2 * Support for Marvell's crypto engine which can be found on some Orion5X
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/clk.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
25 #define MV_CESA "MV-CESA:"
26 #define MAX_HW_HASH_SIZE 0xFFFF
30 * /---------------------------------------\
31 * | | request complete
33 * IDLE -> new request -> BUSY -> done -> DEQUEUE
35 * | | more scatter entries
45 * struct req_progress - used for every crypt request
46 * @src_sg_it: sg iterator for src
47 * @dst_sg_it: sg iterator for dst
48 * @sg_src_left: bytes left in src to process (scatter list)
49 * @src_start: offset to add to src start position (scatter list)
50 * @crypt_len: length of current hw crypt/hash process
51 * @hw_nbytes: total bytes to process in hw for this request
52 * @copy_back: whether to copy data back (crypt) or not (hash)
53 * @sg_dst_left: bytes left dst to process in this scatter list
54 * @dst_start: offset to add to dst start position (scatter list)
55 * @hw_processed_bytes: number of bytes processed by hw (request).
57 * sg helper are used to iterate over the scatterlist. Since the size of the
58 * SRAM may be less than the scatter size, this struct struct is used to keep
59 * track of progress within current scatterlist.
62 struct sg_mapping_iter src_sg_it
;
63 struct sg_mapping_iter dst_sg_it
;
64 void (*complete
) (void);
65 void (*process
) (int is_first
);
76 int hw_processed_bytes
;
84 struct task_struct
*queue_th
;
86 /* the lock protects queue and eng_st */
88 struct crypto_queue queue
;
89 enum engine_status eng_st
;
90 struct crypto_async_request
*cur_req
;
91 struct req_progress p
;
98 static struct crypto_priv
*cpg
;
101 u8 aes_enc_key
[AES_KEY_LEN
];
104 u32 need_calc_aes_dkey
;
122 struct mv_tfm_hash_ctx
{
123 struct crypto_shash
*fallback
;
124 struct crypto_shash
*base_hash
;
125 u32 ivs
[2 * SHA1_DIGEST_SIZE
/ 4];
130 struct mv_req_hash_ctx
{
132 u32 state
[SHA1_DIGEST_SIZE
/ 4];
133 u8 buffer
[SHA1_BLOCK_SIZE
];
134 int first_hash
; /* marks that we don't have previous state */
135 int last_chunk
; /* marks that this is the 'final' request */
136 int extra_bytes
; /* unprocessed bytes in buffer */
141 static void compute_aes_dec_key(struct mv_ctx
*ctx
)
143 struct crypto_aes_ctx gen_aes_key
;
146 if (!ctx
->need_calc_aes_dkey
)
149 crypto_aes_expand_key(&gen_aes_key
, ctx
->aes_enc_key
, ctx
->key_len
);
151 key_pos
= ctx
->key_len
+ 24;
152 memcpy(ctx
->aes_dec_key
, &gen_aes_key
.key_enc
[key_pos
], 4 * 4);
153 switch (ctx
->key_len
) {
154 case AES_KEYSIZE_256
:
157 case AES_KEYSIZE_192
:
159 memcpy(&ctx
->aes_dec_key
[4], &gen_aes_key
.key_enc
[key_pos
],
163 ctx
->need_calc_aes_dkey
= 0;
166 static int mv_setkey_aes(struct crypto_ablkcipher
*cipher
, const u8
*key
,
169 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
170 struct mv_ctx
*ctx
= crypto_tfm_ctx(tfm
);
173 case AES_KEYSIZE_128
:
174 case AES_KEYSIZE_192
:
175 case AES_KEYSIZE_256
:
178 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
182 ctx
->need_calc_aes_dkey
= 1;
184 memcpy(ctx
->aes_enc_key
, key
, AES_KEY_LEN
);
188 static void copy_src_to_buf(struct req_progress
*p
, char *dbuf
, int len
)
195 if (!p
->sg_src_left
) {
196 ret
= sg_miter_next(&p
->src_sg_it
);
198 p
->sg_src_left
= p
->src_sg_it
.length
;
202 sbuf
= p
->src_sg_it
.addr
+ p
->src_start
;
204 copy_len
= min(p
->sg_src_left
, len
);
205 memcpy(dbuf
, sbuf
, copy_len
);
207 p
->src_start
+= copy_len
;
208 p
->sg_src_left
-= copy_len
;
215 static void setup_data_in(void)
217 struct req_progress
*p
= &cpg
->p
;
219 min(p
->hw_nbytes
- p
->hw_processed_bytes
, cpg
->max_req_size
);
220 copy_src_to_buf(p
, cpg
->sram
+ SRAM_DATA_IN_START
+ p
->crypt_len
,
221 data_in_sram
- p
->crypt_len
);
222 p
->crypt_len
= data_in_sram
;
225 static void mv_process_current_q(int first_block
)
227 struct ablkcipher_request
*req
= ablkcipher_request_cast(cpg
->cur_req
);
228 struct mv_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
229 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
230 struct sec_accel_config op
;
232 switch (req_ctx
->op
) {
234 op
.config
= CFG_OP_CRYPT_ONLY
| CFG_ENCM_AES
| CFG_ENC_MODE_ECB
;
238 op
.config
= CFG_OP_CRYPT_ONLY
| CFG_ENCM_AES
| CFG_ENC_MODE_CBC
;
239 op
.enc_iv
= ENC_IV_POINT(SRAM_DATA_IV
) |
240 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF
);
242 memcpy(cpg
->sram
+ SRAM_DATA_IV
, req
->info
, 16);
245 if (req_ctx
->decrypt
) {
246 op
.config
|= CFG_DIR_DEC
;
247 memcpy(cpg
->sram
+ SRAM_DATA_KEY_P
, ctx
->aes_dec_key
,
250 op
.config
|= CFG_DIR_ENC
;
251 memcpy(cpg
->sram
+ SRAM_DATA_KEY_P
, ctx
->aes_enc_key
,
255 switch (ctx
->key_len
) {
256 case AES_KEYSIZE_128
:
257 op
.config
|= CFG_AES_LEN_128
;
259 case AES_KEYSIZE_192
:
260 op
.config
|= CFG_AES_LEN_192
;
262 case AES_KEYSIZE_256
:
263 op
.config
|= CFG_AES_LEN_256
;
266 op
.enc_p
= ENC_P_SRC(SRAM_DATA_IN_START
) |
267 ENC_P_DST(SRAM_DATA_OUT_START
);
268 op
.enc_key_p
= SRAM_DATA_KEY_P
;
271 op
.enc_len
= cpg
->p
.crypt_len
;
272 memcpy(cpg
->sram
+ SRAM_CONFIG
, &op
,
273 sizeof(struct sec_accel_config
));
276 writel(SEC_CMD_EN_SEC_ACCL0
, cpg
->reg
+ SEC_ACCEL_CMD
);
279 * XXX: add timer if the interrupt does not occur for some mystery
284 static void mv_crypto_algo_completion(void)
286 struct ablkcipher_request
*req
= ablkcipher_request_cast(cpg
->cur_req
);
287 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
289 sg_miter_stop(&cpg
->p
.src_sg_it
);
290 sg_miter_stop(&cpg
->p
.dst_sg_it
);
292 if (req_ctx
->op
!= COP_AES_CBC
)
295 memcpy(req
->info
, cpg
->sram
+ SRAM_DATA_IV_BUF
, 16);
298 static void mv_process_hash_current(int first_block
)
300 struct ahash_request
*req
= ahash_request_cast(cpg
->cur_req
);
301 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
302 struct mv_req_hash_ctx
*req_ctx
= ahash_request_ctx(req
);
303 struct req_progress
*p
= &cpg
->p
;
304 struct sec_accel_config op
= { 0 };
307 switch (req_ctx
->op
) {
310 op
.config
= CFG_OP_MAC_ONLY
| CFG_MACM_SHA1
;
313 op
.config
= CFG_OP_MAC_ONLY
| CFG_MACM_HMAC_SHA1
;
314 memcpy(cpg
->sram
+ SRAM_HMAC_IV_IN
,
315 tfm_ctx
->ivs
, sizeof(tfm_ctx
->ivs
));
320 MAC_SRC_DATA_P(SRAM_DATA_IN_START
) | MAC_SRC_TOTAL_LEN((u32
)
327 MAC_DIGEST_P(SRAM_DIGEST_BUF
) | MAC_FRAG_LEN(p
->crypt_len
);
329 MAC_INNER_IV_P(SRAM_HMAC_IV_IN
) |
330 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT
);
332 is_last
= req_ctx
->last_chunk
333 && (p
->hw_processed_bytes
+ p
->crypt_len
>= p
->hw_nbytes
)
334 && (req_ctx
->count
<= MAX_HW_HASH_SIZE
);
335 if (req_ctx
->first_hash
) {
337 op
.config
|= CFG_NOT_FRAG
;
339 op
.config
|= CFG_FIRST_FRAG
;
341 req_ctx
->first_hash
= 0;
344 op
.config
|= CFG_LAST_FRAG
;
346 op
.config
|= CFG_MID_FRAG
;
349 writel(req_ctx
->state
[0], cpg
->reg
+ DIGEST_INITIAL_VAL_A
);
350 writel(req_ctx
->state
[1], cpg
->reg
+ DIGEST_INITIAL_VAL_B
);
351 writel(req_ctx
->state
[2], cpg
->reg
+ DIGEST_INITIAL_VAL_C
);
352 writel(req_ctx
->state
[3], cpg
->reg
+ DIGEST_INITIAL_VAL_D
);
353 writel(req_ctx
->state
[4], cpg
->reg
+ DIGEST_INITIAL_VAL_E
);
357 memcpy(cpg
->sram
+ SRAM_CONFIG
, &op
, sizeof(struct sec_accel_config
));
360 writel(SEC_CMD_EN_SEC_ACCL0
, cpg
->reg
+ SEC_ACCEL_CMD
);
363 * XXX: add timer if the interrupt does not occur for some mystery
368 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx
*ctx
,
369 struct shash_desc
*desc
)
372 struct sha1_state shash_state
;
374 shash_state
.count
= ctx
->count
+ ctx
->count_add
;
375 for (i
= 0; i
< 5; i
++)
376 shash_state
.state
[i
] = ctx
->state
[i
];
377 memcpy(shash_state
.buffer
, ctx
->buffer
, sizeof(shash_state
.buffer
));
378 return crypto_shash_import(desc
, &shash_state
);
381 static int mv_hash_final_fallback(struct ahash_request
*req
)
383 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
384 struct mv_req_hash_ctx
*req_ctx
= ahash_request_ctx(req
);
386 struct shash_desc shash
;
387 char ctx
[crypto_shash_descsize(tfm_ctx
->fallback
)];
391 desc
.shash
.tfm
= tfm_ctx
->fallback
;
392 desc
.shash
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
393 if (unlikely(req_ctx
->first_hash
)) {
394 crypto_shash_init(&desc
.shash
);
395 crypto_shash_update(&desc
.shash
, req_ctx
->buffer
,
396 req_ctx
->extra_bytes
);
398 /* only SHA1 for now....
400 rc
= mv_hash_import_sha1_ctx(req_ctx
, &desc
.shash
);
404 rc
= crypto_shash_final(&desc
.shash
, req
->result
);
409 static void mv_hash_algo_completion(void)
411 struct ahash_request
*req
= ahash_request_cast(cpg
->cur_req
);
412 struct mv_req_hash_ctx
*ctx
= ahash_request_ctx(req
);
414 if (ctx
->extra_bytes
)
415 copy_src_to_buf(&cpg
->p
, ctx
->buffer
, ctx
->extra_bytes
);
416 sg_miter_stop(&cpg
->p
.src_sg_it
);
418 if (likely(ctx
->last_chunk
)) {
419 if (likely(ctx
->count
<= MAX_HW_HASH_SIZE
)) {
420 memcpy(req
->result
, cpg
->sram
+ SRAM_DIGEST_BUF
,
421 crypto_ahash_digestsize(crypto_ahash_reqtfm
424 mv_hash_final_fallback(req
);
426 ctx
->state
[0] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_A
);
427 ctx
->state
[1] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_B
);
428 ctx
->state
[2] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_C
);
429 ctx
->state
[3] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_D
);
430 ctx
->state
[4] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_E
);
434 static void dequeue_complete_req(void)
436 struct crypto_async_request
*req
= cpg
->cur_req
;
439 cpg
->p
.hw_processed_bytes
+= cpg
->p
.crypt_len
;
440 if (cpg
->p
.copy_back
) {
441 int need_copy_len
= cpg
->p
.crypt_len
;
446 if (!cpg
->p
.sg_dst_left
) {
447 ret
= sg_miter_next(&cpg
->p
.dst_sg_it
);
449 cpg
->p
.sg_dst_left
= cpg
->p
.dst_sg_it
.length
;
450 cpg
->p
.dst_start
= 0;
453 buf
= cpg
->p
.dst_sg_it
.addr
;
454 buf
+= cpg
->p
.dst_start
;
456 dst_copy
= min(need_copy_len
, cpg
->p
.sg_dst_left
);
459 cpg
->sram
+ SRAM_DATA_OUT_START
+ sram_offset
,
461 sram_offset
+= dst_copy
;
462 cpg
->p
.sg_dst_left
-= dst_copy
;
463 need_copy_len
-= dst_copy
;
464 cpg
->p
.dst_start
+= dst_copy
;
465 } while (need_copy_len
> 0);
468 cpg
->p
.crypt_len
= 0;
470 BUG_ON(cpg
->eng_st
!= ENGINE_W_DEQUEUE
);
471 if (cpg
->p
.hw_processed_bytes
< cpg
->p
.hw_nbytes
) {
472 /* process next scatter list entry */
473 cpg
->eng_st
= ENGINE_BUSY
;
477 cpg
->eng_st
= ENGINE_IDLE
;
479 req
->complete(req
, 0);
484 static int count_sgs(struct scatterlist
*sl
, unsigned int total_bytes
)
490 cur_len
= sl
[i
].length
;
492 if (total_bytes
> cur_len
)
493 total_bytes
-= cur_len
;
501 static void mv_start_new_crypt_req(struct ablkcipher_request
*req
)
503 struct req_progress
*p
= &cpg
->p
;
506 cpg
->cur_req
= &req
->base
;
507 memset(p
, 0, sizeof(struct req_progress
));
508 p
->hw_nbytes
= req
->nbytes
;
509 p
->complete
= mv_crypto_algo_completion
;
510 p
->process
= mv_process_current_q
;
513 num_sgs
= count_sgs(req
->src
, req
->nbytes
);
514 sg_miter_start(&p
->src_sg_it
, req
->src
, num_sgs
, SG_MITER_FROM_SG
);
516 num_sgs
= count_sgs(req
->dst
, req
->nbytes
);
517 sg_miter_start(&p
->dst_sg_it
, req
->dst
, num_sgs
, SG_MITER_TO_SG
);
519 mv_process_current_q(1);
522 static void mv_start_new_hash_req(struct ahash_request
*req
)
524 struct req_progress
*p
= &cpg
->p
;
525 struct mv_req_hash_ctx
*ctx
= ahash_request_ctx(req
);
526 int num_sgs
, hw_bytes
, old_extra_bytes
, rc
;
527 cpg
->cur_req
= &req
->base
;
528 memset(p
, 0, sizeof(struct req_progress
));
529 hw_bytes
= req
->nbytes
+ ctx
->extra_bytes
;
530 old_extra_bytes
= ctx
->extra_bytes
;
532 ctx
->extra_bytes
= hw_bytes
% SHA1_BLOCK_SIZE
;
533 if (ctx
->extra_bytes
!= 0
534 && (!ctx
->last_chunk
|| ctx
->count
> MAX_HW_HASH_SIZE
))
535 hw_bytes
-= ctx
->extra_bytes
;
537 ctx
->extra_bytes
= 0;
539 num_sgs
= count_sgs(req
->src
, req
->nbytes
);
540 sg_miter_start(&p
->src_sg_it
, req
->src
, num_sgs
, SG_MITER_FROM_SG
);
543 p
->hw_nbytes
= hw_bytes
;
544 p
->complete
= mv_hash_algo_completion
;
545 p
->process
= mv_process_hash_current
;
547 if (unlikely(old_extra_bytes
)) {
548 memcpy(cpg
->sram
+ SRAM_DATA_IN_START
, ctx
->buffer
,
550 p
->crypt_len
= old_extra_bytes
;
553 mv_process_hash_current(1);
555 copy_src_to_buf(p
, ctx
->buffer
+ old_extra_bytes
,
556 ctx
->extra_bytes
- old_extra_bytes
);
557 sg_miter_stop(&p
->src_sg_it
);
559 rc
= mv_hash_final_fallback(req
);
562 cpg
->eng_st
= ENGINE_IDLE
;
564 req
->base
.complete(&req
->base
, rc
);
569 static int queue_manag(void *data
)
571 cpg
->eng_st
= ENGINE_IDLE
;
573 struct crypto_async_request
*async_req
= NULL
;
574 struct crypto_async_request
*backlog
;
576 __set_current_state(TASK_INTERRUPTIBLE
);
578 if (cpg
->eng_st
== ENGINE_W_DEQUEUE
)
579 dequeue_complete_req();
581 spin_lock_irq(&cpg
->lock
);
582 if (cpg
->eng_st
== ENGINE_IDLE
) {
583 backlog
= crypto_get_backlog(&cpg
->queue
);
584 async_req
= crypto_dequeue_request(&cpg
->queue
);
586 BUG_ON(cpg
->eng_st
!= ENGINE_IDLE
);
587 cpg
->eng_st
= ENGINE_BUSY
;
590 spin_unlock_irq(&cpg
->lock
);
593 backlog
->complete(backlog
, -EINPROGRESS
);
598 if (async_req
->tfm
->__crt_alg
->cra_type
!=
599 &crypto_ahash_type
) {
600 struct ablkcipher_request
*req
=
601 ablkcipher_request_cast(async_req
);
602 mv_start_new_crypt_req(req
);
604 struct ahash_request
*req
=
605 ahash_request_cast(async_req
);
606 mv_start_new_hash_req(req
);
613 } while (!kthread_should_stop());
617 static int mv_handle_req(struct crypto_async_request
*req
)
622 spin_lock_irqsave(&cpg
->lock
, flags
);
623 ret
= crypto_enqueue_request(&cpg
->queue
, req
);
624 spin_unlock_irqrestore(&cpg
->lock
, flags
);
625 wake_up_process(cpg
->queue_th
);
629 static int mv_enc_aes_ecb(struct ablkcipher_request
*req
)
631 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
633 req_ctx
->op
= COP_AES_ECB
;
634 req_ctx
->decrypt
= 0;
636 return mv_handle_req(&req
->base
);
639 static int mv_dec_aes_ecb(struct ablkcipher_request
*req
)
641 struct mv_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
642 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
644 req_ctx
->op
= COP_AES_ECB
;
645 req_ctx
->decrypt
= 1;
647 compute_aes_dec_key(ctx
);
648 return mv_handle_req(&req
->base
);
651 static int mv_enc_aes_cbc(struct ablkcipher_request
*req
)
653 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
655 req_ctx
->op
= COP_AES_CBC
;
656 req_ctx
->decrypt
= 0;
658 return mv_handle_req(&req
->base
);
661 static int mv_dec_aes_cbc(struct ablkcipher_request
*req
)
663 struct mv_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
664 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
666 req_ctx
->op
= COP_AES_CBC
;
667 req_ctx
->decrypt
= 1;
669 compute_aes_dec_key(ctx
);
670 return mv_handle_req(&req
->base
);
673 static int mv_cra_init(struct crypto_tfm
*tfm
)
675 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct mv_req_ctx
);
679 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx
*ctx
, int op
,
680 int is_last
, unsigned int req_len
,
683 memset(ctx
, 0, sizeof(*ctx
));
685 ctx
->count
= req_len
;
687 ctx
->last_chunk
= is_last
;
688 ctx
->count_add
= count_add
;
691 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx
*ctx
, int is_last
,
694 ctx
->last_chunk
= is_last
;
695 ctx
->count
+= req_len
;
698 static int mv_hash_init(struct ahash_request
*req
)
700 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
701 mv_init_hash_req_ctx(ahash_request_ctx(req
), tfm_ctx
->op
, 0, 0,
706 static int mv_hash_update(struct ahash_request
*req
)
711 mv_update_hash_req_ctx(ahash_request_ctx(req
), 0, req
->nbytes
);
712 return mv_handle_req(&req
->base
);
715 static int mv_hash_final(struct ahash_request
*req
)
717 struct mv_req_hash_ctx
*ctx
= ahash_request_ctx(req
);
719 ahash_request_set_crypt(req
, NULL
, req
->result
, 0);
720 mv_update_hash_req_ctx(ctx
, 1, 0);
721 return mv_handle_req(&req
->base
);
724 static int mv_hash_finup(struct ahash_request
*req
)
726 mv_update_hash_req_ctx(ahash_request_ctx(req
), 1, req
->nbytes
);
727 return mv_handle_req(&req
->base
);
730 static int mv_hash_digest(struct ahash_request
*req
)
732 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
733 mv_init_hash_req_ctx(ahash_request_ctx(req
), tfm_ctx
->op
, 1,
734 req
->nbytes
, tfm_ctx
->count_add
);
735 return mv_handle_req(&req
->base
);
738 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx
*ctx
, const void *istate
,
741 const struct sha1_state
*isha1_state
= istate
, *osha1_state
= ostate
;
743 for (i
= 0; i
< 5; i
++) {
744 ctx
->ivs
[i
] = cpu_to_be32(isha1_state
->state
[i
]);
745 ctx
->ivs
[i
+ 5] = cpu_to_be32(osha1_state
->state
[i
]);
749 static int mv_hash_setkey(struct crypto_ahash
*tfm
, const u8
* key
,
753 struct mv_tfm_hash_ctx
*ctx
= crypto_tfm_ctx(&tfm
->base
);
759 rc
= crypto_shash_setkey(ctx
->fallback
, key
, keylen
);
763 /* Can't see a way to extract the ipad/opad from the fallback tfm
764 so I'm basically copying code from the hmac module */
765 bs
= crypto_shash_blocksize(ctx
->base_hash
);
766 ds
= crypto_shash_digestsize(ctx
->base_hash
);
767 ss
= crypto_shash_statesize(ctx
->base_hash
);
771 struct shash_desc shash
;
772 char ctx
[crypto_shash_descsize(ctx
->base_hash
)];
778 desc
.shash
.tfm
= ctx
->base_hash
;
779 desc
.shash
.flags
= crypto_shash_get_flags(ctx
->base_hash
) &
780 CRYPTO_TFM_REQ_MAY_SLEEP
;
786 crypto_shash_digest(&desc
.shash
, key
, keylen
, ipad
);
792 memcpy(ipad
, key
, keylen
);
794 memset(ipad
+ keylen
, 0, bs
- keylen
);
795 memcpy(opad
, ipad
, bs
);
797 for (i
= 0; i
< bs
; i
++) {
802 rc
= crypto_shash_init(&desc
.shash
) ? :
803 crypto_shash_update(&desc
.shash
, ipad
, bs
) ? :
804 crypto_shash_export(&desc
.shash
, ipad
) ? :
805 crypto_shash_init(&desc
.shash
) ? :
806 crypto_shash_update(&desc
.shash
, opad
, bs
) ? :
807 crypto_shash_export(&desc
.shash
, opad
);
810 mv_hash_init_ivs(ctx
, ipad
, opad
);
816 static int mv_cra_hash_init(struct crypto_tfm
*tfm
, const char *base_hash_name
,
817 enum hash_op op
, int count_add
)
819 const char *fallback_driver_name
= tfm
->__crt_alg
->cra_name
;
820 struct mv_tfm_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
821 struct crypto_shash
*fallback_tfm
= NULL
;
822 struct crypto_shash
*base_hash
= NULL
;
826 ctx
->count_add
= count_add
;
828 /* Allocate a fallback and abort if it failed. */
829 fallback_tfm
= crypto_alloc_shash(fallback_driver_name
, 0,
830 CRYPTO_ALG_NEED_FALLBACK
);
831 if (IS_ERR(fallback_tfm
)) {
832 printk(KERN_WARNING MV_CESA
833 "Fallback driver '%s' could not be loaded!\n",
834 fallback_driver_name
);
835 err
= PTR_ERR(fallback_tfm
);
838 ctx
->fallback
= fallback_tfm
;
840 if (base_hash_name
) {
841 /* Allocate a hash to compute the ipad/opad of hmac. */
842 base_hash
= crypto_alloc_shash(base_hash_name
, 0,
843 CRYPTO_ALG_NEED_FALLBACK
);
844 if (IS_ERR(base_hash
)) {
845 printk(KERN_WARNING MV_CESA
846 "Base driver '%s' could not be loaded!\n",
848 err
= PTR_ERR(base_hash
);
852 ctx
->base_hash
= base_hash
;
854 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
855 sizeof(struct mv_req_hash_ctx
) +
856 crypto_shash_descsize(ctx
->fallback
));
859 crypto_free_shash(fallback_tfm
);
864 static void mv_cra_hash_exit(struct crypto_tfm
*tfm
)
866 struct mv_tfm_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
868 crypto_free_shash(ctx
->fallback
);
870 crypto_free_shash(ctx
->base_hash
);
873 static int mv_cra_hash_sha1_init(struct crypto_tfm
*tfm
)
875 return mv_cra_hash_init(tfm
, NULL
, COP_SHA1
, 0);
878 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm
*tfm
)
880 return mv_cra_hash_init(tfm
, "sha1", COP_HMAC_SHA1
, SHA1_BLOCK_SIZE
);
883 irqreturn_t
crypto_int(int irq
, void *priv
)
887 val
= readl(cpg
->reg
+ SEC_ACCEL_INT_STATUS
);
888 if (!(val
& SEC_INT_ACCEL0_DONE
))
891 val
&= ~SEC_INT_ACCEL0_DONE
;
892 writel(val
, cpg
->reg
+ FPGA_INT_STATUS
);
893 writel(val
, cpg
->reg
+ SEC_ACCEL_INT_STATUS
);
894 BUG_ON(cpg
->eng_st
!= ENGINE_BUSY
);
895 cpg
->eng_st
= ENGINE_W_DEQUEUE
;
896 wake_up_process(cpg
->queue_th
);
900 struct crypto_alg mv_aes_alg_ecb
= {
901 .cra_name
= "ecb(aes)",
902 .cra_driver_name
= "mv-ecb-aes",
904 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
905 CRYPTO_ALG_KERN_DRIVER_ONLY
| CRYPTO_ALG_ASYNC
,
907 .cra_ctxsize
= sizeof(struct mv_ctx
),
909 .cra_type
= &crypto_ablkcipher_type
,
910 .cra_module
= THIS_MODULE
,
911 .cra_init
= mv_cra_init
,
914 .min_keysize
= AES_MIN_KEY_SIZE
,
915 .max_keysize
= AES_MAX_KEY_SIZE
,
916 .setkey
= mv_setkey_aes
,
917 .encrypt
= mv_enc_aes_ecb
,
918 .decrypt
= mv_dec_aes_ecb
,
923 struct crypto_alg mv_aes_alg_cbc
= {
924 .cra_name
= "cbc(aes)",
925 .cra_driver_name
= "mv-cbc-aes",
927 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
928 CRYPTO_ALG_KERN_DRIVER_ONLY
| CRYPTO_ALG_ASYNC
,
929 .cra_blocksize
= AES_BLOCK_SIZE
,
930 .cra_ctxsize
= sizeof(struct mv_ctx
),
932 .cra_type
= &crypto_ablkcipher_type
,
933 .cra_module
= THIS_MODULE
,
934 .cra_init
= mv_cra_init
,
937 .ivsize
= AES_BLOCK_SIZE
,
938 .min_keysize
= AES_MIN_KEY_SIZE
,
939 .max_keysize
= AES_MAX_KEY_SIZE
,
940 .setkey
= mv_setkey_aes
,
941 .encrypt
= mv_enc_aes_cbc
,
942 .decrypt
= mv_dec_aes_cbc
,
947 struct ahash_alg mv_sha1_alg
= {
948 .init
= mv_hash_init
,
949 .update
= mv_hash_update
,
950 .final
= mv_hash_final
,
951 .finup
= mv_hash_finup
,
952 .digest
= mv_hash_digest
,
954 .digestsize
= SHA1_DIGEST_SIZE
,
957 .cra_driver_name
= "mv-sha1",
960 CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
|
961 CRYPTO_ALG_NEED_FALLBACK
,
962 .cra_blocksize
= SHA1_BLOCK_SIZE
,
963 .cra_ctxsize
= sizeof(struct mv_tfm_hash_ctx
),
964 .cra_init
= mv_cra_hash_sha1_init
,
965 .cra_exit
= mv_cra_hash_exit
,
966 .cra_module
= THIS_MODULE
,
971 struct ahash_alg mv_hmac_sha1_alg
= {
972 .init
= mv_hash_init
,
973 .update
= mv_hash_update
,
974 .final
= mv_hash_final
,
975 .finup
= mv_hash_finup
,
976 .digest
= mv_hash_digest
,
977 .setkey
= mv_hash_setkey
,
979 .digestsize
= SHA1_DIGEST_SIZE
,
981 .cra_name
= "hmac(sha1)",
982 .cra_driver_name
= "mv-hmac-sha1",
985 CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
|
986 CRYPTO_ALG_NEED_FALLBACK
,
987 .cra_blocksize
= SHA1_BLOCK_SIZE
,
988 .cra_ctxsize
= sizeof(struct mv_tfm_hash_ctx
),
989 .cra_init
= mv_cra_hash_hmac_sha1_init
,
990 .cra_exit
= mv_cra_hash_exit
,
991 .cra_module
= THIS_MODULE
,
996 static int mv_probe(struct platform_device
*pdev
)
998 struct crypto_priv
*cp
;
999 struct resource
*res
;
1004 printk(KERN_ERR MV_CESA
"Second crypto dev?\n");
1008 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "regs");
1012 cp
= kzalloc(sizeof(*cp
), GFP_KERNEL
);
1016 spin_lock_init(&cp
->lock
);
1017 crypto_init_queue(&cp
->queue
, 50);
1018 cp
->reg
= ioremap(res
->start
, resource_size(res
));
1024 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "sram");
1029 cp
->sram_size
= resource_size(res
);
1030 cp
->max_req_size
= cp
->sram_size
- SRAM_CFG_SPACE
;
1031 cp
->sram
= ioremap(res
->start
, cp
->sram_size
);
1037 irq
= platform_get_irq(pdev
, 0);
1038 if (irq
< 0 || irq
== NO_IRQ
) {
1040 goto err_unmap_sram
;
1044 platform_set_drvdata(pdev
, cp
);
1047 cp
->queue_th
= kthread_run(queue_manag
, cp
, "mv_crypto");
1048 if (IS_ERR(cp
->queue_th
)) {
1049 ret
= PTR_ERR(cp
->queue_th
);
1050 goto err_unmap_sram
;
1053 ret
= request_irq(irq
, crypto_int
, IRQF_DISABLED
, dev_name(&pdev
->dev
),
1058 /* Not all platforms can gate the clock, so it is not
1059 an error if the clock does not exists. */
1060 cp
->clk
= clk_get(&pdev
->dev
, NULL
);
1061 if (!IS_ERR(cp
->clk
))
1062 clk_prepare_enable(cp
->clk
);
1064 writel(SEC_INT_ACCEL0_DONE
, cpg
->reg
+ SEC_ACCEL_INT_MASK
);
1065 writel(SEC_CFG_STOP_DIG_ERR
, cpg
->reg
+ SEC_ACCEL_CFG
);
1066 writel(SRAM_CONFIG
, cpg
->reg
+ SEC_ACCEL_DESC_P0
);
1068 ret
= crypto_register_alg(&mv_aes_alg_ecb
);
1070 printk(KERN_WARNING MV_CESA
1071 "Could not register aes-ecb driver\n");
1075 ret
= crypto_register_alg(&mv_aes_alg_cbc
);
1077 printk(KERN_WARNING MV_CESA
1078 "Could not register aes-cbc driver\n");
1082 ret
= crypto_register_ahash(&mv_sha1_alg
);
1086 printk(KERN_WARNING MV_CESA
"Could not register sha1 driver\n");
1088 ret
= crypto_register_ahash(&mv_hmac_sha1_alg
);
1090 cpg
->has_hmac_sha1
= 1;
1092 printk(KERN_WARNING MV_CESA
1093 "Could not register hmac-sha1 driver\n");
1098 crypto_unregister_alg(&mv_aes_alg_ecb
);
1102 kthread_stop(cp
->queue_th
);
1110 platform_set_drvdata(pdev
, NULL
);
1114 static int mv_remove(struct platform_device
*pdev
)
1116 struct crypto_priv
*cp
= platform_get_drvdata(pdev
);
1118 crypto_unregister_alg(&mv_aes_alg_ecb
);
1119 crypto_unregister_alg(&mv_aes_alg_cbc
);
1121 crypto_unregister_ahash(&mv_sha1_alg
);
1122 if (cp
->has_hmac_sha1
)
1123 crypto_unregister_ahash(&mv_hmac_sha1_alg
);
1124 kthread_stop(cp
->queue_th
);
1125 free_irq(cp
->irq
, cp
);
1126 memset(cp
->sram
, 0, cp
->sram_size
);
1130 if (!IS_ERR(cp
->clk
)) {
1131 clk_disable_unprepare(cp
->clk
);
1140 static struct platform_driver marvell_crypto
= {
1142 .remove
= mv_remove
,
1144 .owner
= THIS_MODULE
,
1145 .name
= "mv_crypto",
1148 MODULE_ALIAS("platform:mv_crypto");
1150 module_platform_driver(marvell_crypto
);
1152 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1153 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1154 MODULE_LICENSE("GPL");