Linux 4.13.16
[linux/fpc-iii.git] / arch / arm64 / kvm / sys_regs.c
blob2e070d3baf9f12db1363ed95d079b19b02ca0382
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/uaccess.h>
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/esr.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39 #include <asm/sysreg.h>
41 #include <trace/events/kvm.h>
43 #include "sys_regs.h"
45 #include "trace.h"
48 * All of this file is extremly similar to the ARM coproc.c, but the
49 * types are different. My gut feeling is that it should be pretty
50 * easy to merge, but that would be an ABI breakage -- again. VFP
51 * would also need to be abstracted.
53 * For AArch32, we only take care of what is being trapped. Anything
54 * that has to do with init and userspace access has to go via the
55 * 64bit interface.
58 static bool read_from_write_only(struct kvm_vcpu *vcpu,
59 struct sys_reg_params *params,
60 const struct sys_reg_desc *r)
62 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
63 print_sys_reg_instr(params);
64 kvm_inject_undefined(vcpu);
65 return false;
68 static bool write_to_read_only(struct kvm_vcpu *vcpu,
69 struct sys_reg_params *params,
70 const struct sys_reg_desc *r)
72 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
73 print_sys_reg_instr(params);
74 kvm_inject_undefined(vcpu);
75 return false;
78 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
79 static u32 cache_levels;
81 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
82 #define CSSELR_MAX 12
84 /* Which cache CCSIDR represents depends on CSSELR value. */
85 static u32 get_ccsidr(u32 csselr)
87 u32 ccsidr;
89 /* Make sure noone else changes CSSELR during this! */
90 local_irq_disable();
91 write_sysreg(csselr, csselr_el1);
92 isb();
93 ccsidr = read_sysreg(ccsidr_el1);
94 local_irq_enable();
96 return ccsidr;
100 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
102 static bool access_dcsw(struct kvm_vcpu *vcpu,
103 struct sys_reg_params *p,
104 const struct sys_reg_desc *r)
106 if (!p->is_write)
107 return read_from_write_only(vcpu, p, r);
109 kvm_set_way_flush(vcpu);
110 return true;
114 * Generic accessor for VM registers. Only called as long as HCR_TVM
115 * is set. If the guest enables the MMU, we stop trapping the VM
116 * sys_regs and leave it in complete control of the caches.
118 static bool access_vm_reg(struct kvm_vcpu *vcpu,
119 struct sys_reg_params *p,
120 const struct sys_reg_desc *r)
122 bool was_enabled = vcpu_has_cache_enabled(vcpu);
124 BUG_ON(!p->is_write);
126 if (!p->is_aarch32) {
127 vcpu_sys_reg(vcpu, r->reg) = p->regval;
128 } else {
129 if (!p->is_32bit)
130 vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
131 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
134 kvm_toggle_cache(vcpu, was_enabled);
135 return true;
139 * Trap handler for the GICv3 SGI generation system register.
140 * Forward the request to the VGIC emulation.
141 * The cp15_64 code makes sure this automatically works
142 * for both AArch64 and AArch32 accesses.
144 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
145 struct sys_reg_params *p,
146 const struct sys_reg_desc *r)
148 if (!p->is_write)
149 return read_from_write_only(vcpu, p, r);
151 vgic_v3_dispatch_sgi(vcpu, p->regval);
153 return true;
156 static bool access_gic_sre(struct kvm_vcpu *vcpu,
157 struct sys_reg_params *p,
158 const struct sys_reg_desc *r)
160 if (p->is_write)
161 return ignore_write(vcpu, p);
163 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
164 return true;
167 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
168 struct sys_reg_params *p,
169 const struct sys_reg_desc *r)
171 if (p->is_write)
172 return ignore_write(vcpu, p);
173 else
174 return read_zero(vcpu, p);
177 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
178 struct sys_reg_params *p,
179 const struct sys_reg_desc *r)
181 if (p->is_write) {
182 return ignore_write(vcpu, p);
183 } else {
184 p->regval = (1 << 3);
185 return true;
189 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
190 struct sys_reg_params *p,
191 const struct sys_reg_desc *r)
193 if (p->is_write) {
194 return ignore_write(vcpu, p);
195 } else {
196 p->regval = read_sysreg(dbgauthstatus_el1);
197 return true;
202 * We want to avoid world-switching all the DBG registers all the
203 * time:
205 * - If we've touched any debug register, it is likely that we're
206 * going to touch more of them. It then makes sense to disable the
207 * traps and start doing the save/restore dance
208 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
209 * then mandatory to save/restore the registers, as the guest
210 * depends on them.
212 * For this, we use a DIRTY bit, indicating the guest has modified the
213 * debug registers, used as follow:
215 * On guest entry:
216 * - If the dirty bit is set (because we're coming back from trapping),
217 * disable the traps, save host registers, restore guest registers.
218 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
219 * set the dirty bit, disable the traps, save host registers,
220 * restore guest registers.
221 * - Otherwise, enable the traps
223 * On guest exit:
224 * - If the dirty bit is set, save guest registers, restore host
225 * registers and clear the dirty bit. This ensure that the host can
226 * now use the debug registers.
228 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
229 struct sys_reg_params *p,
230 const struct sys_reg_desc *r)
232 if (p->is_write) {
233 vcpu_sys_reg(vcpu, r->reg) = p->regval;
234 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
235 } else {
236 p->regval = vcpu_sys_reg(vcpu, r->reg);
239 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
241 return true;
245 * reg_to_dbg/dbg_to_reg
247 * A 32 bit write to a debug register leave top bits alone
248 * A 32 bit read from a debug register only returns the bottom bits
250 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
251 * hyp.S code switches between host and guest values in future.
253 static void reg_to_dbg(struct kvm_vcpu *vcpu,
254 struct sys_reg_params *p,
255 u64 *dbg_reg)
257 u64 val = p->regval;
259 if (p->is_32bit) {
260 val &= 0xffffffffUL;
261 val |= ((*dbg_reg >> 32) << 32);
264 *dbg_reg = val;
265 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
268 static void dbg_to_reg(struct kvm_vcpu *vcpu,
269 struct sys_reg_params *p,
270 u64 *dbg_reg)
272 p->regval = *dbg_reg;
273 if (p->is_32bit)
274 p->regval &= 0xffffffffUL;
277 static bool trap_bvr(struct kvm_vcpu *vcpu,
278 struct sys_reg_params *p,
279 const struct sys_reg_desc *rd)
281 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
283 if (p->is_write)
284 reg_to_dbg(vcpu, p, dbg_reg);
285 else
286 dbg_to_reg(vcpu, p, dbg_reg);
288 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
290 return true;
293 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
294 const struct kvm_one_reg *reg, void __user *uaddr)
296 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
298 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
299 return -EFAULT;
300 return 0;
303 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
304 const struct kvm_one_reg *reg, void __user *uaddr)
306 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
308 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
309 return -EFAULT;
310 return 0;
313 static void reset_bvr(struct kvm_vcpu *vcpu,
314 const struct sys_reg_desc *rd)
316 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
319 static bool trap_bcr(struct kvm_vcpu *vcpu,
320 struct sys_reg_params *p,
321 const struct sys_reg_desc *rd)
323 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
325 if (p->is_write)
326 reg_to_dbg(vcpu, p, dbg_reg);
327 else
328 dbg_to_reg(vcpu, p, dbg_reg);
330 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
332 return true;
335 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
336 const struct kvm_one_reg *reg, void __user *uaddr)
338 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
340 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
341 return -EFAULT;
343 return 0;
346 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
347 const struct kvm_one_reg *reg, void __user *uaddr)
349 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
351 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
352 return -EFAULT;
353 return 0;
356 static void reset_bcr(struct kvm_vcpu *vcpu,
357 const struct sys_reg_desc *rd)
359 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
362 static bool trap_wvr(struct kvm_vcpu *vcpu,
363 struct sys_reg_params *p,
364 const struct sys_reg_desc *rd)
366 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
368 if (p->is_write)
369 reg_to_dbg(vcpu, p, dbg_reg);
370 else
371 dbg_to_reg(vcpu, p, dbg_reg);
373 trace_trap_reg(__func__, rd->reg, p->is_write,
374 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
376 return true;
379 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
380 const struct kvm_one_reg *reg, void __user *uaddr)
382 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
384 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
385 return -EFAULT;
386 return 0;
389 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
390 const struct kvm_one_reg *reg, void __user *uaddr)
392 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
394 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
395 return -EFAULT;
396 return 0;
399 static void reset_wvr(struct kvm_vcpu *vcpu,
400 const struct sys_reg_desc *rd)
402 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
405 static bool trap_wcr(struct kvm_vcpu *vcpu,
406 struct sys_reg_params *p,
407 const struct sys_reg_desc *rd)
409 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
411 if (p->is_write)
412 reg_to_dbg(vcpu, p, dbg_reg);
413 else
414 dbg_to_reg(vcpu, p, dbg_reg);
416 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
418 return true;
421 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
422 const struct kvm_one_reg *reg, void __user *uaddr)
424 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
426 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
427 return -EFAULT;
428 return 0;
431 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
432 const struct kvm_one_reg *reg, void __user *uaddr)
434 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
436 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
437 return -EFAULT;
438 return 0;
441 static void reset_wcr(struct kvm_vcpu *vcpu,
442 const struct sys_reg_desc *rd)
444 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
447 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
449 vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
452 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
454 u64 mpidr;
457 * Map the vcpu_id into the first three affinity level fields of
458 * the MPIDR. We limit the number of VCPUs in level 0 due to a
459 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
460 * of the GICv3 to be able to address each CPU directly when
461 * sending IPIs.
463 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
464 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
465 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
466 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
469 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
471 u64 pmcr, val;
473 pmcr = read_sysreg(pmcr_el0);
475 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
476 * except PMCR.E resetting to zero.
478 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
479 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
480 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
483 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
485 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
486 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
488 if (!enabled)
489 kvm_inject_undefined(vcpu);
491 return !enabled;
494 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
496 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
499 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
501 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
504 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
506 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
509 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
511 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
514 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
515 const struct sys_reg_desc *r)
517 u64 val;
519 if (!kvm_arm_pmu_v3_ready(vcpu))
520 return trap_raz_wi(vcpu, p, r);
522 if (pmu_access_el0_disabled(vcpu))
523 return false;
525 if (p->is_write) {
526 /* Only update writeable bits of PMCR */
527 val = vcpu_sys_reg(vcpu, PMCR_EL0);
528 val &= ~ARMV8_PMU_PMCR_MASK;
529 val |= p->regval & ARMV8_PMU_PMCR_MASK;
530 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
531 kvm_pmu_handle_pmcr(vcpu, val);
532 } else {
533 /* PMCR.P & PMCR.C are RAZ */
534 val = vcpu_sys_reg(vcpu, PMCR_EL0)
535 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
536 p->regval = val;
539 return true;
542 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
543 const struct sys_reg_desc *r)
545 if (!kvm_arm_pmu_v3_ready(vcpu))
546 return trap_raz_wi(vcpu, p, r);
548 if (pmu_access_event_counter_el0_disabled(vcpu))
549 return false;
551 if (p->is_write)
552 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
553 else
554 /* return PMSELR.SEL field */
555 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
556 & ARMV8_PMU_COUNTER_MASK;
558 return true;
561 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
562 const struct sys_reg_desc *r)
564 u64 pmceid;
566 if (!kvm_arm_pmu_v3_ready(vcpu))
567 return trap_raz_wi(vcpu, p, r);
569 BUG_ON(p->is_write);
571 if (pmu_access_el0_disabled(vcpu))
572 return false;
574 if (!(p->Op2 & 1))
575 pmceid = read_sysreg(pmceid0_el0);
576 else
577 pmceid = read_sysreg(pmceid1_el0);
579 p->regval = pmceid;
581 return true;
584 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
586 u64 pmcr, val;
588 pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
589 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
590 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
591 kvm_inject_undefined(vcpu);
592 return false;
595 return true;
598 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
599 struct sys_reg_params *p,
600 const struct sys_reg_desc *r)
602 u64 idx;
604 if (!kvm_arm_pmu_v3_ready(vcpu))
605 return trap_raz_wi(vcpu, p, r);
607 if (r->CRn == 9 && r->CRm == 13) {
608 if (r->Op2 == 2) {
609 /* PMXEVCNTR_EL0 */
610 if (pmu_access_event_counter_el0_disabled(vcpu))
611 return false;
613 idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
614 & ARMV8_PMU_COUNTER_MASK;
615 } else if (r->Op2 == 0) {
616 /* PMCCNTR_EL0 */
617 if (pmu_access_cycle_counter_el0_disabled(vcpu))
618 return false;
620 idx = ARMV8_PMU_CYCLE_IDX;
621 } else {
622 return false;
624 } else if (r->CRn == 0 && r->CRm == 9) {
625 /* PMCCNTR */
626 if (pmu_access_event_counter_el0_disabled(vcpu))
627 return false;
629 idx = ARMV8_PMU_CYCLE_IDX;
630 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
631 /* PMEVCNTRn_EL0 */
632 if (pmu_access_event_counter_el0_disabled(vcpu))
633 return false;
635 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
636 } else {
637 return false;
640 if (!pmu_counter_idx_valid(vcpu, idx))
641 return false;
643 if (p->is_write) {
644 if (pmu_access_el0_disabled(vcpu))
645 return false;
647 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
648 } else {
649 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
652 return true;
655 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
656 const struct sys_reg_desc *r)
658 u64 idx, reg;
660 if (!kvm_arm_pmu_v3_ready(vcpu))
661 return trap_raz_wi(vcpu, p, r);
663 if (pmu_access_el0_disabled(vcpu))
664 return false;
666 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
667 /* PMXEVTYPER_EL0 */
668 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
669 reg = PMEVTYPER0_EL0 + idx;
670 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
671 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
672 if (idx == ARMV8_PMU_CYCLE_IDX)
673 reg = PMCCFILTR_EL0;
674 else
675 /* PMEVTYPERn_EL0 */
676 reg = PMEVTYPER0_EL0 + idx;
677 } else {
678 BUG();
681 if (!pmu_counter_idx_valid(vcpu, idx))
682 return false;
684 if (p->is_write) {
685 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
686 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
687 } else {
688 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
691 return true;
694 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
695 const struct sys_reg_desc *r)
697 u64 val, mask;
699 if (!kvm_arm_pmu_v3_ready(vcpu))
700 return trap_raz_wi(vcpu, p, r);
702 if (pmu_access_el0_disabled(vcpu))
703 return false;
705 mask = kvm_pmu_valid_counter_mask(vcpu);
706 if (p->is_write) {
707 val = p->regval & mask;
708 if (r->Op2 & 0x1) {
709 /* accessing PMCNTENSET_EL0 */
710 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
711 kvm_pmu_enable_counter(vcpu, val);
712 } else {
713 /* accessing PMCNTENCLR_EL0 */
714 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
715 kvm_pmu_disable_counter(vcpu, val);
717 } else {
718 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
721 return true;
724 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
725 const struct sys_reg_desc *r)
727 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
729 if (!kvm_arm_pmu_v3_ready(vcpu))
730 return trap_raz_wi(vcpu, p, r);
732 if (!vcpu_mode_priv(vcpu)) {
733 kvm_inject_undefined(vcpu);
734 return false;
737 if (p->is_write) {
738 u64 val = p->regval & mask;
740 if (r->Op2 & 0x1)
741 /* accessing PMINTENSET_EL1 */
742 vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
743 else
744 /* accessing PMINTENCLR_EL1 */
745 vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
746 } else {
747 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
750 return true;
753 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
754 const struct sys_reg_desc *r)
756 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
758 if (!kvm_arm_pmu_v3_ready(vcpu))
759 return trap_raz_wi(vcpu, p, r);
761 if (pmu_access_el0_disabled(vcpu))
762 return false;
764 if (p->is_write) {
765 if (r->CRm & 0x2)
766 /* accessing PMOVSSET_EL0 */
767 vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
768 else
769 /* accessing PMOVSCLR_EL0 */
770 vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
771 } else {
772 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
775 return true;
778 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
779 const struct sys_reg_desc *r)
781 u64 mask;
783 if (!kvm_arm_pmu_v3_ready(vcpu))
784 return trap_raz_wi(vcpu, p, r);
786 if (!p->is_write)
787 return read_from_write_only(vcpu, p, r);
789 if (pmu_write_swinc_el0_disabled(vcpu))
790 return false;
792 mask = kvm_pmu_valid_counter_mask(vcpu);
793 kvm_pmu_software_increment(vcpu, p->regval & mask);
794 return true;
797 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
798 const struct sys_reg_desc *r)
800 if (!kvm_arm_pmu_v3_ready(vcpu))
801 return trap_raz_wi(vcpu, p, r);
803 if (p->is_write) {
804 if (!vcpu_mode_priv(vcpu)) {
805 kvm_inject_undefined(vcpu);
806 return false;
809 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
810 & ARMV8_PMU_USERENR_MASK;
811 } else {
812 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
813 & ARMV8_PMU_USERENR_MASK;
816 return true;
819 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
820 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
821 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
822 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
823 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
824 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
825 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
826 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
827 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
828 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
830 /* Macro to expand the PMEVCNTRn_EL0 register */
831 #define PMU_PMEVCNTR_EL0(n) \
832 { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
833 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
835 /* Macro to expand the PMEVTYPERn_EL0 register */
836 #define PMU_PMEVTYPER_EL0(n) \
837 { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
838 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
840 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
841 struct sys_reg_params *p,
842 const struct sys_reg_desc *r)
844 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
845 u64 now = kvm_phys_timer_read();
847 if (p->is_write)
848 ptimer->cnt_cval = p->regval + now;
849 else
850 p->regval = ptimer->cnt_cval - now;
852 return true;
855 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
856 struct sys_reg_params *p,
857 const struct sys_reg_desc *r)
859 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
861 if (p->is_write) {
862 /* ISTATUS bit is read-only */
863 ptimer->cnt_ctl = p->regval & ~ARCH_TIMER_CTRL_IT_STAT;
864 } else {
865 u64 now = kvm_phys_timer_read();
867 p->regval = ptimer->cnt_ctl;
869 * Set ISTATUS bit if it's expired.
870 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
871 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
872 * regardless of ENABLE bit for our implementation convenience.
874 if (ptimer->cnt_cval <= now)
875 p->regval |= ARCH_TIMER_CTRL_IT_STAT;
878 return true;
881 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
882 struct sys_reg_params *p,
883 const struct sys_reg_desc *r)
885 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
887 if (p->is_write)
888 ptimer->cnt_cval = p->regval;
889 else
890 p->regval = ptimer->cnt_cval;
892 return true;
896 * Architected system registers.
897 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
899 * Debug handling: We do trap most, if not all debug related system
900 * registers. The implementation is good enough to ensure that a guest
901 * can use these with minimal performance degradation. The drawback is
902 * that we don't implement any of the external debug, none of the
903 * OSlock protocol. This should be revisited if we ever encounter a
904 * more demanding guest...
906 static const struct sys_reg_desc sys_reg_descs[] = {
907 { SYS_DESC(SYS_DC_ISW), access_dcsw },
908 { SYS_DESC(SYS_DC_CSW), access_dcsw },
909 { SYS_DESC(SYS_DC_CISW), access_dcsw },
911 DBG_BCR_BVR_WCR_WVR_EL1(0),
912 DBG_BCR_BVR_WCR_WVR_EL1(1),
913 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
914 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
915 DBG_BCR_BVR_WCR_WVR_EL1(2),
916 DBG_BCR_BVR_WCR_WVR_EL1(3),
917 DBG_BCR_BVR_WCR_WVR_EL1(4),
918 DBG_BCR_BVR_WCR_WVR_EL1(5),
919 DBG_BCR_BVR_WCR_WVR_EL1(6),
920 DBG_BCR_BVR_WCR_WVR_EL1(7),
921 DBG_BCR_BVR_WCR_WVR_EL1(8),
922 DBG_BCR_BVR_WCR_WVR_EL1(9),
923 DBG_BCR_BVR_WCR_WVR_EL1(10),
924 DBG_BCR_BVR_WCR_WVR_EL1(11),
925 DBG_BCR_BVR_WCR_WVR_EL1(12),
926 DBG_BCR_BVR_WCR_WVR_EL1(13),
927 DBG_BCR_BVR_WCR_WVR_EL1(14),
928 DBG_BCR_BVR_WCR_WVR_EL1(15),
930 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
931 { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
932 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
933 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
934 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
935 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
936 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
937 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
939 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
940 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
941 // DBGDTR[TR]X_EL0 share the same encoding
942 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
944 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
946 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
947 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
948 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
949 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
950 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
951 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
953 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
954 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
955 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
956 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
957 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
959 { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
960 { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
962 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
963 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
965 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
967 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
968 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
969 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
970 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
971 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
972 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
973 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
974 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
975 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
976 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
978 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
979 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
981 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
983 { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
985 { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
986 { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
987 { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
988 { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
989 { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
990 { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
991 { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
992 { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
993 { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
994 { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
995 { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
997 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
998 * in 32bit mode. Here we choose to reset it as zero for consistency.
1000 { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1001 { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1003 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1004 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1006 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
1007 { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
1008 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1010 /* PMEVCNTRn_EL0 */
1011 PMU_PMEVCNTR_EL0(0),
1012 PMU_PMEVCNTR_EL0(1),
1013 PMU_PMEVCNTR_EL0(2),
1014 PMU_PMEVCNTR_EL0(3),
1015 PMU_PMEVCNTR_EL0(4),
1016 PMU_PMEVCNTR_EL0(5),
1017 PMU_PMEVCNTR_EL0(6),
1018 PMU_PMEVCNTR_EL0(7),
1019 PMU_PMEVCNTR_EL0(8),
1020 PMU_PMEVCNTR_EL0(9),
1021 PMU_PMEVCNTR_EL0(10),
1022 PMU_PMEVCNTR_EL0(11),
1023 PMU_PMEVCNTR_EL0(12),
1024 PMU_PMEVCNTR_EL0(13),
1025 PMU_PMEVCNTR_EL0(14),
1026 PMU_PMEVCNTR_EL0(15),
1027 PMU_PMEVCNTR_EL0(16),
1028 PMU_PMEVCNTR_EL0(17),
1029 PMU_PMEVCNTR_EL0(18),
1030 PMU_PMEVCNTR_EL0(19),
1031 PMU_PMEVCNTR_EL0(20),
1032 PMU_PMEVCNTR_EL0(21),
1033 PMU_PMEVCNTR_EL0(22),
1034 PMU_PMEVCNTR_EL0(23),
1035 PMU_PMEVCNTR_EL0(24),
1036 PMU_PMEVCNTR_EL0(25),
1037 PMU_PMEVCNTR_EL0(26),
1038 PMU_PMEVCNTR_EL0(27),
1039 PMU_PMEVCNTR_EL0(28),
1040 PMU_PMEVCNTR_EL0(29),
1041 PMU_PMEVCNTR_EL0(30),
1042 /* PMEVTYPERn_EL0 */
1043 PMU_PMEVTYPER_EL0(0),
1044 PMU_PMEVTYPER_EL0(1),
1045 PMU_PMEVTYPER_EL0(2),
1046 PMU_PMEVTYPER_EL0(3),
1047 PMU_PMEVTYPER_EL0(4),
1048 PMU_PMEVTYPER_EL0(5),
1049 PMU_PMEVTYPER_EL0(6),
1050 PMU_PMEVTYPER_EL0(7),
1051 PMU_PMEVTYPER_EL0(8),
1052 PMU_PMEVTYPER_EL0(9),
1053 PMU_PMEVTYPER_EL0(10),
1054 PMU_PMEVTYPER_EL0(11),
1055 PMU_PMEVTYPER_EL0(12),
1056 PMU_PMEVTYPER_EL0(13),
1057 PMU_PMEVTYPER_EL0(14),
1058 PMU_PMEVTYPER_EL0(15),
1059 PMU_PMEVTYPER_EL0(16),
1060 PMU_PMEVTYPER_EL0(17),
1061 PMU_PMEVTYPER_EL0(18),
1062 PMU_PMEVTYPER_EL0(19),
1063 PMU_PMEVTYPER_EL0(20),
1064 PMU_PMEVTYPER_EL0(21),
1065 PMU_PMEVTYPER_EL0(22),
1066 PMU_PMEVTYPER_EL0(23),
1067 PMU_PMEVTYPER_EL0(24),
1068 PMU_PMEVTYPER_EL0(25),
1069 PMU_PMEVTYPER_EL0(26),
1070 PMU_PMEVTYPER_EL0(27),
1071 PMU_PMEVTYPER_EL0(28),
1072 PMU_PMEVTYPER_EL0(29),
1073 PMU_PMEVTYPER_EL0(30),
1075 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1076 * in 32bit mode. Here we choose to reset it as zero for consistency.
1078 { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1080 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1081 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1082 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
1085 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1086 struct sys_reg_params *p,
1087 const struct sys_reg_desc *r)
1089 if (p->is_write) {
1090 return ignore_write(vcpu, p);
1091 } else {
1092 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1093 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1094 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1096 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1097 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1098 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1099 | (6 << 16) | (el3 << 14) | (el3 << 12));
1100 return true;
1104 static bool trap_debug32(struct kvm_vcpu *vcpu,
1105 struct sys_reg_params *p,
1106 const struct sys_reg_desc *r)
1108 if (p->is_write) {
1109 vcpu_cp14(vcpu, r->reg) = p->regval;
1110 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1111 } else {
1112 p->regval = vcpu_cp14(vcpu, r->reg);
1115 return true;
1118 /* AArch32 debug register mappings
1120 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1121 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1123 * All control registers and watchpoint value registers are mapped to
1124 * the lower 32 bits of their AArch64 equivalents. We share the trap
1125 * handlers with the above AArch64 code which checks what mode the
1126 * system is in.
1129 static bool trap_xvr(struct kvm_vcpu *vcpu,
1130 struct sys_reg_params *p,
1131 const struct sys_reg_desc *rd)
1133 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1135 if (p->is_write) {
1136 u64 val = *dbg_reg;
1138 val &= 0xffffffffUL;
1139 val |= p->regval << 32;
1140 *dbg_reg = val;
1142 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1143 } else {
1144 p->regval = *dbg_reg >> 32;
1147 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1149 return true;
1152 #define DBG_BCR_BVR_WCR_WVR(n) \
1153 /* DBGBVRn */ \
1154 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1155 /* DBGBCRn */ \
1156 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1157 /* DBGWVRn */ \
1158 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1159 /* DBGWCRn */ \
1160 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1162 #define DBGBXVR(n) \
1163 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1166 * Trapped cp14 registers. We generally ignore most of the external
1167 * debug, on the principle that they don't really make sense to a
1168 * guest. Revisit this one day, would this principle change.
1170 static const struct sys_reg_desc cp14_regs[] = {
1171 /* DBGIDR */
1172 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1173 /* DBGDTRRXext */
1174 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1176 DBG_BCR_BVR_WCR_WVR(0),
1177 /* DBGDSCRint */
1178 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1179 DBG_BCR_BVR_WCR_WVR(1),
1180 /* DBGDCCINT */
1181 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1182 /* DBGDSCRext */
1183 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1184 DBG_BCR_BVR_WCR_WVR(2),
1185 /* DBGDTR[RT]Xint */
1186 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1187 /* DBGDTR[RT]Xext */
1188 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1189 DBG_BCR_BVR_WCR_WVR(3),
1190 DBG_BCR_BVR_WCR_WVR(4),
1191 DBG_BCR_BVR_WCR_WVR(5),
1192 /* DBGWFAR */
1193 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1194 /* DBGOSECCR */
1195 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1196 DBG_BCR_BVR_WCR_WVR(6),
1197 /* DBGVCR */
1198 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1199 DBG_BCR_BVR_WCR_WVR(7),
1200 DBG_BCR_BVR_WCR_WVR(8),
1201 DBG_BCR_BVR_WCR_WVR(9),
1202 DBG_BCR_BVR_WCR_WVR(10),
1203 DBG_BCR_BVR_WCR_WVR(11),
1204 DBG_BCR_BVR_WCR_WVR(12),
1205 DBG_BCR_BVR_WCR_WVR(13),
1206 DBG_BCR_BVR_WCR_WVR(14),
1207 DBG_BCR_BVR_WCR_WVR(15),
1209 /* DBGDRAR (32bit) */
1210 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1212 DBGBXVR(0),
1213 /* DBGOSLAR */
1214 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1215 DBGBXVR(1),
1216 /* DBGOSLSR */
1217 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1218 DBGBXVR(2),
1219 DBGBXVR(3),
1220 /* DBGOSDLR */
1221 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1222 DBGBXVR(4),
1223 /* DBGPRCR */
1224 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1225 DBGBXVR(5),
1226 DBGBXVR(6),
1227 DBGBXVR(7),
1228 DBGBXVR(8),
1229 DBGBXVR(9),
1230 DBGBXVR(10),
1231 DBGBXVR(11),
1232 DBGBXVR(12),
1233 DBGBXVR(13),
1234 DBGBXVR(14),
1235 DBGBXVR(15),
1237 /* DBGDSAR (32bit) */
1238 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1240 /* DBGDEVID2 */
1241 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1242 /* DBGDEVID1 */
1243 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1244 /* DBGDEVID */
1245 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1246 /* DBGCLAIMSET */
1247 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1248 /* DBGCLAIMCLR */
1249 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1250 /* DBGAUTHSTATUS */
1251 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1254 /* Trapped cp14 64bit registers */
1255 static const struct sys_reg_desc cp14_64_regs[] = {
1256 /* DBGDRAR (64bit) */
1257 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1259 /* DBGDSAR (64bit) */
1260 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1263 /* Macro to expand the PMEVCNTRn register */
1264 #define PMU_PMEVCNTR(n) \
1265 /* PMEVCNTRn */ \
1266 { Op1(0), CRn(0b1110), \
1267 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1268 access_pmu_evcntr }
1270 /* Macro to expand the PMEVTYPERn register */
1271 #define PMU_PMEVTYPER(n) \
1272 /* PMEVTYPERn */ \
1273 { Op1(0), CRn(0b1110), \
1274 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1275 access_pmu_evtyper }
1278 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1279 * depending on the way they are accessed (as a 32bit or a 64bit
1280 * register).
1282 static const struct sys_reg_desc cp15_regs[] = {
1283 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1285 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1286 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1287 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1288 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1289 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1290 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1291 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1292 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1293 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1294 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1295 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1298 * DC{C,I,CI}SW operations:
1300 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1301 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1302 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1304 /* PMU */
1305 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1306 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1307 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1308 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1309 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1310 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1311 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1312 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1313 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1314 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1315 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1316 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1317 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1318 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1319 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1321 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1322 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1323 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1324 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1326 /* ICC_SRE */
1327 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1329 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1331 /* PMEVCNTRn */
1332 PMU_PMEVCNTR(0),
1333 PMU_PMEVCNTR(1),
1334 PMU_PMEVCNTR(2),
1335 PMU_PMEVCNTR(3),
1336 PMU_PMEVCNTR(4),
1337 PMU_PMEVCNTR(5),
1338 PMU_PMEVCNTR(6),
1339 PMU_PMEVCNTR(7),
1340 PMU_PMEVCNTR(8),
1341 PMU_PMEVCNTR(9),
1342 PMU_PMEVCNTR(10),
1343 PMU_PMEVCNTR(11),
1344 PMU_PMEVCNTR(12),
1345 PMU_PMEVCNTR(13),
1346 PMU_PMEVCNTR(14),
1347 PMU_PMEVCNTR(15),
1348 PMU_PMEVCNTR(16),
1349 PMU_PMEVCNTR(17),
1350 PMU_PMEVCNTR(18),
1351 PMU_PMEVCNTR(19),
1352 PMU_PMEVCNTR(20),
1353 PMU_PMEVCNTR(21),
1354 PMU_PMEVCNTR(22),
1355 PMU_PMEVCNTR(23),
1356 PMU_PMEVCNTR(24),
1357 PMU_PMEVCNTR(25),
1358 PMU_PMEVCNTR(26),
1359 PMU_PMEVCNTR(27),
1360 PMU_PMEVCNTR(28),
1361 PMU_PMEVCNTR(29),
1362 PMU_PMEVCNTR(30),
1363 /* PMEVTYPERn */
1364 PMU_PMEVTYPER(0),
1365 PMU_PMEVTYPER(1),
1366 PMU_PMEVTYPER(2),
1367 PMU_PMEVTYPER(3),
1368 PMU_PMEVTYPER(4),
1369 PMU_PMEVTYPER(5),
1370 PMU_PMEVTYPER(6),
1371 PMU_PMEVTYPER(7),
1372 PMU_PMEVTYPER(8),
1373 PMU_PMEVTYPER(9),
1374 PMU_PMEVTYPER(10),
1375 PMU_PMEVTYPER(11),
1376 PMU_PMEVTYPER(12),
1377 PMU_PMEVTYPER(13),
1378 PMU_PMEVTYPER(14),
1379 PMU_PMEVTYPER(15),
1380 PMU_PMEVTYPER(16),
1381 PMU_PMEVTYPER(17),
1382 PMU_PMEVTYPER(18),
1383 PMU_PMEVTYPER(19),
1384 PMU_PMEVTYPER(20),
1385 PMU_PMEVTYPER(21),
1386 PMU_PMEVTYPER(22),
1387 PMU_PMEVTYPER(23),
1388 PMU_PMEVTYPER(24),
1389 PMU_PMEVTYPER(25),
1390 PMU_PMEVTYPER(26),
1391 PMU_PMEVTYPER(27),
1392 PMU_PMEVTYPER(28),
1393 PMU_PMEVTYPER(29),
1394 PMU_PMEVTYPER(30),
1395 /* PMCCFILTR */
1396 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1399 static const struct sys_reg_desc cp15_64_regs[] = {
1400 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1401 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1402 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1403 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1406 /* Target specific emulation tables */
1407 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1409 void kvm_register_target_sys_reg_table(unsigned int target,
1410 struct kvm_sys_reg_target_table *table)
1412 target_tables[target] = table;
1415 /* Get specific register table for this target. */
1416 static const struct sys_reg_desc *get_target_table(unsigned target,
1417 bool mode_is_64,
1418 size_t *num)
1420 struct kvm_sys_reg_target_table *table;
1422 table = target_tables[target];
1423 if (mode_is_64) {
1424 *num = table->table64.num;
1425 return table->table64.table;
1426 } else {
1427 *num = table->table32.num;
1428 return table->table32.table;
1432 #define reg_to_match_value(x) \
1433 ({ \
1434 unsigned long val; \
1435 val = (x)->Op0 << 14; \
1436 val |= (x)->Op1 << 11; \
1437 val |= (x)->CRn << 7; \
1438 val |= (x)->CRm << 3; \
1439 val |= (x)->Op2; \
1440 val; \
1443 static int match_sys_reg(const void *key, const void *elt)
1445 const unsigned long pval = (unsigned long)key;
1446 const struct sys_reg_desc *r = elt;
1448 return pval - reg_to_match_value(r);
1451 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1452 const struct sys_reg_desc table[],
1453 unsigned int num)
1455 unsigned long pval = reg_to_match_value(params);
1457 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1460 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1462 kvm_inject_undefined(vcpu);
1463 return 1;
1466 static void perform_access(struct kvm_vcpu *vcpu,
1467 struct sys_reg_params *params,
1468 const struct sys_reg_desc *r)
1471 * Not having an accessor means that we have configured a trap
1472 * that we don't know how to handle. This certainly qualifies
1473 * as a gross bug that should be fixed right away.
1475 BUG_ON(!r->access);
1477 /* Skip instruction if instructed so */
1478 if (likely(r->access(vcpu, params, r)))
1479 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1483 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1484 * call the corresponding trap handler.
1486 * @params: pointer to the descriptor of the access
1487 * @table: array of trap descriptors
1488 * @num: size of the trap descriptor array
1490 * Return 0 if the access has been handled, and -1 if not.
1492 static int emulate_cp(struct kvm_vcpu *vcpu,
1493 struct sys_reg_params *params,
1494 const struct sys_reg_desc *table,
1495 size_t num)
1497 const struct sys_reg_desc *r;
1499 if (!table)
1500 return -1; /* Not handled */
1502 r = find_reg(params, table, num);
1504 if (r) {
1505 perform_access(vcpu, params, r);
1506 return 0;
1509 /* Not handled */
1510 return -1;
1513 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1514 struct sys_reg_params *params)
1516 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1517 int cp = -1;
1519 switch(hsr_ec) {
1520 case ESR_ELx_EC_CP15_32:
1521 case ESR_ELx_EC_CP15_64:
1522 cp = 15;
1523 break;
1524 case ESR_ELx_EC_CP14_MR:
1525 case ESR_ELx_EC_CP14_64:
1526 cp = 14;
1527 break;
1528 default:
1529 WARN_ON(1);
1532 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1533 cp, *vcpu_pc(vcpu));
1534 print_sys_reg_instr(params);
1535 kvm_inject_undefined(vcpu);
1539 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1540 * @vcpu: The VCPU pointer
1541 * @run: The kvm_run struct
1543 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1544 const struct sys_reg_desc *global,
1545 size_t nr_global,
1546 const struct sys_reg_desc *target_specific,
1547 size_t nr_specific)
1549 struct sys_reg_params params;
1550 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1551 int Rt = kvm_vcpu_sys_get_rt(vcpu);
1552 int Rt2 = (hsr >> 10) & 0x1f;
1554 params.is_aarch32 = true;
1555 params.is_32bit = false;
1556 params.CRm = (hsr >> 1) & 0xf;
1557 params.is_write = ((hsr & 1) == 0);
1559 params.Op0 = 0;
1560 params.Op1 = (hsr >> 16) & 0xf;
1561 params.Op2 = 0;
1562 params.CRn = 0;
1565 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1566 * backends between AArch32 and AArch64, we get away with it.
1568 if (params.is_write) {
1569 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1570 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1574 * Try to emulate the coprocessor access using the target
1575 * specific table first, and using the global table afterwards.
1576 * If either of the tables contains a handler, handle the
1577 * potential register operation in the case of a read and return
1578 * with success.
1580 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1581 !emulate_cp(vcpu, &params, global, nr_global)) {
1582 /* Split up the value between registers for the read side */
1583 if (!params.is_write) {
1584 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1585 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1588 return 1;
1591 unhandled_cp_access(vcpu, &params);
1592 return 1;
1596 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1597 * @vcpu: The VCPU pointer
1598 * @run: The kvm_run struct
1600 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1601 const struct sys_reg_desc *global,
1602 size_t nr_global,
1603 const struct sys_reg_desc *target_specific,
1604 size_t nr_specific)
1606 struct sys_reg_params params;
1607 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1608 int Rt = kvm_vcpu_sys_get_rt(vcpu);
1610 params.is_aarch32 = true;
1611 params.is_32bit = true;
1612 params.CRm = (hsr >> 1) & 0xf;
1613 params.regval = vcpu_get_reg(vcpu, Rt);
1614 params.is_write = ((hsr & 1) == 0);
1615 params.CRn = (hsr >> 10) & 0xf;
1616 params.Op0 = 0;
1617 params.Op1 = (hsr >> 14) & 0x7;
1618 params.Op2 = (hsr >> 17) & 0x7;
1620 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1621 !emulate_cp(vcpu, &params, global, nr_global)) {
1622 if (!params.is_write)
1623 vcpu_set_reg(vcpu, Rt, params.regval);
1624 return 1;
1627 unhandled_cp_access(vcpu, &params);
1628 return 1;
1631 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1633 const struct sys_reg_desc *target_specific;
1634 size_t num;
1636 target_specific = get_target_table(vcpu->arch.target, false, &num);
1637 return kvm_handle_cp_64(vcpu,
1638 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1639 target_specific, num);
1642 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1644 const struct sys_reg_desc *target_specific;
1645 size_t num;
1647 target_specific = get_target_table(vcpu->arch.target, false, &num);
1648 return kvm_handle_cp_32(vcpu,
1649 cp15_regs, ARRAY_SIZE(cp15_regs),
1650 target_specific, num);
1653 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1655 return kvm_handle_cp_64(vcpu,
1656 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1657 NULL, 0);
1660 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1662 return kvm_handle_cp_32(vcpu,
1663 cp14_regs, ARRAY_SIZE(cp14_regs),
1664 NULL, 0);
1667 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1668 struct sys_reg_params *params)
1670 size_t num;
1671 const struct sys_reg_desc *table, *r;
1673 table = get_target_table(vcpu->arch.target, true, &num);
1675 /* Search target-specific then generic table. */
1676 r = find_reg(params, table, num);
1677 if (!r)
1678 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1680 if (likely(r)) {
1681 perform_access(vcpu, params, r);
1682 } else {
1683 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1684 *vcpu_pc(vcpu));
1685 print_sys_reg_instr(params);
1686 kvm_inject_undefined(vcpu);
1688 return 1;
1691 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1692 const struct sys_reg_desc *table, size_t num)
1694 unsigned long i;
1696 for (i = 0; i < num; i++)
1697 if (table[i].reset)
1698 table[i].reset(vcpu, &table[i]);
1702 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1703 * @vcpu: The VCPU pointer
1704 * @run: The kvm_run struct
1706 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1708 struct sys_reg_params params;
1709 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1710 int Rt = kvm_vcpu_sys_get_rt(vcpu);
1711 int ret;
1713 trace_kvm_handle_sys_reg(esr);
1715 params.is_aarch32 = false;
1716 params.is_32bit = false;
1717 params.Op0 = (esr >> 20) & 3;
1718 params.Op1 = (esr >> 14) & 0x7;
1719 params.CRn = (esr >> 10) & 0xf;
1720 params.CRm = (esr >> 1) & 0xf;
1721 params.Op2 = (esr >> 17) & 0x7;
1722 params.regval = vcpu_get_reg(vcpu, Rt);
1723 params.is_write = !(esr & 1);
1725 ret = emulate_sys_reg(vcpu, &params);
1727 if (!params.is_write)
1728 vcpu_set_reg(vcpu, Rt, params.regval);
1729 return ret;
1732 /******************************************************************************
1733 * Userspace API
1734 *****************************************************************************/
1736 static bool index_to_params(u64 id, struct sys_reg_params *params)
1738 switch (id & KVM_REG_SIZE_MASK) {
1739 case KVM_REG_SIZE_U64:
1740 /* Any unused index bits means it's not valid. */
1741 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1742 | KVM_REG_ARM_COPROC_MASK
1743 | KVM_REG_ARM64_SYSREG_OP0_MASK
1744 | KVM_REG_ARM64_SYSREG_OP1_MASK
1745 | KVM_REG_ARM64_SYSREG_CRN_MASK
1746 | KVM_REG_ARM64_SYSREG_CRM_MASK
1747 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1748 return false;
1749 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1750 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1751 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1752 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1753 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1754 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1755 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1756 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1757 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1758 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1759 return true;
1760 default:
1761 return false;
1765 const struct sys_reg_desc *find_reg_by_id(u64 id,
1766 struct sys_reg_params *params,
1767 const struct sys_reg_desc table[],
1768 unsigned int num)
1770 if (!index_to_params(id, params))
1771 return NULL;
1773 return find_reg(params, table, num);
1776 /* Decode an index value, and find the sys_reg_desc entry. */
1777 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1778 u64 id)
1780 size_t num;
1781 const struct sys_reg_desc *table, *r;
1782 struct sys_reg_params params;
1784 /* We only do sys_reg for now. */
1785 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1786 return NULL;
1788 table = get_target_table(vcpu->arch.target, true, &num);
1789 r = find_reg_by_id(id, &params, table, num);
1790 if (!r)
1791 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1793 /* Not saved in the sys_reg array? */
1794 if (r && !r->reg)
1795 r = NULL;
1797 return r;
1801 * These are the invariant sys_reg registers: we let the guest see the
1802 * host versions of these, so they're part of the guest state.
1804 * A future CPU may provide a mechanism to present different values to
1805 * the guest, or a future kvm may trap them.
1808 #define FUNCTION_INVARIANT(reg) \
1809 static void get_##reg(struct kvm_vcpu *v, \
1810 const struct sys_reg_desc *r) \
1812 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
1815 FUNCTION_INVARIANT(midr_el1)
1816 FUNCTION_INVARIANT(ctr_el0)
1817 FUNCTION_INVARIANT(revidr_el1)
1818 FUNCTION_INVARIANT(id_pfr0_el1)
1819 FUNCTION_INVARIANT(id_pfr1_el1)
1820 FUNCTION_INVARIANT(id_dfr0_el1)
1821 FUNCTION_INVARIANT(id_afr0_el1)
1822 FUNCTION_INVARIANT(id_mmfr0_el1)
1823 FUNCTION_INVARIANT(id_mmfr1_el1)
1824 FUNCTION_INVARIANT(id_mmfr2_el1)
1825 FUNCTION_INVARIANT(id_mmfr3_el1)
1826 FUNCTION_INVARIANT(id_isar0_el1)
1827 FUNCTION_INVARIANT(id_isar1_el1)
1828 FUNCTION_INVARIANT(id_isar2_el1)
1829 FUNCTION_INVARIANT(id_isar3_el1)
1830 FUNCTION_INVARIANT(id_isar4_el1)
1831 FUNCTION_INVARIANT(id_isar5_el1)
1832 FUNCTION_INVARIANT(clidr_el1)
1833 FUNCTION_INVARIANT(aidr_el1)
1835 /* ->val is filled in by kvm_sys_reg_table_init() */
1836 static struct sys_reg_desc invariant_sys_regs[] = {
1837 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
1838 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
1839 { SYS_DESC(SYS_ID_PFR0_EL1), NULL, get_id_pfr0_el1 },
1840 { SYS_DESC(SYS_ID_PFR1_EL1), NULL, get_id_pfr1_el1 },
1841 { SYS_DESC(SYS_ID_DFR0_EL1), NULL, get_id_dfr0_el1 },
1842 { SYS_DESC(SYS_ID_AFR0_EL1), NULL, get_id_afr0_el1 },
1843 { SYS_DESC(SYS_ID_MMFR0_EL1), NULL, get_id_mmfr0_el1 },
1844 { SYS_DESC(SYS_ID_MMFR1_EL1), NULL, get_id_mmfr1_el1 },
1845 { SYS_DESC(SYS_ID_MMFR2_EL1), NULL, get_id_mmfr2_el1 },
1846 { SYS_DESC(SYS_ID_MMFR3_EL1), NULL, get_id_mmfr3_el1 },
1847 { SYS_DESC(SYS_ID_ISAR0_EL1), NULL, get_id_isar0_el1 },
1848 { SYS_DESC(SYS_ID_ISAR1_EL1), NULL, get_id_isar1_el1 },
1849 { SYS_DESC(SYS_ID_ISAR2_EL1), NULL, get_id_isar2_el1 },
1850 { SYS_DESC(SYS_ID_ISAR3_EL1), NULL, get_id_isar3_el1 },
1851 { SYS_DESC(SYS_ID_ISAR4_EL1), NULL, get_id_isar4_el1 },
1852 { SYS_DESC(SYS_ID_ISAR5_EL1), NULL, get_id_isar5_el1 },
1853 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
1854 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
1855 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
1858 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1860 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1861 return -EFAULT;
1862 return 0;
1865 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1867 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1868 return -EFAULT;
1869 return 0;
1872 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1874 struct sys_reg_params params;
1875 const struct sys_reg_desc *r;
1877 r = find_reg_by_id(id, &params, invariant_sys_regs,
1878 ARRAY_SIZE(invariant_sys_regs));
1879 if (!r)
1880 return -ENOENT;
1882 return reg_to_user(uaddr, &r->val, id);
1885 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1887 struct sys_reg_params params;
1888 const struct sys_reg_desc *r;
1889 int err;
1890 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1892 r = find_reg_by_id(id, &params, invariant_sys_regs,
1893 ARRAY_SIZE(invariant_sys_regs));
1894 if (!r)
1895 return -ENOENT;
1897 err = reg_from_user(&val, uaddr, id);
1898 if (err)
1899 return err;
1901 /* This is what we mean by invariant: you can't change it. */
1902 if (r->val != val)
1903 return -EINVAL;
1905 return 0;
1908 static bool is_valid_cache(u32 val)
1910 u32 level, ctype;
1912 if (val >= CSSELR_MAX)
1913 return false;
1915 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1916 level = (val >> 1);
1917 ctype = (cache_levels >> (level * 3)) & 7;
1919 switch (ctype) {
1920 case 0: /* No cache */
1921 return false;
1922 case 1: /* Instruction cache only */
1923 return (val & 1);
1924 case 2: /* Data cache only */
1925 case 4: /* Unified cache */
1926 return !(val & 1);
1927 case 3: /* Separate instruction and data caches */
1928 return true;
1929 default: /* Reserved: we can't know instruction or data. */
1930 return false;
1934 static int demux_c15_get(u64 id, void __user *uaddr)
1936 u32 val;
1937 u32 __user *uval = uaddr;
1939 /* Fail if we have unknown bits set. */
1940 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1941 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1942 return -ENOENT;
1944 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1945 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1946 if (KVM_REG_SIZE(id) != 4)
1947 return -ENOENT;
1948 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1949 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1950 if (!is_valid_cache(val))
1951 return -ENOENT;
1953 return put_user(get_ccsidr(val), uval);
1954 default:
1955 return -ENOENT;
1959 static int demux_c15_set(u64 id, void __user *uaddr)
1961 u32 val, newval;
1962 u32 __user *uval = uaddr;
1964 /* Fail if we have unknown bits set. */
1965 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1966 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1967 return -ENOENT;
1969 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1970 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1971 if (KVM_REG_SIZE(id) != 4)
1972 return -ENOENT;
1973 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1974 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1975 if (!is_valid_cache(val))
1976 return -ENOENT;
1978 if (get_user(newval, uval))
1979 return -EFAULT;
1981 /* This is also invariant: you can't change it. */
1982 if (newval != get_ccsidr(val))
1983 return -EINVAL;
1984 return 0;
1985 default:
1986 return -ENOENT;
1990 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1992 const struct sys_reg_desc *r;
1993 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1995 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1996 return demux_c15_get(reg->id, uaddr);
1998 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1999 return -ENOENT;
2001 r = index_to_sys_reg_desc(vcpu, reg->id);
2002 if (!r)
2003 return get_invariant_sys_reg(reg->id, uaddr);
2005 if (r->get_user)
2006 return (r->get_user)(vcpu, r, reg, uaddr);
2008 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2011 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2013 const struct sys_reg_desc *r;
2014 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2016 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2017 return demux_c15_set(reg->id, uaddr);
2019 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2020 return -ENOENT;
2022 r = index_to_sys_reg_desc(vcpu, reg->id);
2023 if (!r)
2024 return set_invariant_sys_reg(reg->id, uaddr);
2026 if (r->set_user)
2027 return (r->set_user)(vcpu, r, reg, uaddr);
2029 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2032 static unsigned int num_demux_regs(void)
2034 unsigned int i, count = 0;
2036 for (i = 0; i < CSSELR_MAX; i++)
2037 if (is_valid_cache(i))
2038 count++;
2040 return count;
2043 static int write_demux_regids(u64 __user *uindices)
2045 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2046 unsigned int i;
2048 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2049 for (i = 0; i < CSSELR_MAX; i++) {
2050 if (!is_valid_cache(i))
2051 continue;
2052 if (put_user(val | i, uindices))
2053 return -EFAULT;
2054 uindices++;
2056 return 0;
2059 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2061 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2062 KVM_REG_ARM64_SYSREG |
2063 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2064 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2065 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2066 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2067 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2070 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2072 if (!*uind)
2073 return true;
2075 if (put_user(sys_reg_to_index(reg), *uind))
2076 return false;
2078 (*uind)++;
2079 return true;
2082 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2083 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2085 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2086 unsigned int total = 0;
2087 size_t num;
2089 /* We check for duplicates here, to allow arch-specific overrides. */
2090 i1 = get_target_table(vcpu->arch.target, true, &num);
2091 end1 = i1 + num;
2092 i2 = sys_reg_descs;
2093 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2095 BUG_ON(i1 == end1 || i2 == end2);
2097 /* Walk carefully, as both tables may refer to the same register. */
2098 while (i1 || i2) {
2099 int cmp = cmp_sys_reg(i1, i2);
2100 /* target-specific overrides generic entry. */
2101 if (cmp <= 0) {
2102 /* Ignore registers we trap but don't save. */
2103 if (i1->reg) {
2104 if (!copy_reg_to_user(i1, &uind))
2105 return -EFAULT;
2106 total++;
2108 } else {
2109 /* Ignore registers we trap but don't save. */
2110 if (i2->reg) {
2111 if (!copy_reg_to_user(i2, &uind))
2112 return -EFAULT;
2113 total++;
2117 if (cmp <= 0 && ++i1 == end1)
2118 i1 = NULL;
2119 if (cmp >= 0 && ++i2 == end2)
2120 i2 = NULL;
2122 return total;
2125 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2127 return ARRAY_SIZE(invariant_sys_regs)
2128 + num_demux_regs()
2129 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2132 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2134 unsigned int i;
2135 int err;
2137 /* Then give them all the invariant registers' indices. */
2138 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2139 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2140 return -EFAULT;
2141 uindices++;
2144 err = walk_sys_regs(vcpu, uindices);
2145 if (err < 0)
2146 return err;
2147 uindices += err;
2149 return write_demux_regids(uindices);
2152 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2154 unsigned int i;
2156 for (i = 1; i < n; i++) {
2157 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2158 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2159 return 1;
2163 return 0;
2166 void kvm_sys_reg_table_init(void)
2168 unsigned int i;
2169 struct sys_reg_desc clidr;
2171 /* Make sure tables are unique and in order. */
2172 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2173 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2174 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2175 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2176 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2177 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2179 /* We abuse the reset function to overwrite the table itself. */
2180 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2181 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2184 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2186 * If software reads the Cache Type fields from Ctype1
2187 * upwards, once it has seen a value of 0b000, no caches
2188 * exist at further-out levels of the hierarchy. So, for
2189 * example, if Ctype3 is the first Cache Type field with a
2190 * value of 0b000, the values of Ctype4 to Ctype7 must be
2191 * ignored.
2193 get_clidr_el1(NULL, &clidr); /* Ugly... */
2194 cache_levels = clidr.val;
2195 for (i = 0; i < 7; i++)
2196 if (((cache_levels >> (i*3)) & 7) == 0)
2197 break;
2198 /* Clear all higher bits. */
2199 cache_levels &= (1 << (i*3))-1;
2203 * kvm_reset_sys_regs - sets system registers to reset value
2204 * @vcpu: The VCPU pointer
2206 * This function finds the right table above and sets the registers on the
2207 * virtual CPU struct to their architecturally defined reset values.
2209 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2211 size_t num;
2212 const struct sys_reg_desc *table;
2214 /* Catch someone adding a register without putting in reset entry. */
2215 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2217 /* Generic chip reset first (so target could override). */
2218 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2220 table = get_target_table(vcpu->arch.target, true, &num);
2221 reset_sys_reg_descs(vcpu, table, num);
2223 for (num = 1; num < NR_SYS_REGS; num++)
2224 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2225 panic("Didn't reset vcpu_sys_reg(%zi)", num);