2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
26 #include <linux/uaccess.h>
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39 #include <asm/sysreg.h>
41 #include <trace/events/kvm.h>
48 * All of this file is extremly similar to the ARM coproc.c, but the
49 * types are different. My gut feeling is that it should be pretty
50 * easy to merge, but that would be an ABI breakage -- again. VFP
51 * would also need to be abstracted.
53 * For AArch32, we only take care of what is being trapped. Anything
54 * that has to do with init and userspace access has to go via the
58 static bool read_from_write_only(struct kvm_vcpu
*vcpu
,
59 struct sys_reg_params
*params
,
60 const struct sys_reg_desc
*r
)
62 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
63 print_sys_reg_instr(params
);
64 kvm_inject_undefined(vcpu
);
68 static bool write_to_read_only(struct kvm_vcpu
*vcpu
,
69 struct sys_reg_params
*params
,
70 const struct sys_reg_desc
*r
)
72 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
73 print_sys_reg_instr(params
);
74 kvm_inject_undefined(vcpu
);
78 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
79 static u32 cache_levels
;
81 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
84 /* Which cache CCSIDR represents depends on CSSELR value. */
85 static u32
get_ccsidr(u32 csselr
)
89 /* Make sure noone else changes CSSELR during this! */
91 write_sysreg(csselr
, csselr_el1
);
93 ccsidr
= read_sysreg(ccsidr_el1
);
100 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
102 static bool access_dcsw(struct kvm_vcpu
*vcpu
,
103 struct sys_reg_params
*p
,
104 const struct sys_reg_desc
*r
)
107 return read_from_write_only(vcpu
, p
, r
);
109 kvm_set_way_flush(vcpu
);
114 * Generic accessor for VM registers. Only called as long as HCR_TVM
115 * is set. If the guest enables the MMU, we stop trapping the VM
116 * sys_regs and leave it in complete control of the caches.
118 static bool access_vm_reg(struct kvm_vcpu
*vcpu
,
119 struct sys_reg_params
*p
,
120 const struct sys_reg_desc
*r
)
122 bool was_enabled
= vcpu_has_cache_enabled(vcpu
);
124 BUG_ON(!p
->is_write
);
126 if (!p
->is_aarch32
) {
127 vcpu_sys_reg(vcpu
, r
->reg
) = p
->regval
;
130 vcpu_cp15_64_high(vcpu
, r
->reg
) = upper_32_bits(p
->regval
);
131 vcpu_cp15_64_low(vcpu
, r
->reg
) = lower_32_bits(p
->regval
);
134 kvm_toggle_cache(vcpu
, was_enabled
);
139 * Trap handler for the GICv3 SGI generation system register.
140 * Forward the request to the VGIC emulation.
141 * The cp15_64 code makes sure this automatically works
142 * for both AArch64 and AArch32 accesses.
144 static bool access_gic_sgi(struct kvm_vcpu
*vcpu
,
145 struct sys_reg_params
*p
,
146 const struct sys_reg_desc
*r
)
149 return read_from_write_only(vcpu
, p
, r
);
151 vgic_v3_dispatch_sgi(vcpu
, p
->regval
);
156 static bool access_gic_sre(struct kvm_vcpu
*vcpu
,
157 struct sys_reg_params
*p
,
158 const struct sys_reg_desc
*r
)
161 return ignore_write(vcpu
, p
);
163 p
->regval
= vcpu
->arch
.vgic_cpu
.vgic_v3
.vgic_sre
;
167 static bool trap_raz_wi(struct kvm_vcpu
*vcpu
,
168 struct sys_reg_params
*p
,
169 const struct sys_reg_desc
*r
)
172 return ignore_write(vcpu
, p
);
174 return read_zero(vcpu
, p
);
177 static bool trap_oslsr_el1(struct kvm_vcpu
*vcpu
,
178 struct sys_reg_params
*p
,
179 const struct sys_reg_desc
*r
)
182 return ignore_write(vcpu
, p
);
184 p
->regval
= (1 << 3);
189 static bool trap_dbgauthstatus_el1(struct kvm_vcpu
*vcpu
,
190 struct sys_reg_params
*p
,
191 const struct sys_reg_desc
*r
)
194 return ignore_write(vcpu
, p
);
196 p
->regval
= read_sysreg(dbgauthstatus_el1
);
202 * We want to avoid world-switching all the DBG registers all the
205 * - If we've touched any debug register, it is likely that we're
206 * going to touch more of them. It then makes sense to disable the
207 * traps and start doing the save/restore dance
208 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
209 * then mandatory to save/restore the registers, as the guest
212 * For this, we use a DIRTY bit, indicating the guest has modified the
213 * debug registers, used as follow:
216 * - If the dirty bit is set (because we're coming back from trapping),
217 * disable the traps, save host registers, restore guest registers.
218 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
219 * set the dirty bit, disable the traps, save host registers,
220 * restore guest registers.
221 * - Otherwise, enable the traps
224 * - If the dirty bit is set, save guest registers, restore host
225 * registers and clear the dirty bit. This ensure that the host can
226 * now use the debug registers.
228 static bool trap_debug_regs(struct kvm_vcpu
*vcpu
,
229 struct sys_reg_params
*p
,
230 const struct sys_reg_desc
*r
)
233 vcpu_sys_reg(vcpu
, r
->reg
) = p
->regval
;
234 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
236 p
->regval
= vcpu_sys_reg(vcpu
, r
->reg
);
239 trace_trap_reg(__func__
, r
->reg
, p
->is_write
, p
->regval
);
245 * reg_to_dbg/dbg_to_reg
247 * A 32 bit write to a debug register leave top bits alone
248 * A 32 bit read from a debug register only returns the bottom bits
250 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
251 * hyp.S code switches between host and guest values in future.
253 static void reg_to_dbg(struct kvm_vcpu
*vcpu
,
254 struct sys_reg_params
*p
,
261 val
|= ((*dbg_reg
>> 32) << 32);
265 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
268 static void dbg_to_reg(struct kvm_vcpu
*vcpu
,
269 struct sys_reg_params
*p
,
272 p
->regval
= *dbg_reg
;
274 p
->regval
&= 0xffffffffUL
;
277 static bool trap_bvr(struct kvm_vcpu
*vcpu
,
278 struct sys_reg_params
*p
,
279 const struct sys_reg_desc
*rd
)
281 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
284 reg_to_dbg(vcpu
, p
, dbg_reg
);
286 dbg_to_reg(vcpu
, p
, dbg_reg
);
288 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
293 static int set_bvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
294 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
296 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
298 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
303 static int get_bvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
304 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
306 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
308 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
313 static void reset_bvr(struct kvm_vcpu
*vcpu
,
314 const struct sys_reg_desc
*rd
)
316 vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
] = rd
->val
;
319 static bool trap_bcr(struct kvm_vcpu
*vcpu
,
320 struct sys_reg_params
*p
,
321 const struct sys_reg_desc
*rd
)
323 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
326 reg_to_dbg(vcpu
, p
, dbg_reg
);
328 dbg_to_reg(vcpu
, p
, dbg_reg
);
330 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
335 static int set_bcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
336 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
338 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
340 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
346 static int get_bcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
347 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
349 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
351 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
356 static void reset_bcr(struct kvm_vcpu
*vcpu
,
357 const struct sys_reg_desc
*rd
)
359 vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
] = rd
->val
;
362 static bool trap_wvr(struct kvm_vcpu
*vcpu
,
363 struct sys_reg_params
*p
,
364 const struct sys_reg_desc
*rd
)
366 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
369 reg_to_dbg(vcpu
, p
, dbg_reg
);
371 dbg_to_reg(vcpu
, p
, dbg_reg
);
373 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
,
374 vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
]);
379 static int set_wvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
380 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
382 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
384 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
389 static int get_wvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
390 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
392 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
394 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
399 static void reset_wvr(struct kvm_vcpu
*vcpu
,
400 const struct sys_reg_desc
*rd
)
402 vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
] = rd
->val
;
405 static bool trap_wcr(struct kvm_vcpu
*vcpu
,
406 struct sys_reg_params
*p
,
407 const struct sys_reg_desc
*rd
)
409 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
412 reg_to_dbg(vcpu
, p
, dbg_reg
);
414 dbg_to_reg(vcpu
, p
, dbg_reg
);
416 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
421 static int set_wcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
422 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
424 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
426 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
431 static int get_wcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
432 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
434 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
436 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
441 static void reset_wcr(struct kvm_vcpu
*vcpu
,
442 const struct sys_reg_desc
*rd
)
444 vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
] = rd
->val
;
447 static void reset_amair_el1(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
449 vcpu_sys_reg(vcpu
, AMAIR_EL1
) = read_sysreg(amair_el1
);
452 static void reset_mpidr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
457 * Map the vcpu_id into the first three affinity level fields of
458 * the MPIDR. We limit the number of VCPUs in level 0 due to a
459 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
460 * of the GICv3 to be able to address each CPU directly when
463 mpidr
= (vcpu
->vcpu_id
& 0x0f) << MPIDR_LEVEL_SHIFT(0);
464 mpidr
|= ((vcpu
->vcpu_id
>> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
465 mpidr
|= ((vcpu
->vcpu_id
>> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
466 vcpu_sys_reg(vcpu
, MPIDR_EL1
) = (1ULL << 31) | mpidr
;
469 static void reset_pmcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
473 pmcr
= read_sysreg(pmcr_el0
);
475 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
476 * except PMCR.E resetting to zero.
478 val
= ((pmcr
& ~ARMV8_PMU_PMCR_MASK
)
479 | (ARMV8_PMU_PMCR_MASK
& 0xdecafbad)) & (~ARMV8_PMU_PMCR_E
);
480 vcpu_sys_reg(vcpu
, PMCR_EL0
) = val
;
483 static bool check_pmu_access_disabled(struct kvm_vcpu
*vcpu
, u64 flags
)
485 u64 reg
= vcpu_sys_reg(vcpu
, PMUSERENR_EL0
);
486 bool enabled
= (reg
& flags
) || vcpu_mode_priv(vcpu
);
489 kvm_inject_undefined(vcpu
);
494 static bool pmu_access_el0_disabled(struct kvm_vcpu
*vcpu
)
496 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_EN
);
499 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu
*vcpu
)
501 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_SW
| ARMV8_PMU_USERENR_EN
);
504 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu
*vcpu
)
506 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_CR
| ARMV8_PMU_USERENR_EN
);
509 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu
*vcpu
)
511 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_ER
| ARMV8_PMU_USERENR_EN
);
514 static bool access_pmcr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
515 const struct sys_reg_desc
*r
)
519 if (!kvm_arm_pmu_v3_ready(vcpu
))
520 return trap_raz_wi(vcpu
, p
, r
);
522 if (pmu_access_el0_disabled(vcpu
))
526 /* Only update writeable bits of PMCR */
527 val
= vcpu_sys_reg(vcpu
, PMCR_EL0
);
528 val
&= ~ARMV8_PMU_PMCR_MASK
;
529 val
|= p
->regval
& ARMV8_PMU_PMCR_MASK
;
530 vcpu_sys_reg(vcpu
, PMCR_EL0
) = val
;
531 kvm_pmu_handle_pmcr(vcpu
, val
);
533 /* PMCR.P & PMCR.C are RAZ */
534 val
= vcpu_sys_reg(vcpu
, PMCR_EL0
)
535 & ~(ARMV8_PMU_PMCR_P
| ARMV8_PMU_PMCR_C
);
542 static bool access_pmselr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
543 const struct sys_reg_desc
*r
)
545 if (!kvm_arm_pmu_v3_ready(vcpu
))
546 return trap_raz_wi(vcpu
, p
, r
);
548 if (pmu_access_event_counter_el0_disabled(vcpu
))
552 vcpu_sys_reg(vcpu
, PMSELR_EL0
) = p
->regval
;
554 /* return PMSELR.SEL field */
555 p
->regval
= vcpu_sys_reg(vcpu
, PMSELR_EL0
)
556 & ARMV8_PMU_COUNTER_MASK
;
561 static bool access_pmceid(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
562 const struct sys_reg_desc
*r
)
566 if (!kvm_arm_pmu_v3_ready(vcpu
))
567 return trap_raz_wi(vcpu
, p
, r
);
571 if (pmu_access_el0_disabled(vcpu
))
575 pmceid
= read_sysreg(pmceid0_el0
);
577 pmceid
= read_sysreg(pmceid1_el0
);
584 static bool pmu_counter_idx_valid(struct kvm_vcpu
*vcpu
, u64 idx
)
588 pmcr
= vcpu_sys_reg(vcpu
, PMCR_EL0
);
589 val
= (pmcr
>> ARMV8_PMU_PMCR_N_SHIFT
) & ARMV8_PMU_PMCR_N_MASK
;
590 if (idx
>= val
&& idx
!= ARMV8_PMU_CYCLE_IDX
) {
591 kvm_inject_undefined(vcpu
);
598 static bool access_pmu_evcntr(struct kvm_vcpu
*vcpu
,
599 struct sys_reg_params
*p
,
600 const struct sys_reg_desc
*r
)
604 if (!kvm_arm_pmu_v3_ready(vcpu
))
605 return trap_raz_wi(vcpu
, p
, r
);
607 if (r
->CRn
== 9 && r
->CRm
== 13) {
610 if (pmu_access_event_counter_el0_disabled(vcpu
))
613 idx
= vcpu_sys_reg(vcpu
, PMSELR_EL0
)
614 & ARMV8_PMU_COUNTER_MASK
;
615 } else if (r
->Op2
== 0) {
617 if (pmu_access_cycle_counter_el0_disabled(vcpu
))
620 idx
= ARMV8_PMU_CYCLE_IDX
;
624 } else if (r
->CRn
== 0 && r
->CRm
== 9) {
626 if (pmu_access_event_counter_el0_disabled(vcpu
))
629 idx
= ARMV8_PMU_CYCLE_IDX
;
630 } else if (r
->CRn
== 14 && (r
->CRm
& 12) == 8) {
632 if (pmu_access_event_counter_el0_disabled(vcpu
))
635 idx
= ((r
->CRm
& 3) << 3) | (r
->Op2
& 7);
640 if (!pmu_counter_idx_valid(vcpu
, idx
))
644 if (pmu_access_el0_disabled(vcpu
))
647 kvm_pmu_set_counter_value(vcpu
, idx
, p
->regval
);
649 p
->regval
= kvm_pmu_get_counter_value(vcpu
, idx
);
655 static bool access_pmu_evtyper(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
656 const struct sys_reg_desc
*r
)
660 if (!kvm_arm_pmu_v3_ready(vcpu
))
661 return trap_raz_wi(vcpu
, p
, r
);
663 if (pmu_access_el0_disabled(vcpu
))
666 if (r
->CRn
== 9 && r
->CRm
== 13 && r
->Op2
== 1) {
668 idx
= vcpu_sys_reg(vcpu
, PMSELR_EL0
) & ARMV8_PMU_COUNTER_MASK
;
669 reg
= PMEVTYPER0_EL0
+ idx
;
670 } else if (r
->CRn
== 14 && (r
->CRm
& 12) == 12) {
671 idx
= ((r
->CRm
& 3) << 3) | (r
->Op2
& 7);
672 if (idx
== ARMV8_PMU_CYCLE_IDX
)
676 reg
= PMEVTYPER0_EL0
+ idx
;
681 if (!pmu_counter_idx_valid(vcpu
, idx
))
685 kvm_pmu_set_counter_event_type(vcpu
, p
->regval
, idx
);
686 vcpu_sys_reg(vcpu
, reg
) = p
->regval
& ARMV8_PMU_EVTYPE_MASK
;
688 p
->regval
= vcpu_sys_reg(vcpu
, reg
) & ARMV8_PMU_EVTYPE_MASK
;
694 static bool access_pmcnten(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
695 const struct sys_reg_desc
*r
)
699 if (!kvm_arm_pmu_v3_ready(vcpu
))
700 return trap_raz_wi(vcpu
, p
, r
);
702 if (pmu_access_el0_disabled(vcpu
))
705 mask
= kvm_pmu_valid_counter_mask(vcpu
);
707 val
= p
->regval
& mask
;
709 /* accessing PMCNTENSET_EL0 */
710 vcpu_sys_reg(vcpu
, PMCNTENSET_EL0
) |= val
;
711 kvm_pmu_enable_counter(vcpu
, val
);
713 /* accessing PMCNTENCLR_EL0 */
714 vcpu_sys_reg(vcpu
, PMCNTENSET_EL0
) &= ~val
;
715 kvm_pmu_disable_counter(vcpu
, val
);
718 p
->regval
= vcpu_sys_reg(vcpu
, PMCNTENSET_EL0
) & mask
;
724 static bool access_pminten(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
725 const struct sys_reg_desc
*r
)
727 u64 mask
= kvm_pmu_valid_counter_mask(vcpu
);
729 if (!kvm_arm_pmu_v3_ready(vcpu
))
730 return trap_raz_wi(vcpu
, p
, r
);
732 if (!vcpu_mode_priv(vcpu
)) {
733 kvm_inject_undefined(vcpu
);
738 u64 val
= p
->regval
& mask
;
741 /* accessing PMINTENSET_EL1 */
742 vcpu_sys_reg(vcpu
, PMINTENSET_EL1
) |= val
;
744 /* accessing PMINTENCLR_EL1 */
745 vcpu_sys_reg(vcpu
, PMINTENSET_EL1
) &= ~val
;
747 p
->regval
= vcpu_sys_reg(vcpu
, PMINTENSET_EL1
) & mask
;
753 static bool access_pmovs(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
754 const struct sys_reg_desc
*r
)
756 u64 mask
= kvm_pmu_valid_counter_mask(vcpu
);
758 if (!kvm_arm_pmu_v3_ready(vcpu
))
759 return trap_raz_wi(vcpu
, p
, r
);
761 if (pmu_access_el0_disabled(vcpu
))
766 /* accessing PMOVSSET_EL0 */
767 vcpu_sys_reg(vcpu
, PMOVSSET_EL0
) |= (p
->regval
& mask
);
769 /* accessing PMOVSCLR_EL0 */
770 vcpu_sys_reg(vcpu
, PMOVSSET_EL0
) &= ~(p
->regval
& mask
);
772 p
->regval
= vcpu_sys_reg(vcpu
, PMOVSSET_EL0
) & mask
;
778 static bool access_pmswinc(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
779 const struct sys_reg_desc
*r
)
783 if (!kvm_arm_pmu_v3_ready(vcpu
))
784 return trap_raz_wi(vcpu
, p
, r
);
787 return read_from_write_only(vcpu
, p
, r
);
789 if (pmu_write_swinc_el0_disabled(vcpu
))
792 mask
= kvm_pmu_valid_counter_mask(vcpu
);
793 kvm_pmu_software_increment(vcpu
, p
->regval
& mask
);
797 static bool access_pmuserenr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
798 const struct sys_reg_desc
*r
)
800 if (!kvm_arm_pmu_v3_ready(vcpu
))
801 return trap_raz_wi(vcpu
, p
, r
);
804 if (!vcpu_mode_priv(vcpu
)) {
805 kvm_inject_undefined(vcpu
);
809 vcpu_sys_reg(vcpu
, PMUSERENR_EL0
) = p
->regval
810 & ARMV8_PMU_USERENR_MASK
;
812 p
->regval
= vcpu_sys_reg(vcpu
, PMUSERENR_EL0
)
813 & ARMV8_PMU_USERENR_MASK
;
819 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
820 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
821 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
822 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
823 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
824 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
825 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
826 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
827 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
828 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
830 /* Macro to expand the PMEVCNTRn_EL0 register */
831 #define PMU_PMEVCNTR_EL0(n) \
832 { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
833 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
835 /* Macro to expand the PMEVTYPERn_EL0 register */
836 #define PMU_PMEVTYPER_EL0(n) \
837 { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
838 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
840 static bool access_cntp_tval(struct kvm_vcpu
*vcpu
,
841 struct sys_reg_params
*p
,
842 const struct sys_reg_desc
*r
)
844 struct arch_timer_context
*ptimer
= vcpu_ptimer(vcpu
);
845 u64 now
= kvm_phys_timer_read();
848 ptimer
->cnt_cval
= p
->regval
+ now
;
850 p
->regval
= ptimer
->cnt_cval
- now
;
855 static bool access_cntp_ctl(struct kvm_vcpu
*vcpu
,
856 struct sys_reg_params
*p
,
857 const struct sys_reg_desc
*r
)
859 struct arch_timer_context
*ptimer
= vcpu_ptimer(vcpu
);
862 /* ISTATUS bit is read-only */
863 ptimer
->cnt_ctl
= p
->regval
& ~ARCH_TIMER_CTRL_IT_STAT
;
865 u64 now
= kvm_phys_timer_read();
867 p
->regval
= ptimer
->cnt_ctl
;
869 * Set ISTATUS bit if it's expired.
870 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
871 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
872 * regardless of ENABLE bit for our implementation convenience.
874 if (ptimer
->cnt_cval
<= now
)
875 p
->regval
|= ARCH_TIMER_CTRL_IT_STAT
;
881 static bool access_cntp_cval(struct kvm_vcpu
*vcpu
,
882 struct sys_reg_params
*p
,
883 const struct sys_reg_desc
*r
)
885 struct arch_timer_context
*ptimer
= vcpu_ptimer(vcpu
);
888 ptimer
->cnt_cval
= p
->regval
;
890 p
->regval
= ptimer
->cnt_cval
;
896 * Architected system registers.
897 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
899 * Debug handling: We do trap most, if not all debug related system
900 * registers. The implementation is good enough to ensure that a guest
901 * can use these with minimal performance degradation. The drawback is
902 * that we don't implement any of the external debug, none of the
903 * OSlock protocol. This should be revisited if we ever encounter a
904 * more demanding guest...
906 static const struct sys_reg_desc sys_reg_descs
[] = {
907 { SYS_DESC(SYS_DC_ISW
), access_dcsw
},
908 { SYS_DESC(SYS_DC_CSW
), access_dcsw
},
909 { SYS_DESC(SYS_DC_CISW
), access_dcsw
},
911 DBG_BCR_BVR_WCR_WVR_EL1(0),
912 DBG_BCR_BVR_WCR_WVR_EL1(1),
913 { SYS_DESC(SYS_MDCCINT_EL1
), trap_debug_regs
, reset_val
, MDCCINT_EL1
, 0 },
914 { SYS_DESC(SYS_MDSCR_EL1
), trap_debug_regs
, reset_val
, MDSCR_EL1
, 0 },
915 DBG_BCR_BVR_WCR_WVR_EL1(2),
916 DBG_BCR_BVR_WCR_WVR_EL1(3),
917 DBG_BCR_BVR_WCR_WVR_EL1(4),
918 DBG_BCR_BVR_WCR_WVR_EL1(5),
919 DBG_BCR_BVR_WCR_WVR_EL1(6),
920 DBG_BCR_BVR_WCR_WVR_EL1(7),
921 DBG_BCR_BVR_WCR_WVR_EL1(8),
922 DBG_BCR_BVR_WCR_WVR_EL1(9),
923 DBG_BCR_BVR_WCR_WVR_EL1(10),
924 DBG_BCR_BVR_WCR_WVR_EL1(11),
925 DBG_BCR_BVR_WCR_WVR_EL1(12),
926 DBG_BCR_BVR_WCR_WVR_EL1(13),
927 DBG_BCR_BVR_WCR_WVR_EL1(14),
928 DBG_BCR_BVR_WCR_WVR_EL1(15),
930 { SYS_DESC(SYS_MDRAR_EL1
), trap_raz_wi
},
931 { SYS_DESC(SYS_OSLAR_EL1
), trap_raz_wi
},
932 { SYS_DESC(SYS_OSLSR_EL1
), trap_oslsr_el1
},
933 { SYS_DESC(SYS_OSDLR_EL1
), trap_raz_wi
},
934 { SYS_DESC(SYS_DBGPRCR_EL1
), trap_raz_wi
},
935 { SYS_DESC(SYS_DBGCLAIMSET_EL1
), trap_raz_wi
},
936 { SYS_DESC(SYS_DBGCLAIMCLR_EL1
), trap_raz_wi
},
937 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1
), trap_dbgauthstatus_el1
},
939 { SYS_DESC(SYS_MDCCSR_EL0
), trap_raz_wi
},
940 { SYS_DESC(SYS_DBGDTR_EL0
), trap_raz_wi
},
941 // DBGDTR[TR]X_EL0 share the same encoding
942 { SYS_DESC(SYS_DBGDTRTX_EL0
), trap_raz_wi
},
944 { SYS_DESC(SYS_DBGVCR32_EL2
), NULL
, reset_val
, DBGVCR32_EL2
, 0 },
946 { SYS_DESC(SYS_MPIDR_EL1
), NULL
, reset_mpidr
, MPIDR_EL1
},
947 { SYS_DESC(SYS_SCTLR_EL1
), access_vm_reg
, reset_val
, SCTLR_EL1
, 0x00C50078 },
948 { SYS_DESC(SYS_CPACR_EL1
), NULL
, reset_val
, CPACR_EL1
, 0 },
949 { SYS_DESC(SYS_TTBR0_EL1
), access_vm_reg
, reset_unknown
, TTBR0_EL1
},
950 { SYS_DESC(SYS_TTBR1_EL1
), access_vm_reg
, reset_unknown
, TTBR1_EL1
},
951 { SYS_DESC(SYS_TCR_EL1
), access_vm_reg
, reset_val
, TCR_EL1
, 0 },
953 { SYS_DESC(SYS_AFSR0_EL1
), access_vm_reg
, reset_unknown
, AFSR0_EL1
},
954 { SYS_DESC(SYS_AFSR1_EL1
), access_vm_reg
, reset_unknown
, AFSR1_EL1
},
955 { SYS_DESC(SYS_ESR_EL1
), access_vm_reg
, reset_unknown
, ESR_EL1
},
956 { SYS_DESC(SYS_FAR_EL1
), access_vm_reg
, reset_unknown
, FAR_EL1
},
957 { SYS_DESC(SYS_PAR_EL1
), NULL
, reset_unknown
, PAR_EL1
},
959 { SYS_DESC(SYS_PMINTENSET_EL1
), access_pminten
, reset_unknown
, PMINTENSET_EL1
},
960 { SYS_DESC(SYS_PMINTENCLR_EL1
), access_pminten
, NULL
, PMINTENSET_EL1
},
962 { SYS_DESC(SYS_MAIR_EL1
), access_vm_reg
, reset_unknown
, MAIR_EL1
},
963 { SYS_DESC(SYS_AMAIR_EL1
), access_vm_reg
, reset_amair_el1
, AMAIR_EL1
},
965 { SYS_DESC(SYS_VBAR_EL1
), NULL
, reset_val
, VBAR_EL1
, 0 },
967 { SYS_DESC(SYS_ICC_IAR0_EL1
), write_to_read_only
},
968 { SYS_DESC(SYS_ICC_EOIR0_EL1
), read_from_write_only
},
969 { SYS_DESC(SYS_ICC_HPPIR0_EL1
), write_to_read_only
},
970 { SYS_DESC(SYS_ICC_DIR_EL1
), read_from_write_only
},
971 { SYS_DESC(SYS_ICC_RPR_EL1
), write_to_read_only
},
972 { SYS_DESC(SYS_ICC_SGI1R_EL1
), access_gic_sgi
},
973 { SYS_DESC(SYS_ICC_IAR1_EL1
), write_to_read_only
},
974 { SYS_DESC(SYS_ICC_EOIR1_EL1
), read_from_write_only
},
975 { SYS_DESC(SYS_ICC_HPPIR1_EL1
), write_to_read_only
},
976 { SYS_DESC(SYS_ICC_SRE_EL1
), access_gic_sre
},
978 { SYS_DESC(SYS_CONTEXTIDR_EL1
), access_vm_reg
, reset_val
, CONTEXTIDR_EL1
, 0 },
979 { SYS_DESC(SYS_TPIDR_EL1
), NULL
, reset_unknown
, TPIDR_EL1
},
981 { SYS_DESC(SYS_CNTKCTL_EL1
), NULL
, reset_val
, CNTKCTL_EL1
, 0},
983 { SYS_DESC(SYS_CSSELR_EL1
), NULL
, reset_unknown
, CSSELR_EL1
},
985 { SYS_DESC(SYS_PMCR_EL0
), access_pmcr
, reset_pmcr
, },
986 { SYS_DESC(SYS_PMCNTENSET_EL0
), access_pmcnten
, reset_unknown
, PMCNTENSET_EL0
},
987 { SYS_DESC(SYS_PMCNTENCLR_EL0
), access_pmcnten
, NULL
, PMCNTENSET_EL0
},
988 { SYS_DESC(SYS_PMOVSCLR_EL0
), access_pmovs
, NULL
, PMOVSSET_EL0
},
989 { SYS_DESC(SYS_PMSWINC_EL0
), access_pmswinc
, reset_unknown
, PMSWINC_EL0
},
990 { SYS_DESC(SYS_PMSELR_EL0
), access_pmselr
, reset_unknown
, PMSELR_EL0
},
991 { SYS_DESC(SYS_PMCEID0_EL0
), access_pmceid
},
992 { SYS_DESC(SYS_PMCEID1_EL0
), access_pmceid
},
993 { SYS_DESC(SYS_PMCCNTR_EL0
), access_pmu_evcntr
, reset_unknown
, PMCCNTR_EL0
},
994 { SYS_DESC(SYS_PMXEVTYPER_EL0
), access_pmu_evtyper
},
995 { SYS_DESC(SYS_PMXEVCNTR_EL0
), access_pmu_evcntr
},
997 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
998 * in 32bit mode. Here we choose to reset it as zero for consistency.
1000 { SYS_DESC(SYS_PMUSERENR_EL0
), access_pmuserenr
, reset_val
, PMUSERENR_EL0
, 0 },
1001 { SYS_DESC(SYS_PMOVSSET_EL0
), access_pmovs
, reset_unknown
, PMOVSSET_EL0
},
1003 { SYS_DESC(SYS_TPIDR_EL0
), NULL
, reset_unknown
, TPIDR_EL0
},
1004 { SYS_DESC(SYS_TPIDRRO_EL0
), NULL
, reset_unknown
, TPIDRRO_EL0
},
1006 { SYS_DESC(SYS_CNTP_TVAL_EL0
), access_cntp_tval
},
1007 { SYS_DESC(SYS_CNTP_CTL_EL0
), access_cntp_ctl
},
1008 { SYS_DESC(SYS_CNTP_CVAL_EL0
), access_cntp_cval
},
1011 PMU_PMEVCNTR_EL0(0),
1012 PMU_PMEVCNTR_EL0(1),
1013 PMU_PMEVCNTR_EL0(2),
1014 PMU_PMEVCNTR_EL0(3),
1015 PMU_PMEVCNTR_EL0(4),
1016 PMU_PMEVCNTR_EL0(5),
1017 PMU_PMEVCNTR_EL0(6),
1018 PMU_PMEVCNTR_EL0(7),
1019 PMU_PMEVCNTR_EL0(8),
1020 PMU_PMEVCNTR_EL0(9),
1021 PMU_PMEVCNTR_EL0(10),
1022 PMU_PMEVCNTR_EL0(11),
1023 PMU_PMEVCNTR_EL0(12),
1024 PMU_PMEVCNTR_EL0(13),
1025 PMU_PMEVCNTR_EL0(14),
1026 PMU_PMEVCNTR_EL0(15),
1027 PMU_PMEVCNTR_EL0(16),
1028 PMU_PMEVCNTR_EL0(17),
1029 PMU_PMEVCNTR_EL0(18),
1030 PMU_PMEVCNTR_EL0(19),
1031 PMU_PMEVCNTR_EL0(20),
1032 PMU_PMEVCNTR_EL0(21),
1033 PMU_PMEVCNTR_EL0(22),
1034 PMU_PMEVCNTR_EL0(23),
1035 PMU_PMEVCNTR_EL0(24),
1036 PMU_PMEVCNTR_EL0(25),
1037 PMU_PMEVCNTR_EL0(26),
1038 PMU_PMEVCNTR_EL0(27),
1039 PMU_PMEVCNTR_EL0(28),
1040 PMU_PMEVCNTR_EL0(29),
1041 PMU_PMEVCNTR_EL0(30),
1042 /* PMEVTYPERn_EL0 */
1043 PMU_PMEVTYPER_EL0(0),
1044 PMU_PMEVTYPER_EL0(1),
1045 PMU_PMEVTYPER_EL0(2),
1046 PMU_PMEVTYPER_EL0(3),
1047 PMU_PMEVTYPER_EL0(4),
1048 PMU_PMEVTYPER_EL0(5),
1049 PMU_PMEVTYPER_EL0(6),
1050 PMU_PMEVTYPER_EL0(7),
1051 PMU_PMEVTYPER_EL0(8),
1052 PMU_PMEVTYPER_EL0(9),
1053 PMU_PMEVTYPER_EL0(10),
1054 PMU_PMEVTYPER_EL0(11),
1055 PMU_PMEVTYPER_EL0(12),
1056 PMU_PMEVTYPER_EL0(13),
1057 PMU_PMEVTYPER_EL0(14),
1058 PMU_PMEVTYPER_EL0(15),
1059 PMU_PMEVTYPER_EL0(16),
1060 PMU_PMEVTYPER_EL0(17),
1061 PMU_PMEVTYPER_EL0(18),
1062 PMU_PMEVTYPER_EL0(19),
1063 PMU_PMEVTYPER_EL0(20),
1064 PMU_PMEVTYPER_EL0(21),
1065 PMU_PMEVTYPER_EL0(22),
1066 PMU_PMEVTYPER_EL0(23),
1067 PMU_PMEVTYPER_EL0(24),
1068 PMU_PMEVTYPER_EL0(25),
1069 PMU_PMEVTYPER_EL0(26),
1070 PMU_PMEVTYPER_EL0(27),
1071 PMU_PMEVTYPER_EL0(28),
1072 PMU_PMEVTYPER_EL0(29),
1073 PMU_PMEVTYPER_EL0(30),
1075 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1076 * in 32bit mode. Here we choose to reset it as zero for consistency.
1078 { SYS_DESC(SYS_PMCCFILTR_EL0
), access_pmu_evtyper
, reset_val
, PMCCFILTR_EL0
, 0 },
1080 { SYS_DESC(SYS_DACR32_EL2
), NULL
, reset_unknown
, DACR32_EL2
},
1081 { SYS_DESC(SYS_IFSR32_EL2
), NULL
, reset_unknown
, IFSR32_EL2
},
1082 { SYS_DESC(SYS_FPEXC32_EL2
), NULL
, reset_val
, FPEXC32_EL2
, 0x70 },
1085 static bool trap_dbgidr(struct kvm_vcpu
*vcpu
,
1086 struct sys_reg_params
*p
,
1087 const struct sys_reg_desc
*r
)
1090 return ignore_write(vcpu
, p
);
1092 u64 dfr
= read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1
);
1093 u64 pfr
= read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
);
1094 u32 el3
= !!cpuid_feature_extract_unsigned_field(pfr
, ID_AA64PFR0_EL3_SHIFT
);
1096 p
->regval
= ((((dfr
>> ID_AA64DFR0_WRPS_SHIFT
) & 0xf) << 28) |
1097 (((dfr
>> ID_AA64DFR0_BRPS_SHIFT
) & 0xf) << 24) |
1098 (((dfr
>> ID_AA64DFR0_CTX_CMPS_SHIFT
) & 0xf) << 20)
1099 | (6 << 16) | (el3
<< 14) | (el3
<< 12));
1104 static bool trap_debug32(struct kvm_vcpu
*vcpu
,
1105 struct sys_reg_params
*p
,
1106 const struct sys_reg_desc
*r
)
1109 vcpu_cp14(vcpu
, r
->reg
) = p
->regval
;
1110 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
1112 p
->regval
= vcpu_cp14(vcpu
, r
->reg
);
1118 /* AArch32 debug register mappings
1120 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1121 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1123 * All control registers and watchpoint value registers are mapped to
1124 * the lower 32 bits of their AArch64 equivalents. We share the trap
1125 * handlers with the above AArch64 code which checks what mode the
1129 static bool trap_xvr(struct kvm_vcpu
*vcpu
,
1130 struct sys_reg_params
*p
,
1131 const struct sys_reg_desc
*rd
)
1133 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
1138 val
&= 0xffffffffUL
;
1139 val
|= p
->regval
<< 32;
1142 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
1144 p
->regval
= *dbg_reg
>> 32;
1147 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
1152 #define DBG_BCR_BVR_WCR_WVR(n) \
1154 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1156 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1158 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1160 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1162 #define DBGBXVR(n) \
1163 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1166 * Trapped cp14 registers. We generally ignore most of the external
1167 * debug, on the principle that they don't really make sense to a
1168 * guest. Revisit this one day, would this principle change.
1170 static const struct sys_reg_desc cp14_regs
[] = {
1172 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr
},
1174 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi
},
1176 DBG_BCR_BVR_WCR_WVR(0),
1178 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi
},
1179 DBG_BCR_BVR_WCR_WVR(1),
1181 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32
},
1183 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32
},
1184 DBG_BCR_BVR_WCR_WVR(2),
1185 /* DBGDTR[RT]Xint */
1186 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi
},
1187 /* DBGDTR[RT]Xext */
1188 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi
},
1189 DBG_BCR_BVR_WCR_WVR(3),
1190 DBG_BCR_BVR_WCR_WVR(4),
1191 DBG_BCR_BVR_WCR_WVR(5),
1193 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi
},
1195 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi
},
1196 DBG_BCR_BVR_WCR_WVR(6),
1198 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32
},
1199 DBG_BCR_BVR_WCR_WVR(7),
1200 DBG_BCR_BVR_WCR_WVR(8),
1201 DBG_BCR_BVR_WCR_WVR(9),
1202 DBG_BCR_BVR_WCR_WVR(10),
1203 DBG_BCR_BVR_WCR_WVR(11),
1204 DBG_BCR_BVR_WCR_WVR(12),
1205 DBG_BCR_BVR_WCR_WVR(13),
1206 DBG_BCR_BVR_WCR_WVR(14),
1207 DBG_BCR_BVR_WCR_WVR(15),
1209 /* DBGDRAR (32bit) */
1210 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi
},
1214 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi
},
1217 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1
},
1221 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi
},
1224 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi
},
1237 /* DBGDSAR (32bit) */
1238 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi
},
1241 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi
},
1243 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi
},
1245 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi
},
1247 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi
},
1249 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi
},
1251 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1
},
1254 /* Trapped cp14 64bit registers */
1255 static const struct sys_reg_desc cp14_64_regs
[] = {
1256 /* DBGDRAR (64bit) */
1257 { Op1( 0), CRm( 1), .access
= trap_raz_wi
},
1259 /* DBGDSAR (64bit) */
1260 { Op1( 0), CRm( 2), .access
= trap_raz_wi
},
1263 /* Macro to expand the PMEVCNTRn register */
1264 #define PMU_PMEVCNTR(n) \
1266 { Op1(0), CRn(0b1110), \
1267 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1270 /* Macro to expand the PMEVTYPERn register */
1271 #define PMU_PMEVTYPER(n) \
1273 { Op1(0), CRn(0b1110), \
1274 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1275 access_pmu_evtyper }
1278 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1279 * depending on the way they are accessed (as a 32bit or a 64bit
1282 static const struct sys_reg_desc cp15_regs
[] = {
1283 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi
},
1285 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c1_SCTLR
},
1286 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c2_TTBR0
},
1287 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c2_TTBR1
},
1288 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg
, NULL
, c2_TTBCR
},
1289 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c3_DACR
},
1290 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c5_DFSR
},
1291 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c5_IFSR
},
1292 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg
, NULL
, c5_ADFSR
},
1293 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg
, NULL
, c5_AIFSR
},
1294 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c6_DFAR
},
1295 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg
, NULL
, c6_IFAR
},
1298 * DC{C,I,CI}SW operations:
1300 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw
},
1301 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw
},
1302 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw
},
1305 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr
},
1306 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten
},
1307 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten
},
1308 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs
},
1309 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc
},
1310 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr
},
1311 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid
},
1312 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid
},
1313 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr
},
1314 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper
},
1315 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr
},
1316 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr
},
1317 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten
},
1318 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten
},
1319 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs
},
1321 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c10_PRRR
},
1322 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg
, NULL
, c10_NMRR
},
1323 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg
, NULL
, c10_AMAIR0
},
1324 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg
, NULL
, c10_AMAIR1
},
1327 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre
},
1329 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c13_CID
},
1396 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper
},
1399 static const struct sys_reg_desc cp15_64_regs
[] = {
1400 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c2_TTBR0
},
1401 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr
},
1402 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi
},
1403 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c2_TTBR1
},
1406 /* Target specific emulation tables */
1407 static struct kvm_sys_reg_target_table
*target_tables
[KVM_ARM_NUM_TARGETS
];
1409 void kvm_register_target_sys_reg_table(unsigned int target
,
1410 struct kvm_sys_reg_target_table
*table
)
1412 target_tables
[target
] = table
;
1415 /* Get specific register table for this target. */
1416 static const struct sys_reg_desc
*get_target_table(unsigned target
,
1420 struct kvm_sys_reg_target_table
*table
;
1422 table
= target_tables
[target
];
1424 *num
= table
->table64
.num
;
1425 return table
->table64
.table
;
1427 *num
= table
->table32
.num
;
1428 return table
->table32
.table
;
1432 #define reg_to_match_value(x) \
1434 unsigned long val; \
1435 val = (x)->Op0 << 14; \
1436 val |= (x)->Op1 << 11; \
1437 val |= (x)->CRn << 7; \
1438 val |= (x)->CRm << 3; \
1443 static int match_sys_reg(const void *key
, const void *elt
)
1445 const unsigned long pval
= (unsigned long)key
;
1446 const struct sys_reg_desc
*r
= elt
;
1448 return pval
- reg_to_match_value(r
);
1451 static const struct sys_reg_desc
*find_reg(const struct sys_reg_params
*params
,
1452 const struct sys_reg_desc table
[],
1455 unsigned long pval
= reg_to_match_value(params
);
1457 return bsearch((void *)pval
, table
, num
, sizeof(table
[0]), match_sys_reg
);
1460 int kvm_handle_cp14_load_store(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1462 kvm_inject_undefined(vcpu
);
1466 static void perform_access(struct kvm_vcpu
*vcpu
,
1467 struct sys_reg_params
*params
,
1468 const struct sys_reg_desc
*r
)
1471 * Not having an accessor means that we have configured a trap
1472 * that we don't know how to handle. This certainly qualifies
1473 * as a gross bug that should be fixed right away.
1477 /* Skip instruction if instructed so */
1478 if (likely(r
->access(vcpu
, params
, r
)))
1479 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
1483 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1484 * call the corresponding trap handler.
1486 * @params: pointer to the descriptor of the access
1487 * @table: array of trap descriptors
1488 * @num: size of the trap descriptor array
1490 * Return 0 if the access has been handled, and -1 if not.
1492 static int emulate_cp(struct kvm_vcpu
*vcpu
,
1493 struct sys_reg_params
*params
,
1494 const struct sys_reg_desc
*table
,
1497 const struct sys_reg_desc
*r
;
1500 return -1; /* Not handled */
1502 r
= find_reg(params
, table
, num
);
1505 perform_access(vcpu
, params
, r
);
1513 static void unhandled_cp_access(struct kvm_vcpu
*vcpu
,
1514 struct sys_reg_params
*params
)
1516 u8 hsr_ec
= kvm_vcpu_trap_get_class(vcpu
);
1520 case ESR_ELx_EC_CP15_32
:
1521 case ESR_ELx_EC_CP15_64
:
1524 case ESR_ELx_EC_CP14_MR
:
1525 case ESR_ELx_EC_CP14_64
:
1532 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1533 cp
, *vcpu_pc(vcpu
));
1534 print_sys_reg_instr(params
);
1535 kvm_inject_undefined(vcpu
);
1539 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1540 * @vcpu: The VCPU pointer
1541 * @run: The kvm_run struct
1543 static int kvm_handle_cp_64(struct kvm_vcpu
*vcpu
,
1544 const struct sys_reg_desc
*global
,
1546 const struct sys_reg_desc
*target_specific
,
1549 struct sys_reg_params params
;
1550 u32 hsr
= kvm_vcpu_get_hsr(vcpu
);
1551 int Rt
= kvm_vcpu_sys_get_rt(vcpu
);
1552 int Rt2
= (hsr
>> 10) & 0x1f;
1554 params
.is_aarch32
= true;
1555 params
.is_32bit
= false;
1556 params
.CRm
= (hsr
>> 1) & 0xf;
1557 params
.is_write
= ((hsr
& 1) == 0);
1560 params
.Op1
= (hsr
>> 16) & 0xf;
1565 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1566 * backends between AArch32 and AArch64, we get away with it.
1568 if (params
.is_write
) {
1569 params
.regval
= vcpu_get_reg(vcpu
, Rt
) & 0xffffffff;
1570 params
.regval
|= vcpu_get_reg(vcpu
, Rt2
) << 32;
1574 * Try to emulate the coprocessor access using the target
1575 * specific table first, and using the global table afterwards.
1576 * If either of the tables contains a handler, handle the
1577 * potential register operation in the case of a read and return
1580 if (!emulate_cp(vcpu
, ¶ms
, target_specific
, nr_specific
) ||
1581 !emulate_cp(vcpu
, ¶ms
, global
, nr_global
)) {
1582 /* Split up the value between registers for the read side */
1583 if (!params
.is_write
) {
1584 vcpu_set_reg(vcpu
, Rt
, lower_32_bits(params
.regval
));
1585 vcpu_set_reg(vcpu
, Rt2
, upper_32_bits(params
.regval
));
1591 unhandled_cp_access(vcpu
, ¶ms
);
1596 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1597 * @vcpu: The VCPU pointer
1598 * @run: The kvm_run struct
1600 static int kvm_handle_cp_32(struct kvm_vcpu
*vcpu
,
1601 const struct sys_reg_desc
*global
,
1603 const struct sys_reg_desc
*target_specific
,
1606 struct sys_reg_params params
;
1607 u32 hsr
= kvm_vcpu_get_hsr(vcpu
);
1608 int Rt
= kvm_vcpu_sys_get_rt(vcpu
);
1610 params
.is_aarch32
= true;
1611 params
.is_32bit
= true;
1612 params
.CRm
= (hsr
>> 1) & 0xf;
1613 params
.regval
= vcpu_get_reg(vcpu
, Rt
);
1614 params
.is_write
= ((hsr
& 1) == 0);
1615 params
.CRn
= (hsr
>> 10) & 0xf;
1617 params
.Op1
= (hsr
>> 14) & 0x7;
1618 params
.Op2
= (hsr
>> 17) & 0x7;
1620 if (!emulate_cp(vcpu
, ¶ms
, target_specific
, nr_specific
) ||
1621 !emulate_cp(vcpu
, ¶ms
, global
, nr_global
)) {
1622 if (!params
.is_write
)
1623 vcpu_set_reg(vcpu
, Rt
, params
.regval
);
1627 unhandled_cp_access(vcpu
, ¶ms
);
1631 int kvm_handle_cp15_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1633 const struct sys_reg_desc
*target_specific
;
1636 target_specific
= get_target_table(vcpu
->arch
.target
, false, &num
);
1637 return kvm_handle_cp_64(vcpu
,
1638 cp15_64_regs
, ARRAY_SIZE(cp15_64_regs
),
1639 target_specific
, num
);
1642 int kvm_handle_cp15_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1644 const struct sys_reg_desc
*target_specific
;
1647 target_specific
= get_target_table(vcpu
->arch
.target
, false, &num
);
1648 return kvm_handle_cp_32(vcpu
,
1649 cp15_regs
, ARRAY_SIZE(cp15_regs
),
1650 target_specific
, num
);
1653 int kvm_handle_cp14_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1655 return kvm_handle_cp_64(vcpu
,
1656 cp14_64_regs
, ARRAY_SIZE(cp14_64_regs
),
1660 int kvm_handle_cp14_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1662 return kvm_handle_cp_32(vcpu
,
1663 cp14_regs
, ARRAY_SIZE(cp14_regs
),
1667 static int emulate_sys_reg(struct kvm_vcpu
*vcpu
,
1668 struct sys_reg_params
*params
)
1671 const struct sys_reg_desc
*table
, *r
;
1673 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
1675 /* Search target-specific then generic table. */
1676 r
= find_reg(params
, table
, num
);
1678 r
= find_reg(params
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
1681 perform_access(vcpu
, params
, r
);
1683 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1685 print_sys_reg_instr(params
);
1686 kvm_inject_undefined(vcpu
);
1691 static void reset_sys_reg_descs(struct kvm_vcpu
*vcpu
,
1692 const struct sys_reg_desc
*table
, size_t num
)
1696 for (i
= 0; i
< num
; i
++)
1698 table
[i
].reset(vcpu
, &table
[i
]);
1702 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1703 * @vcpu: The VCPU pointer
1704 * @run: The kvm_run struct
1706 int kvm_handle_sys_reg(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1708 struct sys_reg_params params
;
1709 unsigned long esr
= kvm_vcpu_get_hsr(vcpu
);
1710 int Rt
= kvm_vcpu_sys_get_rt(vcpu
);
1713 trace_kvm_handle_sys_reg(esr
);
1715 params
.is_aarch32
= false;
1716 params
.is_32bit
= false;
1717 params
.Op0
= (esr
>> 20) & 3;
1718 params
.Op1
= (esr
>> 14) & 0x7;
1719 params
.CRn
= (esr
>> 10) & 0xf;
1720 params
.CRm
= (esr
>> 1) & 0xf;
1721 params
.Op2
= (esr
>> 17) & 0x7;
1722 params
.regval
= vcpu_get_reg(vcpu
, Rt
);
1723 params
.is_write
= !(esr
& 1);
1725 ret
= emulate_sys_reg(vcpu
, ¶ms
);
1727 if (!params
.is_write
)
1728 vcpu_set_reg(vcpu
, Rt
, params
.regval
);
1732 /******************************************************************************
1734 *****************************************************************************/
1736 static bool index_to_params(u64 id
, struct sys_reg_params
*params
)
1738 switch (id
& KVM_REG_SIZE_MASK
) {
1739 case KVM_REG_SIZE_U64
:
1740 /* Any unused index bits means it's not valid. */
1741 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
1742 | KVM_REG_ARM_COPROC_MASK
1743 | KVM_REG_ARM64_SYSREG_OP0_MASK
1744 | KVM_REG_ARM64_SYSREG_OP1_MASK
1745 | KVM_REG_ARM64_SYSREG_CRN_MASK
1746 | KVM_REG_ARM64_SYSREG_CRM_MASK
1747 | KVM_REG_ARM64_SYSREG_OP2_MASK
))
1749 params
->Op0
= ((id
& KVM_REG_ARM64_SYSREG_OP0_MASK
)
1750 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT
);
1751 params
->Op1
= ((id
& KVM_REG_ARM64_SYSREG_OP1_MASK
)
1752 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT
);
1753 params
->CRn
= ((id
& KVM_REG_ARM64_SYSREG_CRN_MASK
)
1754 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT
);
1755 params
->CRm
= ((id
& KVM_REG_ARM64_SYSREG_CRM_MASK
)
1756 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT
);
1757 params
->Op2
= ((id
& KVM_REG_ARM64_SYSREG_OP2_MASK
)
1758 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT
);
1765 const struct sys_reg_desc
*find_reg_by_id(u64 id
,
1766 struct sys_reg_params
*params
,
1767 const struct sys_reg_desc table
[],
1770 if (!index_to_params(id
, params
))
1773 return find_reg(params
, table
, num
);
1776 /* Decode an index value, and find the sys_reg_desc entry. */
1777 static const struct sys_reg_desc
*index_to_sys_reg_desc(struct kvm_vcpu
*vcpu
,
1781 const struct sys_reg_desc
*table
, *r
;
1782 struct sys_reg_params params
;
1784 /* We only do sys_reg for now. */
1785 if ((id
& KVM_REG_ARM_COPROC_MASK
) != KVM_REG_ARM64_SYSREG
)
1788 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
1789 r
= find_reg_by_id(id
, ¶ms
, table
, num
);
1791 r
= find_reg(¶ms
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
1793 /* Not saved in the sys_reg array? */
1801 * These are the invariant sys_reg registers: we let the guest see the
1802 * host versions of these, so they're part of the guest state.
1804 * A future CPU may provide a mechanism to present different values to
1805 * the guest, or a future kvm may trap them.
1808 #define FUNCTION_INVARIANT(reg) \
1809 static void get_##reg(struct kvm_vcpu *v, \
1810 const struct sys_reg_desc *r) \
1812 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
1815 FUNCTION_INVARIANT(midr_el1
)
1816 FUNCTION_INVARIANT(ctr_el0
)
1817 FUNCTION_INVARIANT(revidr_el1
)
1818 FUNCTION_INVARIANT(id_pfr0_el1
)
1819 FUNCTION_INVARIANT(id_pfr1_el1
)
1820 FUNCTION_INVARIANT(id_dfr0_el1
)
1821 FUNCTION_INVARIANT(id_afr0_el1
)
1822 FUNCTION_INVARIANT(id_mmfr0_el1
)
1823 FUNCTION_INVARIANT(id_mmfr1_el1
)
1824 FUNCTION_INVARIANT(id_mmfr2_el1
)
1825 FUNCTION_INVARIANT(id_mmfr3_el1
)
1826 FUNCTION_INVARIANT(id_isar0_el1
)
1827 FUNCTION_INVARIANT(id_isar1_el1
)
1828 FUNCTION_INVARIANT(id_isar2_el1
)
1829 FUNCTION_INVARIANT(id_isar3_el1
)
1830 FUNCTION_INVARIANT(id_isar4_el1
)
1831 FUNCTION_INVARIANT(id_isar5_el1
)
1832 FUNCTION_INVARIANT(clidr_el1
)
1833 FUNCTION_INVARIANT(aidr_el1
)
1835 /* ->val is filled in by kvm_sys_reg_table_init() */
1836 static struct sys_reg_desc invariant_sys_regs
[] = {
1837 { SYS_DESC(SYS_MIDR_EL1
), NULL
, get_midr_el1
},
1838 { SYS_DESC(SYS_REVIDR_EL1
), NULL
, get_revidr_el1
},
1839 { SYS_DESC(SYS_ID_PFR0_EL1
), NULL
, get_id_pfr0_el1
},
1840 { SYS_DESC(SYS_ID_PFR1_EL1
), NULL
, get_id_pfr1_el1
},
1841 { SYS_DESC(SYS_ID_DFR0_EL1
), NULL
, get_id_dfr0_el1
},
1842 { SYS_DESC(SYS_ID_AFR0_EL1
), NULL
, get_id_afr0_el1
},
1843 { SYS_DESC(SYS_ID_MMFR0_EL1
), NULL
, get_id_mmfr0_el1
},
1844 { SYS_DESC(SYS_ID_MMFR1_EL1
), NULL
, get_id_mmfr1_el1
},
1845 { SYS_DESC(SYS_ID_MMFR2_EL1
), NULL
, get_id_mmfr2_el1
},
1846 { SYS_DESC(SYS_ID_MMFR3_EL1
), NULL
, get_id_mmfr3_el1
},
1847 { SYS_DESC(SYS_ID_ISAR0_EL1
), NULL
, get_id_isar0_el1
},
1848 { SYS_DESC(SYS_ID_ISAR1_EL1
), NULL
, get_id_isar1_el1
},
1849 { SYS_DESC(SYS_ID_ISAR2_EL1
), NULL
, get_id_isar2_el1
},
1850 { SYS_DESC(SYS_ID_ISAR3_EL1
), NULL
, get_id_isar3_el1
},
1851 { SYS_DESC(SYS_ID_ISAR4_EL1
), NULL
, get_id_isar4_el1
},
1852 { SYS_DESC(SYS_ID_ISAR5_EL1
), NULL
, get_id_isar5_el1
},
1853 { SYS_DESC(SYS_CLIDR_EL1
), NULL
, get_clidr_el1
},
1854 { SYS_DESC(SYS_AIDR_EL1
), NULL
, get_aidr_el1
},
1855 { SYS_DESC(SYS_CTR_EL0
), NULL
, get_ctr_el0
},
1858 static int reg_from_user(u64
*val
, const void __user
*uaddr
, u64 id
)
1860 if (copy_from_user(val
, uaddr
, KVM_REG_SIZE(id
)) != 0)
1865 static int reg_to_user(void __user
*uaddr
, const u64
*val
, u64 id
)
1867 if (copy_to_user(uaddr
, val
, KVM_REG_SIZE(id
)) != 0)
1872 static int get_invariant_sys_reg(u64 id
, void __user
*uaddr
)
1874 struct sys_reg_params params
;
1875 const struct sys_reg_desc
*r
;
1877 r
= find_reg_by_id(id
, ¶ms
, invariant_sys_regs
,
1878 ARRAY_SIZE(invariant_sys_regs
));
1882 return reg_to_user(uaddr
, &r
->val
, id
);
1885 static int set_invariant_sys_reg(u64 id
, void __user
*uaddr
)
1887 struct sys_reg_params params
;
1888 const struct sys_reg_desc
*r
;
1890 u64 val
= 0; /* Make sure high bits are 0 for 32-bit regs */
1892 r
= find_reg_by_id(id
, ¶ms
, invariant_sys_regs
,
1893 ARRAY_SIZE(invariant_sys_regs
));
1897 err
= reg_from_user(&val
, uaddr
, id
);
1901 /* This is what we mean by invariant: you can't change it. */
1908 static bool is_valid_cache(u32 val
)
1912 if (val
>= CSSELR_MAX
)
1915 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1917 ctype
= (cache_levels
>> (level
* 3)) & 7;
1920 case 0: /* No cache */
1922 case 1: /* Instruction cache only */
1924 case 2: /* Data cache only */
1925 case 4: /* Unified cache */
1927 case 3: /* Separate instruction and data caches */
1929 default: /* Reserved: we can't know instruction or data. */
1934 static int demux_c15_get(u64 id
, void __user
*uaddr
)
1937 u32 __user
*uval
= uaddr
;
1939 /* Fail if we have unknown bits set. */
1940 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
1941 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
1944 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
1945 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
1946 if (KVM_REG_SIZE(id
) != 4)
1948 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
1949 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
1950 if (!is_valid_cache(val
))
1953 return put_user(get_ccsidr(val
), uval
);
1959 static int demux_c15_set(u64 id
, void __user
*uaddr
)
1962 u32 __user
*uval
= uaddr
;
1964 /* Fail if we have unknown bits set. */
1965 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
1966 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
1969 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
1970 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
1971 if (KVM_REG_SIZE(id
) != 4)
1973 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
1974 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
1975 if (!is_valid_cache(val
))
1978 if (get_user(newval
, uval
))
1981 /* This is also invariant: you can't change it. */
1982 if (newval
!= get_ccsidr(val
))
1990 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
1992 const struct sys_reg_desc
*r
;
1993 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
1995 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
1996 return demux_c15_get(reg
->id
, uaddr
);
1998 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
2001 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
2003 return get_invariant_sys_reg(reg
->id
, uaddr
);
2006 return (r
->get_user
)(vcpu
, r
, reg
, uaddr
);
2008 return reg_to_user(uaddr
, &vcpu_sys_reg(vcpu
, r
->reg
), reg
->id
);
2011 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
2013 const struct sys_reg_desc
*r
;
2014 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
2016 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
2017 return demux_c15_set(reg
->id
, uaddr
);
2019 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
2022 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
2024 return set_invariant_sys_reg(reg
->id
, uaddr
);
2027 return (r
->set_user
)(vcpu
, r
, reg
, uaddr
);
2029 return reg_from_user(&vcpu_sys_reg(vcpu
, r
->reg
), uaddr
, reg
->id
);
2032 static unsigned int num_demux_regs(void)
2034 unsigned int i
, count
= 0;
2036 for (i
= 0; i
< CSSELR_MAX
; i
++)
2037 if (is_valid_cache(i
))
2043 static int write_demux_regids(u64 __user
*uindices
)
2045 u64 val
= KVM_REG_ARM64
| KVM_REG_SIZE_U32
| KVM_REG_ARM_DEMUX
;
2048 val
|= KVM_REG_ARM_DEMUX_ID_CCSIDR
;
2049 for (i
= 0; i
< CSSELR_MAX
; i
++) {
2050 if (!is_valid_cache(i
))
2052 if (put_user(val
| i
, uindices
))
2059 static u64
sys_reg_to_index(const struct sys_reg_desc
*reg
)
2061 return (KVM_REG_ARM64
| KVM_REG_SIZE_U64
|
2062 KVM_REG_ARM64_SYSREG
|
2063 (reg
->Op0
<< KVM_REG_ARM64_SYSREG_OP0_SHIFT
) |
2064 (reg
->Op1
<< KVM_REG_ARM64_SYSREG_OP1_SHIFT
) |
2065 (reg
->CRn
<< KVM_REG_ARM64_SYSREG_CRN_SHIFT
) |
2066 (reg
->CRm
<< KVM_REG_ARM64_SYSREG_CRM_SHIFT
) |
2067 (reg
->Op2
<< KVM_REG_ARM64_SYSREG_OP2_SHIFT
));
2070 static bool copy_reg_to_user(const struct sys_reg_desc
*reg
, u64 __user
**uind
)
2075 if (put_user(sys_reg_to_index(reg
), *uind
))
2082 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2083 static int walk_sys_regs(struct kvm_vcpu
*vcpu
, u64 __user
*uind
)
2085 const struct sys_reg_desc
*i1
, *i2
, *end1
, *end2
;
2086 unsigned int total
= 0;
2089 /* We check for duplicates here, to allow arch-specific overrides. */
2090 i1
= get_target_table(vcpu
->arch
.target
, true, &num
);
2093 end2
= sys_reg_descs
+ ARRAY_SIZE(sys_reg_descs
);
2095 BUG_ON(i1
== end1
|| i2
== end2
);
2097 /* Walk carefully, as both tables may refer to the same register. */
2099 int cmp
= cmp_sys_reg(i1
, i2
);
2100 /* target-specific overrides generic entry. */
2102 /* Ignore registers we trap but don't save. */
2104 if (!copy_reg_to_user(i1
, &uind
))
2109 /* Ignore registers we trap but don't save. */
2111 if (!copy_reg_to_user(i2
, &uind
))
2117 if (cmp
<= 0 && ++i1
== end1
)
2119 if (cmp
>= 0 && ++i2
== end2
)
2125 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu
*vcpu
)
2127 return ARRAY_SIZE(invariant_sys_regs
)
2129 + walk_sys_regs(vcpu
, (u64 __user
*)NULL
);
2132 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu
*vcpu
, u64 __user
*uindices
)
2137 /* Then give them all the invariant registers' indices. */
2138 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++) {
2139 if (put_user(sys_reg_to_index(&invariant_sys_regs
[i
]), uindices
))
2144 err
= walk_sys_regs(vcpu
, uindices
);
2149 return write_demux_regids(uindices
);
2152 static int check_sysreg_table(const struct sys_reg_desc
*table
, unsigned int n
)
2156 for (i
= 1; i
< n
; i
++) {
2157 if (cmp_sys_reg(&table
[i
-1], &table
[i
]) >= 0) {
2158 kvm_err("sys_reg table %p out of order (%d)\n", table
, i
- 1);
2166 void kvm_sys_reg_table_init(void)
2169 struct sys_reg_desc clidr
;
2171 /* Make sure tables are unique and in order. */
2172 BUG_ON(check_sysreg_table(sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
)));
2173 BUG_ON(check_sysreg_table(cp14_regs
, ARRAY_SIZE(cp14_regs
)));
2174 BUG_ON(check_sysreg_table(cp14_64_regs
, ARRAY_SIZE(cp14_64_regs
)));
2175 BUG_ON(check_sysreg_table(cp15_regs
, ARRAY_SIZE(cp15_regs
)));
2176 BUG_ON(check_sysreg_table(cp15_64_regs
, ARRAY_SIZE(cp15_64_regs
)));
2177 BUG_ON(check_sysreg_table(invariant_sys_regs
, ARRAY_SIZE(invariant_sys_regs
)));
2179 /* We abuse the reset function to overwrite the table itself. */
2180 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++)
2181 invariant_sys_regs
[i
].reset(NULL
, &invariant_sys_regs
[i
]);
2184 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2186 * If software reads the Cache Type fields from Ctype1
2187 * upwards, once it has seen a value of 0b000, no caches
2188 * exist at further-out levels of the hierarchy. So, for
2189 * example, if Ctype3 is the first Cache Type field with a
2190 * value of 0b000, the values of Ctype4 to Ctype7 must be
2193 get_clidr_el1(NULL
, &clidr
); /* Ugly... */
2194 cache_levels
= clidr
.val
;
2195 for (i
= 0; i
< 7; i
++)
2196 if (((cache_levels
>> (i
*3)) & 7) == 0)
2198 /* Clear all higher bits. */
2199 cache_levels
&= (1 << (i
*3))-1;
2203 * kvm_reset_sys_regs - sets system registers to reset value
2204 * @vcpu: The VCPU pointer
2206 * This function finds the right table above and sets the registers on the
2207 * virtual CPU struct to their architecturally defined reset values.
2209 void kvm_reset_sys_regs(struct kvm_vcpu
*vcpu
)
2212 const struct sys_reg_desc
*table
;
2214 /* Catch someone adding a register without putting in reset entry. */
2215 memset(&vcpu
->arch
.ctxt
.sys_regs
, 0x42, sizeof(vcpu
->arch
.ctxt
.sys_regs
));
2217 /* Generic chip reset first (so target could override). */
2218 reset_sys_reg_descs(vcpu
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
2220 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
2221 reset_sys_reg_descs(vcpu
, table
, num
);
2223 for (num
= 1; num
< NR_SYS_REGS
; num
++)
2224 if (vcpu_sys_reg(vcpu
, num
) == 0x4242424242424242)
2225 panic("Didn't reset vcpu_sys_reg(%zi)", num
);