ieee802154: verify packet size before trying to allocate it
[linux/fpc-iii.git] / drivers / iommu / dmar.c
blob3a74e4410fc0737d47e1f294378fdb7dc07e27ad
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
26 * These routines are used by both DMA-remapping and Interrupt-remapping
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/iommu_table.h>
42 #define PREFIX "DMAR: "
44 /* No locks are needed as DMA remapping hardware unit
45 * list is constructed at boot time and hotplug of
46 * these units are not supported by the architecture.
48 LIST_HEAD(dmar_drhd_units);
50 struct acpi_table_header * __initdata dmar_tbl;
51 static acpi_size dmar_tbl_size;
53 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
56 * add INCLUDE_ALL at the tail, so scan the list will find it at
57 * the very end.
59 if (drhd->include_all)
60 list_add_tail(&drhd->list, &dmar_drhd_units);
61 else
62 list_add(&drhd->list, &dmar_drhd_units);
65 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
66 struct pci_dev **dev, u16 segment)
68 struct pci_bus *bus;
69 struct pci_dev *pdev = NULL;
70 struct acpi_dmar_pci_path *path;
71 int count;
73 bus = pci_find_bus(segment, scope->bus);
74 path = (struct acpi_dmar_pci_path *)(scope + 1);
75 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
76 / sizeof(struct acpi_dmar_pci_path);
78 while (count) {
79 if (pdev)
80 pci_dev_put(pdev);
82 * Some BIOSes list non-exist devices in DMAR table, just
83 * ignore it
85 if (!bus) {
86 printk(KERN_WARNING
87 PREFIX "Device scope bus [%d] not found\n",
88 scope->bus);
89 break;
91 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
92 if (!pdev) {
93 printk(KERN_WARNING PREFIX
94 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
95 segment, bus->number, path->dev, path->fn);
96 break;
98 path ++;
99 count --;
100 bus = pdev->subordinate;
102 if (!pdev) {
103 printk(KERN_WARNING PREFIX
104 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
105 segment, scope->bus, path->dev, path->fn);
106 *dev = NULL;
107 return 0;
109 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
110 pdev->subordinate) || (scope->entry_type == \
111 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
112 pci_dev_put(pdev);
113 printk(KERN_WARNING PREFIX
114 "Device scope type does not match for %s\n",
115 pci_name(pdev));
116 return -EINVAL;
118 *dev = pdev;
119 return 0;
122 int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
123 struct pci_dev ***devices, u16 segment)
125 struct acpi_dmar_device_scope *scope;
126 void * tmp = start;
127 int index;
128 int ret;
130 *cnt = 0;
131 while (start < end) {
132 scope = start;
133 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
134 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
135 (*cnt)++;
136 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
137 printk(KERN_WARNING PREFIX
138 "Unsupported device scope\n");
140 start += scope->length;
142 if (*cnt == 0)
143 return 0;
145 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
146 if (!*devices)
147 return -ENOMEM;
149 start = tmp;
150 index = 0;
151 while (start < end) {
152 scope = start;
153 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
154 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
155 ret = dmar_parse_one_dev_scope(scope,
156 &(*devices)[index], segment);
157 if (ret) {
158 kfree(*devices);
159 return ret;
161 index ++;
163 start += scope->length;
166 return 0;
170 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
171 * structure which uniquely represent one DMA remapping hardware unit
172 * present in the platform
174 static int __init
175 dmar_parse_one_drhd(struct acpi_dmar_header *header)
177 struct acpi_dmar_hardware_unit *drhd;
178 struct dmar_drhd_unit *dmaru;
179 int ret = 0;
181 drhd = (struct acpi_dmar_hardware_unit *)header;
182 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
183 if (!dmaru)
184 return -ENOMEM;
186 dmaru->hdr = header;
187 dmaru->reg_base_addr = drhd->address;
188 dmaru->segment = drhd->segment;
189 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
191 ret = alloc_iommu(dmaru);
192 if (ret) {
193 kfree(dmaru);
194 return ret;
196 dmar_register_drhd_unit(dmaru);
197 return 0;
200 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
202 struct acpi_dmar_hardware_unit *drhd;
203 int ret = 0;
205 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
207 if (dmaru->include_all)
208 return 0;
210 ret = dmar_parse_dev_scope((void *)(drhd + 1),
211 ((void *)drhd) + drhd->header.length,
212 &dmaru->devices_cnt, &dmaru->devices,
213 drhd->segment);
214 if (ret) {
215 list_del(&dmaru->list);
216 kfree(dmaru);
218 return ret;
221 #ifdef CONFIG_ACPI_NUMA
222 static int __init
223 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
225 struct acpi_dmar_rhsa *rhsa;
226 struct dmar_drhd_unit *drhd;
228 rhsa = (struct acpi_dmar_rhsa *)header;
229 for_each_drhd_unit(drhd) {
230 if (drhd->reg_base_addr == rhsa->base_address) {
231 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
233 if (!node_online(node))
234 node = -1;
235 drhd->iommu->node = node;
236 return 0;
239 WARN_TAINT(
240 1, TAINT_FIRMWARE_WORKAROUND,
241 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
242 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
243 drhd->reg_base_addr,
244 dmi_get_system_info(DMI_BIOS_VENDOR),
245 dmi_get_system_info(DMI_BIOS_VERSION),
246 dmi_get_system_info(DMI_PRODUCT_VERSION));
248 return 0;
250 #endif
252 static void __init
253 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
255 struct acpi_dmar_hardware_unit *drhd;
256 struct acpi_dmar_reserved_memory *rmrr;
257 struct acpi_dmar_atsr *atsr;
258 struct acpi_dmar_rhsa *rhsa;
260 switch (header->type) {
261 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
262 drhd = container_of(header, struct acpi_dmar_hardware_unit,
263 header);
264 printk (KERN_INFO PREFIX
265 "DRHD base: %#016Lx flags: %#x\n",
266 (unsigned long long)drhd->address, drhd->flags);
267 break;
268 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
269 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
270 header);
271 printk (KERN_INFO PREFIX
272 "RMRR base: %#016Lx end: %#016Lx\n",
273 (unsigned long long)rmrr->base_address,
274 (unsigned long long)rmrr->end_address);
275 break;
276 case ACPI_DMAR_TYPE_ATSR:
277 atsr = container_of(header, struct acpi_dmar_atsr, header);
278 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
279 break;
280 case ACPI_DMAR_HARDWARE_AFFINITY:
281 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
282 printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
283 (unsigned long long)rhsa->base_address,
284 rhsa->proximity_domain);
285 break;
290 * dmar_table_detect - checks to see if the platform supports DMAR devices
292 static int __init dmar_table_detect(void)
294 acpi_status status = AE_OK;
296 /* if we could find DMAR table, then there are DMAR devices */
297 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
298 (struct acpi_table_header **)&dmar_tbl,
299 &dmar_tbl_size);
301 if (ACPI_SUCCESS(status) && !dmar_tbl) {
302 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
303 status = AE_NOT_FOUND;
306 return (ACPI_SUCCESS(status) ? 1 : 0);
310 * parse_dmar_table - parses the DMA reporting table
312 static int __init
313 parse_dmar_table(void)
315 struct acpi_table_dmar *dmar;
316 struct acpi_dmar_header *entry_header;
317 int ret = 0;
320 * Do it again, earlier dmar_tbl mapping could be mapped with
321 * fixed map.
323 dmar_table_detect();
326 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
327 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
329 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
331 dmar = (struct acpi_table_dmar *)dmar_tbl;
332 if (!dmar)
333 return -ENODEV;
335 if (dmar->width < PAGE_SHIFT - 1) {
336 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
337 return -EINVAL;
340 printk (KERN_INFO PREFIX "Host address width %d\n",
341 dmar->width + 1);
343 entry_header = (struct acpi_dmar_header *)(dmar + 1);
344 while (((unsigned long)entry_header) <
345 (((unsigned long)dmar) + dmar_tbl->length)) {
346 /* Avoid looping forever on bad ACPI tables */
347 if (entry_header->length == 0) {
348 printk(KERN_WARNING PREFIX
349 "Invalid 0-length structure\n");
350 ret = -EINVAL;
351 break;
354 dmar_table_print_dmar_entry(entry_header);
356 switch (entry_header->type) {
357 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
358 ret = dmar_parse_one_drhd(entry_header);
359 break;
360 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
361 ret = dmar_parse_one_rmrr(entry_header);
362 break;
363 case ACPI_DMAR_TYPE_ATSR:
364 ret = dmar_parse_one_atsr(entry_header);
365 break;
366 case ACPI_DMAR_HARDWARE_AFFINITY:
367 #ifdef CONFIG_ACPI_NUMA
368 ret = dmar_parse_one_rhsa(entry_header);
369 #endif
370 break;
371 default:
372 printk(KERN_WARNING PREFIX
373 "Unknown DMAR structure type %d\n",
374 entry_header->type);
375 ret = 0; /* for forward compatibility */
376 break;
378 if (ret)
379 break;
381 entry_header = ((void *)entry_header + entry_header->length);
383 return ret;
386 static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
387 struct pci_dev *dev)
389 int index;
391 while (dev) {
392 for (index = 0; index < cnt; index++)
393 if (dev == devices[index])
394 return 1;
396 /* Check our parent */
397 dev = dev->bus->self;
400 return 0;
403 struct dmar_drhd_unit *
404 dmar_find_matched_drhd_unit(struct pci_dev *dev)
406 struct dmar_drhd_unit *dmaru = NULL;
407 struct acpi_dmar_hardware_unit *drhd;
409 dev = pci_physfn(dev);
411 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
412 drhd = container_of(dmaru->hdr,
413 struct acpi_dmar_hardware_unit,
414 header);
416 if (dmaru->include_all &&
417 drhd->segment == pci_domain_nr(dev->bus))
418 return dmaru;
420 if (dmar_pci_device_match(dmaru->devices,
421 dmaru->devices_cnt, dev))
422 return dmaru;
425 return NULL;
428 int __init dmar_dev_scope_init(void)
430 static int dmar_dev_scope_initialized;
431 struct dmar_drhd_unit *drhd, *drhd_n;
432 int ret = -ENODEV;
434 if (dmar_dev_scope_initialized)
435 return dmar_dev_scope_initialized;
437 if (list_empty(&dmar_drhd_units))
438 goto fail;
440 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
441 ret = dmar_parse_dev(drhd);
442 if (ret)
443 goto fail;
446 ret = dmar_parse_rmrr_atsr_dev();
447 if (ret)
448 goto fail;
450 dmar_dev_scope_initialized = 1;
451 return 0;
453 fail:
454 dmar_dev_scope_initialized = ret;
455 return ret;
459 int __init dmar_table_init(void)
461 static int dmar_table_initialized;
462 int ret;
464 if (dmar_table_initialized)
465 return 0;
467 dmar_table_initialized = 1;
469 ret = parse_dmar_table();
470 if (ret) {
471 if (ret != -ENODEV)
472 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
473 return ret;
476 if (list_empty(&dmar_drhd_units)) {
477 printk(KERN_INFO PREFIX "No DMAR devices found\n");
478 return -ENODEV;
481 return 0;
484 static void warn_invalid_dmar(u64 addr, const char *message)
486 WARN_TAINT_ONCE(
487 1, TAINT_FIRMWARE_WORKAROUND,
488 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
489 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
490 addr, message,
491 dmi_get_system_info(DMI_BIOS_VENDOR),
492 dmi_get_system_info(DMI_BIOS_VERSION),
493 dmi_get_system_info(DMI_PRODUCT_VERSION));
496 int __init check_zero_address(void)
498 struct acpi_table_dmar *dmar;
499 struct acpi_dmar_header *entry_header;
500 struct acpi_dmar_hardware_unit *drhd;
502 dmar = (struct acpi_table_dmar *)dmar_tbl;
503 entry_header = (struct acpi_dmar_header *)(dmar + 1);
505 while (((unsigned long)entry_header) <
506 (((unsigned long)dmar) + dmar_tbl->length)) {
507 /* Avoid looping forever on bad ACPI tables */
508 if (entry_header->length == 0) {
509 printk(KERN_WARNING PREFIX
510 "Invalid 0-length structure\n");
511 return 0;
514 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
515 void __iomem *addr;
516 u64 cap, ecap;
518 drhd = (void *)entry_header;
519 if (!drhd->address) {
520 warn_invalid_dmar(0, "");
521 goto failed;
524 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
525 if (!addr ) {
526 printk("IOMMU: can't validate: %llx\n", drhd->address);
527 goto failed;
529 cap = dmar_readq(addr + DMAR_CAP_REG);
530 ecap = dmar_readq(addr + DMAR_ECAP_REG);
531 early_iounmap(addr, VTD_PAGE_SIZE);
532 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
533 warn_invalid_dmar(drhd->address,
534 " returns all ones");
535 goto failed;
539 entry_header = ((void *)entry_header + entry_header->length);
541 return 1;
543 failed:
544 return 0;
547 int __init detect_intel_iommu(void)
549 int ret;
551 ret = dmar_table_detect();
552 if (ret)
553 ret = check_zero_address();
555 struct acpi_table_dmar *dmar;
557 dmar = (struct acpi_table_dmar *) dmar_tbl;
559 if (ret && irq_remapping_enabled && cpu_has_x2apic &&
560 dmar->flags & 0x1)
561 printk(KERN_INFO
562 "Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
564 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
565 iommu_detected = 1;
566 /* Make sure ACS will be enabled */
567 pci_request_acs();
570 #ifdef CONFIG_X86
571 if (ret)
572 x86_init.iommu.iommu_init = intel_iommu_init;
573 #endif
575 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
576 dmar_tbl = NULL;
578 return ret ? 1 : -ENODEV;
582 int alloc_iommu(struct dmar_drhd_unit *drhd)
584 struct intel_iommu *iommu;
585 int map_size;
586 u32 ver;
587 static int iommu_allocated = 0;
588 int agaw = 0;
589 int msagaw = 0;
591 if (!drhd->reg_base_addr) {
592 warn_invalid_dmar(0, "");
593 return -EINVAL;
596 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
597 if (!iommu)
598 return -ENOMEM;
600 iommu->seq_id = iommu_allocated++;
601 sprintf (iommu->name, "dmar%d", iommu->seq_id);
603 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
604 if (!iommu->reg) {
605 printk(KERN_ERR "IOMMU: can't map the region\n");
606 goto error;
608 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
609 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
611 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
612 warn_invalid_dmar(drhd->reg_base_addr, " returns all ones");
613 goto err_unmap;
616 agaw = iommu_calculate_agaw(iommu);
617 if (agaw < 0) {
618 printk(KERN_ERR
619 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
620 iommu->seq_id);
621 goto err_unmap;
623 msagaw = iommu_calculate_max_sagaw(iommu);
624 if (msagaw < 0) {
625 printk(KERN_ERR
626 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
627 iommu->seq_id);
628 goto err_unmap;
630 iommu->agaw = agaw;
631 iommu->msagaw = msagaw;
633 iommu->node = -1;
635 /* the registers might be more than one page */
636 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
637 cap_max_fault_reg_offset(iommu->cap));
638 map_size = VTD_PAGE_ALIGN(map_size);
639 if (map_size > VTD_PAGE_SIZE) {
640 iounmap(iommu->reg);
641 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
642 if (!iommu->reg) {
643 printk(KERN_ERR "IOMMU: can't map the region\n");
644 goto error;
648 ver = readl(iommu->reg + DMAR_VER_REG);
649 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
650 iommu->seq_id,
651 (unsigned long long)drhd->reg_base_addr,
652 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
653 (unsigned long long)iommu->cap,
654 (unsigned long long)iommu->ecap);
656 raw_spin_lock_init(&iommu->register_lock);
658 drhd->iommu = iommu;
659 return 0;
661 err_unmap:
662 iounmap(iommu->reg);
663 error:
664 kfree(iommu);
665 return -1;
668 void free_iommu(struct intel_iommu *iommu)
670 if (!iommu)
671 return;
673 free_dmar_iommu(iommu);
675 if (iommu->reg)
676 iounmap(iommu->reg);
677 kfree(iommu);
681 * Reclaim all the submitted descriptors which have completed its work.
683 static inline void reclaim_free_desc(struct q_inval *qi)
685 while (qi->desc_status[qi->free_tail] == QI_DONE ||
686 qi->desc_status[qi->free_tail] == QI_ABORT) {
687 qi->desc_status[qi->free_tail] = QI_FREE;
688 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
689 qi->free_cnt++;
693 static int qi_check_fault(struct intel_iommu *iommu, int index)
695 u32 fault;
696 int head, tail;
697 struct q_inval *qi = iommu->qi;
698 int wait_index = (index + 1) % QI_LENGTH;
700 if (qi->desc_status[wait_index] == QI_ABORT)
701 return -EAGAIN;
703 fault = readl(iommu->reg + DMAR_FSTS_REG);
706 * If IQE happens, the head points to the descriptor associated
707 * with the error. No new descriptors are fetched until the IQE
708 * is cleared.
710 if (fault & DMA_FSTS_IQE) {
711 head = readl(iommu->reg + DMAR_IQH_REG);
712 if ((head >> DMAR_IQ_SHIFT) == index) {
713 printk(KERN_ERR "VT-d detected invalid descriptor: "
714 "low=%llx, high=%llx\n",
715 (unsigned long long)qi->desc[index].low,
716 (unsigned long long)qi->desc[index].high);
717 memcpy(&qi->desc[index], &qi->desc[wait_index],
718 sizeof(struct qi_desc));
719 __iommu_flush_cache(iommu, &qi->desc[index],
720 sizeof(struct qi_desc));
721 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
722 return -EINVAL;
727 * If ITE happens, all pending wait_desc commands are aborted.
728 * No new descriptors are fetched until the ITE is cleared.
730 if (fault & DMA_FSTS_ITE) {
731 head = readl(iommu->reg + DMAR_IQH_REG);
732 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
733 head |= 1;
734 tail = readl(iommu->reg + DMAR_IQT_REG);
735 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
737 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
739 do {
740 if (qi->desc_status[head] == QI_IN_USE)
741 qi->desc_status[head] = QI_ABORT;
742 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
743 } while (head != tail);
745 if (qi->desc_status[wait_index] == QI_ABORT)
746 return -EAGAIN;
749 if (fault & DMA_FSTS_ICE)
750 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
752 return 0;
756 * Submit the queued invalidation descriptor to the remapping
757 * hardware unit and wait for its completion.
759 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
761 int rc;
762 struct q_inval *qi = iommu->qi;
763 struct qi_desc *hw, wait_desc;
764 int wait_index, index;
765 unsigned long flags;
767 if (!qi)
768 return 0;
770 hw = qi->desc;
772 restart:
773 rc = 0;
775 raw_spin_lock_irqsave(&qi->q_lock, flags);
776 while (qi->free_cnt < 3) {
777 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
778 cpu_relax();
779 raw_spin_lock_irqsave(&qi->q_lock, flags);
782 index = qi->free_head;
783 wait_index = (index + 1) % QI_LENGTH;
785 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
787 hw[index] = *desc;
789 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
790 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
791 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
793 hw[wait_index] = wait_desc;
795 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
796 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
798 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
799 qi->free_cnt -= 2;
802 * update the HW tail register indicating the presence of
803 * new descriptors.
805 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
807 while (qi->desc_status[wait_index] != QI_DONE) {
809 * We will leave the interrupts disabled, to prevent interrupt
810 * context to queue another cmd while a cmd is already submitted
811 * and waiting for completion on this cpu. This is to avoid
812 * a deadlock where the interrupt context can wait indefinitely
813 * for free slots in the queue.
815 rc = qi_check_fault(iommu, index);
816 if (rc)
817 break;
819 raw_spin_unlock(&qi->q_lock);
820 cpu_relax();
821 raw_spin_lock(&qi->q_lock);
824 qi->desc_status[index] = QI_DONE;
826 reclaim_free_desc(qi);
827 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
829 if (rc == -EAGAIN)
830 goto restart;
832 return rc;
836 * Flush the global interrupt entry cache.
838 void qi_global_iec(struct intel_iommu *iommu)
840 struct qi_desc desc;
842 desc.low = QI_IEC_TYPE;
843 desc.high = 0;
845 /* should never fail */
846 qi_submit_sync(&desc, iommu);
849 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
850 u64 type)
852 struct qi_desc desc;
854 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
855 | QI_CC_GRAN(type) | QI_CC_TYPE;
856 desc.high = 0;
858 qi_submit_sync(&desc, iommu);
861 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
862 unsigned int size_order, u64 type)
864 u8 dw = 0, dr = 0;
866 struct qi_desc desc;
867 int ih = 0;
869 if (cap_write_drain(iommu->cap))
870 dw = 1;
872 if (cap_read_drain(iommu->cap))
873 dr = 1;
875 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
876 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
877 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
878 | QI_IOTLB_AM(size_order);
880 qi_submit_sync(&desc, iommu);
883 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
884 u64 addr, unsigned mask)
886 struct qi_desc desc;
888 if (mask) {
889 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
890 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
891 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
892 } else
893 desc.high = QI_DEV_IOTLB_ADDR(addr);
895 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
896 qdep = 0;
898 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
899 QI_DIOTLB_TYPE;
901 qi_submit_sync(&desc, iommu);
905 * Disable Queued Invalidation interface.
907 void dmar_disable_qi(struct intel_iommu *iommu)
909 unsigned long flags;
910 u32 sts;
911 cycles_t start_time = get_cycles();
913 if (!ecap_qis(iommu->ecap))
914 return;
916 raw_spin_lock_irqsave(&iommu->register_lock, flags);
918 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
919 if (!(sts & DMA_GSTS_QIES))
920 goto end;
923 * Give a chance to HW to complete the pending invalidation requests.
925 while ((readl(iommu->reg + DMAR_IQT_REG) !=
926 readl(iommu->reg + DMAR_IQH_REG)) &&
927 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
928 cpu_relax();
930 iommu->gcmd &= ~DMA_GCMD_QIE;
931 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
933 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
934 !(sts & DMA_GSTS_QIES), sts);
935 end:
936 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
940 * Enable queued invalidation.
942 static void __dmar_enable_qi(struct intel_iommu *iommu)
944 u32 sts;
945 unsigned long flags;
946 struct q_inval *qi = iommu->qi;
948 qi->free_head = qi->free_tail = 0;
949 qi->free_cnt = QI_LENGTH;
951 raw_spin_lock_irqsave(&iommu->register_lock, flags);
953 /* write zero to the tail reg */
954 writel(0, iommu->reg + DMAR_IQT_REG);
956 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
958 iommu->gcmd |= DMA_GCMD_QIE;
959 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
961 /* Make sure hardware complete it */
962 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
964 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
968 * Enable Queued Invalidation interface. This is a must to support
969 * interrupt-remapping. Also used by DMA-remapping, which replaces
970 * register based IOTLB invalidation.
972 int dmar_enable_qi(struct intel_iommu *iommu)
974 struct q_inval *qi;
975 struct page *desc_page;
977 if (!ecap_qis(iommu->ecap))
978 return -ENOENT;
981 * queued invalidation is already setup and enabled.
983 if (iommu->qi)
984 return 0;
986 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
987 if (!iommu->qi)
988 return -ENOMEM;
990 qi = iommu->qi;
993 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
994 if (!desc_page) {
995 kfree(qi);
996 iommu->qi = 0;
997 return -ENOMEM;
1000 qi->desc = page_address(desc_page);
1002 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1003 if (!qi->desc_status) {
1004 free_page((unsigned long) qi->desc);
1005 kfree(qi);
1006 iommu->qi = 0;
1007 return -ENOMEM;
1010 qi->free_head = qi->free_tail = 0;
1011 qi->free_cnt = QI_LENGTH;
1013 raw_spin_lock_init(&qi->q_lock);
1015 __dmar_enable_qi(iommu);
1017 return 0;
1020 /* iommu interrupt handling. Most stuff are MSI-like. */
1022 enum faulttype {
1023 DMA_REMAP,
1024 INTR_REMAP,
1025 UNKNOWN,
1028 static const char *dma_remap_fault_reasons[] =
1030 "Software",
1031 "Present bit in root entry is clear",
1032 "Present bit in context entry is clear",
1033 "Invalid context entry",
1034 "Access beyond MGAW",
1035 "PTE Write access is not set",
1036 "PTE Read access is not set",
1037 "Next page table ptr is invalid",
1038 "Root table address invalid",
1039 "Context table ptr is invalid",
1040 "non-zero reserved fields in RTP",
1041 "non-zero reserved fields in CTP",
1042 "non-zero reserved fields in PTE",
1045 static const char *irq_remap_fault_reasons[] =
1047 "Detected reserved fields in the decoded interrupt-remapped request",
1048 "Interrupt index exceeded the interrupt-remapping table size",
1049 "Present field in the IRTE entry is clear",
1050 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1051 "Detected reserved fields in the IRTE entry",
1052 "Blocked a compatibility format interrupt request",
1053 "Blocked an interrupt request due to source-id verification failure",
1056 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1058 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1060 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1061 ARRAY_SIZE(irq_remap_fault_reasons))) {
1062 *fault_type = INTR_REMAP;
1063 return irq_remap_fault_reasons[fault_reason - 0x20];
1064 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1065 *fault_type = DMA_REMAP;
1066 return dma_remap_fault_reasons[fault_reason];
1067 } else {
1068 *fault_type = UNKNOWN;
1069 return "Unknown";
1073 void dmar_msi_unmask(struct irq_data *data)
1075 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1076 unsigned long flag;
1078 /* unmask it */
1079 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1080 writel(0, iommu->reg + DMAR_FECTL_REG);
1081 /* Read a reg to force flush the post write */
1082 readl(iommu->reg + DMAR_FECTL_REG);
1083 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1086 void dmar_msi_mask(struct irq_data *data)
1088 unsigned long flag;
1089 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1091 /* mask it */
1092 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1093 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1094 /* Read a reg to force flush the post write */
1095 readl(iommu->reg + DMAR_FECTL_REG);
1096 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1099 void dmar_msi_write(int irq, struct msi_msg *msg)
1101 struct intel_iommu *iommu = irq_get_handler_data(irq);
1102 unsigned long flag;
1104 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1105 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1106 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1107 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1108 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1111 void dmar_msi_read(int irq, struct msi_msg *msg)
1113 struct intel_iommu *iommu = irq_get_handler_data(irq);
1114 unsigned long flag;
1116 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1117 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1118 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1119 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1120 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1123 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1124 u8 fault_reason, u16 source_id, unsigned long long addr)
1126 const char *reason;
1127 int fault_type;
1129 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1131 if (fault_type == INTR_REMAP)
1132 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1133 "fault index %llx\n"
1134 "INTR-REMAP:[fault reason %02d] %s\n",
1135 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1136 PCI_FUNC(source_id & 0xFF), addr >> 48,
1137 fault_reason, reason);
1138 else
1139 printk(KERN_ERR
1140 "DMAR:[%s] Request device [%02x:%02x.%d] "
1141 "fault addr %llx \n"
1142 "DMAR:[fault reason %02d] %s\n",
1143 (type ? "DMA Read" : "DMA Write"),
1144 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1145 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1146 return 0;
1149 #define PRIMARY_FAULT_REG_LEN (16)
1150 irqreturn_t dmar_fault(int irq, void *dev_id)
1152 struct intel_iommu *iommu = dev_id;
1153 int reg, fault_index;
1154 u32 fault_status;
1155 unsigned long flag;
1157 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1158 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1159 if (fault_status)
1160 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1161 fault_status);
1163 /* TBD: ignore advanced fault log currently */
1164 if (!(fault_status & DMA_FSTS_PPF))
1165 goto clear_rest;
1167 fault_index = dma_fsts_fault_record_index(fault_status);
1168 reg = cap_fault_reg_offset(iommu->cap);
1169 while (1) {
1170 u8 fault_reason;
1171 u16 source_id;
1172 u64 guest_addr;
1173 int type;
1174 u32 data;
1176 /* highest 32 bits */
1177 data = readl(iommu->reg + reg +
1178 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1179 if (!(data & DMA_FRCD_F))
1180 break;
1182 fault_reason = dma_frcd_fault_reason(data);
1183 type = dma_frcd_type(data);
1185 data = readl(iommu->reg + reg +
1186 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1187 source_id = dma_frcd_source_id(data);
1189 guest_addr = dmar_readq(iommu->reg + reg +
1190 fault_index * PRIMARY_FAULT_REG_LEN);
1191 guest_addr = dma_frcd_page_addr(guest_addr);
1192 /* clear the fault */
1193 writel(DMA_FRCD_F, iommu->reg + reg +
1194 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1196 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1198 dmar_fault_do_one(iommu, type, fault_reason,
1199 source_id, guest_addr);
1201 fault_index++;
1202 if (fault_index >= cap_num_fault_regs(iommu->cap))
1203 fault_index = 0;
1204 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1206 clear_rest:
1207 /* clear all the other faults */
1208 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1209 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1211 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1212 return IRQ_HANDLED;
1215 int dmar_set_interrupt(struct intel_iommu *iommu)
1217 int irq, ret;
1220 * Check if the fault interrupt is already initialized.
1222 if (iommu->irq)
1223 return 0;
1225 irq = create_irq();
1226 if (!irq) {
1227 printk(KERN_ERR "IOMMU: no free vectors\n");
1228 return -EINVAL;
1231 irq_set_handler_data(irq, iommu);
1232 iommu->irq = irq;
1234 ret = arch_setup_dmar_msi(irq);
1235 if (ret) {
1236 irq_set_handler_data(irq, NULL);
1237 iommu->irq = 0;
1238 destroy_irq(irq);
1239 return ret;
1242 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1243 if (ret)
1244 printk(KERN_ERR "IOMMU: can't request irq\n");
1245 return ret;
1248 int __init enable_drhd_fault_handling(void)
1250 struct dmar_drhd_unit *drhd;
1253 * Enable fault control interrupt.
1255 for_each_drhd_unit(drhd) {
1256 int ret;
1257 struct intel_iommu *iommu = drhd->iommu;
1258 ret = dmar_set_interrupt(iommu);
1260 if (ret) {
1261 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1262 " interrupt, ret %d\n",
1263 (unsigned long long)drhd->reg_base_addr, ret);
1264 return -1;
1268 * Clear any previous faults.
1270 dmar_fault(iommu->irq, iommu);
1273 return 0;
1277 * Re-enable Queued Invalidation interface.
1279 int dmar_reenable_qi(struct intel_iommu *iommu)
1281 if (!ecap_qis(iommu->ecap))
1282 return -ENOENT;
1284 if (!iommu->qi)
1285 return -ENOENT;
1288 * First disable queued invalidation.
1290 dmar_disable_qi(iommu);
1292 * Then enable queued invalidation again. Since there is no pending
1293 * invalidation requests now, it's safe to re-enable queued
1294 * invalidation.
1296 __dmar_enable_qi(iommu);
1298 return 0;
1302 * Check interrupt remapping support in DMAR table description.
1304 int __init dmar_ir_support(void)
1306 struct acpi_table_dmar *dmar;
1307 dmar = (struct acpi_table_dmar *)dmar_tbl;
1308 if (!dmar)
1309 return 0;
1310 return dmar->flags & 0x1;
1312 IOMMU_INIT_POST(detect_intel_iommu);