Linux 4.13.16
[linux/fpc-iii.git] / arch / ia64 / kernel / mca.c
blob555b11180156086bd394389b1036bac8e5be995b
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42 * GUID cleanups.
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
61 * state.
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 * Add printing support for MCA/INIT.
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
72 #include <linux/jiffies.h>
73 #include <linux/types.h>
74 #include <linux/init.h>
75 #include <linux/sched/signal.h>
76 #include <linux/sched/debug.h>
77 #include <linux/sched/task.h>
78 #include <linux/interrupt.h>
79 #include <linux/irq.h>
80 #include <linux/bootmem.h>
81 #include <linux/acpi.h>
82 #include <linux/timer.h>
83 #include <linux/module.h>
84 #include <linux/kernel.h>
85 #include <linux/smp.h>
86 #include <linux/workqueue.h>
87 #include <linux/cpumask.h>
88 #include <linux/kdebug.h>
89 #include <linux/cpu.h>
90 #include <linux/gfp.h>
92 #include <asm/delay.h>
93 #include <asm/machvec.h>
94 #include <asm/meminit.h>
95 #include <asm/page.h>
96 #include <asm/ptrace.h>
97 #include <asm/sal.h>
98 #include <asm/mca.h>
99 #include <asm/kexec.h>
101 #include <asm/irq.h>
102 #include <asm/hw_irq.h>
103 #include <asm/tlb.h>
105 #include "mca_drv.h"
106 #include "entry.h"
108 #if defined(IA64_MCA_DEBUG_INFO)
109 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
110 #else
111 # define IA64_MCA_DEBUG(fmt...)
112 #endif
114 #define NOTIFY_INIT(event, regs, arg, spin) \
115 do { \
116 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
117 == NOTIFY_STOP) && ((spin) == 1)) \
118 ia64_mca_spin(__func__); \
119 } while (0)
121 #define NOTIFY_MCA(event, regs, arg, spin) \
122 do { \
123 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
124 == NOTIFY_STOP) && ((spin) == 1)) \
125 ia64_mca_spin(__func__); \
126 } while (0)
128 /* Used by mca_asm.S */
129 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
130 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
131 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
132 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
133 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
135 unsigned long __per_cpu_mca[NR_CPUS];
137 /* In mca_asm.S */
138 extern void ia64_os_init_dispatch_monarch (void);
139 extern void ia64_os_init_dispatch_slave (void);
141 static int monarch_cpu = -1;
143 static ia64_mc_info_t ia64_mc_info;
145 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
146 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
147 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
148 #define CPE_HISTORY_LENGTH 5
149 #define CMC_HISTORY_LENGTH 5
151 #ifdef CONFIG_ACPI
152 static struct timer_list cpe_poll_timer;
153 #endif
154 static struct timer_list cmc_poll_timer;
156 * This variable tells whether we are currently in polling mode.
157 * Start with this in the wrong state so we won't play w/ timers
158 * before the system is ready.
160 static int cmc_polling_enabled = 1;
163 * Clearing this variable prevents CPE polling from getting activated
164 * in mca_late_init. Use it if your system doesn't provide a CPEI,
165 * but encounters problems retrieving CPE logs. This should only be
166 * necessary for debugging.
168 static int cpe_poll_enabled = 1;
170 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
172 static int mca_init __initdata;
175 * limited & delayed printing support for MCA/INIT handler
178 #define mprintk(fmt...) ia64_mca_printk(fmt)
180 #define MLOGBUF_SIZE (512+256*NR_CPUS)
181 #define MLOGBUF_MSGMAX 256
182 static char mlogbuf[MLOGBUF_SIZE];
183 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
184 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
185 static unsigned long mlogbuf_start;
186 static unsigned long mlogbuf_end;
187 static unsigned int mlogbuf_finished = 0;
188 static unsigned long mlogbuf_timestamp = 0;
190 static int loglevel_save = -1;
191 #define BREAK_LOGLEVEL(__console_loglevel) \
192 oops_in_progress = 1; \
193 if (loglevel_save < 0) \
194 loglevel_save = __console_loglevel; \
195 __console_loglevel = 15;
197 #define RESTORE_LOGLEVEL(__console_loglevel) \
198 if (loglevel_save >= 0) { \
199 __console_loglevel = loglevel_save; \
200 loglevel_save = -1; \
202 mlogbuf_finished = 0; \
203 oops_in_progress = 0;
206 * Push messages into buffer, print them later if not urgent.
208 void ia64_mca_printk(const char *fmt, ...)
210 va_list args;
211 int printed_len;
212 char temp_buf[MLOGBUF_MSGMAX];
213 char *p;
215 va_start(args, fmt);
216 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
217 va_end(args);
219 /* Copy the output into mlogbuf */
220 if (oops_in_progress) {
221 /* mlogbuf was abandoned, use printk directly instead. */
222 printk("%s", temp_buf);
223 } else {
224 spin_lock(&mlogbuf_wlock);
225 for (p = temp_buf; *p; p++) {
226 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
227 if (next != mlogbuf_start) {
228 mlogbuf[mlogbuf_end] = *p;
229 mlogbuf_end = next;
230 } else {
231 /* buffer full */
232 break;
235 mlogbuf[mlogbuf_end] = '\0';
236 spin_unlock(&mlogbuf_wlock);
239 EXPORT_SYMBOL(ia64_mca_printk);
242 * Print buffered messages.
243 * NOTE: call this after returning normal context. (ex. from salinfod)
245 void ia64_mlogbuf_dump(void)
247 char temp_buf[MLOGBUF_MSGMAX];
248 char *p;
249 unsigned long index;
250 unsigned long flags;
251 unsigned int printed_len;
253 /* Get output from mlogbuf */
254 while (mlogbuf_start != mlogbuf_end) {
255 temp_buf[0] = '\0';
256 p = temp_buf;
257 printed_len = 0;
259 spin_lock_irqsave(&mlogbuf_rlock, flags);
261 index = mlogbuf_start;
262 while (index != mlogbuf_end) {
263 *p = mlogbuf[index];
264 index = (index + 1) % MLOGBUF_SIZE;
265 if (!*p)
266 break;
267 p++;
268 if (++printed_len >= MLOGBUF_MSGMAX - 1)
269 break;
271 *p = '\0';
272 if (temp_buf[0])
273 printk("%s", temp_buf);
274 mlogbuf_start = index;
276 mlogbuf_timestamp = 0;
277 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
280 EXPORT_SYMBOL(ia64_mlogbuf_dump);
283 * Call this if system is going to down or if immediate flushing messages to
284 * console is required. (ex. recovery was failed, crash dump is going to be
285 * invoked, long-wait rendezvous etc.)
286 * NOTE: this should be called from monarch.
288 static void ia64_mlogbuf_finish(int wait)
290 BREAK_LOGLEVEL(console_loglevel);
292 spin_lock_init(&mlogbuf_rlock);
293 ia64_mlogbuf_dump();
294 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
295 "MCA/INIT might be dodgy or fail.\n");
297 if (!wait)
298 return;
300 /* wait for console */
301 printk("Delaying for 5 seconds...\n");
302 udelay(5*1000000);
304 mlogbuf_finished = 1;
308 * Print buffered messages from INIT context.
310 static void ia64_mlogbuf_dump_from_init(void)
312 if (mlogbuf_finished)
313 return;
315 if (mlogbuf_timestamp &&
316 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
317 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
318 " and the system seems to be messed up.\n");
319 ia64_mlogbuf_finish(0);
320 return;
323 if (!spin_trylock(&mlogbuf_rlock)) {
324 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
325 "Generated messages other than stack dump will be "
326 "buffered to mlogbuf and will be printed later.\n");
327 printk(KERN_ERR "INIT: If messages would not printed after "
328 "this INIT, wait 30sec and assert INIT again.\n");
329 if (!mlogbuf_timestamp)
330 mlogbuf_timestamp = jiffies;
331 return;
333 spin_unlock(&mlogbuf_rlock);
334 ia64_mlogbuf_dump();
337 static inline void
338 ia64_mca_spin(const char *func)
340 if (monarch_cpu == smp_processor_id())
341 ia64_mlogbuf_finish(0);
342 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
343 while (1)
344 cpu_relax();
347 * IA64_MCA log support
349 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
350 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
352 typedef struct ia64_state_log_s
354 spinlock_t isl_lock;
355 int isl_index;
356 unsigned long isl_count;
357 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
358 } ia64_state_log_t;
360 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
362 #define IA64_LOG_ALLOCATE(it, size) \
363 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
364 (ia64_err_rec_t *)alloc_bootmem(size); \
365 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
366 (ia64_err_rec_t *)alloc_bootmem(size);}
367 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
368 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
369 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
370 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
371 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
372 #define IA64_LOG_INDEX_INC(it) \
373 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
374 ia64_state_log[it].isl_count++;}
375 #define IA64_LOG_INDEX_DEC(it) \
376 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
377 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
378 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
379 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
382 * ia64_log_init
383 * Reset the OS ia64 log buffer
384 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
385 * Outputs : None
387 static void __init
388 ia64_log_init(int sal_info_type)
390 u64 max_size = 0;
392 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
393 IA64_LOG_LOCK_INIT(sal_info_type);
395 // SAL will tell us the maximum size of any error record of this type
396 max_size = ia64_sal_get_state_info_size(sal_info_type);
397 if (!max_size)
398 /* alloc_bootmem() doesn't like zero-sized allocations! */
399 return;
401 // set up OS data structures to hold error info
402 IA64_LOG_ALLOCATE(sal_info_type, max_size);
403 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
404 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
408 * ia64_log_get
410 * Get the current MCA log from SAL and copy it into the OS log buffer.
412 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
413 * irq_safe whether you can use printk at this point
414 * Outputs : size (total record length)
415 * *buffer (ptr to error record)
418 static u64
419 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
421 sal_log_record_header_t *log_buffer;
422 u64 total_len = 0;
423 unsigned long s;
425 IA64_LOG_LOCK(sal_info_type);
427 /* Get the process state information */
428 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
430 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
432 if (total_len) {
433 IA64_LOG_INDEX_INC(sal_info_type);
434 IA64_LOG_UNLOCK(sal_info_type);
435 if (irq_safe) {
436 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
437 __func__, sal_info_type, total_len);
439 *buffer = (u8 *) log_buffer;
440 return total_len;
441 } else {
442 IA64_LOG_UNLOCK(sal_info_type);
443 return 0;
448 * ia64_mca_log_sal_error_record
450 * This function retrieves a specified error record type from SAL
451 * and wakes up any processes waiting for error records.
453 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
454 * FIXME: remove MCA and irq_safe.
456 static void
457 ia64_mca_log_sal_error_record(int sal_info_type)
459 u8 *buffer;
460 sal_log_record_header_t *rh;
461 u64 size;
462 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
463 #ifdef IA64_MCA_DEBUG_INFO
464 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
465 #endif
467 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
468 if (!size)
469 return;
471 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
473 if (irq_safe)
474 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
475 smp_processor_id(),
476 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
478 /* Clear logs from corrected errors in case there's no user-level logger */
479 rh = (sal_log_record_header_t *)buffer;
480 if (rh->severity == sal_log_severity_corrected)
481 ia64_sal_clear_state_info(sal_info_type);
485 * search_mca_table
486 * See if the MCA surfaced in an instruction range
487 * that has been tagged as recoverable.
489 * Inputs
490 * first First address range to check
491 * last Last address range to check
492 * ip Instruction pointer, address we are looking for
494 * Return value:
495 * 1 on Success (in the table)/ 0 on Failure (not in the table)
498 search_mca_table (const struct mca_table_entry *first,
499 const struct mca_table_entry *last,
500 unsigned long ip)
502 const struct mca_table_entry *curr;
503 u64 curr_start, curr_end;
505 curr = first;
506 while (curr <= last) {
507 curr_start = (u64) &curr->start_addr + curr->start_addr;
508 curr_end = (u64) &curr->end_addr + curr->end_addr;
510 if ((ip >= curr_start) && (ip <= curr_end)) {
511 return 1;
513 curr++;
515 return 0;
518 /* Given an address, look for it in the mca tables. */
519 int mca_recover_range(unsigned long addr)
521 extern struct mca_table_entry __start___mca_table[];
522 extern struct mca_table_entry __stop___mca_table[];
524 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
526 EXPORT_SYMBOL_GPL(mca_recover_range);
528 #ifdef CONFIG_ACPI
530 int cpe_vector = -1;
531 int ia64_cpe_irq = -1;
533 static irqreturn_t
534 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
536 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
537 static int index;
538 static DEFINE_SPINLOCK(cpe_history_lock);
540 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
541 __func__, cpe_irq, smp_processor_id());
543 /* SAL spec states this should run w/ interrupts enabled */
544 local_irq_enable();
546 spin_lock(&cpe_history_lock);
547 if (!cpe_poll_enabled && cpe_vector >= 0) {
549 int i, count = 1; /* we know 1 happened now */
550 unsigned long now = jiffies;
552 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
553 if (now - cpe_history[i] <= HZ)
554 count++;
557 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
558 if (count >= CPE_HISTORY_LENGTH) {
560 cpe_poll_enabled = 1;
561 spin_unlock(&cpe_history_lock);
562 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
565 * Corrected errors will still be corrected, but
566 * make sure there's a log somewhere that indicates
567 * something is generating more than we can handle.
569 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
571 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
573 /* lock already released, get out now */
574 goto out;
575 } else {
576 cpe_history[index++] = now;
577 if (index == CPE_HISTORY_LENGTH)
578 index = 0;
581 spin_unlock(&cpe_history_lock);
582 out:
583 /* Get the CPE error record and log it */
584 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
586 local_irq_disable();
588 return IRQ_HANDLED;
591 #endif /* CONFIG_ACPI */
593 #ifdef CONFIG_ACPI
595 * ia64_mca_register_cpev
597 * Register the corrected platform error vector with SAL.
599 * Inputs
600 * cpev Corrected Platform Error Vector number
602 * Outputs
603 * None
605 void
606 ia64_mca_register_cpev (int cpev)
608 /* Register the CPE interrupt vector with SAL */
609 struct ia64_sal_retval isrv;
611 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
612 if (isrv.status) {
613 printk(KERN_ERR "Failed to register Corrected Platform "
614 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
615 return;
618 IA64_MCA_DEBUG("%s: corrected platform error "
619 "vector %#x registered\n", __func__, cpev);
621 #endif /* CONFIG_ACPI */
624 * ia64_mca_cmc_vector_setup
626 * Setup the corrected machine check vector register in the processor.
627 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
628 * This function is invoked on a per-processor basis.
630 * Inputs
631 * None
633 * Outputs
634 * None
636 void
637 ia64_mca_cmc_vector_setup (void)
639 cmcv_reg_t cmcv;
641 cmcv.cmcv_regval = 0;
642 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
643 cmcv.cmcv_vector = IA64_CMC_VECTOR;
644 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
646 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
647 __func__, smp_processor_id(), IA64_CMC_VECTOR);
649 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
650 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
654 * ia64_mca_cmc_vector_disable
656 * Mask the corrected machine check vector register in the processor.
657 * This function is invoked on a per-processor basis.
659 * Inputs
660 * dummy(unused)
662 * Outputs
663 * None
665 static void
666 ia64_mca_cmc_vector_disable (void *dummy)
668 cmcv_reg_t cmcv;
670 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
672 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
673 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
675 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
676 __func__, smp_processor_id(), cmcv.cmcv_vector);
680 * ia64_mca_cmc_vector_enable
682 * Unmask the corrected machine check vector register in the processor.
683 * This function is invoked on a per-processor basis.
685 * Inputs
686 * dummy(unused)
688 * Outputs
689 * None
691 static void
692 ia64_mca_cmc_vector_enable (void *dummy)
694 cmcv_reg_t cmcv;
696 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
698 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
699 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
701 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
702 __func__, smp_processor_id(), cmcv.cmcv_vector);
706 * ia64_mca_cmc_vector_disable_keventd
708 * Called via keventd (smp_call_function() is not safe in interrupt context) to
709 * disable the cmc interrupt vector.
711 static void
712 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
714 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
718 * ia64_mca_cmc_vector_enable_keventd
720 * Called via keventd (smp_call_function() is not safe in interrupt context) to
721 * enable the cmc interrupt vector.
723 static void
724 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
726 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
730 * ia64_mca_wakeup
732 * Send an inter-cpu interrupt to wake-up a particular cpu.
734 * Inputs : cpuid
735 * Outputs : None
737 static void
738 ia64_mca_wakeup(int cpu)
740 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
744 * ia64_mca_wakeup_all
746 * Wakeup all the slave cpus which have rendez'ed previously.
748 * Inputs : None
749 * Outputs : None
751 static void
752 ia64_mca_wakeup_all(void)
754 int cpu;
756 /* Clear the Rendez checkin flag for all cpus */
757 for_each_online_cpu(cpu) {
758 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
759 ia64_mca_wakeup(cpu);
765 * ia64_mca_rendez_interrupt_handler
767 * This is handler used to put slave processors into spinloop
768 * while the monarch processor does the mca handling and later
769 * wake each slave up once the monarch is done. The state
770 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
771 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
772 * the cpu has come out of OS rendezvous.
774 * Inputs : None
775 * Outputs : None
777 static irqreturn_t
778 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
780 unsigned long flags;
781 int cpu = smp_processor_id();
782 struct ia64_mca_notify_die nd =
783 { .sos = NULL, .monarch_cpu = &monarch_cpu };
785 /* Mask all interrupts */
786 local_irq_save(flags);
788 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
790 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
791 /* Register with the SAL monarch that the slave has
792 * reached SAL
794 ia64_sal_mc_rendez();
796 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
798 /* Wait for the monarch cpu to exit. */
799 while (monarch_cpu != -1)
800 cpu_relax(); /* spin until monarch leaves */
802 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
804 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
805 /* Enable all interrupts */
806 local_irq_restore(flags);
807 return IRQ_HANDLED;
811 * ia64_mca_wakeup_int_handler
813 * The interrupt handler for processing the inter-cpu interrupt to the
814 * slave cpu which was spinning in the rendez loop.
815 * Since this spinning is done by turning off the interrupts and
816 * polling on the wakeup-interrupt bit in the IRR, there is
817 * nothing useful to be done in the handler.
819 * Inputs : wakeup_irq (Wakeup-interrupt bit)
820 * arg (Interrupt handler specific argument)
821 * Outputs : None
824 static irqreturn_t
825 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
827 return IRQ_HANDLED;
830 /* Function pointer for extra MCA recovery */
831 int (*ia64_mca_ucmc_extension)
832 (void*,struct ia64_sal_os_state*)
833 = NULL;
836 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
838 if (ia64_mca_ucmc_extension)
839 return 1;
841 ia64_mca_ucmc_extension = fn;
842 return 0;
845 void
846 ia64_unreg_MCA_extension(void)
848 if (ia64_mca_ucmc_extension)
849 ia64_mca_ucmc_extension = NULL;
852 EXPORT_SYMBOL(ia64_reg_MCA_extension);
853 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
856 static inline void
857 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
859 u64 fslot, tslot, nat;
860 *tr = *fr;
861 fslot = ((unsigned long)fr >> 3) & 63;
862 tslot = ((unsigned long)tr >> 3) & 63;
863 *tnat &= ~(1UL << tslot);
864 nat = (fnat >> fslot) & 1;
865 *tnat |= (nat << tslot);
868 /* Change the comm field on the MCA/INT task to include the pid that
869 * was interrupted, it makes for easier debugging. If that pid was 0
870 * (swapper or nested MCA/INIT) then use the start of the previous comm
871 * field suffixed with its cpu.
874 static void
875 ia64_mca_modify_comm(const struct task_struct *previous_current)
877 char *p, comm[sizeof(current->comm)];
878 if (previous_current->pid)
879 snprintf(comm, sizeof(comm), "%s %d",
880 current->comm, previous_current->pid);
881 else {
882 int l;
883 if ((p = strchr(previous_current->comm, ' ')))
884 l = p - previous_current->comm;
885 else
886 l = strlen(previous_current->comm);
887 snprintf(comm, sizeof(comm), "%s %*s %d",
888 current->comm, l, previous_current->comm,
889 task_thread_info(previous_current)->cpu);
891 memcpy(current->comm, comm, sizeof(current->comm));
894 static void
895 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
896 unsigned long *nat)
898 const pal_min_state_area_t *ms = sos->pal_min_state;
899 const u64 *bank;
901 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
902 * pmsa_{xip,xpsr,xfs}
904 if (ia64_psr(regs)->ic) {
905 regs->cr_iip = ms->pmsa_iip;
906 regs->cr_ipsr = ms->pmsa_ipsr;
907 regs->cr_ifs = ms->pmsa_ifs;
908 } else {
909 regs->cr_iip = ms->pmsa_xip;
910 regs->cr_ipsr = ms->pmsa_xpsr;
911 regs->cr_ifs = ms->pmsa_xfs;
913 sos->iip = ms->pmsa_iip;
914 sos->ipsr = ms->pmsa_ipsr;
915 sos->ifs = ms->pmsa_ifs;
917 regs->pr = ms->pmsa_pr;
918 regs->b0 = ms->pmsa_br0;
919 regs->ar_rsc = ms->pmsa_rsc;
920 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
921 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
922 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
923 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
924 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
925 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
926 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
927 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
928 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
929 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
930 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
931 if (ia64_psr(regs)->bn)
932 bank = ms->pmsa_bank1_gr;
933 else
934 bank = ms->pmsa_bank0_gr;
935 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
936 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
937 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
938 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
939 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
940 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
941 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
942 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
943 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
944 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
945 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
946 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
947 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
948 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
949 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
950 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
953 /* On entry to this routine, we are running on the per cpu stack, see
954 * mca_asm.h. The original stack has not been touched by this event. Some of
955 * the original stack's registers will be in the RBS on this stack. This stack
956 * also contains a partial pt_regs and switch_stack, the rest of the data is in
957 * PAL minstate.
959 * The first thing to do is modify the original stack to look like a blocked
960 * task so we can run backtrace on the original task. Also mark the per cpu
961 * stack as current to ensure that we use the correct task state, it also means
962 * that we can do backtrace on the MCA/INIT handler code itself.
965 static struct task_struct *
966 ia64_mca_modify_original_stack(struct pt_regs *regs,
967 const struct switch_stack *sw,
968 struct ia64_sal_os_state *sos,
969 const char *type)
971 char *p;
972 ia64_va va;
973 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
974 const pal_min_state_area_t *ms = sos->pal_min_state;
975 struct task_struct *previous_current;
976 struct pt_regs *old_regs;
977 struct switch_stack *old_sw;
978 unsigned size = sizeof(struct pt_regs) +
979 sizeof(struct switch_stack) + 16;
980 unsigned long *old_bspstore, *old_bsp;
981 unsigned long *new_bspstore, *new_bsp;
982 unsigned long old_unat, old_rnat, new_rnat, nat;
983 u64 slots, loadrs = regs->loadrs;
984 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
985 u64 ar_bspstore = regs->ar_bspstore;
986 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
987 const char *msg;
988 int cpu = smp_processor_id();
990 previous_current = curr_task(cpu);
991 ia64_set_curr_task(cpu, current);
992 if ((p = strchr(current->comm, ' ')))
993 *p = '\0';
995 /* Best effort attempt to cope with MCA/INIT delivered while in
996 * physical mode.
998 regs->cr_ipsr = ms->pmsa_ipsr;
999 if (ia64_psr(regs)->dt == 0) {
1000 va.l = r12;
1001 if (va.f.reg == 0) {
1002 va.f.reg = 7;
1003 r12 = va.l;
1005 va.l = r13;
1006 if (va.f.reg == 0) {
1007 va.f.reg = 7;
1008 r13 = va.l;
1011 if (ia64_psr(regs)->rt == 0) {
1012 va.l = ar_bspstore;
1013 if (va.f.reg == 0) {
1014 va.f.reg = 7;
1015 ar_bspstore = va.l;
1017 va.l = ar_bsp;
1018 if (va.f.reg == 0) {
1019 va.f.reg = 7;
1020 ar_bsp = va.l;
1024 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1025 * have been copied to the old stack, the old stack may fail the
1026 * validation tests below. So ia64_old_stack() must restore the dirty
1027 * registers from the new stack. The old and new bspstore probably
1028 * have different alignments, so loadrs calculated on the old bsp
1029 * cannot be used to restore from the new bsp. Calculate a suitable
1030 * loadrs for the new stack and save it in the new pt_regs, where
1031 * ia64_old_stack() can get it.
1033 old_bspstore = (unsigned long *)ar_bspstore;
1034 old_bsp = (unsigned long *)ar_bsp;
1035 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1036 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1037 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1038 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1040 /* Verify the previous stack state before we change it */
1041 if (user_mode(regs)) {
1042 msg = "occurred in user space";
1043 /* previous_current is guaranteed to be valid when the task was
1044 * in user space, so ...
1046 ia64_mca_modify_comm(previous_current);
1047 goto no_mod;
1050 if (r13 != sos->prev_IA64_KR_CURRENT) {
1051 msg = "inconsistent previous current and r13";
1052 goto no_mod;
1055 if (!mca_recover_range(ms->pmsa_iip)) {
1056 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1057 msg = "inconsistent r12 and r13";
1058 goto no_mod;
1060 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1061 msg = "inconsistent ar.bspstore and r13";
1062 goto no_mod;
1064 va.p = old_bspstore;
1065 if (va.f.reg < 5) {
1066 msg = "old_bspstore is in the wrong region";
1067 goto no_mod;
1069 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1070 msg = "inconsistent ar.bsp and r13";
1071 goto no_mod;
1073 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1074 if (ar_bspstore + size > r12) {
1075 msg = "no room for blocked state";
1076 goto no_mod;
1080 ia64_mca_modify_comm(previous_current);
1082 /* Make the original task look blocked. First stack a struct pt_regs,
1083 * describing the state at the time of interrupt. mca_asm.S built a
1084 * partial pt_regs, copy it and fill in the blanks using minstate.
1086 p = (char *)r12 - sizeof(*regs);
1087 old_regs = (struct pt_regs *)p;
1088 memcpy(old_regs, regs, sizeof(*regs));
1089 old_regs->loadrs = loadrs;
1090 old_unat = old_regs->ar_unat;
1091 finish_pt_regs(old_regs, sos, &old_unat);
1093 /* Next stack a struct switch_stack. mca_asm.S built a partial
1094 * switch_stack, copy it and fill in the blanks using pt_regs and
1095 * minstate.
1097 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1098 * ar.pfs is set to 0.
1100 * unwind.c::unw_unwind() does special processing for interrupt frames.
1101 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1102 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1103 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1104 * switch_stack on the original stack so it will unwind correctly when
1105 * unwind.c reads pt_regs.
1107 * thread.ksp is updated to point to the synthesized switch_stack.
1109 p -= sizeof(struct switch_stack);
1110 old_sw = (struct switch_stack *)p;
1111 memcpy(old_sw, sw, sizeof(*sw));
1112 old_sw->caller_unat = old_unat;
1113 old_sw->ar_fpsr = old_regs->ar_fpsr;
1114 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1115 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1116 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1117 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1118 old_sw->b0 = (u64)ia64_leave_kernel;
1119 old_sw->b1 = ms->pmsa_br1;
1120 old_sw->ar_pfs = 0;
1121 old_sw->ar_unat = old_unat;
1122 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1123 previous_current->thread.ksp = (u64)p - 16;
1125 /* Finally copy the original stack's registers back to its RBS.
1126 * Registers from ar.bspstore through ar.bsp at the time of the event
1127 * are in the current RBS, copy them back to the original stack. The
1128 * copy must be done register by register because the original bspstore
1129 * and the current one have different alignments, so the saved RNAT
1130 * data occurs at different places.
1132 * mca_asm does cover, so the old_bsp already includes all registers at
1133 * the time of MCA/INIT. It also does flushrs, so all registers before
1134 * this function have been written to backing store on the MCA/INIT
1135 * stack.
1137 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1138 old_rnat = regs->ar_rnat;
1139 while (slots--) {
1140 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1141 new_rnat = ia64_get_rnat(new_bspstore++);
1143 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1144 *old_bspstore++ = old_rnat;
1145 old_rnat = 0;
1147 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1148 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1149 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1150 *old_bspstore++ = *new_bspstore++;
1152 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1153 old_sw->ar_rnat = old_rnat;
1155 sos->prev_task = previous_current;
1156 return previous_current;
1158 no_mod:
1159 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1160 smp_processor_id(), type, msg);
1161 old_unat = regs->ar_unat;
1162 finish_pt_regs(regs, sos, &old_unat);
1163 return previous_current;
1166 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1167 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1168 * not entered rendezvous yet then wait a bit. The assumption is that any
1169 * slave that has not rendezvoused after a reasonable time is never going to do
1170 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1171 * interrupt, as well as cpus that receive the INIT slave event.
1174 static void
1175 ia64_wait_for_slaves(int monarch, const char *type)
1177 int c, i , wait;
1180 * wait 5 seconds total for slaves (arbitrary)
1182 for (i = 0; i < 5000; i++) {
1183 wait = 0;
1184 for_each_online_cpu(c) {
1185 if (c == monarch)
1186 continue;
1187 if (ia64_mc_info.imi_rendez_checkin[c]
1188 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1189 udelay(1000); /* short wait */
1190 wait = 1;
1191 break;
1194 if (!wait)
1195 goto all_in;
1199 * Maybe slave(s) dead. Print buffered messages immediately.
1201 ia64_mlogbuf_finish(0);
1202 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1203 for_each_online_cpu(c) {
1204 if (c == monarch)
1205 continue;
1206 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1207 mprintk(" %d", c);
1209 mprintk("\n");
1210 return;
1212 all_in:
1213 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1214 return;
1217 /* mca_insert_tr
1219 * Switch rid when TR reload and needed!
1220 * iord: 1: itr, 2: itr;
1223 static void mca_insert_tr(u64 iord)
1226 int i;
1227 u64 old_rr;
1228 struct ia64_tr_entry *p;
1229 unsigned long psr;
1230 int cpu = smp_processor_id();
1232 if (!ia64_idtrs[cpu])
1233 return;
1235 psr = ia64_clear_ic();
1236 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1237 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1238 if (p->pte & 0x1) {
1239 old_rr = ia64_get_rr(p->ifa);
1240 if (old_rr != p->rr) {
1241 ia64_set_rr(p->ifa, p->rr);
1242 ia64_srlz_d();
1244 ia64_ptr(iord, p->ifa, p->itir >> 2);
1245 ia64_srlz_i();
1246 if (iord & 0x1) {
1247 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1248 ia64_srlz_i();
1250 if (iord & 0x2) {
1251 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1252 ia64_srlz_i();
1254 if (old_rr != p->rr) {
1255 ia64_set_rr(p->ifa, old_rr);
1256 ia64_srlz_d();
1260 ia64_set_psr(psr);
1264 * ia64_mca_handler
1266 * This is uncorrectable machine check handler called from OS_MCA
1267 * dispatch code which is in turn called from SAL_CHECK().
1268 * This is the place where the core of OS MCA handling is done.
1269 * Right now the logs are extracted and displayed in a well-defined
1270 * format. This handler code is supposed to be run only on the
1271 * monarch processor. Once the monarch is done with MCA handling
1272 * further MCA logging is enabled by clearing logs.
1273 * Monarch also has the duty of sending wakeup-IPIs to pull the
1274 * slave processors out of rendezvous spinloop.
1276 * If multiple processors call into OS_MCA, the first will become
1277 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1278 * bitmask. After the first monarch has processed its MCA, it
1279 * will wake up the next cpu in the mca_cpu bitmask and then go
1280 * into the rendezvous loop. When all processors have serviced
1281 * their MCA, the last monarch frees up the rest of the processors.
1283 void
1284 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1285 struct ia64_sal_os_state *sos)
1287 int recover, cpu = smp_processor_id();
1288 struct task_struct *previous_current;
1289 struct ia64_mca_notify_die nd =
1290 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1291 static atomic_t mca_count;
1292 static cpumask_t mca_cpu;
1294 if (atomic_add_return(1, &mca_count) == 1) {
1295 monarch_cpu = cpu;
1296 sos->monarch = 1;
1297 } else {
1298 cpumask_set_cpu(cpu, &mca_cpu);
1299 sos->monarch = 0;
1301 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1302 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1304 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1306 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1308 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1309 if (sos->monarch) {
1310 ia64_wait_for_slaves(cpu, "MCA");
1312 /* Wakeup all the processors which are spinning in the
1313 * rendezvous loop. They will leave SAL, then spin in the OS
1314 * with interrupts disabled until this monarch cpu leaves the
1315 * MCA handler. That gets control back to the OS so we can
1316 * backtrace the other cpus, backtrace when spinning in SAL
1317 * does not work.
1319 ia64_mca_wakeup_all();
1320 } else {
1321 while (cpumask_test_cpu(cpu, &mca_cpu))
1322 cpu_relax(); /* spin until monarch wakes us */
1325 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1327 /* Get the MCA error record and log it */
1328 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1330 /* MCA error recovery */
1331 recover = (ia64_mca_ucmc_extension
1332 && ia64_mca_ucmc_extension(
1333 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1334 sos));
1336 if (recover) {
1337 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1338 rh->severity = sal_log_severity_corrected;
1339 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1340 sos->os_status = IA64_MCA_CORRECTED;
1341 } else {
1342 /* Dump buffered message to console */
1343 ia64_mlogbuf_finish(1);
1346 if (__this_cpu_read(ia64_mca_tr_reload)) {
1347 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1348 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1351 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1353 if (atomic_dec_return(&mca_count) > 0) {
1354 int i;
1356 /* wake up the next monarch cpu,
1357 * and put this cpu in the rendez loop.
1359 for_each_online_cpu(i) {
1360 if (cpumask_test_cpu(i, &mca_cpu)) {
1361 monarch_cpu = i;
1362 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1363 while (monarch_cpu != -1)
1364 cpu_relax(); /* spin until last cpu leaves */
1365 ia64_set_curr_task(cpu, previous_current);
1366 ia64_mc_info.imi_rendez_checkin[cpu]
1367 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1368 return;
1372 ia64_set_curr_task(cpu, previous_current);
1373 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1374 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1377 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1378 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1381 * ia64_mca_cmc_int_handler
1383 * This is corrected machine check interrupt handler.
1384 * Right now the logs are extracted and displayed in a well-defined
1385 * format.
1387 * Inputs
1388 * interrupt number
1389 * client data arg ptr
1391 * Outputs
1392 * None
1394 static irqreturn_t
1395 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1397 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1398 static int index;
1399 static DEFINE_SPINLOCK(cmc_history_lock);
1401 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1402 __func__, cmc_irq, smp_processor_id());
1404 /* SAL spec states this should run w/ interrupts enabled */
1405 local_irq_enable();
1407 spin_lock(&cmc_history_lock);
1408 if (!cmc_polling_enabled) {
1409 int i, count = 1; /* we know 1 happened now */
1410 unsigned long now = jiffies;
1412 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1413 if (now - cmc_history[i] <= HZ)
1414 count++;
1417 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1418 if (count >= CMC_HISTORY_LENGTH) {
1420 cmc_polling_enabled = 1;
1421 spin_unlock(&cmc_history_lock);
1422 /* If we're being hit with CMC interrupts, we won't
1423 * ever execute the schedule_work() below. Need to
1424 * disable CMC interrupts on this processor now.
1426 ia64_mca_cmc_vector_disable(NULL);
1427 schedule_work(&cmc_disable_work);
1430 * Corrected errors will still be corrected, but
1431 * make sure there's a log somewhere that indicates
1432 * something is generating more than we can handle.
1434 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1436 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1438 /* lock already released, get out now */
1439 goto out;
1440 } else {
1441 cmc_history[index++] = now;
1442 if (index == CMC_HISTORY_LENGTH)
1443 index = 0;
1446 spin_unlock(&cmc_history_lock);
1447 out:
1448 /* Get the CMC error record and log it */
1449 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1451 local_irq_disable();
1453 return IRQ_HANDLED;
1457 * ia64_mca_cmc_int_caller
1459 * Triggered by sw interrupt from CMC polling routine. Calls
1460 * real interrupt handler and either triggers a sw interrupt
1461 * on the next cpu or does cleanup at the end.
1463 * Inputs
1464 * interrupt number
1465 * client data arg ptr
1466 * Outputs
1467 * handled
1469 static irqreturn_t
1470 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1472 static int start_count = -1;
1473 unsigned int cpuid;
1475 cpuid = smp_processor_id();
1477 /* If first cpu, update count */
1478 if (start_count == -1)
1479 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1481 ia64_mca_cmc_int_handler(cmc_irq, arg);
1483 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1485 if (cpuid < nr_cpu_ids) {
1486 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1487 } else {
1488 /* If no log record, switch out of polling mode */
1489 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1491 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1492 schedule_work(&cmc_enable_work);
1493 cmc_polling_enabled = 0;
1495 } else {
1497 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1500 start_count = -1;
1503 return IRQ_HANDLED;
1507 * ia64_mca_cmc_poll
1509 * Poll for Corrected Machine Checks (CMCs)
1511 * Inputs : dummy(unused)
1512 * Outputs : None
1515 static void
1516 ia64_mca_cmc_poll (unsigned long dummy)
1518 /* Trigger a CMC interrupt cascade */
1519 platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1520 IA64_IPI_DM_INT, 0);
1524 * ia64_mca_cpe_int_caller
1526 * Triggered by sw interrupt from CPE polling routine. Calls
1527 * real interrupt handler and either triggers a sw interrupt
1528 * on the next cpu or does cleanup at the end.
1530 * Inputs
1531 * interrupt number
1532 * client data arg ptr
1533 * Outputs
1534 * handled
1536 #ifdef CONFIG_ACPI
1538 static irqreturn_t
1539 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1541 static int start_count = -1;
1542 static int poll_time = MIN_CPE_POLL_INTERVAL;
1543 unsigned int cpuid;
1545 cpuid = smp_processor_id();
1547 /* If first cpu, update count */
1548 if (start_count == -1)
1549 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1551 ia64_mca_cpe_int_handler(cpe_irq, arg);
1553 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1555 if (cpuid < NR_CPUS) {
1556 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1557 } else {
1559 * If a log was recorded, increase our polling frequency,
1560 * otherwise, backoff or return to interrupt mode.
1562 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1563 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1564 } else if (cpe_vector < 0) {
1565 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1566 } else {
1567 poll_time = MIN_CPE_POLL_INTERVAL;
1569 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1570 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1571 cpe_poll_enabled = 0;
1574 if (cpe_poll_enabled)
1575 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1576 start_count = -1;
1579 return IRQ_HANDLED;
1583 * ia64_mca_cpe_poll
1585 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1586 * on first cpu, from there it will trickle through all the cpus.
1588 * Inputs : dummy(unused)
1589 * Outputs : None
1592 static void
1593 ia64_mca_cpe_poll (unsigned long dummy)
1595 /* Trigger a CPE interrupt cascade */
1596 platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1597 IA64_IPI_DM_INT, 0);
1600 #endif /* CONFIG_ACPI */
1602 static int
1603 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1605 int c;
1606 struct task_struct *g, *t;
1607 if (val != DIE_INIT_MONARCH_PROCESS)
1608 return NOTIFY_DONE;
1609 #ifdef CONFIG_KEXEC
1610 if (atomic_read(&kdump_in_progress))
1611 return NOTIFY_DONE;
1612 #endif
1615 * FIXME: mlogbuf will brim over with INIT stack dumps.
1616 * To enable show_stack from INIT, we use oops_in_progress which should
1617 * be used in real oops. This would cause something wrong after INIT.
1619 BREAK_LOGLEVEL(console_loglevel);
1620 ia64_mlogbuf_dump_from_init();
1622 printk(KERN_ERR "Processes interrupted by INIT -");
1623 for_each_online_cpu(c) {
1624 struct ia64_sal_os_state *s;
1625 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1626 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1627 g = s->prev_task;
1628 if (g) {
1629 if (g->pid)
1630 printk(" %d", g->pid);
1631 else
1632 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1635 printk("\n\n");
1636 if (read_trylock(&tasklist_lock)) {
1637 do_each_thread (g, t) {
1638 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1639 show_stack(t, NULL);
1640 } while_each_thread (g, t);
1641 read_unlock(&tasklist_lock);
1643 /* FIXME: This will not restore zapped printk locks. */
1644 RESTORE_LOGLEVEL(console_loglevel);
1645 return NOTIFY_DONE;
1649 * C portion of the OS INIT handler
1651 * Called from ia64_os_init_dispatch
1653 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1654 * this event. This code is used for both monarch and slave INIT events, see
1655 * sos->monarch.
1657 * All INIT events switch to the INIT stack and change the previous process to
1658 * blocked status. If one of the INIT events is the monarch then we are
1659 * probably processing the nmi button/command. Use the monarch cpu to dump all
1660 * the processes. The slave INIT events all spin until the monarch cpu
1661 * returns. We can also get INIT slave events for MCA, in which case the MCA
1662 * process is the monarch.
1665 void
1666 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1667 struct ia64_sal_os_state *sos)
1669 static atomic_t slaves;
1670 static atomic_t monarchs;
1671 struct task_struct *previous_current;
1672 int cpu = smp_processor_id();
1673 struct ia64_mca_notify_die nd =
1674 { .sos = sos, .monarch_cpu = &monarch_cpu };
1676 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1678 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1679 sos->proc_state_param, cpu, sos->monarch);
1680 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1682 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1683 sos->os_status = IA64_INIT_RESUME;
1685 /* FIXME: Workaround for broken proms that drive all INIT events as
1686 * slaves. The last slave that enters is promoted to be a monarch.
1687 * Remove this code in September 2006, that gives platforms a year to
1688 * fix their proms and get their customers updated.
1690 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1691 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1692 __func__, cpu);
1693 atomic_dec(&slaves);
1694 sos->monarch = 1;
1697 /* FIXME: Workaround for broken proms that drive all INIT events as
1698 * monarchs. Second and subsequent monarchs are demoted to slaves.
1699 * Remove this code in September 2006, that gives platforms a year to
1700 * fix their proms and get their customers updated.
1702 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1703 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1704 __func__, cpu);
1705 atomic_dec(&monarchs);
1706 sos->monarch = 0;
1709 if (!sos->monarch) {
1710 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1712 #ifdef CONFIG_KEXEC
1713 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1714 udelay(1000);
1715 #else
1716 while (monarch_cpu == -1)
1717 cpu_relax(); /* spin until monarch enters */
1718 #endif
1720 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1721 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1723 #ifdef CONFIG_KEXEC
1724 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1725 udelay(1000);
1726 #else
1727 while (monarch_cpu != -1)
1728 cpu_relax(); /* spin until monarch leaves */
1729 #endif
1731 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1733 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1734 ia64_set_curr_task(cpu, previous_current);
1735 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1736 atomic_dec(&slaves);
1737 return;
1740 monarch_cpu = cpu;
1741 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1744 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1745 * generated via the BMC's command-line interface, but since the console is on the
1746 * same serial line, the user will need some time to switch out of the BMC before
1747 * the dump begins.
1749 mprintk("Delaying for 5 seconds...\n");
1750 udelay(5*1000000);
1751 ia64_wait_for_slaves(cpu, "INIT");
1752 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1753 * to default_monarch_init_process() above and just print all the
1754 * tasks.
1756 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1757 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1759 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1760 atomic_dec(&monarchs);
1761 ia64_set_curr_task(cpu, previous_current);
1762 monarch_cpu = -1;
1763 return;
1766 static int __init
1767 ia64_mca_disable_cpe_polling(char *str)
1769 cpe_poll_enabled = 0;
1770 return 1;
1773 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1775 static struct irqaction cmci_irqaction = {
1776 .handler = ia64_mca_cmc_int_handler,
1777 .name = "cmc_hndlr"
1780 static struct irqaction cmcp_irqaction = {
1781 .handler = ia64_mca_cmc_int_caller,
1782 .name = "cmc_poll"
1785 static struct irqaction mca_rdzv_irqaction = {
1786 .handler = ia64_mca_rendez_int_handler,
1787 .name = "mca_rdzv"
1790 static struct irqaction mca_wkup_irqaction = {
1791 .handler = ia64_mca_wakeup_int_handler,
1792 .name = "mca_wkup"
1795 #ifdef CONFIG_ACPI
1796 static struct irqaction mca_cpe_irqaction = {
1797 .handler = ia64_mca_cpe_int_handler,
1798 .name = "cpe_hndlr"
1801 static struct irqaction mca_cpep_irqaction = {
1802 .handler = ia64_mca_cpe_int_caller,
1803 .name = "cpe_poll"
1805 #endif /* CONFIG_ACPI */
1807 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1808 * these stacks can never sleep, they cannot return from the kernel to user
1809 * space, they do not appear in a normal ps listing. So there is no need to
1810 * format most of the fields.
1813 static void
1814 format_mca_init_stack(void *mca_data, unsigned long offset,
1815 const char *type, int cpu)
1817 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1818 struct thread_info *ti;
1819 memset(p, 0, KERNEL_STACK_SIZE);
1820 ti = task_thread_info(p);
1821 ti->flags = _TIF_MCA_INIT;
1822 ti->preempt_count = 1;
1823 ti->task = p;
1824 ti->cpu = cpu;
1825 p->stack = ti;
1826 p->state = TASK_UNINTERRUPTIBLE;
1827 cpumask_set_cpu(cpu, &p->cpus_allowed);
1828 INIT_LIST_HEAD(&p->tasks);
1829 p->parent = p->real_parent = p->group_leader = p;
1830 INIT_LIST_HEAD(&p->children);
1831 INIT_LIST_HEAD(&p->sibling);
1832 strncpy(p->comm, type, sizeof(p->comm)-1);
1835 /* Caller prevents this from being called after init */
1836 static void * __ref mca_bootmem(void)
1838 return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1839 KERNEL_STACK_SIZE, 0);
1842 /* Do per-CPU MCA-related initialization. */
1843 void
1844 ia64_mca_cpu_init(void *cpu_data)
1846 void *pal_vaddr;
1847 void *data;
1848 long sz = sizeof(struct ia64_mca_cpu);
1849 int cpu = smp_processor_id();
1850 static int first_time = 1;
1853 * Structure will already be allocated if cpu has been online,
1854 * then offlined.
1856 if (__per_cpu_mca[cpu]) {
1857 data = __va(__per_cpu_mca[cpu]);
1858 } else {
1859 if (first_time) {
1860 data = mca_bootmem();
1861 first_time = 0;
1862 } else
1863 data = (void *)__get_free_pages(GFP_KERNEL,
1864 get_order(sz));
1865 if (!data)
1866 panic("Could not allocate MCA memory for cpu %d\n",
1867 cpu);
1869 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1870 "MCA", cpu);
1871 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1872 "INIT", cpu);
1873 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1876 * Stash away a copy of the PTE needed to map the per-CPU page.
1877 * We may need it during MCA recovery.
1879 __this_cpu_write(ia64_mca_per_cpu_pte,
1880 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1883 * Also, stash away a copy of the PAL address and the PTE
1884 * needed to map it.
1886 pal_vaddr = efi_get_pal_addr();
1887 if (!pal_vaddr)
1888 return;
1889 __this_cpu_write(ia64_mca_pal_base,
1890 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1891 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1892 PAGE_KERNEL)));
1895 static int ia64_mca_cpu_online(unsigned int cpu)
1897 unsigned long flags;
1899 local_irq_save(flags);
1900 if (!cmc_polling_enabled)
1901 ia64_mca_cmc_vector_enable(NULL);
1902 local_irq_restore(flags);
1903 return 0;
1907 * ia64_mca_init
1909 * Do all the system level mca specific initialization.
1911 * 1. Register spinloop and wakeup request interrupt vectors
1913 * 2. Register OS_MCA handler entry point
1915 * 3. Register OS_INIT handler entry point
1917 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1919 * Note that this initialization is done very early before some kernel
1920 * services are available.
1922 * Inputs : None
1924 * Outputs : None
1926 void __init
1927 ia64_mca_init(void)
1929 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1930 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1931 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1932 int i;
1933 long rc;
1934 struct ia64_sal_retval isrv;
1935 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1936 static struct notifier_block default_init_monarch_nb = {
1937 .notifier_call = default_monarch_init_process,
1938 .priority = 0/* we need to notified last */
1941 IA64_MCA_DEBUG("%s: begin\n", __func__);
1943 /* Clear the Rendez checkin flag for all cpus */
1944 for(i = 0 ; i < NR_CPUS; i++)
1945 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1948 * Register the rendezvous spinloop and wakeup mechanism with SAL
1951 /* Register the rendezvous interrupt vector with SAL */
1952 while (1) {
1953 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1954 SAL_MC_PARAM_MECHANISM_INT,
1955 IA64_MCA_RENDEZ_VECTOR,
1956 timeout,
1957 SAL_MC_PARAM_RZ_ALWAYS);
1958 rc = isrv.status;
1959 if (rc == 0)
1960 break;
1961 if (rc == -2) {
1962 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1963 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1964 timeout = isrv.v0;
1965 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1966 continue;
1968 printk(KERN_ERR "Failed to register rendezvous interrupt "
1969 "with SAL (status %ld)\n", rc);
1970 return;
1973 /* Register the wakeup interrupt vector with SAL */
1974 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1975 SAL_MC_PARAM_MECHANISM_INT,
1976 IA64_MCA_WAKEUP_VECTOR,
1977 0, 0);
1978 rc = isrv.status;
1979 if (rc) {
1980 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1981 "(status %ld)\n", rc);
1982 return;
1985 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1987 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1989 * XXX - disable SAL checksum by setting size to 0; should be
1990 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1992 ia64_mc_info.imi_mca_handler_size = 0;
1994 /* Register the os mca handler with SAL */
1995 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1996 ia64_mc_info.imi_mca_handler,
1997 ia64_tpa(mca_hldlr_ptr->gp),
1998 ia64_mc_info.imi_mca_handler_size,
1999 0, 0, 0)))
2001 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2002 "(status %ld)\n", rc);
2003 return;
2006 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
2007 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2010 * XXX - disable SAL checksum by setting size to 0, should be
2011 * size of the actual init handler in mca_asm.S.
2013 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
2014 ia64_mc_info.imi_monarch_init_handler_size = 0;
2015 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
2016 ia64_mc_info.imi_slave_init_handler_size = 0;
2018 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2019 ia64_mc_info.imi_monarch_init_handler);
2021 /* Register the os init handler with SAL */
2022 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2023 ia64_mc_info.imi_monarch_init_handler,
2024 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2025 ia64_mc_info.imi_monarch_init_handler_size,
2026 ia64_mc_info.imi_slave_init_handler,
2027 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2028 ia64_mc_info.imi_slave_init_handler_size)))
2030 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2031 "(status %ld)\n", rc);
2032 return;
2034 if (register_die_notifier(&default_init_monarch_nb)) {
2035 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2036 return;
2039 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2041 /* Initialize the areas set aside by the OS to buffer the
2042 * platform/processor error states for MCA/INIT/CMC
2043 * handling.
2045 ia64_log_init(SAL_INFO_TYPE_MCA);
2046 ia64_log_init(SAL_INFO_TYPE_INIT);
2047 ia64_log_init(SAL_INFO_TYPE_CMC);
2048 ia64_log_init(SAL_INFO_TYPE_CPE);
2050 mca_init = 1;
2051 printk(KERN_INFO "MCA related initialization done\n");
2056 * These pieces cannot be done in ia64_mca_init() because it is called before
2057 * early_irq_init() which would wipe out our percpu irq registrations. But we
2058 * cannot leave them until ia64_mca_late_init() because by then all the other
2059 * processors have been brought online and have set their own CMC vectors to
2060 * point at a non-existant action. Called from arch_early_irq_init().
2062 void __init ia64_mca_irq_init(void)
2065 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2066 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2068 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2069 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2070 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2072 /* Setup the MCA rendezvous interrupt vector */
2073 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2075 /* Setup the MCA wakeup interrupt vector */
2076 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2078 #ifdef CONFIG_ACPI
2079 /* Setup the CPEI/P handler */
2080 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2081 #endif
2085 * ia64_mca_late_init
2087 * Opportunity to setup things that require initialization later
2088 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2089 * platform doesn't support an interrupt driven mechanism.
2091 * Inputs : None
2092 * Outputs : Status
2094 static int __init
2095 ia64_mca_late_init(void)
2097 if (!mca_init)
2098 return 0;
2100 /* Setup the CMCI/P vector and handler */
2101 setup_timer(&cmc_poll_timer, ia64_mca_cmc_poll, 0UL);
2103 /* Unmask/enable the vector */
2104 cmc_polling_enabled = 0;
2105 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2106 ia64_mca_cpu_online, NULL);
2107 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2109 #ifdef CONFIG_ACPI
2110 /* Setup the CPEI/P vector and handler */
2111 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2112 setup_timer(&cpe_poll_timer, ia64_mca_cpe_poll, 0UL);
2115 unsigned int irq;
2117 if (cpe_vector >= 0) {
2118 /* If platform supports CPEI, enable the irq. */
2119 irq = local_vector_to_irq(cpe_vector);
2120 if (irq > 0) {
2121 cpe_poll_enabled = 0;
2122 irq_set_status_flags(irq, IRQ_PER_CPU);
2123 setup_irq(irq, &mca_cpe_irqaction);
2124 ia64_cpe_irq = irq;
2125 ia64_mca_register_cpev(cpe_vector);
2126 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2127 __func__);
2128 return 0;
2130 printk(KERN_ERR "%s: Failed to find irq for CPE "
2131 "interrupt handler, vector %d\n",
2132 __func__, cpe_vector);
2134 /* If platform doesn't support CPEI, get the timer going. */
2135 if (cpe_poll_enabled) {
2136 ia64_mca_cpe_poll(0UL);
2137 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2140 #endif
2142 return 0;
2145 device_initcall(ia64_mca_late_init);