2 * Kernel support for the ptrace() and syscall tracing interfaces.
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 * Derived from the x86 and Alpha versions.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
17 #include <linux/errno.h>
18 #include <linux/ptrace.h>
19 #include <linux/user.h>
20 #include <linux/security.h>
21 #include <linux/audit.h>
22 #include <linux/signal.h>
23 #include <linux/regset.h>
24 #include <linux/elf.h>
25 #include <linux/tracehook.h>
27 #include <asm/pgtable.h>
28 #include <asm/processor.h>
29 #include <asm/ptrace_offsets.h>
31 #include <linux/uaccess.h>
32 #include <asm/unwind.h>
34 #include <asm/perfmon.h>
40 * Bits in the PSR that we allow ptrace() to change:
41 * be, up, ac, mfl, mfh (the user mask; five bits total)
42 * db (debug breakpoint fault; one bit)
43 * id (instruction debug fault disable; one bit)
44 * dd (data debug fault disable; one bit)
45 * ri (restart instruction; two bits)
46 * is (instruction set; one bit)
48 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
49 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
51 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
52 #define PFM_MASK MASK(38)
54 #define PTRACE_DEBUG 0
57 # define dprintk(format...) printk(format)
60 # define dprintk(format...)
63 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
66 in_syscall (struct pt_regs
*pt
)
68 return (long) pt
->cr_ifs
>= 0;
72 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
73 * bitset where bit i is set iff the NaT bit of register i is set.
76 ia64_get_scratch_nat_bits (struct pt_regs
*pt
, unsigned long scratch_unat
)
78 # define GET_BITS(first, last, unat) \
80 unsigned long bit = ia64_unat_pos(&pt->r##first); \
81 unsigned long nbits = (last - first + 1); \
82 unsigned long mask = MASK(nbits) << first; \
85 dist = 64 + bit - first; \
88 ia64_rotr(unat, dist) & mask; \
93 * Registers that are stored consecutively in struct pt_regs
94 * can be handled in parallel. If the register order in
95 * struct_pt_regs changes, this code MUST be updated.
97 val
= GET_BITS( 1, 1, scratch_unat
);
98 val
|= GET_BITS( 2, 3, scratch_unat
);
99 val
|= GET_BITS(12, 13, scratch_unat
);
100 val
|= GET_BITS(14, 14, scratch_unat
);
101 val
|= GET_BITS(15, 15, scratch_unat
);
102 val
|= GET_BITS( 8, 11, scratch_unat
);
103 val
|= GET_BITS(16, 31, scratch_unat
);
110 * Set the NaT bits for the scratch registers according to NAT and
111 * return the resulting unat (assuming the scratch registers are
115 ia64_put_scratch_nat_bits (struct pt_regs
*pt
, unsigned long nat
)
117 # define PUT_BITS(first, last, nat) \
119 unsigned long bit = ia64_unat_pos(&pt->r##first); \
120 unsigned long nbits = (last - first + 1); \
121 unsigned long mask = MASK(nbits) << first; \
124 dist = 64 + bit - first; \
126 dist = bit - first; \
127 ia64_rotl(nat & mask, dist); \
129 unsigned long scratch_unat
;
132 * Registers that are stored consecutively in struct pt_regs
133 * can be handled in parallel. If the register order in
134 * struct_pt_regs changes, this code MUST be updated.
136 scratch_unat
= PUT_BITS( 1, 1, nat
);
137 scratch_unat
|= PUT_BITS( 2, 3, nat
);
138 scratch_unat
|= PUT_BITS(12, 13, nat
);
139 scratch_unat
|= PUT_BITS(14, 14, nat
);
140 scratch_unat
|= PUT_BITS(15, 15, nat
);
141 scratch_unat
|= PUT_BITS( 8, 11, nat
);
142 scratch_unat
|= PUT_BITS(16, 31, nat
);
149 #define IA64_MLX_TEMPLATE 0x2
150 #define IA64_MOVL_OPCODE 6
153 ia64_increment_ip (struct pt_regs
*regs
)
155 unsigned long w0
, ri
= ia64_psr(regs
)->ri
+ 1;
160 } else if (ri
== 2) {
161 get_user(w0
, (char __user
*) regs
->cr_iip
+ 0);
162 if (((w0
>> 1) & 0xf) == IA64_MLX_TEMPLATE
) {
164 * rfi'ing to slot 2 of an MLX bundle causes
165 * an illegal operation fault. We don't want
172 ia64_psr(regs
)->ri
= ri
;
176 ia64_decrement_ip (struct pt_regs
*regs
)
178 unsigned long w0
, ri
= ia64_psr(regs
)->ri
- 1;
180 if (ia64_psr(regs
)->ri
== 0) {
183 get_user(w0
, (char __user
*) regs
->cr_iip
+ 0);
184 if (((w0
>> 1) & 0xf) == IA64_MLX_TEMPLATE
) {
186 * rfi'ing to slot 2 of an MLX bundle causes
187 * an illegal operation fault. We don't want
193 ia64_psr(regs
)->ri
= ri
;
197 * This routine is used to read an rnat bits that are stored on the
198 * kernel backing store. Since, in general, the alignment of the user
199 * and kernel are different, this is not completely trivial. In
200 * essence, we need to construct the user RNAT based on up to two
201 * kernel RNAT values and/or the RNAT value saved in the child's
206 * +--------+ <-- lowest address
213 * | slot01 | > child_regs->ar_rnat
215 * | slot02 | / kernel rbs
216 * +--------+ +--------+
217 * <- child_regs->ar_bspstore | slot61 | <-- krbs
218 * +- - - - + +--------+
220 * +- - - - + +--------+
222 * +- - - - + +--------+
224 * +- - - - + +--------+
229 * | slot01 | > child_stack->ar_rnat
233 * <--- child_stack->ar_bspstore
235 * The way to think of this code is as follows: bit 0 in the user rnat
236 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
237 * value. The kernel rnat value holding this bit is stored in
238 * variable rnat0. rnat1 is loaded with the kernel rnat value that
239 * form the upper bits of the user rnat value.
243 * o when reading the rnat "below" the first rnat slot on the kernel
244 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
245 * merged in from pt->ar_rnat.
247 * o when reading the rnat "above" the last rnat slot on the kernel
248 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
251 get_rnat (struct task_struct
*task
, struct switch_stack
*sw
,
252 unsigned long *krbs
, unsigned long *urnat_addr
,
253 unsigned long *urbs_end
)
255 unsigned long rnat0
= 0, rnat1
= 0, urnat
= 0, *slot0_kaddr
;
256 unsigned long umask
= 0, mask
, m
;
257 unsigned long *kbsp
, *ubspstore
, *rnat0_kaddr
, *rnat1_kaddr
, shift
;
258 long num_regs
, nbits
;
261 pt
= task_pt_regs(task
);
262 kbsp
= (unsigned long *) sw
->ar_bspstore
;
263 ubspstore
= (unsigned long *) pt
->ar_bspstore
;
265 if (urbs_end
< urnat_addr
)
266 nbits
= ia64_rse_num_regs(urnat_addr
- 63, urbs_end
);
271 * First, figure out which bit number slot 0 in user-land maps
272 * to in the kernel rnat. Do this by figuring out how many
273 * register slots we're beyond the user's backingstore and
274 * then computing the equivalent address in kernel space.
276 num_regs
= ia64_rse_num_regs(ubspstore
, urnat_addr
+ 1);
277 slot0_kaddr
= ia64_rse_skip_regs(krbs
, num_regs
);
278 shift
= ia64_rse_slot_num(slot0_kaddr
);
279 rnat1_kaddr
= ia64_rse_rnat_addr(slot0_kaddr
);
280 rnat0_kaddr
= rnat1_kaddr
- 64;
282 if (ubspstore
+ 63 > urnat_addr
) {
283 /* some bits need to be merged in from pt->ar_rnat */
284 umask
= MASK(ia64_rse_slot_num(ubspstore
)) & mask
;
285 urnat
= (pt
->ar_rnat
& umask
);
292 if (rnat0_kaddr
>= kbsp
)
294 else if (rnat0_kaddr
> krbs
)
295 rnat0
= *rnat0_kaddr
;
296 urnat
|= (rnat0
& m
) >> shift
;
298 m
= mask
>> (63 - shift
);
299 if (rnat1_kaddr
>= kbsp
)
301 else if (rnat1_kaddr
> krbs
)
302 rnat1
= *rnat1_kaddr
;
303 urnat
|= (rnat1
& m
) << (63 - shift
);
308 * The reverse of get_rnat.
311 put_rnat (struct task_struct
*task
, struct switch_stack
*sw
,
312 unsigned long *krbs
, unsigned long *urnat_addr
, unsigned long urnat
,
313 unsigned long *urbs_end
)
315 unsigned long rnat0
= 0, rnat1
= 0, *slot0_kaddr
, umask
= 0, mask
, m
;
316 unsigned long *kbsp
, *ubspstore
, *rnat0_kaddr
, *rnat1_kaddr
, shift
;
317 long num_regs
, nbits
;
319 unsigned long cfm
, *urbs_kargs
;
321 pt
= task_pt_regs(task
);
322 kbsp
= (unsigned long *) sw
->ar_bspstore
;
323 ubspstore
= (unsigned long *) pt
->ar_bspstore
;
325 urbs_kargs
= urbs_end
;
326 if (in_syscall(pt
)) {
328 * If entered via syscall, don't allow user to set rnat bits
332 urbs_kargs
= ia64_rse_skip_regs(urbs_end
, -(cfm
& 0x7f));
335 if (urbs_kargs
>= urnat_addr
)
338 if ((urnat_addr
- 63) >= urbs_kargs
)
340 nbits
= ia64_rse_num_regs(urnat_addr
- 63, urbs_kargs
);
345 * First, figure out which bit number slot 0 in user-land maps
346 * to in the kernel rnat. Do this by figuring out how many
347 * register slots we're beyond the user's backingstore and
348 * then computing the equivalent address in kernel space.
350 num_regs
= ia64_rse_num_regs(ubspstore
, urnat_addr
+ 1);
351 slot0_kaddr
= ia64_rse_skip_regs(krbs
, num_regs
);
352 shift
= ia64_rse_slot_num(slot0_kaddr
);
353 rnat1_kaddr
= ia64_rse_rnat_addr(slot0_kaddr
);
354 rnat0_kaddr
= rnat1_kaddr
- 64;
356 if (ubspstore
+ 63 > urnat_addr
) {
357 /* some bits need to be place in pt->ar_rnat: */
358 umask
= MASK(ia64_rse_slot_num(ubspstore
)) & mask
;
359 pt
->ar_rnat
= (pt
->ar_rnat
& ~umask
) | (urnat
& umask
);
365 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
366 * rnat slot is ignored. so we don't have to clear it here.
368 rnat0
= (urnat
<< shift
);
370 if (rnat0_kaddr
>= kbsp
)
371 sw
->ar_rnat
= (sw
->ar_rnat
& ~m
) | (rnat0
& m
);
372 else if (rnat0_kaddr
> krbs
)
373 *rnat0_kaddr
= ((*rnat0_kaddr
& ~m
) | (rnat0
& m
));
375 rnat1
= (urnat
>> (63 - shift
));
376 m
= mask
>> (63 - shift
);
377 if (rnat1_kaddr
>= kbsp
)
378 sw
->ar_rnat
= (sw
->ar_rnat
& ~m
) | (rnat1
& m
);
379 else if (rnat1_kaddr
> krbs
)
380 *rnat1_kaddr
= ((*rnat1_kaddr
& ~m
) | (rnat1
& m
));
384 on_kernel_rbs (unsigned long addr
, unsigned long bspstore
,
385 unsigned long urbs_end
)
387 unsigned long *rnat_addr
= ia64_rse_rnat_addr((unsigned long *)
389 return (addr
>= bspstore
&& addr
<= (unsigned long) rnat_addr
);
393 * Read a word from the user-level backing store of task CHILD. ADDR
394 * is the user-level address to read the word from, VAL a pointer to
395 * the return value, and USER_BSP gives the end of the user-level
396 * backing store (i.e., it's the address that would be in ar.bsp after
397 * the user executed a "cover" instruction).
399 * This routine takes care of accessing the kernel register backing
400 * store for those registers that got spilled there. It also takes
401 * care of calculating the appropriate RNaT collection words.
404 ia64_peek (struct task_struct
*child
, struct switch_stack
*child_stack
,
405 unsigned long user_rbs_end
, unsigned long addr
, long *val
)
407 unsigned long *bspstore
, *krbs
, regnum
, *laddr
, *urbs_end
, *rnat_addr
;
408 struct pt_regs
*child_regs
;
412 urbs_end
= (long *) user_rbs_end
;
413 laddr
= (unsigned long *) addr
;
414 child_regs
= task_pt_regs(child
);
415 bspstore
= (unsigned long *) child_regs
->ar_bspstore
;
416 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
417 if (on_kernel_rbs(addr
, (unsigned long) bspstore
,
418 (unsigned long) urbs_end
))
421 * Attempt to read the RBS in an area that's actually
422 * on the kernel RBS => read the corresponding bits in
425 rnat_addr
= ia64_rse_rnat_addr(laddr
);
426 ret
= get_rnat(child
, child_stack
, krbs
, rnat_addr
, urbs_end
);
428 if (laddr
== rnat_addr
) {
429 /* return NaT collection word itself */
434 if (((1UL << ia64_rse_slot_num(laddr
)) & ret
) != 0) {
436 * It is implementation dependent whether the
437 * data portion of a NaT value gets saved on a
438 * st8.spill or RSE spill (e.g., see EAS 2.6,
439 * 4.4.4.6 Register Spill and Fill). To get
440 * consistent behavior across all possible
441 * IA-64 implementations, we return zero in
448 if (laddr
< urbs_end
) {
450 * The desired word is on the kernel RBS and
453 regnum
= ia64_rse_num_regs(bspstore
, laddr
);
454 *val
= *ia64_rse_skip_regs(krbs
, regnum
);
458 copied
= access_process_vm(child
, addr
, &ret
, sizeof(ret
), FOLL_FORCE
);
459 if (copied
!= sizeof(ret
))
466 ia64_poke (struct task_struct
*child
, struct switch_stack
*child_stack
,
467 unsigned long user_rbs_end
, unsigned long addr
, long val
)
469 unsigned long *bspstore
, *krbs
, regnum
, *laddr
;
470 unsigned long *urbs_end
= (long *) user_rbs_end
;
471 struct pt_regs
*child_regs
;
473 laddr
= (unsigned long *) addr
;
474 child_regs
= task_pt_regs(child
);
475 bspstore
= (unsigned long *) child_regs
->ar_bspstore
;
476 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
477 if (on_kernel_rbs(addr
, (unsigned long) bspstore
,
478 (unsigned long) urbs_end
))
481 * Attempt to write the RBS in an area that's actually
482 * on the kernel RBS => write the corresponding bits
485 if (ia64_rse_is_rnat_slot(laddr
))
486 put_rnat(child
, child_stack
, krbs
, laddr
, val
,
489 if (laddr
< urbs_end
) {
490 regnum
= ia64_rse_num_regs(bspstore
, laddr
);
491 *ia64_rse_skip_regs(krbs
, regnum
) = val
;
494 } else if (access_process_vm(child
, addr
, &val
, sizeof(val
),
495 FOLL_FORCE
| FOLL_WRITE
)
502 * Calculate the address of the end of the user-level register backing
503 * store. This is the address that would have been stored in ar.bsp
504 * if the user had executed a "cover" instruction right before
505 * entering the kernel. If CFMP is not NULL, it is used to return the
506 * "current frame mask" that was active at the time the kernel was
510 ia64_get_user_rbs_end (struct task_struct
*child
, struct pt_regs
*pt
,
513 unsigned long *krbs
, *bspstore
, cfm
= pt
->cr_ifs
;
516 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
517 bspstore
= (unsigned long *) pt
->ar_bspstore
;
518 ndirty
= ia64_rse_num_regs(krbs
, krbs
+ (pt
->loadrs
>> 19));
521 ndirty
+= (cfm
& 0x7f);
523 cfm
&= ~(1UL << 63); /* clear valid bit */
527 return (unsigned long) ia64_rse_skip_regs(bspstore
, ndirty
);
531 * Synchronize (i.e, write) the RSE backing store living in kernel
532 * space to the VM of the CHILD task. SW and PT are the pointers to
533 * the switch_stack and pt_regs structures, respectively.
534 * USER_RBS_END is the user-level address at which the backing store
538 ia64_sync_user_rbs (struct task_struct
*child
, struct switch_stack
*sw
,
539 unsigned long user_rbs_start
, unsigned long user_rbs_end
)
541 unsigned long addr
, val
;
544 /* now copy word for word from kernel rbs to user rbs: */
545 for (addr
= user_rbs_start
; addr
< user_rbs_end
; addr
+= 8) {
546 ret
= ia64_peek(child
, sw
, user_rbs_end
, addr
, &val
);
549 if (access_process_vm(child
, addr
, &val
, sizeof(val
),
550 FOLL_FORCE
| FOLL_WRITE
)
558 ia64_sync_kernel_rbs (struct task_struct
*child
, struct switch_stack
*sw
,
559 unsigned long user_rbs_start
, unsigned long user_rbs_end
)
561 unsigned long addr
, val
;
564 /* now copy word for word from user rbs to kernel rbs: */
565 for (addr
= user_rbs_start
; addr
< user_rbs_end
; addr
+= 8) {
566 if (access_process_vm(child
, addr
, &val
, sizeof(val
),
571 ret
= ia64_poke(child
, sw
, user_rbs_end
, addr
, val
);
578 typedef long (*syncfunc_t
)(struct task_struct
*, struct switch_stack
*,
579 unsigned long, unsigned long);
581 static void do_sync_rbs(struct unw_frame_info
*info
, void *arg
)
584 unsigned long urbs_end
;
587 if (unw_unwind_to_user(info
) < 0)
589 pt
= task_pt_regs(info
->task
);
590 urbs_end
= ia64_get_user_rbs_end(info
->task
, pt
, NULL
);
592 fn(info
->task
, info
->sw
, pt
->ar_bspstore
, urbs_end
);
596 * when a thread is stopped (ptraced), debugger might change thread's user
597 * stack (change memory directly), and we must avoid the RSE stored in kernel
598 * to override user stack (user space's RSE is newer than kernel's in the
599 * case). To workaround the issue, we copy kernel RSE to user RSE before the
600 * task is stopped, so user RSE has updated data. we then copy user RSE to
601 * kernel after the task is resummed from traced stop and kernel will use the
602 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
603 * synchronize user RSE to kernel.
605 void ia64_ptrace_stop(void)
607 if (test_and_set_tsk_thread_flag(current
, TIF_RESTORE_RSE
))
609 set_notify_resume(current
);
610 unw_init_running(do_sync_rbs
, ia64_sync_user_rbs
);
614 * This is called to read back the register backing store.
616 void ia64_sync_krbs(void)
618 clear_tsk_thread_flag(current
, TIF_RESTORE_RSE
);
620 unw_init_running(do_sync_rbs
, ia64_sync_kernel_rbs
);
624 * After PTRACE_ATTACH, a thread's register backing store area in user
625 * space is assumed to contain correct data whenever the thread is
626 * stopped. arch_ptrace_stop takes care of this on tracing stops.
627 * But if the child was already stopped for job control when we attach
628 * to it, then it might not ever get into ptrace_stop by the time we
629 * want to examine the user memory containing the RBS.
632 ptrace_attach_sync_user_rbs (struct task_struct
*child
)
635 struct unw_frame_info info
;
638 * If the child is in TASK_STOPPED, we need to change that to
639 * TASK_TRACED momentarily while we operate on it. This ensures
640 * that the child won't be woken up and return to user mode while
641 * we are doing the sync. (It can only be woken up for SIGKILL.)
644 read_lock(&tasklist_lock
);
645 if (child
->sighand
) {
646 spin_lock_irq(&child
->sighand
->siglock
);
647 if (child
->state
== TASK_STOPPED
&&
648 !test_and_set_tsk_thread_flag(child
, TIF_RESTORE_RSE
)) {
649 set_notify_resume(child
);
651 child
->state
= TASK_TRACED
;
654 spin_unlock_irq(&child
->sighand
->siglock
);
656 read_unlock(&tasklist_lock
);
661 unw_init_from_blocked_task(&info
, child
);
662 do_sync_rbs(&info
, ia64_sync_user_rbs
);
665 * Now move the child back into TASK_STOPPED if it should be in a
666 * job control stop, so that SIGCONT can be used to wake it up.
668 read_lock(&tasklist_lock
);
669 if (child
->sighand
) {
670 spin_lock_irq(&child
->sighand
->siglock
);
671 if (child
->state
== TASK_TRACED
&&
672 (child
->signal
->flags
& SIGNAL_STOP_STOPPED
)) {
673 child
->state
= TASK_STOPPED
;
675 spin_unlock_irq(&child
->sighand
->siglock
);
677 read_unlock(&tasklist_lock
);
681 * Write f32-f127 back to task->thread.fph if it has been modified.
684 ia64_flush_fph (struct task_struct
*task
)
686 struct ia64_psr
*psr
= ia64_psr(task_pt_regs(task
));
689 * Prevent migrating this task while
690 * we're fiddling with the FPU state
693 if (ia64_is_local_fpu_owner(task
) && psr
->mfh
) {
695 task
->thread
.flags
|= IA64_THREAD_FPH_VALID
;
696 ia64_save_fpu(&task
->thread
.fph
[0]);
702 * Sync the fph state of the task so that it can be manipulated
703 * through thread.fph. If necessary, f32-f127 are written back to
704 * thread.fph or, if the fph state hasn't been used before, thread.fph
705 * is cleared to zeroes. Also, access to f32-f127 is disabled to
706 * ensure that the task picks up the state from thread.fph when it
710 ia64_sync_fph (struct task_struct
*task
)
712 struct ia64_psr
*psr
= ia64_psr(task_pt_regs(task
));
714 ia64_flush_fph(task
);
715 if (!(task
->thread
.flags
& IA64_THREAD_FPH_VALID
)) {
716 task
->thread
.flags
|= IA64_THREAD_FPH_VALID
;
717 memset(&task
->thread
.fph
, 0, sizeof(task
->thread
.fph
));
724 * Change the machine-state of CHILD such that it will return via the normal
725 * kernel exit-path, rather than the syscall-exit path.
728 convert_to_non_syscall (struct task_struct
*child
, struct pt_regs
*pt
,
731 struct unw_frame_info info
, prev_info
;
732 unsigned long ip
, sp
, pr
;
734 unw_init_from_blocked_task(&info
, child
);
737 if (unw_unwind(&info
) < 0)
740 unw_get_sp(&info
, &sp
);
741 if ((long)((unsigned long)child
+ IA64_STK_OFFSET
- sp
)
742 < IA64_PT_REGS_SIZE
) {
743 dprintk("ptrace.%s: ran off the top of the kernel "
744 "stack\n", __func__
);
747 if (unw_get_pr (&prev_info
, &pr
) < 0) {
748 unw_get_rp(&prev_info
, &ip
);
749 dprintk("ptrace.%s: failed to read "
750 "predicate register (ip=0x%lx)\n",
754 if (unw_is_intr_frame(&info
)
755 && (pr
& (1UL << PRED_USER_STACK
)))
760 * Note: at the time of this call, the target task is blocked
761 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
762 * (aka, "pLvSys") we redirect execution from
763 * .work_pending_syscall_end to .work_processed_kernel.
765 unw_get_pr(&prev_info
, &pr
);
766 pr
&= ~((1UL << PRED_SYSCALL
) | (1UL << PRED_LEAVE_SYSCALL
));
767 pr
|= (1UL << PRED_NON_SYSCALL
);
768 unw_set_pr(&prev_info
, pr
);
770 pt
->cr_ifs
= (1UL << 63) | cfm
;
772 * Clear the memory that is NOT written on syscall-entry to
773 * ensure we do not leak kernel-state to user when execution
779 memset(&pt
->r16
, 0, 16*8); /* clear r16-r31 */
780 memset(&pt
->f6
, 0, 6*16); /* clear f6-f11 */
788 access_nat_bits (struct task_struct
*child
, struct pt_regs
*pt
,
789 struct unw_frame_info
*info
,
790 unsigned long *data
, int write_access
)
792 unsigned long regnum
, nat_bits
, scratch_unat
, dummy
= 0;
797 scratch_unat
= ia64_put_scratch_nat_bits(pt
, nat_bits
);
798 if (unw_set_ar(info
, UNW_AR_UNAT
, scratch_unat
) < 0) {
799 dprintk("ptrace: failed to set ar.unat\n");
802 for (regnum
= 4; regnum
<= 7; ++regnum
) {
803 unw_get_gr(info
, regnum
, &dummy
, &nat
);
804 unw_set_gr(info
, regnum
, dummy
,
805 (nat_bits
>> regnum
) & 1);
808 if (unw_get_ar(info
, UNW_AR_UNAT
, &scratch_unat
) < 0) {
809 dprintk("ptrace: failed to read ar.unat\n");
812 nat_bits
= ia64_get_scratch_nat_bits(pt
, scratch_unat
);
813 for (regnum
= 4; regnum
<= 7; ++regnum
) {
814 unw_get_gr(info
, regnum
, &dummy
, &nat
);
815 nat_bits
|= (nat
!= 0) << regnum
;
823 access_uarea (struct task_struct
*child
, unsigned long addr
,
824 unsigned long *data
, int write_access
);
827 ptrace_getregs (struct task_struct
*child
, struct pt_all_user_regs __user
*ppr
)
829 unsigned long psr
, ec
, lc
, rnat
, bsp
, cfm
, nat_bits
, val
;
830 struct unw_frame_info info
;
831 struct ia64_fpreg fpval
;
832 struct switch_stack
*sw
;
834 long ret
, retval
= 0;
838 if (!access_ok(VERIFY_WRITE
, ppr
, sizeof(struct pt_all_user_regs
)))
841 pt
= task_pt_regs(child
);
842 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
843 unw_init_from_blocked_task(&info
, child
);
844 if (unw_unwind_to_user(&info
) < 0) {
848 if (((unsigned long) ppr
& 0x7) != 0) {
849 dprintk("ptrace:unaligned register address %p\n", ppr
);
853 if (access_uarea(child
, PT_CR_IPSR
, &psr
, 0) < 0
854 || access_uarea(child
, PT_AR_EC
, &ec
, 0) < 0
855 || access_uarea(child
, PT_AR_LC
, &lc
, 0) < 0
856 || access_uarea(child
, PT_AR_RNAT
, &rnat
, 0) < 0
857 || access_uarea(child
, PT_AR_BSP
, &bsp
, 0) < 0
858 || access_uarea(child
, PT_CFM
, &cfm
, 0)
859 || access_uarea(child
, PT_NAT_BITS
, &nat_bits
, 0))
864 retval
|= __put_user(pt
->cr_iip
, &ppr
->cr_iip
);
865 retval
|= __put_user(psr
, &ppr
->cr_ipsr
);
869 retval
|= __put_user(pt
->ar_pfs
, &ppr
->ar
[PT_AUR_PFS
]);
870 retval
|= __put_user(pt
->ar_rsc
, &ppr
->ar
[PT_AUR_RSC
]);
871 retval
|= __put_user(pt
->ar_bspstore
, &ppr
->ar
[PT_AUR_BSPSTORE
]);
872 retval
|= __put_user(pt
->ar_unat
, &ppr
->ar
[PT_AUR_UNAT
]);
873 retval
|= __put_user(pt
->ar_ccv
, &ppr
->ar
[PT_AUR_CCV
]);
874 retval
|= __put_user(pt
->ar_fpsr
, &ppr
->ar
[PT_AUR_FPSR
]);
876 retval
|= __put_user(ec
, &ppr
->ar
[PT_AUR_EC
]);
877 retval
|= __put_user(lc
, &ppr
->ar
[PT_AUR_LC
]);
878 retval
|= __put_user(rnat
, &ppr
->ar
[PT_AUR_RNAT
]);
879 retval
|= __put_user(bsp
, &ppr
->ar
[PT_AUR_BSP
]);
880 retval
|= __put_user(cfm
, &ppr
->cfm
);
884 retval
|= __copy_to_user(&ppr
->gr
[1], &pt
->r1
, sizeof(long));
885 retval
|= __copy_to_user(&ppr
->gr
[2], &pt
->r2
, sizeof(long) *2);
889 for (i
= 4; i
< 8; i
++) {
890 if (unw_access_gr(&info
, i
, &val
, &nat
, 0) < 0)
892 retval
|= __put_user(val
, &ppr
->gr
[i
]);
897 retval
|= __copy_to_user(&ppr
->gr
[8], &pt
->r8
, sizeof(long) * 4);
901 retval
|= __copy_to_user(&ppr
->gr
[12], &pt
->r12
, sizeof(long) * 2);
902 retval
|= __copy_to_user(&ppr
->gr
[14], &pt
->r14
, sizeof(long));
903 retval
|= __copy_to_user(&ppr
->gr
[15], &pt
->r15
, sizeof(long));
907 retval
|= __copy_to_user(&ppr
->gr
[16], &pt
->r16
, sizeof(long) * 16);
911 retval
|= __put_user(pt
->b0
, &ppr
->br
[0]);
915 for (i
= 1; i
< 6; i
++) {
916 if (unw_access_br(&info
, i
, &val
, 0) < 0)
918 __put_user(val
, &ppr
->br
[i
]);
923 retval
|= __put_user(pt
->b6
, &ppr
->br
[6]);
924 retval
|= __put_user(pt
->b7
, &ppr
->br
[7]);
928 for (i
= 2; i
< 6; i
++) {
929 if (unw_get_fr(&info
, i
, &fpval
) < 0)
931 retval
|= __copy_to_user(&ppr
->fr
[i
], &fpval
, sizeof (fpval
));
936 retval
|= __copy_to_user(&ppr
->fr
[6], &pt
->f6
,
937 sizeof(struct ia64_fpreg
) * 6);
939 /* fp scratch regs(12-15) */
941 retval
|= __copy_to_user(&ppr
->fr
[12], &sw
->f12
,
942 sizeof(struct ia64_fpreg
) * 4);
946 for (i
= 16; i
< 32; i
++) {
947 if (unw_get_fr(&info
, i
, &fpval
) < 0)
949 retval
|= __copy_to_user(&ppr
->fr
[i
], &fpval
, sizeof (fpval
));
954 ia64_flush_fph(child
);
955 retval
|= __copy_to_user(&ppr
->fr
[32], &child
->thread
.fph
,
956 sizeof(ppr
->fr
[32]) * 96);
960 retval
|= __put_user(pt
->pr
, &ppr
->pr
);
964 retval
|= __put_user(nat_bits
, &ppr
->nat
);
966 ret
= retval
? -EIO
: 0;
971 ptrace_setregs (struct task_struct
*child
, struct pt_all_user_regs __user
*ppr
)
973 unsigned long psr
, rsc
, ec
, lc
, rnat
, bsp
, cfm
, nat_bits
, val
= 0;
974 struct unw_frame_info info
;
975 struct switch_stack
*sw
;
976 struct ia64_fpreg fpval
;
978 long ret
, retval
= 0;
981 memset(&fpval
, 0, sizeof(fpval
));
983 if (!access_ok(VERIFY_READ
, ppr
, sizeof(struct pt_all_user_regs
)))
986 pt
= task_pt_regs(child
);
987 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
988 unw_init_from_blocked_task(&info
, child
);
989 if (unw_unwind_to_user(&info
) < 0) {
993 if (((unsigned long) ppr
& 0x7) != 0) {
994 dprintk("ptrace:unaligned register address %p\n", ppr
);
1000 retval
|= __get_user(pt
->cr_iip
, &ppr
->cr_iip
);
1001 retval
|= __get_user(psr
, &ppr
->cr_ipsr
);
1005 retval
|= __get_user(pt
->ar_pfs
, &ppr
->ar
[PT_AUR_PFS
]);
1006 retval
|= __get_user(rsc
, &ppr
->ar
[PT_AUR_RSC
]);
1007 retval
|= __get_user(pt
->ar_bspstore
, &ppr
->ar
[PT_AUR_BSPSTORE
]);
1008 retval
|= __get_user(pt
->ar_unat
, &ppr
->ar
[PT_AUR_UNAT
]);
1009 retval
|= __get_user(pt
->ar_ccv
, &ppr
->ar
[PT_AUR_CCV
]);
1010 retval
|= __get_user(pt
->ar_fpsr
, &ppr
->ar
[PT_AUR_FPSR
]);
1012 retval
|= __get_user(ec
, &ppr
->ar
[PT_AUR_EC
]);
1013 retval
|= __get_user(lc
, &ppr
->ar
[PT_AUR_LC
]);
1014 retval
|= __get_user(rnat
, &ppr
->ar
[PT_AUR_RNAT
]);
1015 retval
|= __get_user(bsp
, &ppr
->ar
[PT_AUR_BSP
]);
1016 retval
|= __get_user(cfm
, &ppr
->cfm
);
1020 retval
|= __copy_from_user(&pt
->r1
, &ppr
->gr
[1], sizeof(long));
1021 retval
|= __copy_from_user(&pt
->r2
, &ppr
->gr
[2], sizeof(long) * 2);
1025 for (i
= 4; i
< 8; i
++) {
1026 retval
|= __get_user(val
, &ppr
->gr
[i
]);
1027 /* NaT bit will be set via PT_NAT_BITS: */
1028 if (unw_set_gr(&info
, i
, val
, 0) < 0)
1034 retval
|= __copy_from_user(&pt
->r8
, &ppr
->gr
[8], sizeof(long) * 4);
1038 retval
|= __copy_from_user(&pt
->r12
, &ppr
->gr
[12], sizeof(long) * 2);
1039 retval
|= __copy_from_user(&pt
->r14
, &ppr
->gr
[14], sizeof(long));
1040 retval
|= __copy_from_user(&pt
->r15
, &ppr
->gr
[15], sizeof(long));
1044 retval
|= __copy_from_user(&pt
->r16
, &ppr
->gr
[16], sizeof(long) * 16);
1048 retval
|= __get_user(pt
->b0
, &ppr
->br
[0]);
1052 for (i
= 1; i
< 6; i
++) {
1053 retval
|= __get_user(val
, &ppr
->br
[i
]);
1054 unw_set_br(&info
, i
, val
);
1059 retval
|= __get_user(pt
->b6
, &ppr
->br
[6]);
1060 retval
|= __get_user(pt
->b7
, &ppr
->br
[7]);
1064 for (i
= 2; i
< 6; i
++) {
1065 retval
|= __copy_from_user(&fpval
, &ppr
->fr
[i
], sizeof(fpval
));
1066 if (unw_set_fr(&info
, i
, fpval
) < 0)
1072 retval
|= __copy_from_user(&pt
->f6
, &ppr
->fr
[6],
1073 sizeof(ppr
->fr
[6]) * 6);
1075 /* fp scratch regs(12-15) */
1077 retval
|= __copy_from_user(&sw
->f12
, &ppr
->fr
[12],
1078 sizeof(ppr
->fr
[12]) * 4);
1082 for (i
= 16; i
< 32; i
++) {
1083 retval
|= __copy_from_user(&fpval
, &ppr
->fr
[i
],
1085 if (unw_set_fr(&info
, i
, fpval
) < 0)
1091 ia64_sync_fph(child
);
1092 retval
|= __copy_from_user(&child
->thread
.fph
, &ppr
->fr
[32],
1093 sizeof(ppr
->fr
[32]) * 96);
1097 retval
|= __get_user(pt
->pr
, &ppr
->pr
);
1101 retval
|= __get_user(nat_bits
, &ppr
->nat
);
1103 retval
|= access_uarea(child
, PT_CR_IPSR
, &psr
, 1);
1104 retval
|= access_uarea(child
, PT_AR_RSC
, &rsc
, 1);
1105 retval
|= access_uarea(child
, PT_AR_EC
, &ec
, 1);
1106 retval
|= access_uarea(child
, PT_AR_LC
, &lc
, 1);
1107 retval
|= access_uarea(child
, PT_AR_RNAT
, &rnat
, 1);
1108 retval
|= access_uarea(child
, PT_AR_BSP
, &bsp
, 1);
1109 retval
|= access_uarea(child
, PT_CFM
, &cfm
, 1);
1110 retval
|= access_uarea(child
, PT_NAT_BITS
, &nat_bits
, 1);
1112 ret
= retval
? -EIO
: 0;
1117 user_enable_single_step (struct task_struct
*child
)
1119 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1121 set_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1126 user_enable_block_step (struct task_struct
*child
)
1128 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1130 set_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1135 user_disable_single_step (struct task_struct
*child
)
1137 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1139 /* make sure the single step/taken-branch trap bits are not set: */
1140 clear_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1146 * Called by kernel/ptrace.c when detaching..
1148 * Make sure the single step bit is not set.
1151 ptrace_disable (struct task_struct
*child
)
1153 user_disable_single_step(child
);
1157 arch_ptrace (struct task_struct
*child
, long request
,
1158 unsigned long addr
, unsigned long data
)
1161 case PTRACE_PEEKTEXT
:
1162 case PTRACE_PEEKDATA
:
1163 /* read word at location addr */
1164 if (ptrace_access_vm(child
, addr
, &data
, sizeof(data
),
1168 /* ensure return value is not mistaken for error code */
1169 force_successful_syscall_return();
1172 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1173 * by the generic ptrace_request().
1176 case PTRACE_PEEKUSR
:
1177 /* read the word at addr in the USER area */
1178 if (access_uarea(child
, addr
, &data
, 0) < 0)
1180 /* ensure return value is not mistaken for error code */
1181 force_successful_syscall_return();
1184 case PTRACE_POKEUSR
:
1185 /* write the word at addr in the USER area */
1186 if (access_uarea(child
, addr
, &data
, 1) < 0)
1190 case PTRACE_OLD_GETSIGINFO
:
1191 /* for backwards-compatibility */
1192 return ptrace_request(child
, PTRACE_GETSIGINFO
, addr
, data
);
1194 case PTRACE_OLD_SETSIGINFO
:
1195 /* for backwards-compatibility */
1196 return ptrace_request(child
, PTRACE_SETSIGINFO
, addr
, data
);
1198 case PTRACE_GETREGS
:
1199 return ptrace_getregs(child
,
1200 (struct pt_all_user_regs __user
*) data
);
1202 case PTRACE_SETREGS
:
1203 return ptrace_setregs(child
,
1204 (struct pt_all_user_regs __user
*) data
);
1207 return ptrace_request(child
, request
, addr
, data
);
1212 /* "asmlinkage" so the input arguments are preserved... */
1215 syscall_trace_enter (long arg0
, long arg1
, long arg2
, long arg3
,
1216 long arg4
, long arg5
, long arg6
, long arg7
,
1217 struct pt_regs regs
)
1219 if (test_thread_flag(TIF_SYSCALL_TRACE
))
1220 if (tracehook_report_syscall_entry(®s
))
1223 /* copy user rbs to kernel rbs */
1224 if (test_thread_flag(TIF_RESTORE_RSE
))
1228 audit_syscall_entry(regs
.r15
, arg0
, arg1
, arg2
, arg3
);
1233 /* "asmlinkage" so the input arguments are preserved... */
1236 syscall_trace_leave (long arg0
, long arg1
, long arg2
, long arg3
,
1237 long arg4
, long arg5
, long arg6
, long arg7
,
1238 struct pt_regs regs
)
1242 audit_syscall_exit(®s
);
1244 step
= test_thread_flag(TIF_SINGLESTEP
);
1245 if (step
|| test_thread_flag(TIF_SYSCALL_TRACE
))
1246 tracehook_report_syscall_exit(®s
, step
);
1248 /* copy user rbs to kernel rbs */
1249 if (test_thread_flag(TIF_RESTORE_RSE
))
1253 /* Utrace implementation starts here */
1261 const void __user
*ubuf
;
1264 struct regset_getset
{
1265 struct task_struct
*target
;
1266 const struct user_regset
*regset
;
1268 struct regset_get get
;
1269 struct regset_set set
;
1277 access_elf_gpreg(struct task_struct
*target
, struct unw_frame_info
*info
,
1278 unsigned long addr
, unsigned long *data
, int write_access
)
1281 unsigned long *ptr
= NULL
;
1285 pt
= task_pt_regs(target
);
1287 case ELF_GR_OFFSET(1):
1290 case ELF_GR_OFFSET(2):
1291 case ELF_GR_OFFSET(3):
1292 ptr
= (void *)&pt
->r2
+ (addr
- ELF_GR_OFFSET(2));
1294 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1296 /* read NaT bit first: */
1297 unsigned long dummy
;
1299 ret
= unw_get_gr(info
, addr
/8, &dummy
, &nat
);
1303 return unw_access_gr(info
, addr
/8, data
, &nat
, write_access
);
1304 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1305 ptr
= (void *)&pt
->r8
+ addr
- ELF_GR_OFFSET(8);
1307 case ELF_GR_OFFSET(12):
1308 case ELF_GR_OFFSET(13):
1309 ptr
= (void *)&pt
->r12
+ addr
- ELF_GR_OFFSET(12);
1311 case ELF_GR_OFFSET(14):
1314 case ELF_GR_OFFSET(15):
1325 access_elf_breg(struct task_struct
*target
, struct unw_frame_info
*info
,
1326 unsigned long addr
, unsigned long *data
, int write_access
)
1329 unsigned long *ptr
= NULL
;
1331 pt
= task_pt_regs(target
);
1333 case ELF_BR_OFFSET(0):
1336 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1337 return unw_access_br(info
, (addr
- ELF_BR_OFFSET(0))/8,
1338 data
, write_access
);
1339 case ELF_BR_OFFSET(6):
1342 case ELF_BR_OFFSET(7):
1353 access_elf_areg(struct task_struct
*target
, struct unw_frame_info
*info
,
1354 unsigned long addr
, unsigned long *data
, int write_access
)
1357 unsigned long cfm
, urbs_end
;
1358 unsigned long *ptr
= NULL
;
1360 pt
= task_pt_regs(target
);
1361 if (addr
>= ELF_AR_RSC_OFFSET
&& addr
<= ELF_AR_SSD_OFFSET
) {
1363 case ELF_AR_RSC_OFFSET
:
1366 pt
->ar_rsc
= *data
| (3 << 2);
1370 case ELF_AR_BSP_OFFSET
:
1372 * By convention, we use PT_AR_BSP to refer to
1373 * the end of the user-level backing store.
1374 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1375 * to get the real value of ar.bsp at the time
1376 * the kernel was entered.
1378 * Furthermore, when changing the contents of
1379 * PT_AR_BSP (or PT_CFM) while the task is
1380 * blocked in a system call, convert the state
1381 * so that the non-system-call exit
1382 * path is used. This ensures that the proper
1383 * state will be picked up when resuming
1384 * execution. However, it *also* means that
1385 * once we write PT_AR_BSP/PT_CFM, it won't be
1386 * possible to modify the syscall arguments of
1387 * the pending system call any longer. This
1388 * shouldn't be an issue because modifying
1389 * PT_AR_BSP/PT_CFM generally implies that
1390 * we're either abandoning the pending system
1391 * call or that we defer it's re-execution
1392 * (e.g., due to GDB doing an inferior
1395 urbs_end
= ia64_get_user_rbs_end(target
, pt
, &cfm
);
1397 if (*data
!= urbs_end
) {
1399 convert_to_non_syscall(target
,
1403 * Simulate user-level write
1407 pt
->ar_bspstore
= *data
;
1412 case ELF_AR_BSPSTORE_OFFSET
:
1413 ptr
= &pt
->ar_bspstore
;
1415 case ELF_AR_RNAT_OFFSET
:
1418 case ELF_AR_CCV_OFFSET
:
1421 case ELF_AR_UNAT_OFFSET
:
1424 case ELF_AR_FPSR_OFFSET
:
1427 case ELF_AR_PFS_OFFSET
:
1430 case ELF_AR_LC_OFFSET
:
1431 return unw_access_ar(info
, UNW_AR_LC
, data
,
1433 case ELF_AR_EC_OFFSET
:
1434 return unw_access_ar(info
, UNW_AR_EC
, data
,
1436 case ELF_AR_CSD_OFFSET
:
1439 case ELF_AR_SSD_OFFSET
:
1442 } else if (addr
>= ELF_CR_IIP_OFFSET
&& addr
<= ELF_CR_IPSR_OFFSET
) {
1444 case ELF_CR_IIP_OFFSET
:
1447 case ELF_CFM_OFFSET
:
1448 urbs_end
= ia64_get_user_rbs_end(target
, pt
, &cfm
);
1450 if (((cfm
^ *data
) & PFM_MASK
) != 0) {
1452 convert_to_non_syscall(target
,
1455 pt
->cr_ifs
= ((pt
->cr_ifs
& ~PFM_MASK
)
1456 | (*data
& PFM_MASK
));
1461 case ELF_CR_IPSR_OFFSET
:
1463 unsigned long tmp
= *data
;
1464 /* psr.ri==3 is a reserved value: SDM 2:25 */
1465 if ((tmp
& IA64_PSR_RI
) == IA64_PSR_RI
)
1466 tmp
&= ~IA64_PSR_RI
;
1467 pt
->cr_ipsr
= ((tmp
& IPSR_MASK
)
1468 | (pt
->cr_ipsr
& ~IPSR_MASK
));
1470 *data
= (pt
->cr_ipsr
& IPSR_MASK
);
1473 } else if (addr
== ELF_NAT_OFFSET
)
1474 return access_nat_bits(target
, pt
, info
,
1475 data
, write_access
);
1476 else if (addr
== ELF_PR_OFFSET
)
1490 access_elf_reg(struct task_struct
*target
, struct unw_frame_info
*info
,
1491 unsigned long addr
, unsigned long *data
, int write_access
)
1493 if (addr
>= ELF_GR_OFFSET(1) && addr
<= ELF_GR_OFFSET(15))
1494 return access_elf_gpreg(target
, info
, addr
, data
, write_access
);
1495 else if (addr
>= ELF_BR_OFFSET(0) && addr
<= ELF_BR_OFFSET(7))
1496 return access_elf_breg(target
, info
, addr
, data
, write_access
);
1498 return access_elf_areg(target
, info
, addr
, data
, write_access
);
1501 void do_gpregs_get(struct unw_frame_info
*info
, void *arg
)
1504 struct regset_getset
*dst
= arg
;
1506 unsigned int i
, index
, min_copy
;
1508 if (unw_unwind_to_user(info
) < 0)
1514 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1515 * predicate registers (p0-p63)
1518 * ar.rsc ar.bsp ar.bspstore ar.rnat
1519 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1524 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(1)) {
1525 dst
->ret
= user_regset_copyout_zero(&dst
->pos
, &dst
->count
,
1528 0, ELF_GR_OFFSET(1));
1529 if (dst
->ret
|| dst
->count
== 0)
1534 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(16)) {
1535 index
= (dst
->pos
- ELF_GR_OFFSET(1)) / sizeof(elf_greg_t
);
1536 min_copy
= ELF_GR_OFFSET(16) > (dst
->pos
+ dst
->count
) ?
1537 (dst
->pos
+ dst
->count
) : ELF_GR_OFFSET(16);
1538 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_greg_t
),
1540 if (access_elf_reg(dst
->target
, info
, i
,
1541 &tmp
[index
], 0) < 0) {
1545 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1546 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1547 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1548 if (dst
->ret
|| dst
->count
== 0)
1553 if (dst
->count
> 0 && dst
->pos
< ELF_NAT_OFFSET
) {
1554 pt
= task_pt_regs(dst
->target
);
1555 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1556 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, &pt
->r16
,
1557 ELF_GR_OFFSET(16), ELF_NAT_OFFSET
);
1558 if (dst
->ret
|| dst
->count
== 0)
1562 /* nat, pr, b0 - b7 */
1563 if (dst
->count
> 0 && dst
->pos
< ELF_CR_IIP_OFFSET
) {
1564 index
= (dst
->pos
- ELF_NAT_OFFSET
) / sizeof(elf_greg_t
);
1565 min_copy
= ELF_CR_IIP_OFFSET
> (dst
->pos
+ dst
->count
) ?
1566 (dst
->pos
+ dst
->count
) : ELF_CR_IIP_OFFSET
;
1567 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_greg_t
),
1569 if (access_elf_reg(dst
->target
, info
, i
,
1570 &tmp
[index
], 0) < 0) {
1574 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1575 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1576 ELF_NAT_OFFSET
, ELF_CR_IIP_OFFSET
);
1577 if (dst
->ret
|| dst
->count
== 0)
1581 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1582 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1584 if (dst
->count
> 0 && dst
->pos
< (ELF_AR_END_OFFSET
)) {
1585 index
= (dst
->pos
- ELF_CR_IIP_OFFSET
) / sizeof(elf_greg_t
);
1586 min_copy
= ELF_AR_END_OFFSET
> (dst
->pos
+ dst
->count
) ?
1587 (dst
->pos
+ dst
->count
) : ELF_AR_END_OFFSET
;
1588 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_greg_t
),
1590 if (access_elf_reg(dst
->target
, info
, i
,
1591 &tmp
[index
], 0) < 0) {
1595 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1596 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1597 ELF_CR_IIP_OFFSET
, ELF_AR_END_OFFSET
);
1601 void do_gpregs_set(struct unw_frame_info
*info
, void *arg
)
1604 struct regset_getset
*dst
= arg
;
1606 unsigned int i
, index
;
1608 if (unw_unwind_to_user(info
) < 0)
1612 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(1)) {
1613 dst
->ret
= user_regset_copyin_ignore(&dst
->pos
, &dst
->count
,
1616 0, ELF_GR_OFFSET(1));
1617 if (dst
->ret
|| dst
->count
== 0)
1622 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(16)) {
1624 index
= (dst
->pos
- ELF_GR_OFFSET(1)) / sizeof(elf_greg_t
);
1625 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1626 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1627 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1630 for ( ; i
< dst
->pos
; i
+= sizeof(elf_greg_t
), index
++)
1631 if (access_elf_reg(dst
->target
, info
, i
,
1632 &tmp
[index
], 1) < 0) {
1636 if (dst
->count
== 0)
1641 if (dst
->count
> 0 && dst
->pos
< ELF_NAT_OFFSET
) {
1642 pt
= task_pt_regs(dst
->target
);
1643 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1644 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, &pt
->r16
,
1645 ELF_GR_OFFSET(16), ELF_NAT_OFFSET
);
1646 if (dst
->ret
|| dst
->count
== 0)
1650 /* nat, pr, b0 - b7 */
1651 if (dst
->count
> 0 && dst
->pos
< ELF_CR_IIP_OFFSET
) {
1653 index
= (dst
->pos
- ELF_NAT_OFFSET
) / sizeof(elf_greg_t
);
1654 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1655 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1656 ELF_NAT_OFFSET
, ELF_CR_IIP_OFFSET
);
1659 for (; i
< dst
->pos
; i
+= sizeof(elf_greg_t
), index
++)
1660 if (access_elf_reg(dst
->target
, info
, i
,
1661 &tmp
[index
], 1) < 0) {
1665 if (dst
->count
== 0)
1669 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1670 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1672 if (dst
->count
> 0 && dst
->pos
< (ELF_AR_END_OFFSET
)) {
1674 index
= (dst
->pos
- ELF_CR_IIP_OFFSET
) / sizeof(elf_greg_t
);
1675 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1676 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1677 ELF_CR_IIP_OFFSET
, ELF_AR_END_OFFSET
);
1680 for ( ; i
< dst
->pos
; i
+= sizeof(elf_greg_t
), index
++)
1681 if (access_elf_reg(dst
->target
, info
, i
,
1682 &tmp
[index
], 1) < 0) {
1689 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1691 void do_fpregs_get(struct unw_frame_info
*info
, void *arg
)
1693 struct regset_getset
*dst
= arg
;
1694 struct task_struct
*task
= dst
->target
;
1695 elf_fpreg_t tmp
[30];
1696 int index
, min_copy
, i
;
1698 if (unw_unwind_to_user(info
) < 0)
1701 /* Skip pos 0 and 1 */
1702 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(2)) {
1703 dst
->ret
= user_regset_copyout_zero(&dst
->pos
, &dst
->count
,
1706 0, ELF_FP_OFFSET(2));
1707 if (dst
->count
== 0 || dst
->ret
)
1712 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(32)) {
1713 index
= (dst
->pos
- ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t
);
1715 min_copy
= min(((unsigned int)ELF_FP_OFFSET(32)),
1716 dst
->pos
+ dst
->count
);
1717 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_fpreg_t
),
1719 if (unw_get_fr(info
, i
/ sizeof(elf_fpreg_t
),
1724 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1725 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1726 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1727 if (dst
->count
== 0 || dst
->ret
)
1732 if (dst
->count
> 0) {
1733 ia64_flush_fph(dst
->target
);
1734 if (task
->thread
.flags
& IA64_THREAD_FPH_VALID
)
1735 dst
->ret
= user_regset_copyout(
1736 &dst
->pos
, &dst
->count
,
1737 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
,
1738 &dst
->target
->thread
.fph
,
1739 ELF_FP_OFFSET(32), -1);
1741 /* Zero fill instead. */
1742 dst
->ret
= user_regset_copyout_zero(
1743 &dst
->pos
, &dst
->count
,
1744 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
,
1745 ELF_FP_OFFSET(32), -1);
1749 void do_fpregs_set(struct unw_frame_info
*info
, void *arg
)
1751 struct regset_getset
*dst
= arg
;
1752 elf_fpreg_t fpreg
, tmp
[30];
1753 int index
, start
, end
;
1755 if (unw_unwind_to_user(info
) < 0)
1758 /* Skip pos 0 and 1 */
1759 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(2)) {
1760 dst
->ret
= user_regset_copyin_ignore(&dst
->pos
, &dst
->count
,
1763 0, ELF_FP_OFFSET(2));
1764 if (dst
->count
== 0 || dst
->ret
)
1769 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(32)) {
1771 end
= min(((unsigned int)ELF_FP_OFFSET(32)),
1772 dst
->pos
+ dst
->count
);
1773 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1774 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1775 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1779 if (start
& 0xF) { /* only write high part */
1780 if (unw_get_fr(info
, start
/ sizeof(elf_fpreg_t
),
1785 tmp
[start
/ sizeof(elf_fpreg_t
) - 2].u
.bits
[0]
1789 if (end
& 0xF) { /* only write low part */
1790 if (unw_get_fr(info
, end
/ sizeof(elf_fpreg_t
),
1795 tmp
[end
/ sizeof(elf_fpreg_t
) - 2].u
.bits
[1]
1797 end
= (end
+ 0xF) & ~0xFUL
;
1800 for ( ; start
< end
; start
+= sizeof(elf_fpreg_t
)) {
1801 index
= start
/ sizeof(elf_fpreg_t
);
1802 if (unw_set_fr(info
, index
, tmp
[index
- 2])) {
1807 if (dst
->ret
|| dst
->count
== 0)
1812 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(128)) {
1813 ia64_sync_fph(dst
->target
);
1814 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1817 &dst
->target
->thread
.fph
,
1818 ELF_FP_OFFSET(32), -1);
1823 do_regset_call(void (*call
)(struct unw_frame_info
*, void *),
1824 struct task_struct
*target
,
1825 const struct user_regset
*regset
,
1826 unsigned int pos
, unsigned int count
,
1827 const void *kbuf
, const void __user
*ubuf
)
1829 struct regset_getset info
= { .target
= target
, .regset
= regset
,
1830 .pos
= pos
, .count
= count
,
1831 .u
.set
= { .kbuf
= kbuf
, .ubuf
= ubuf
},
1834 if (target
== current
)
1835 unw_init_running(call
, &info
);
1837 struct unw_frame_info ufi
;
1838 memset(&ufi
, 0, sizeof(ufi
));
1839 unw_init_from_blocked_task(&ufi
, target
);
1840 (*call
)(&ufi
, &info
);
1847 gpregs_get(struct task_struct
*target
,
1848 const struct user_regset
*regset
,
1849 unsigned int pos
, unsigned int count
,
1850 void *kbuf
, void __user
*ubuf
)
1852 return do_regset_call(do_gpregs_get
, target
, regset
, pos
, count
,
1856 static int gpregs_set(struct task_struct
*target
,
1857 const struct user_regset
*regset
,
1858 unsigned int pos
, unsigned int count
,
1859 const void *kbuf
, const void __user
*ubuf
)
1861 return do_regset_call(do_gpregs_set
, target
, regset
, pos
, count
,
1865 static void do_gpregs_writeback(struct unw_frame_info
*info
, void *arg
)
1867 do_sync_rbs(info
, ia64_sync_user_rbs
);
1871 * This is called to write back the register backing store.
1872 * ptrace does this before it stops, so that a tracer reading the user
1873 * memory after the thread stops will get the current register data.
1876 gpregs_writeback(struct task_struct
*target
,
1877 const struct user_regset
*regset
,
1880 if (test_and_set_tsk_thread_flag(target
, TIF_RESTORE_RSE
))
1882 set_notify_resume(target
);
1883 return do_regset_call(do_gpregs_writeback
, target
, regset
, 0, 0,
1888 fpregs_active(struct task_struct
*target
, const struct user_regset
*regset
)
1890 return (target
->thread
.flags
& IA64_THREAD_FPH_VALID
) ? 128 : 32;
1893 static int fpregs_get(struct task_struct
*target
,
1894 const struct user_regset
*regset
,
1895 unsigned int pos
, unsigned int count
,
1896 void *kbuf
, void __user
*ubuf
)
1898 return do_regset_call(do_fpregs_get
, target
, regset
, pos
, count
,
1902 static int fpregs_set(struct task_struct
*target
,
1903 const struct user_regset
*regset
,
1904 unsigned int pos
, unsigned int count
,
1905 const void *kbuf
, const void __user
*ubuf
)
1907 return do_regset_call(do_fpregs_set
, target
, regset
, pos
, count
,
1912 access_uarea(struct task_struct
*child
, unsigned long addr
,
1913 unsigned long *data
, int write_access
)
1915 unsigned int pos
= -1; /* an invalid value */
1917 unsigned long *ptr
, regnum
;
1919 if ((addr
& 0x7) != 0) {
1920 dprintk("ptrace: unaligned register address 0x%lx\n", addr
);
1923 if ((addr
>= PT_NAT_BITS
+ 8 && addr
< PT_F2
) ||
1924 (addr
>= PT_R7
+ 8 && addr
< PT_B1
) ||
1925 (addr
>= PT_AR_LC
+ 8 && addr
< PT_CR_IPSR
) ||
1926 (addr
>= PT_AR_SSD
+ 8 && addr
< PT_DBR
)) {
1927 dprintk("ptrace: rejecting access to register "
1928 "address 0x%lx\n", addr
);
1933 case PT_F32
... (PT_F127
+ 15):
1934 pos
= addr
- PT_F32
+ ELF_FP_OFFSET(32);
1936 case PT_F2
... (PT_F5
+ 15):
1937 pos
= addr
- PT_F2
+ ELF_FP_OFFSET(2);
1939 case PT_F10
... (PT_F31
+ 15):
1940 pos
= addr
- PT_F10
+ ELF_FP_OFFSET(10);
1942 case PT_F6
... (PT_F9
+ 15):
1943 pos
= addr
- PT_F6
+ ELF_FP_OFFSET(6);
1949 ret
= fpregs_set(child
, NULL
, pos
,
1950 sizeof(unsigned long), data
, NULL
);
1952 ret
= fpregs_get(child
, NULL
, pos
,
1953 sizeof(unsigned long), data
, NULL
);
1961 pos
= ELF_NAT_OFFSET
;
1963 case PT_R4
... PT_R7
:
1964 pos
= addr
- PT_R4
+ ELF_GR_OFFSET(4);
1966 case PT_B1
... PT_B5
:
1967 pos
= addr
- PT_B1
+ ELF_BR_OFFSET(1);
1970 pos
= ELF_AR_EC_OFFSET
;
1973 pos
= ELF_AR_LC_OFFSET
;
1976 pos
= ELF_CR_IPSR_OFFSET
;
1979 pos
= ELF_CR_IIP_OFFSET
;
1982 pos
= ELF_CFM_OFFSET
;
1985 pos
= ELF_AR_UNAT_OFFSET
;
1988 pos
= ELF_AR_PFS_OFFSET
;
1991 pos
= ELF_AR_RSC_OFFSET
;
1994 pos
= ELF_AR_RNAT_OFFSET
;
1996 case PT_AR_BSPSTORE
:
1997 pos
= ELF_AR_BSPSTORE_OFFSET
;
2000 pos
= ELF_PR_OFFSET
;
2003 pos
= ELF_BR_OFFSET(6);
2006 pos
= ELF_AR_BSP_OFFSET
;
2008 case PT_R1
... PT_R3
:
2009 pos
= addr
- PT_R1
+ ELF_GR_OFFSET(1);
2011 case PT_R12
... PT_R15
:
2012 pos
= addr
- PT_R12
+ ELF_GR_OFFSET(12);
2014 case PT_R8
... PT_R11
:
2015 pos
= addr
- PT_R8
+ ELF_GR_OFFSET(8);
2017 case PT_R16
... PT_R31
:
2018 pos
= addr
- PT_R16
+ ELF_GR_OFFSET(16);
2021 pos
= ELF_AR_CCV_OFFSET
;
2024 pos
= ELF_AR_FPSR_OFFSET
;
2027 pos
= ELF_BR_OFFSET(0);
2030 pos
= ELF_BR_OFFSET(7);
2033 pos
= ELF_AR_CSD_OFFSET
;
2036 pos
= ELF_AR_SSD_OFFSET
;
2042 ret
= gpregs_set(child
, NULL
, pos
,
2043 sizeof(unsigned long), data
, NULL
);
2045 ret
= gpregs_get(child
, NULL
, pos
,
2046 sizeof(unsigned long), data
, NULL
);
2052 /* access debug registers */
2053 if (addr
>= PT_IBR
) {
2054 regnum
= (addr
- PT_IBR
) >> 3;
2055 ptr
= &child
->thread
.ibr
[0];
2057 regnum
= (addr
- PT_DBR
) >> 3;
2058 ptr
= &child
->thread
.dbr
[0];
2062 dprintk("ptrace: rejecting access to register "
2063 "address 0x%lx\n", addr
);
2066 #ifdef CONFIG_PERFMON
2068 * Check if debug registers are used by perfmon. This
2069 * test must be done once we know that we can do the
2070 * operation, i.e. the arguments are all valid, but
2071 * before we start modifying the state.
2073 * Perfmon needs to keep a count of how many processes
2074 * are trying to modify the debug registers for system
2075 * wide monitoring sessions.
2077 * We also include read access here, because they may
2078 * cause the PMU-installed debug register state
2079 * (dbr[], ibr[]) to be reset. The two arrays are also
2080 * used by perfmon, but we do not use
2081 * IA64_THREAD_DBG_VALID. The registers are restored
2082 * by the PMU context switch code.
2084 if (pfm_use_debug_registers(child
))
2088 if (!(child
->thread
.flags
& IA64_THREAD_DBG_VALID
)) {
2089 child
->thread
.flags
|= IA64_THREAD_DBG_VALID
;
2090 memset(child
->thread
.dbr
, 0,
2091 sizeof(child
->thread
.dbr
));
2092 memset(child
->thread
.ibr
, 0,
2093 sizeof(child
->thread
.ibr
));
2098 if ((regnum
& 1) && write_access
) {
2099 /* don't let the user set kernel-level breakpoints: */
2100 *ptr
= *data
& ~(7UL << 56);
2110 static const struct user_regset native_regsets
[] = {
2112 .core_note_type
= NT_PRSTATUS
,
2114 .size
= sizeof(elf_greg_t
), .align
= sizeof(elf_greg_t
),
2115 .get
= gpregs_get
, .set
= gpregs_set
,
2116 .writeback
= gpregs_writeback
2119 .core_note_type
= NT_PRFPREG
,
2121 .size
= sizeof(elf_fpreg_t
), .align
= sizeof(elf_fpreg_t
),
2122 .get
= fpregs_get
, .set
= fpregs_set
, .active
= fpregs_active
2126 static const struct user_regset_view user_ia64_view
= {
2128 .e_machine
= EM_IA_64
,
2129 .regsets
= native_regsets
, .n
= ARRAY_SIZE(native_regsets
)
2132 const struct user_regset_view
*task_user_regset_view(struct task_struct
*tsk
)
2134 return &user_ia64_view
;
2137 struct syscall_get_set_args
{
2140 unsigned long *args
;
2141 struct pt_regs
*regs
;
2145 static void syscall_get_set_args_cb(struct unw_frame_info
*info
, void *data
)
2147 struct syscall_get_set_args
*args
= data
;
2148 struct pt_regs
*pt
= args
->regs
;
2149 unsigned long *krbs
, cfm
, ndirty
;
2152 if (unw_unwind_to_user(info
) < 0)
2156 krbs
= (unsigned long *)info
->task
+ IA64_RBS_OFFSET
/8;
2157 ndirty
= ia64_rse_num_regs(krbs
, krbs
+ (pt
->loadrs
>> 19));
2161 count
= min_t(int, args
->n
, cfm
& 0x7f);
2163 for (i
= 0; i
< count
; i
++) {
2165 *ia64_rse_skip_regs(krbs
, ndirty
+ i
+ args
->i
) =
2168 args
->args
[i
] = *ia64_rse_skip_regs(krbs
,
2169 ndirty
+ i
+ args
->i
);
2173 while (i
< args
->n
) {
2180 void ia64_syscall_get_set_arguments(struct task_struct
*task
,
2181 struct pt_regs
*regs
, unsigned int i
, unsigned int n
,
2182 unsigned long *args
, int rw
)
2184 struct syscall_get_set_args data
= {
2192 if (task
== current
)
2193 unw_init_running(syscall_get_set_args_cb
, &data
);
2195 struct unw_frame_info ufi
;
2196 memset(&ufi
, 0, sizeof(ufi
));
2197 unw_init_from_blocked_task(&ufi
, task
);
2198 syscall_get_set_args_cb(&ufi
, &data
);