path, unsigned int lookup_flags)
3468 return filename_create(dfd, getname_kernel(pathname),
3469 path, lookup_flags);
3471 EXPORT_SYMBOL(kern_path_create);
3473 void done_path_create(struct path *path, struct dentry *dentry)
3475 dput(dentry);
3476 mutex_unlock(&path->dentry->d_inode->i_mutex);
3477 mnt_drop_write(path->mnt);
3478 path_put(path);
3480 EXPORT_SYMBOL(done_path_create);
3482 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3483 struct path *path, unsigned int lookup_flags)
3485 return filename_create(dfd, getname(pathname), path, lookup_flags);
3487 EXPORT_SYMBOL(user_path_create);
3489 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3491 int error = may_create(dir, dentry);
3493 if (error)
3494 return error;
3496 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3497 return -EPERM;
3499 if (!dir->i_op->mknod)
3500 return -EPERM;
3502 error = devcgroup_inode_mknod(mode, dev);
3503 if (error)
3504 return error;
3506 error = security_inode_mknod(dir, dentry, mode, dev);
3507 if (error)
3508 return error;
3510 error = dir->i_op->mknod(dir, dentry, mode, dev);
3511 if (!error)
3512 fsnotify_create(dir, dentry);
3513 return error;
3515 EXPORT_SYMBOL(vfs_mknod);
3517 static int may_mknod(umode_t mode)
3519 switch (mode & S_IFMT) {
3520 case S_IFREG:
3521 case S_IFCHR:
3522 case S_IFBLK:
3523 case S_IFIFO:
3524 case S_IFSOCK:
3525 case 0: /* zero mode translates to S_IFREG */
3526 return 0;
3527 case S_IFDIR:
3528 return -EPERM;
3529 default:
3530 return -EINVAL;
3534 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3535 unsigned, dev)
3537 struct dentry *dentry;
3538 struct path path;
3539 int error;
3540 unsigned int lookup_flags = 0;
3542 error = may_mknod(mode);
3543 if (error)
3544 return error;
3545 retry:
3546 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3547 if (IS_ERR(dentry))
3548 return PTR_ERR(dentry);
3550 if (!IS_POSIXACL(path.dentry->d_inode))
3551 mode &= ~current_umask();
3552 error = security_path_mknod(&path, dentry, mode, dev);
3553 if (error)
3554 goto out;
3555 switch (mode & S_IFMT) {
3556 case 0: case S_IFREG:
3557 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3558 break;
3559 case S_IFCHR: case S_IFBLK:
3560 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3561 new_decode_dev(dev));
3562 break;
3563 case S_IFIFO: case S_IFSOCK:
3564 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3565 break;
3567 out:
3568 done_path_create(&path, dentry);
3569 if (retry_estale(error, lookup_flags)) {
3570 lookup_flags |= LOOKUP_REVAL;
3571 goto retry;
3573 return error;
3576 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3578 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3581 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3583 int error = may_create(dir, dentry);
3584 unsigned max_links = dir->i_sb->s_max_links;
3586 if (error)
3587 return error;
3589 if (!dir->i_op->mkdir)
3590 return -EPERM;
3592 mode &= (S_IRWXUGO|S_ISVTX);
3593 error = security_inode_mkdir(dir, dentry, mode);
3594 if (error)
3595 return error;
3597 if (max_links && dir->i_nlink >= max_links)
3598 return -EMLINK;
3600 error = dir->i_op->mkdir(dir, dentry, mode);
3601 if (!error)
3602 fsnotify_mkdir(dir, dentry);
3603 return error;
3605 EXPORT_SYMBOL(vfs_mkdir);
3607 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3609 struct dentry *dentry;
3610 struct path path;
3611 int error;
3612 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3614 retry:
3615 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3616 if (IS_ERR(dentry))
3617 return PTR_ERR(dentry);
3619 if (!IS_POSIXACL(path.dentry->d_inode))
3620 mode &= ~current_umask();
3621 error = security_path_mkdir(&path, dentry, mode);
3622 if (!error)
3623 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3624 done_path_create(&path, dentry);
3625 if (retry_estale(error, lookup_flags)) {
3626 lookup_flags |= LOOKUP_REVAL;
3627 goto retry;
3629 return error;
3632 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3634 return sys_mkdirat(AT_FDCWD, pathname, mode);
3638 * The dentry_unhash() helper will try to drop the dentry early: we
3639 * should have a usage count of 1 if we're the only user of this
3640 * dentry, and if that is true (possibly after pruning the dcache),
3641 * then we drop the dentry now.
3643 * A low-level filesystem can, if it choses, legally
3644 * do a
3646 * if (!d_unhashed(dentry))
3647 * return -EBUSY;
3649 * if it cannot handle the case of removing a directory
3650 * that is still in use by something else..
3652 void dentry_unhash(struct dentry *dentry)
3654 shrink_dcache_parent(dentry);
3655 spin_lock(&dentry->d_lock);
3656 if (dentry->d_lockref.count == 1)
3657 __d_drop(dentry);
3658 spin_unlock(&dentry->d_lock);
3660 EXPORT_SYMBOL(dentry_unhash);
3662 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3664 int error = may_delete(dir, dentry, 1);
3666 if (error)
3667 return error;
3669 if (!dir->i_op->rmdir)
3670 return -EPERM;
3672 dget(dentry);
3673 mutex_lock(&dentry->d_inode->i_mutex);
3675 error = -EBUSY;
3676 if (is_local_mountpoint(dentry))
3677 goto out;
3679 error = security_inode_rmdir(dir, dentry);
3680 if (error)
3681 goto out;
3683 shrink_dcache_parent(dentry);
3684 error = dir->i_op->rmdir(dir, dentry);
3685 if (error)
3686 goto out;
3688 dentry->d_inode->i_flags |= S_DEAD;
3689 dont_mount(dentry);
3690 detach_mounts(dentry);
3692 out:
3693 mutex_unlock(&dentry->d_inode->i_mutex);
3694 dput(dentry);
3695 if (!error)
3696 d_delete(dentry);
3697 return error;
3699 EXPORT_SYMBOL(vfs_rmdir);
3701 static long do_rmdir(int dfd, const char __user *pathname)
3703 int error = 0;
3704 struct filename *name;
3705 struct dentry *dentry;
3706 struct path path;
3707 struct qstr last;
3708 int type;
3709 unsigned int lookup_flags = 0;
3710 retry:
3711 name = user_path_parent(dfd, pathname,
3712 &path, &last, &type, lookup_flags);
3713 if (IS_ERR(name))
3714 return PTR_ERR(name);
3716 switch (type) {
3717 case LAST_DOTDOT:
3718 error = -ENOTEMPTY;
3719 goto exit1;
3720 case LAST_DOT:
3721 error = -EINVAL;
3722 goto exit1;
3723 case LAST_ROOT:
3724 error = -EBUSY;
3725 goto exit1;
3728 error = mnt_want_write(path.mnt);
3729 if (error)
3730 goto exit1;
3732 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3733 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3734 error = PTR_ERR(dentry);
3735 if (IS_ERR(dentry))
3736 goto exit2;
3737 if (!dentry->d_inode) {
3738 error = -ENOENT;
3739 goto exit3;
3741 error = security_path_rmdir(&path, dentry);
3742 if (error)
3743 goto exit3;
3744 error = vfs_rmdir(path.dentry->d_inode, dentry);
3745 exit3:
3746 dput(dentry);
3747 exit2:
3748 mutex_unlock(&path.dentry->d_inode->i_mutex);
3749 mnt_drop_write(path.mnt);
3750 exit1:
3751 path_put(&path);
3752 putname(name);
3753 if (retry_estale(error, lookup_flags)) {
3754 lookup_flags |= LOOKUP_REVAL;
3755 goto retry;
3757 return error;
3760 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3762 return do_rmdir(AT_FDCWD, pathname);
3766 * vfs_unlink - unlink a filesystem object
3767 * @dir: parent directory
3768 * @dentry: victim
3769 * @delegated_inode: returns victim inode, if the inode is delegated.
3771 * The caller must hold dir->i_mutex.
3773 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3774 * return a reference to the inode in delegated_inode. The caller
3775 * should then break the delegation on that inode and retry. Because
3776 * breaking a delegation may take a long time, the caller should drop
3777 * dir->i_mutex before doing so.
3779 * Alternatively, a caller may pass NULL for delegated_inode. This may
3780 * be appropriate for callers that expect the underlying filesystem not
3781 * to be NFS exported.
3783 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3785 struct inode *target = dentry->d_inode;
3786 int error = may_delete(dir, dentry, 0);
3788 if (error)
3789 return error;
3791 if (!dir->i_op->unlink)
3792 return -EPERM;
3794 mutex_lock(&target->i_mutex);
3795 if (is_local_mountpoint(dentry))
3796 error = -EBUSY;
3797 else {
3798 error = security_inode_unlink(dir, dentry);
3799 if (!error) {
3800 error = try_break_deleg(target, delegated_inode);
3801 if (error)
3802 goto out;
3803 error = dir->i_op->unlink(dir, dentry);
3804 if (!error) {
3805 dont_mount(dentry);
3806 detach_mounts(dentry);
3810 out:
3811 mutex_unlock(&target->i_mutex);
3813 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3814 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3815 fsnotify_link_count(target);
3816 d_delete(dentry);
3819 return error;
3821 EXPORT_SYMBOL(vfs_unlink);
3824 * Make sure that the actual truncation of the file will occur outside its
3825 * directory's i_mutex. Truncate can take a long time if there is a lot of
3826 * writeout happening, and we don't want to prevent access to the directory
3827 * while waiting on the I/O.
3829 static long do_unlinkat(int dfd, const char __user *pathname)
3831 int error;
3832 struct filename *name;
3833 struct dentry *dentry;
3834 struct path path;
3835 struct qstr last;
3836 int type;
3837 struct inode *inode = NULL;
3838 struct inode *delegated_inode = NULL;
3839 unsigned int lookup_flags = 0;
3840 retry:
3841 name = user_path_parent(dfd, pathname,
3842 &path, &last, &type, lookup_flags);
3843 if (IS_ERR(name))
3844 return PTR_ERR(name);
3846 error = -EISDIR;
3847 if (type != LAST_NORM)
3848 goto exit1;
3850 error = mnt_want_write(path.mnt);
3851 if (error)
3852 goto exit1;
3853 retry_deleg:
3854 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3855 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3856 error = PTR_ERR(dentry);
3857 if (!IS_ERR(dentry)) {
3858 /* Why not before? Because we want correct error value */
3859 if (last.name[last.len])
3860 goto slashes;
3861 inode = dentry->d_inode;
3862 if (d_is_negative(dentry))
3863 goto slashes;
3864 ihold(inode);
3865 error = security_path_unlink(&path, dentry);
3866 if (error)
3867 goto exit2;
3868 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3869 exit2:
3870 dput(dentry);
3872 mutex_unlock(&path.dentry->d_inode->i_mutex);
3873 if (inode)
3874 iput(inode); /* truncate the inode here */
3875 inode = NULL;
3876 if (delegated_inode) {
3877 error = break_deleg_wait(&delegated_inode);
3878 if (!error)
3879 goto retry_deleg;
3881 mnt_drop_write(path.mnt);
3882 exit1:
3883 path_put(&path);
3884 putname(name);
3885 if (retry_estale(error, lookup_flags)) {
3886 lookup_flags |= LOOKUP_REVAL;
3887 inode = NULL;
3888 goto retry;
3890 return error;
3892 slashes:
3893 if (d_is_negative(dentry))
3894 error = -ENOENT;
3895 else if (d_is_dir(dentry))
3896 error = -EISDIR;
3897 else
3898 error = -ENOTDIR;
3899 goto exit2;
3902 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3904 if ((flag & ~AT_REMOVEDIR) != 0)
3905 return -EINVAL;
3907 if (flag & AT_REMOVEDIR)
3908 return do_rmdir(dfd, pathname);
3910 return do_unlinkat(dfd, pathname);
3913 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3915 return do_unlinkat(AT_FDCWD, pathname);
3918 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3920 int error = may_create(dir, dentry);
3922 if (error)
3923 return error;
3925 if (!dir->i_op->symlink)
3926 return -EPERM;
3928 error = security_inode_symlink(dir, dentry, oldname);
3929 if (error)
3930 return error;
3932 error = dir->i_op->symlink(dir, dentry, oldname);
3933 if (!error)
3934 fsnotify_create(dir, dentry);
3935 return error;
3937 EXPORT_SYMBOL(vfs_symlink);
3939 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3940 int, newdfd, const char __user *, newname)
3942 int error;
3943 struct filename *from;
3944 struct dentry *dentry;
3945 struct path path;
3946 unsigned int lookup_flags = 0;
3948 from = getname(oldname);
3949 if (IS_ERR(from))
3950 return PTR_ERR(from);
3951 retry:
3952 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3953 error = PTR_ERR(dentry);
3954 if (IS_ERR(dentry))
3955 goto out_putname;
3957 error = security_path_symlink(&path, dentry, from->name);
3958 if (!error)
3959 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3960 done_path_create(&path, dentry);
3961 if (retry_estale(error, lookup_flags)) {
3962 lookup_flags |= LOOKUP_REVAL;
3963 goto retry;
3965 out_putname:
3966 putname(from);
3967 return error;
3970 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3972 return sys_symlinkat(oldname, AT_FDCWD, newname);
3976 * vfs_link - create a new link
3977 * @old_dentry: object to be linked
3978 * @dir: new parent
3979 * @new_dentry: where to create the new link
3980 * @delegated_inode: returns inode needing a delegation break
3982 * The caller must hold dir->i_mutex
3984 * If vfs_link discovers a delegation on the to-be-linked file in need
3985 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3986 * inode in delegated_inode. The caller should then break the delegation
3987 * and retry. Because breaking a delegation may take a long time, the
3988 * caller should drop the i_mutex before doing so.
3990 * Alternatively, a caller may pass NULL for delegated_inode. This may
3991 * be appropriate for callers that expect the underlying filesystem not
3992 * to be NFS exported.
3994 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3996 struct inode *inode = old_dentry->d_inode;
3997 unsigned max_links = dir->i_sb->s_max_links;
3998 int error;
4000 if (!inode)
4001 return -ENOENT;
4003 error = may_create(dir, new_dentry);
4004 if (error)
4005 return error;
4007 if (dir->i_sb != inode->i_sb)
4008 return -EXDEV;
4011 * A link to an append-only or immutable file cannot be created.
4013 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4014 return -EPERM;
4015 if (!dir->i_op->link)
4016 return -EPERM;
4017 if (S_ISDIR(inode->i_mode))
4018 return -EPERM;
4020 error = security_inode_link(old_dentry, dir, new_dentry);
4021 if (error)
4022 return error;
4024 mutex_lock(&inode->i_mutex);
4025 /* Make sure we don't allow creating hardlink to an unlinked file */
4026 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4027 error = -ENOENT;
4028 else if (max_links && inode->i_nlink >= max_links)
4029 error = -EMLINK;
4030 else {
4031 error = try_break_deleg(inode, delegated_inode);
4032 if (!error)
4033 error = dir->i_op->link(old_dentry, dir, new_dentry);
4036 if (!error && (inode->i_state & I_LINKABLE)) {
4037 spin_lock(&inode->i_lock);
4038 inode->i_state &= ~I_LINKABLE;
4039 spin_unlock(&inode->i_lock);
4041 mutex_unlock(&inode->i_mutex);
4042 if (!error)
4043 fsnotify_link(dir, inode, new_dentry);
4044 return error;
4046 EXPORT_SYMBOL(vfs_link);
4049 * Hardlinks are often used in delicate situations. We avoid
4050 * security-related surprises by not following symlinks on the
4051 * newname. --KAB
4053 * We don't follow them on the oldname either to be compatible
4054 * with linux 2.0, and to avoid hard-linking to directories
4055 * and other special files. --ADM
4057 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4058 int, newdfd, const char __user *, newname, int, flags)
4060 struct dentry *new_dentry;
4061 struct path old_path, new_path;
4062 struct inode *delegated_inode = NULL;
4063 int how = 0;
4064 int error;
4066 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4067 return -EINVAL;
4069 * To use null names we require CAP_DAC_READ_SEARCH
4070 * This ensures that not everyone will be able to create
4071 * handlink using the passed filedescriptor.
4073 if (flags & AT_EMPTY_PATH) {
4074 if (!capable(CAP_DAC_READ_SEARCH))
4075 return -ENOENT;
4076 how = LOOKUP_EMPTY;
4079 if (flags & AT_SYMLINK_FOLLOW)
4080 how |= LOOKUP_FOLLOW;
4081 retry:
4082 error = user_path_at(olddfd, oldname, how, &old_path);
4083 if (error)
4084 return error;
4086 new_dentry = user_path_create(newdfd, newname, &new_path,
4087 (how & LOOKUP_REVAL));
4088 error = PTR_ERR(new_dentry);
4089 if (IS_ERR(new_dentry))
4090 goto out;
4092 error = -EXDEV;
4093 if (old_path.mnt != new_path.mnt)
4094 goto out_dput;
4095 error = may_linkat(&old_path);
4096 if (unlikely(error))
4097 goto out_dput;
4098 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4099 if (error)
4100 goto out_dput;
4101 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4102 out_dput:
4103 done_path_create(&new_path, new_dentry);
4104 if (delegated_inode) {
4105 error = break_deleg_wait(&delegated_inode);
4106 if (!error) {
4107 path_put(&old_path);
4108 goto retry;
4111 if (retry_estale(error, how)) {
4112 path_put(&old_path);
4113 how |= LOOKUP_REVAL;
4114 goto retry;
4116 out:
4117 path_put(&old_path);
4119 return error;
4122 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4124 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4128 * vfs_rename - rename a filesystem object
4129 * @old_dir: parent of source
4130 * @old_dentry: source
4131 * @new_dir: parent of destination
4132 * @new_dentry: destination
4133 * @delegated_inode: returns an inode needing a delegation break
4134 * @flags: rename flags
4136 * The caller must hold multiple mutexes--see lock_rename()).
4138 * If vfs_rename discovers a delegation in need of breaking at either
4139 * the source or destination, it will return -EWOULDBLOCK and return a
4140 * reference to the inode in delegated_inode. The caller should then
4141 * break the delegation and retry. Because breaking a delegation may
4142 * take a long time, the caller should drop all locks before doing
4143 * so.
4145 * Alternatively, a caller may pass NULL for delegated_inode. This may
4146 * be appropriate for callers that expect the underlying filesystem not
4147 * to be NFS exported.
4149 * The worst of all namespace operations - renaming directory. "Perverted"
4150 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4151 * Problems:
4152 * a) we can get into loop creation.
4153 * b) race potential - two innocent renames can create a loop together.
4154 * That's where 4.4 screws up. Current fix: serialization on
4155 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4156 * story.
4157 * c) we have to lock _four_ objects - parents and victim (if it exists),
4158 * and source (if it is not a directory).
4159 * And that - after we got ->i_mutex on parents (until then we don't know
4160 * whether the target exists). Solution: try to be smart with locking
4161 * order for inodes. We rely on the fact that tree topology may change
4162 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4163 * move will be locked. Thus we can rank directories by the tree
4164 * (ancestors first) and rank all non-directories after them.
4165 * That works since everybody except rename does "lock parent, lookup,
4166 * lock child" and rename is under ->s_vfs_rename_mutex.
4167 * HOWEVER, it relies on the assumption that any object with ->lookup()
4168 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4169 * we'd better make sure that there's no link(2) for them.
4170 * d) conversion from fhandle to dentry may come in the wrong moment - when
4171 * we are removing the target. Solution: we will have to grab ->i_mutex
4172 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4173 * ->i_mutex on parents, which works but leads to some truly excessive
4174 * locking].
4176 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4177 struct inode *new_dir, struct dentry *new_dentry,
4178 struct inode **delegated_inode, unsigned int flags)
4180 int error;
4181 bool is_dir = d_is_dir(old_dentry);
4182 struct inode *source = old_dentry->d_inode;
4183 struct inode *target = new_dentry->d_inode;
4184 bool new_is_dir = false;
4185 unsigned max_links = new_dir->i_sb->s_max_links;
4186 struct name_snapshot old_name;
4189 * Check source == target.
4190 * On overlayfs need to look at underlying inodes.
4192 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4193 return 0;
4195 error = may_delete(old_dir, old_dentry, is_dir);
4196 if (error)
4197 return error;
4199 if (!target) {
4200 error = may_create(new_dir, new_dentry);
4201 } else {
4202 new_is_dir = d_is_dir(new_dentry);
4204 if (!(flags & RENAME_EXCHANGE))
4205 error = may_delete(new_dir, new_dentry, is_dir);
4206 else
4207 error = may_delete(new_dir, new_dentry, new_is_dir);
4209 if (error)
4210 return error;
4212 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4213 return -EPERM;
4215 if (flags && !old_dir->i_op->rename2)
4216 return -EINVAL;
4219 * If we are going to change the parent - check write permissions,
4220 * we'll need to flip '..'.
4222 if (new_dir != old_dir) {
4223 if (is_dir) {
4224 error = inode_permission(source, MAY_WRITE);
4225 if (error)
4226 return error;
4228 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4229 error = inode_permission(target, MAY_WRITE);
4230 if (error)
4231 return error;
4235 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4236 flags);
4237 if (error)
4238 return error;
4240 take_dentry_name_snapshot(&old_name, old_dentry);
4241 dget(new_dentry);
4242 if (!is_dir || (flags & RENAME_EXCHANGE))
4243 lock_two_nondirectories(source, target);
4244 else if (target)
4245 mutex_lock(&target->i_mutex);
4247 error = -EBUSY;
4248 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4249 goto out;
4251 if (max_links && new_dir != old_dir) {
4252 error = -EMLINK;
4253 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4254 goto out;
4255 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4256 old_dir->i_nlink >= max_links)
4257 goto out;
4259 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4260 shrink_dcache_parent(new_dentry);
4261 if (!is_dir) {
4262 error = try_break_deleg(source, delegated_inode);
4263 if (error)
4264 goto out;
4266 if (target && !new_is_dir) {
4267 error = try_break_deleg(target, delegated_inode);
4268 if (error)
4269 goto out;
4271 if (!old_dir->i_op->rename2) {
4272 error = old_dir->i_op->rename(old_dir, old_dentry,
4273 new_dir, new_dentry);
4274 } else {
4275 WARN_ON(old_dir->i_op->rename != NULL);
4276 error = old_dir->i_op->rename2(old_dir, old_dentry,
4277 new_dir, new_dentry, flags);
4279 if (error)
4280 goto out;
4282 if (!(flags & RENAME_EXCHANGE) && target) {
4283 if (is_dir)
4284 target->i_flags |= S_DEAD;
4285 dont_mount(new_dentry);
4286 detach_mounts(new_dentry);
4288 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4289 if (!(flags & RENAME_EXCHANGE))
4290 d_move(old_dentry, new_dentry);
4291 else
4292 d_exchange(old_dentry, new_dentry);
4294 out:
4295 if (!is_dir || (flags & RENAME_EXCHANGE))
4296 unlock_two_nondirectories(source, target);
4297 else if (target)
4298 mutex_unlock(&target->i_mutex);
4299 dput(new_dentry);
4300 if (!error) {
4301 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4302 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4303 if (flags & RENAME_EXCHANGE) {
4304 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4305 new_is_dir, NULL, new_dentry);
4308 release_dentry_name_snapshot(&old_name);
4310 return error;
4312 EXPORT_SYMBOL(vfs_rename);
4314 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4315 int, newdfd, const char __user *, newname, unsigned int, flags)
4317 struct dentry *old_dentry, *new_dentry;
4318 struct dentry *trap;
4319 struct path old_path, new_path;
4320 struct qstr old_last, new_last;
4321 int old_type, new_type;
4322 struct inode *delegated_inode = NULL;
4323 struct filename *from;
4324 struct filename *to;
4325 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4326 bool should_retry = false;
4327 int error;
4329 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4330 return -EINVAL;
4332 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4333 (flags & RENAME_EXCHANGE))
4334 return -EINVAL;
4336 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4337 return -EPERM;
4339 if (flags & RENAME_EXCHANGE)
4340 target_flags = 0;
4342 retry:
4343 from = user_path_parent(olddfd, oldname,
4344 &old_path, &old_last, &old_type, lookup_flags);
4345 if (IS_ERR(from)) {
4346 error = PTR_ERR(from);
4347 goto exit;
4350 to = user_path_parent(newdfd, newname,
4351 &new_path, &new_last, &new_type, lookup_flags);
4352 if (IS_ERR(to)) {
4353 error = PTR_ERR(to);
4354 goto exit1;
4357 error = -EXDEV;
4358 if (old_path.mnt != new_path.mnt)
4359 goto exit2;
4361 error = -EBUSY;
4362 if (old_type != LAST_NORM)
4363 goto exit2;
4365 if (flags & RENAME_NOREPLACE)
4366 error = -EEXIST;
4367 if (new_type != LAST_NORM)
4368 goto exit2;
4370 error = mnt_want_write(old_path.mnt);
4371 if (error)
4372 goto exit2;
4374 retry_deleg:
4375 trap = lock_rename(new_path.dentry, old_path.dentry);
4377 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4378 error = PTR_ERR(old_dentry);
4379 if (IS_ERR(old_dentry))
4380 goto exit3;
4381 /* source must exist */
4382 error = -ENOENT;
4383 if (d_is_negative(old_dentry))
4384 goto exit4;
4385 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4386 error = PTR_ERR(new_dentry);
4387 if (IS_ERR(new_dentry))
4388 goto exit4;
4389 error = -EEXIST;
4390 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4391 goto exit5;
4392 if (flags & RENAME_EXCHANGE) {
4393 error = -ENOENT;
4394 if (d_is_negative(new_dentry))
4395 goto exit5;
4397 if (!d_is_dir(new_dentry)) {
4398 error = -ENOTDIR;
4399 if (new_last.name[new_last.len])
4400 goto exit5;
4403 /* unless the source is a directory trailing slashes give -ENOTDIR */
4404 if (!d_is_dir(old_dentry)) {
4405 error = -ENOTDIR;
4406 if (old_last.name[old_last.len])
4407 goto exit5;
4408 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4409 goto exit5;
4411 /* source should not be ancestor of target */
4412 error = -EINVAL;
4413 if (old_dentry == trap)
4414 goto exit5;
4415 /* target should not be an ancestor of source */
4416 if (!(flags & RENAME_EXCHANGE))
4417 error = -ENOTEMPTY;
4418 if (new_dentry == trap)
4419 goto exit5;
4421 error = security_path_rename(&old_path, old_dentry,
4422 &new_path, new_dentry, flags);
4423 if (error)
4424 goto exit5;
4425 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4426 new_path.dentry->d_inode, new_dentry,
4427 &delegated_inode, flags);
4428 exit5:
4429 dput(new_dentry);
4430 exit4:
4431 dput(old_dentry);
4432 exit3:
4433 unlock_rename(new_path.dentry, old_path.dentry);
4434 if (delegated_inode) {
4435 error = break_deleg_wait(&delegated_inode);
4436 if (!error)
4437 goto retry_deleg;
4439 mnt_drop_write(old_path.mnt);
4440 exit2:
4441 if (retry_estale(error, lookup_flags))
4442 should_retry = true;
4443 path_put(&new_path);
4444 putname(to);
4445 exit1:
4446 path_put(&old_path);
4447 putname(from);
4448 if (should_retry) {
4449 should_retry = false;
4450 lookup_flags |= LOOKUP_REVAL;
4451 goto retry;
4453 exit:
4454 return error;
4457 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4458 int, newdfd, const char __user *, newname)
4460 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4463 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4465 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4468 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4470 int error = may_create(dir, dentry);
4471 if (error)
4472 return error;
4474 if (!dir->i_op->mknod)
4475 return -EPERM;
4477 return dir->i_op->mknod(dir, dentry,
4478 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4480 EXPORT_SYMBOL(vfs_whiteout);
4482 int readlink_copy(char __user *buffer, int buflen, const char *link)
4484 int len = PTR_ERR(link);
4485 if (IS_ERR(link))
4486 goto out;
4488 len = strlen(link);
4489 if (len > (unsigned) buflen)
4490 len = buflen;
4491 if (copy_to_user(buffer, link, len))
4492 len = -EFAULT;
4493 out:
4494 return len;
4496 EXPORT_SYMBOL(readlink_copy);
4499 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4500 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4501 * using) it for any given inode is up to filesystem.
4503 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4505 void *cookie;
4506 struct inode *inode = d_inode(dentry);
4507 const char *link = inode->i_link;
4508 int res;
4510 if (!link) {
4511 link = inode->i_op->follow_link(dentry, &cookie);
4512 if (IS_ERR(link))
4513 return PTR_ERR(link);
4515 res = readlink_copy(buffer, buflen, link);
4516 if (inode->i_op->put_link)
4517 inode->i_op->put_link(inode, cookie);
4518 return res;
4520 EXPORT_SYMBOL(generic_readlink);
4522 /* get the link contents into pagecache */
4523 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4525 char *kaddr;
4526 struct page *page;
4527 struct address_space *mapping = dentry->d_inode->i_mapping;
4528 page = read_mapping_page(mapping, 0, NULL);
4529 if (IS_ERR(page))
4530 return (char*)page;
4531 *ppage = page;
4532 kaddr = kmap(page);
4533 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4534 return kaddr;
4537 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4539 struct page *page = NULL;
4540 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4541 if (page) {
4542 kunmap(page);
4543 page_cache_release(page);
4545 return res;
4547 EXPORT_SYMBOL(page_readlink);
4549 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4551 struct page *page = NULL;
4552 char *res = page_getlink(dentry, &page);
4553 if (!IS_ERR(res))
4554 *cookie = page;
4555 return res;
4557 EXPORT_SYMBOL(page_follow_link_light);
4559 void page_put_link(struct inode *unused, void *cookie)
4561 struct page *page = cookie;
4562 kunmap(page);
4563 page_cache_release(page);
4565 EXPORT_SYMBOL(page_put_link);
4568 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4570 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4572 struct address_space *mapping = inode->i_mapping;
4573 struct page *page;
4574 void *fsdata;
4575 int err;
4576 char *kaddr;
4577 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4578 if (nofs)
4579 flags |= AOP_FLAG_NOFS;
4581 retry:
4582 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4583 flags, &page, &fsdata);
4584 if (err)
4585 goto fail;
4587 kaddr = kmap_atomic(page);
4588 memcpy(kaddr, symname, len-1);
4589 kunmap_atomic(kaddr);
4591 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4592 page, fsdata);
4593 if (err < 0)
4594 goto fail;
4595 if (err < len-1)
4596 goto retry;
4598 mark_inode_dirty(inode);
4599 return 0;
4600 fail:
4601 return err;
4603 EXPORT_SYMBOL(__page_symlink);
4605 int page_symlink(struct inode *inode, const char *symname, int len)
4607 return __page_symlink(inode, symname, len,
4608 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4610 EXPORT_SYMBOL(page_symlink);
4612 const struct inode_operations page_symlink_inode_operations = {
4613 .readlink = generic_readlink,
4614 .follow_link = page_follow_link_light,
4615 .put_link = page_put_link,
4617 EXPORT_SYMBOL(page_symlink_inode_operations);