Linux 4.13.16
[linux/fpc-iii.git] / arch / cris / arch-v10 / drivers / axisflashmap.c
blob28292da4966455155b4d17da2097ec4301b338a8
1 /*
2 * Physical mapping layer for MTD using the Axis partitiontable format
4 * Copyright (c) 2001, 2002 Axis Communications AB
6 * This file is under the GPL.
8 * First partition is always sector 0 regardless of if we find a partitiontable
9 * or not. In the start of the next sector, there can be a partitiontable that
10 * tells us what other partitions to define. If there isn't, we use a default
11 * partition split defined below.
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
21 #include <linux/mtd/concat.h>
22 #include <linux/mtd/map.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/mtdram.h>
25 #include <linux/mtd/partitions.h>
27 #include <asm/axisflashmap.h>
28 #include <asm/mmu.h>
29 #include <arch/sv_addr_ag.h>
31 #ifdef CONFIG_CRIS_LOW_MAP
32 #define FLASH_UNCACHED_ADDR KSEG_8
33 #define FLASH_CACHED_ADDR KSEG_5
34 #else
35 #define FLASH_UNCACHED_ADDR KSEG_E
36 #define FLASH_CACHED_ADDR KSEG_F
37 #endif
39 #if CONFIG_ETRAX_FLASH_BUSWIDTH==1
40 #define flash_data __u8
41 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
42 #define flash_data __u16
43 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
44 #define flash_data __u32
45 #endif
47 /* From head.S */
48 extern unsigned long romfs_start, romfs_length, romfs_in_flash;
50 /* The master mtd for the entire flash. */
51 struct mtd_info* axisflash_mtd = NULL;
53 /* Map driver functions. */
55 static map_word flash_read(struct map_info *map, unsigned long ofs)
57 map_word tmp;
58 tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
59 return tmp;
62 static void flash_copy_from(struct map_info *map, void *to,
63 unsigned long from, ssize_t len)
65 memcpy(to, (void *)(map->map_priv_1 + from), len);
68 static void flash_write(struct map_info *map, map_word d, unsigned long adr)
70 *(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
74 * The map for chip select e0.
76 * We run into tricky coherence situations if we mix cached with uncached
77 * accesses to we only use the uncached version here.
79 * The size field is the total size where the flash chips may be mapped on the
80 * chip select. MTD probes should find all devices there and it does not matter
81 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
82 * probes will ignore them.
84 * The start address in map_priv_1 is in virtual memory so we cannot use
85 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
86 * address of cse0.
88 static struct map_info map_cse0 = {
89 .name = "cse0",
90 .size = MEM_CSE0_SIZE,
91 .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
92 .read = flash_read,
93 .copy_from = flash_copy_from,
94 .write = flash_write,
95 .map_priv_1 = FLASH_UNCACHED_ADDR
99 * The map for chip select e1.
101 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
102 * address, but there isn't.
104 static struct map_info map_cse1 = {
105 .name = "cse1",
106 .size = MEM_CSE1_SIZE,
107 .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
108 .read = flash_read,
109 .copy_from = flash_copy_from,
110 .write = flash_write,
111 .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
114 /* If no partition-table was found, we use this default-set. */
115 #define MAX_PARTITIONS 7
116 #define NUM_DEFAULT_PARTITIONS 3
119 * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
120 * size of one flash block and "filesystem"-partition needs 5 blocks to be able
121 * to use JFFS.
123 static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
125 .name = "boot firmware",
126 .size = CONFIG_ETRAX_PTABLE_SECTOR,
127 .offset = 0
130 .name = "kernel",
131 .size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
132 .offset = CONFIG_ETRAX_PTABLE_SECTOR
135 .name = "filesystem",
136 .size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
137 .offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
141 /* Initialize the ones normally used. */
142 static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
144 .name = "part0",
145 .size = CONFIG_ETRAX_PTABLE_SECTOR,
146 .offset = 0
149 .name = "part1",
150 .size = 0,
151 .offset = 0
154 .name = "part2",
155 .size = 0,
156 .offset = 0
159 .name = "part3",
160 .size = 0,
161 .offset = 0
164 .name = "part4",
165 .size = 0,
166 .offset = 0
169 .name = "part5",
170 .size = 0,
171 .offset = 0
174 .name = "part6",
175 .size = 0,
176 .offset = 0
181 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
182 * chips in that order (because the amd_flash-driver is faster).
184 static struct mtd_info *probe_cs(struct map_info *map_cs)
186 struct mtd_info *mtd_cs = NULL;
188 printk(KERN_INFO
189 "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
190 map_cs->name, map_cs->size, map_cs->map_priv_1);
192 #ifdef CONFIG_MTD_CFI
193 mtd_cs = do_map_probe("cfi_probe", map_cs);
194 #endif
195 #ifdef CONFIG_MTD_JEDECPROBE
196 if (!mtd_cs)
197 mtd_cs = do_map_probe("jedec_probe", map_cs);
198 #endif
200 return mtd_cs;
204 * Probe each chip select individually for flash chips. If there are chips on
205 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
206 * so that MTD partitions can cross chip boundaries.
208 * The only known restriction to how you can mount your chips is that each
209 * chip select must hold similar flash chips. But you need external hardware
210 * to do that anyway and you can put totally different chips on cse0 and cse1
211 * so it isn't really much of a restriction.
213 static struct mtd_info *flash_probe(void)
215 struct mtd_info *mtd_cse0;
216 struct mtd_info *mtd_cse1;
217 struct mtd_info *mtd_cse;
219 mtd_cse0 = probe_cs(&map_cse0);
220 mtd_cse1 = probe_cs(&map_cse1);
222 if (!mtd_cse0 && !mtd_cse1) {
223 /* No chip found. */
224 return NULL;
227 if (mtd_cse0 && mtd_cse1) {
228 struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 };
230 /* Since the concatenation layer adds a small overhead we
231 * could try to figure out if the chips in cse0 and cse1 are
232 * identical and reprobe the whole cse0+cse1 window. But since
233 * flash chips are slow, the overhead is relatively small.
234 * So we use the MTD concatenation layer instead of further
235 * complicating the probing procedure.
237 mtd_cse = mtd_concat_create(mtds, ARRAY_SIZE(mtds),
238 "cse0+cse1");
239 if (!mtd_cse) {
240 printk(KERN_ERR "%s and %s: Concatenation failed!\n",
241 map_cse0.name, map_cse1.name);
243 /* The best we can do now is to only use what we found
244 * at cse0.
246 mtd_cse = mtd_cse0;
247 map_destroy(mtd_cse1);
249 } else {
250 mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1;
253 return mtd_cse;
257 * Probe the flash chip(s) and, if it succeeds, read the partition-table
258 * and register the partitions with MTD.
260 static int __init init_axis_flash(void)
262 struct mtd_info *mymtd;
263 int err = 0;
264 int pidx = 0;
265 struct partitiontable_head *ptable_head = NULL;
266 struct partitiontable_entry *ptable;
267 int use_default_ptable = 1; /* Until proven otherwise. */
268 const char pmsg[] = " /dev/flash%d at 0x%08x, size 0x%08x\n";
270 if (!(mymtd = flash_probe())) {
271 /* There's no reason to use this module if no flash chip can
272 * be identified. Make sure that's understood.
274 printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
275 } else {
276 printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
277 mymtd->name, mymtd->size);
278 axisflash_mtd = mymtd;
281 if (mymtd) {
282 mymtd->owner = THIS_MODULE;
283 ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR +
284 CONFIG_ETRAX_PTABLE_SECTOR +
285 PARTITION_TABLE_OFFSET);
287 pidx++; /* First partition is always set to the default. */
289 if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
290 && (ptable_head->size <
291 (MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
292 PARTITIONTABLE_END_MARKER_SIZE))
293 && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
294 ptable_head->size -
295 PARTITIONTABLE_END_MARKER_SIZE)
296 == PARTITIONTABLE_END_MARKER)) {
297 /* Looks like a start, sane length and end of a
298 * partition table, lets check csum etc.
300 int ptable_ok = 0;
301 struct partitiontable_entry *max_addr =
302 (struct partitiontable_entry *)
303 ((unsigned long)ptable_head + sizeof(*ptable_head) +
304 ptable_head->size);
305 unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
306 unsigned char *p;
307 unsigned long csum = 0;
309 ptable = (struct partitiontable_entry *)
310 ((unsigned long)ptable_head + sizeof(*ptable_head));
312 /* Lets be PARANOID, and check the checksum. */
313 p = (unsigned char*) ptable;
315 while (p <= (unsigned char*)max_addr) {
316 csum += *p++;
317 csum += *p++;
318 csum += *p++;
319 csum += *p++;
321 ptable_ok = (csum == ptable_head->checksum);
323 /* Read the entries and use/show the info. */
324 printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
325 (ptable_ok ? " valid" : "n invalid"), ptable_head,
326 max_addr);
328 /* We have found a working bootblock. Now read the
329 * partition table. Scan the table. It ends when
330 * there is 0xffffffff, that is, empty flash.
332 while (ptable_ok
333 && ptable->offset != 0xffffffff
334 && ptable < max_addr
335 && pidx < MAX_PARTITIONS) {
337 axis_partitions[pidx].offset = offset + ptable->offset;
338 axis_partitions[pidx].size = ptable->size;
340 printk(pmsg, pidx, axis_partitions[pidx].offset,
341 axis_partitions[pidx].size);
342 pidx++;
343 ptable++;
345 use_default_ptable = !ptable_ok;
348 if (romfs_in_flash) {
349 /* Add an overlapping device for the root partition (romfs). */
351 axis_partitions[pidx].name = "romfs";
352 axis_partitions[pidx].size = romfs_length;
353 axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
354 axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
356 printk(KERN_INFO
357 " Adding readonly flash partition for romfs image:\n");
358 printk(pmsg, pidx, axis_partitions[pidx].offset,
359 axis_partitions[pidx].size);
360 pidx++;
363 if (mymtd) {
364 if (use_default_ptable) {
365 printk(KERN_INFO " Using default partition table.\n");
366 err = mtd_device_register(mymtd,
367 axis_default_partitions,
368 NUM_DEFAULT_PARTITIONS);
369 } else {
370 err = mtd_device_register(mymtd, axis_partitions,
371 pidx);
374 if (err)
375 panic("axisflashmap could not add MTD partitions!\n");
378 if (!romfs_in_flash) {
379 /* Create an RAM device for the root partition (romfs). */
381 #if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0)
382 /* No use trying to boot this kernel from RAM. Panic! */
383 printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
384 "device due to kernel (mis)configuration!\n");
385 panic("This kernel cannot boot from RAM!\n");
386 #else
387 struct mtd_info *mtd_ram;
389 mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
390 if (!mtd_ram)
391 panic("axisflashmap couldn't allocate memory for "
392 "mtd_info!\n");
394 printk(KERN_INFO " Adding RAM partition for romfs image:\n");
395 printk(pmsg, pidx, (unsigned)romfs_start,
396 (unsigned)romfs_length);
398 err = mtdram_init_device(mtd_ram,
399 (void *)romfs_start,
400 romfs_length,
401 "romfs");
402 if (err)
403 panic("axisflashmap could not initialize MTD RAM "
404 "device!\n");
405 #endif
407 return err;
410 /* This adds the above to the kernels init-call chain. */
411 module_init(init_axis_flash);
413 EXPORT_SYMBOL(axisflash_mtd);