Merge branch 'topic/kaslr-book3e32' into next
[linux/fpc-iii.git] / arch / powerpc / mm / init_64.c
blob4002ced3596f770d8562699cabd03ef388ac1224
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
7 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
8 * Copyright (C) 1996 Paul Mackerras
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 * Dave Engebretsen <engebret@us.ibm.com>
14 * Rework for PPC64 port.
17 #undef DEBUG
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/stddef.h>
29 #include <linux/vmalloc.h>
30 #include <linux/init.h>
31 #include <linux/delay.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/nodemask.h>
35 #include <linux/module.h>
36 #include <linux/poison.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/slab.h>
40 #include <linux/of_fdt.h>
41 #include <linux/libfdt.h>
42 #include <linux/memremap.h>
44 #include <asm/pgalloc.h>
45 #include <asm/page.h>
46 #include <asm/prom.h>
47 #include <asm/rtas.h>
48 #include <asm/io.h>
49 #include <asm/mmu_context.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu.h>
52 #include <linux/uaccess.h>
53 #include <asm/smp.h>
54 #include <asm/machdep.h>
55 #include <asm/tlb.h>
56 #include <asm/eeh.h>
57 #include <asm/processor.h>
58 #include <asm/mmzone.h>
59 #include <asm/cputable.h>
60 #include <asm/sections.h>
61 #include <asm/iommu.h>
62 #include <asm/vdso.h>
64 #include <mm/mmu_decl.h>
66 #ifdef CONFIG_SPARSEMEM_VMEMMAP
68 * Given an address within the vmemmap, determine the page that
69 * represents the start of the subsection it is within. Note that we have to
70 * do this by hand as the proffered address may not be correctly aligned.
71 * Subtraction of non-aligned pointers produces undefined results.
73 static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
75 unsigned long start_pfn;
76 unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
78 /* Return the pfn of the start of the section. */
79 start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
80 return pfn_to_page(start_pfn);
84 * Since memory is added in sub-section chunks, before creating a new vmemmap
85 * mapping, the kernel should check whether there is an existing memmap mapping
86 * covering the new subsection added. This is needed because kernel can map
87 * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
88 * a range covers multiple subsections (2M)
90 * If any subsection in the 16G range mapped by vmemmap is valid we consider the
91 * vmemmap populated (There is a page table entry already present). We can't do
92 * a page table lookup here because with the hash translation we don't keep
93 * vmemmap details in linux page table.
95 static int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
97 struct page *start;
98 unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
99 start = vmemmap_subsection_start(vmemmap_addr);
101 for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
103 * pfn valid check here is intended to really check
104 * whether we have any subsection already initialized
105 * in this range.
107 if (pfn_valid(page_to_pfn(start)))
108 return 1;
110 return 0;
114 * vmemmap virtual address space management does not have a traditonal page
115 * table to track which virtual struct pages are backed by physical mapping.
116 * The virtual to physical mappings are tracked in a simple linked list
117 * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
118 * all times where as the 'next' list maintains the available
119 * vmemmap_backing structures which have been deleted from the
120 * 'vmemmap_global' list during system runtime (memory hotplug remove
121 * operation). The freed 'vmemmap_backing' structures are reused later when
122 * new requests come in without allocating fresh memory. This pointer also
123 * tracks the allocated 'vmemmap_backing' structures as we allocate one
124 * full page memory at a time when we dont have any.
126 struct vmemmap_backing *vmemmap_list;
127 static struct vmemmap_backing *next;
130 * The same pointer 'next' tracks individual chunks inside the allocated
131 * full page during the boot time and again tracks the freeed nodes during
132 * runtime. It is racy but it does not happen as they are separated by the
133 * boot process. Will create problem if some how we have memory hotplug
134 * operation during boot !!
136 static int num_left;
137 static int num_freed;
139 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
141 struct vmemmap_backing *vmem_back;
142 /* get from freed entries first */
143 if (num_freed) {
144 num_freed--;
145 vmem_back = next;
146 next = next->list;
148 return vmem_back;
151 /* allocate a page when required and hand out chunks */
152 if (!num_left) {
153 next = vmemmap_alloc_block(PAGE_SIZE, node);
154 if (unlikely(!next)) {
155 WARN_ON(1);
156 return NULL;
158 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
161 num_left--;
163 return next++;
166 static __meminit void vmemmap_list_populate(unsigned long phys,
167 unsigned long start,
168 int node)
170 struct vmemmap_backing *vmem_back;
172 vmem_back = vmemmap_list_alloc(node);
173 if (unlikely(!vmem_back)) {
174 WARN_ON(1);
175 return;
178 vmem_back->phys = phys;
179 vmem_back->virt_addr = start;
180 vmem_back->list = vmemmap_list;
182 vmemmap_list = vmem_back;
185 static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
186 unsigned long page_size)
188 unsigned long nr_pfn = page_size / sizeof(struct page);
189 unsigned long start_pfn = page_to_pfn((struct page *)start);
191 if ((start_pfn + nr_pfn) > altmap->end_pfn)
192 return true;
194 if (start_pfn < altmap->base_pfn)
195 return true;
197 return false;
200 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
201 struct vmem_altmap *altmap)
203 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
205 /* Align to the page size of the linear mapping. */
206 start = _ALIGN_DOWN(start, page_size);
208 pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
210 for (; start < end; start += page_size) {
211 void *p = NULL;
212 int rc;
215 * This vmemmap range is backing different subsections. If any
216 * of that subsection is marked valid, that means we already
217 * have initialized a page table covering this range and hence
218 * the vmemmap range is populated.
220 if (vmemmap_populated(start, page_size))
221 continue;
224 * Allocate from the altmap first if we have one. This may
225 * fail due to alignment issues when using 16MB hugepages, so
226 * fall back to system memory if the altmap allocation fail.
228 if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
229 p = altmap_alloc_block_buf(page_size, altmap);
230 if (!p)
231 pr_debug("altmap block allocation failed, falling back to system memory");
233 if (!p)
234 p = vmemmap_alloc_block_buf(page_size, node);
235 if (!p)
236 return -ENOMEM;
238 vmemmap_list_populate(__pa(p), start, node);
240 pr_debug(" * %016lx..%016lx allocated at %p\n",
241 start, start + page_size, p);
243 rc = vmemmap_create_mapping(start, page_size, __pa(p));
244 if (rc < 0) {
245 pr_warn("%s: Unable to create vmemmap mapping: %d\n",
246 __func__, rc);
247 return -EFAULT;
251 return 0;
254 #ifdef CONFIG_MEMORY_HOTPLUG
255 static unsigned long vmemmap_list_free(unsigned long start)
257 struct vmemmap_backing *vmem_back, *vmem_back_prev;
259 vmem_back_prev = vmem_back = vmemmap_list;
261 /* look for it with prev pointer recorded */
262 for (; vmem_back; vmem_back = vmem_back->list) {
263 if (vmem_back->virt_addr == start)
264 break;
265 vmem_back_prev = vmem_back;
268 if (unlikely(!vmem_back)) {
269 WARN_ON(1);
270 return 0;
273 /* remove it from vmemmap_list */
274 if (vmem_back == vmemmap_list) /* remove head */
275 vmemmap_list = vmem_back->list;
276 else
277 vmem_back_prev->list = vmem_back->list;
279 /* next point to this freed entry */
280 vmem_back->list = next;
281 next = vmem_back;
282 num_freed++;
284 return vmem_back->phys;
287 void __ref vmemmap_free(unsigned long start, unsigned long end,
288 struct vmem_altmap *altmap)
290 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
291 unsigned long page_order = get_order(page_size);
292 unsigned long alt_start = ~0, alt_end = ~0;
293 unsigned long base_pfn;
295 start = _ALIGN_DOWN(start, page_size);
296 if (altmap) {
297 alt_start = altmap->base_pfn;
298 alt_end = altmap->base_pfn + altmap->reserve +
299 altmap->free + altmap->alloc + altmap->align;
302 pr_debug("vmemmap_free %lx...%lx\n", start, end);
304 for (; start < end; start += page_size) {
305 unsigned long nr_pages, addr;
306 struct page *page;
309 * We have already marked the subsection we are trying to remove
310 * invalid. So if we want to remove the vmemmap range, we
311 * need to make sure there is no subsection marked valid
312 * in this range.
314 if (vmemmap_populated(start, page_size))
315 continue;
317 addr = vmemmap_list_free(start);
318 if (!addr)
319 continue;
321 page = pfn_to_page(addr >> PAGE_SHIFT);
322 nr_pages = 1 << page_order;
323 base_pfn = PHYS_PFN(addr);
325 if (base_pfn >= alt_start && base_pfn < alt_end) {
326 vmem_altmap_free(altmap, nr_pages);
327 } else if (PageReserved(page)) {
328 /* allocated from bootmem */
329 if (page_size < PAGE_SIZE) {
331 * this shouldn't happen, but if it is
332 * the case, leave the memory there
334 WARN_ON_ONCE(1);
335 } else {
336 while (nr_pages--)
337 free_reserved_page(page++);
339 } else {
340 free_pages((unsigned long)(__va(addr)), page_order);
343 vmemmap_remove_mapping(start, page_size);
346 #endif
347 void register_page_bootmem_memmap(unsigned long section_nr,
348 struct page *start_page, unsigned long size)
352 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
354 #ifdef CONFIG_PPC_BOOK3S_64
355 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
357 static int __init parse_disable_radix(char *p)
359 bool val;
361 if (!p)
362 val = true;
363 else if (kstrtobool(p, &val))
364 return -EINVAL;
366 disable_radix = val;
368 return 0;
370 early_param("disable_radix", parse_disable_radix);
373 * If we're running under a hypervisor, we need to check the contents of
374 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
375 * radix. If not, we clear the radix feature bit so we fall back to hash.
377 static void __init early_check_vec5(void)
379 unsigned long root, chosen;
380 int size;
381 const u8 *vec5;
382 u8 mmu_supported;
384 root = of_get_flat_dt_root();
385 chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
386 if (chosen == -FDT_ERR_NOTFOUND) {
387 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
388 return;
390 vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
391 if (!vec5) {
392 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
393 return;
395 if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
396 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
397 return;
400 /* Check for supported configuration */
401 mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
402 OV5_FEAT(OV5_MMU_SUPPORT);
403 if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
404 /* Hypervisor only supports radix - check enabled && GTSE */
405 if (!early_radix_enabled()) {
406 pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
408 if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
409 OV5_FEAT(OV5_RADIX_GTSE))) {
410 pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
412 /* Do radix anyway - the hypervisor said we had to */
413 cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
414 } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
415 /* Hypervisor only supports hash - disable radix */
416 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
420 void __init mmu_early_init_devtree(void)
422 /* Disable radix mode based on kernel command line. */
423 if (disable_radix)
424 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
427 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
428 * When running bare-metal, we can use radix if we like
429 * even though the ibm,architecture-vec-5 property created by
430 * skiboot doesn't have the necessary bits set.
432 if (!(mfmsr() & MSR_HV))
433 early_check_vec5();
435 if (early_radix_enabled())
436 radix__early_init_devtree();
437 else
438 hash__early_init_devtree();
440 #endif /* CONFIG_PPC_BOOK3S_64 */