2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
35 static int eeh_pe_aux_size
= 0;
36 static LIST_HEAD(eeh_phb_pe
);
39 * eeh_set_pe_aux_size - Set PE auxillary data size
40 * @size: PE auxillary data size
42 * Set PE auxillary data size
44 void eeh_set_pe_aux_size(int size
)
49 eeh_pe_aux_size
= size
;
53 * eeh_pe_alloc - Allocate PE
54 * @phb: PCI controller
57 * Allocate PE instance dynamically.
59 static struct eeh_pe
*eeh_pe_alloc(struct pci_controller
*phb
, int type
)
64 alloc_size
= sizeof(struct eeh_pe
);
65 if (eeh_pe_aux_size
) {
66 alloc_size
= ALIGN(alloc_size
, cache_line_size());
67 alloc_size
+= eeh_pe_aux_size
;
71 pe
= kzalloc(alloc_size
, GFP_KERNEL
);
74 /* Initialize PHB PE */
77 INIT_LIST_HEAD(&pe
->child_list
);
78 INIT_LIST_HEAD(&pe
->child
);
79 INIT_LIST_HEAD(&pe
->edevs
);
81 pe
->data
= (void *)pe
+ ALIGN(sizeof(struct eeh_pe
),
87 * eeh_phb_pe_create - Create PHB PE
88 * @phb: PCI controller
90 * The function should be called while the PHB is detected during
91 * system boot or PCI hotplug in order to create PHB PE.
93 int eeh_phb_pe_create(struct pci_controller
*phb
)
98 pe
= eeh_pe_alloc(phb
, EEH_PE_PHB
);
100 pr_err("%s: out of memory!\n", __func__
);
104 /* Put it into the list */
105 list_add_tail(&pe
->child
, &eeh_phb_pe
);
107 pr_debug("EEH: Add PE for PHB#%x\n", phb
->global_number
);
113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114 * @phb: PCI controller
116 * The overall PEs form hierarchy tree. The first layer of the
117 * hierarchy tree is composed of PHB PEs. The function is used
118 * to retrieve the corresponding PHB PE according to the given PHB.
120 struct eeh_pe
*eeh_phb_pe_get(struct pci_controller
*phb
)
124 list_for_each_entry(pe
, &eeh_phb_pe
, child
) {
126 * Actually, we needn't check the type since
127 * the PE for PHB has been determined when that
130 if ((pe
->type
& EEH_PE_PHB
) && pe
->phb
== phb
)
138 * eeh_pe_next - Retrieve the next PE in the tree
142 * The function is used to retrieve the next PE in the
145 static struct eeh_pe
*eeh_pe_next(struct eeh_pe
*pe
,
148 struct list_head
*next
= pe
->child_list
.next
;
150 if (next
== &pe
->child_list
) {
154 next
= pe
->child
.next
;
155 if (next
!= &pe
->parent
->child_list
)
161 return list_entry(next
, struct eeh_pe
, child
);
165 * eeh_pe_traverse - Traverse PEs in the specified PHB
168 * @flag: extra parameter to callback
170 * The function is used to traverse the specified PE and its
171 * child PEs. The traversing is to be terminated once the
172 * callback returns something other than NULL, or no more PEs
175 void *eeh_pe_traverse(struct eeh_pe
*root
,
176 eeh_traverse_func fn
, void *flag
)
181 for (pe
= root
; pe
; pe
= eeh_pe_next(pe
, root
)) {
190 * eeh_pe_dev_traverse - Traverse the devices from the PE
192 * @fn: function callback
193 * @flag: extra parameter to callback
195 * The function is used to traverse the devices of the specified
196 * PE and its child PEs.
198 void *eeh_pe_dev_traverse(struct eeh_pe
*root
,
199 eeh_traverse_func fn
, void *flag
)
202 struct eeh_dev
*edev
, *tmp
;
206 pr_warn("%s: Invalid PE %p\n",
211 /* Traverse root PE */
212 for (pe
= root
; pe
; pe
= eeh_pe_next(pe
, root
)) {
213 eeh_pe_for_each_dev(pe
, edev
, tmp
) {
214 ret
= fn(edev
, flag
);
224 * __eeh_pe_get - Check the PE address
228 * For one particular PE, it can be identified by PE address
229 * or tranditional BDF address. BDF address is composed of
230 * Bus/Device/Function number. The extra data referred by flag
231 * indicates which type of address should be used.
233 static void *__eeh_pe_get(void *data
, void *flag
)
235 struct eeh_pe
*pe
= (struct eeh_pe
*)data
;
236 struct eeh_dev
*edev
= (struct eeh_dev
*)flag
;
238 /* Unexpected PHB PE */
239 if (pe
->type
& EEH_PE_PHB
)
243 * We prefer PE address. For most cases, we should
244 * have non-zero PE address
246 if (eeh_has_flag(EEH_VALID_PE_ZERO
)) {
247 if (edev
->pe_config_addr
== pe
->addr
)
250 if (edev
->pe_config_addr
&&
251 (edev
->pe_config_addr
== pe
->addr
))
255 /* Try BDF address */
256 if (edev
->config_addr
&&
257 (edev
->config_addr
== pe
->config_addr
))
264 * eeh_pe_get - Search PE based on the given address
267 * Search the corresponding PE based on the specified address which
268 * is included in the eeh device. The function is used to check if
269 * the associated PE has been created against the PE address. It's
270 * notable that the PE address has 2 format: traditional PE address
271 * which is composed of PCI bus/device/function number, or unified
274 struct eeh_pe
*eeh_pe_get(struct eeh_dev
*edev
)
276 struct eeh_pe
*root
= eeh_phb_pe_get(edev
->phb
);
279 pe
= eeh_pe_traverse(root
, __eeh_pe_get
, edev
);
285 * eeh_pe_get_parent - Retrieve the parent PE
288 * The whole PEs existing in the system are organized as hierarchy
289 * tree. The function is used to retrieve the parent PE according
290 * to the parent EEH device.
292 static struct eeh_pe
*eeh_pe_get_parent(struct eeh_dev
*edev
)
294 struct eeh_dev
*parent
;
295 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
298 * It might have the case for the indirect parent
299 * EEH device already having associated PE, but
300 * the direct parent EEH device doesn't have yet.
303 pdn
= pci_get_pdn(edev
->physfn
);
305 pdn
= pdn
? pdn
->parent
: NULL
;
307 /* We're poking out of PCI territory */
308 parent
= pdn_to_eeh_dev(pdn
);
322 * eeh_add_to_parent_pe - Add EEH device to parent PE
325 * Add EEH device to the parent PE. If the parent PE already
326 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
327 * we have to create new PE to hold the EEH device and the new
328 * PE will be linked to its parent PE as well.
330 int eeh_add_to_parent_pe(struct eeh_dev
*edev
)
332 struct eeh_pe
*pe
, *parent
;
334 /* Check if the PE number is valid */
335 if (!eeh_has_flag(EEH_VALID_PE_ZERO
) && !edev
->pe_config_addr
) {
336 pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%x\n",
337 __func__
, edev
->config_addr
, edev
->phb
->global_number
);
342 * Search the PE has been existing or not according
343 * to the PE address. If that has been existing, the
344 * PE should be composed of PCI bus and its subordinate
347 pe
= eeh_pe_get(edev
);
348 if (pe
&& !(pe
->type
& EEH_PE_INVALID
)) {
349 /* Mark the PE as type of PCI bus */
350 pe
->type
= EEH_PE_BUS
;
353 /* Put the edev to PE */
354 list_add_tail(&edev
->list
, &pe
->edevs
);
355 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
356 edev
->phb
->global_number
,
357 edev
->config_addr
>> 8,
358 PCI_SLOT(edev
->config_addr
& 0xFF),
359 PCI_FUNC(edev
->config_addr
& 0xFF),
362 } else if (pe
&& (pe
->type
& EEH_PE_INVALID
)) {
363 list_add_tail(&edev
->list
, &pe
->edevs
);
366 * We're running to here because of PCI hotplug caused by
367 * EEH recovery. We need clear EEH_PE_INVALID until the top.
371 if (!(parent
->type
& EEH_PE_INVALID
))
373 parent
->type
&= ~(EEH_PE_INVALID
| EEH_PE_KEEP
);
374 parent
= parent
->parent
;
377 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
378 "PE#%x, Parent PE#%x\n",
379 edev
->phb
->global_number
,
380 edev
->config_addr
>> 8,
381 PCI_SLOT(edev
->config_addr
& 0xFF),
382 PCI_FUNC(edev
->config_addr
& 0xFF),
383 pe
->addr
, pe
->parent
->addr
);
387 /* Create a new EEH PE */
389 pe
= eeh_pe_alloc(edev
->phb
, EEH_PE_VF
);
391 pe
= eeh_pe_alloc(edev
->phb
, EEH_PE_DEVICE
);
393 pr_err("%s: out of memory!\n", __func__
);
396 pe
->addr
= edev
->pe_config_addr
;
397 pe
->config_addr
= edev
->config_addr
;
400 * Put the new EEH PE into hierarchy tree. If the parent
401 * can't be found, the newly created PE will be attached
402 * to PHB directly. Otherwise, we have to associate the
403 * PE with its parent.
405 parent
= eeh_pe_get_parent(edev
);
407 parent
= eeh_phb_pe_get(edev
->phb
);
409 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
410 __func__
, edev
->phb
->global_number
);
419 * Put the newly created PE into the child list and
420 * link the EEH device accordingly.
422 list_add_tail(&pe
->child
, &parent
->child_list
);
423 list_add_tail(&edev
->list
, &pe
->edevs
);
425 pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
426 "Device PE#%x, Parent PE#%x\n",
427 edev
->phb
->global_number
,
428 edev
->config_addr
>> 8,
429 PCI_SLOT(edev
->config_addr
& 0xFF),
430 PCI_FUNC(edev
->config_addr
& 0xFF),
431 pe
->addr
, pe
->parent
->addr
);
437 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
440 * The PE hierarchy tree might be changed when doing PCI hotplug.
441 * Also, the PCI devices or buses could be removed from the system
442 * during EEH recovery. So we have to call the function remove the
443 * corresponding PE accordingly if necessary.
445 int eeh_rmv_from_parent_pe(struct eeh_dev
*edev
)
447 struct eeh_pe
*pe
, *parent
, *child
;
451 pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
452 __func__
, edev
->phb
->global_number
,
453 edev
->config_addr
>> 8,
454 PCI_SLOT(edev
->config_addr
& 0xFF),
455 PCI_FUNC(edev
->config_addr
& 0xFF));
459 /* Remove the EEH device */
460 pe
= eeh_dev_to_pe(edev
);
462 list_del(&edev
->list
);
465 * Check if the parent PE includes any EEH devices.
466 * If not, we should delete that. Also, we should
467 * delete the parent PE if it doesn't have associated
468 * child PEs and EEH devices.
472 if (pe
->type
& EEH_PE_PHB
)
475 if (!(pe
->state
& EEH_PE_KEEP
)) {
476 if (list_empty(&pe
->edevs
) &&
477 list_empty(&pe
->child_list
)) {
478 list_del(&pe
->child
);
484 if (list_empty(&pe
->edevs
)) {
486 list_for_each_entry(child
, &pe
->child_list
, child
) {
487 if (!(child
->type
& EEH_PE_INVALID
)) {
494 pe
->type
|= EEH_PE_INVALID
;
507 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
510 * We have time stamp for each PE to trace its time of getting
511 * frozen in last hour. The function should be called to update
512 * the time stamp on first error of the specific PE. On the other
513 * handle, we needn't account for errors happened in last hour.
515 void eeh_pe_update_time_stamp(struct eeh_pe
*pe
)
517 struct timeval tstamp
;
521 if (pe
->freeze_count
<= 0) {
522 pe
->freeze_count
= 0;
523 do_gettimeofday(&pe
->tstamp
);
525 do_gettimeofday(&tstamp
);
526 if (tstamp
.tv_sec
- pe
->tstamp
.tv_sec
> 3600) {
528 pe
->freeze_count
= 0;
534 * __eeh_pe_state_mark - Mark the state for the PE
538 * The function is used to mark the indicated state for the given
539 * PE. Also, the associated PCI devices will be put into IO frozen
542 static void *__eeh_pe_state_mark(void *data
, void *flag
)
544 struct eeh_pe
*pe
= (struct eeh_pe
*)data
;
545 int state
= *((int *)flag
);
546 struct eeh_dev
*edev
, *tmp
;
547 struct pci_dev
*pdev
;
549 /* Keep the state of permanently removed PE intact */
550 if (pe
->state
& EEH_PE_REMOVED
)
555 /* Offline PCI devices if applicable */
556 if (!(state
& EEH_PE_ISOLATED
))
559 eeh_pe_for_each_dev(pe
, edev
, tmp
) {
560 pdev
= eeh_dev_to_pci_dev(edev
);
562 pdev
->error_state
= pci_channel_io_frozen
;
565 /* Block PCI config access if required */
566 if (pe
->state
& EEH_PE_CFG_RESTRICTED
)
567 pe
->state
|= EEH_PE_CFG_BLOCKED
;
573 * eeh_pe_state_mark - Mark specified state for PE and its associated device
576 * EEH error affects the current PE and its child PEs. The function
577 * is used to mark appropriate state for the affected PEs and the
578 * associated devices.
580 void eeh_pe_state_mark(struct eeh_pe
*pe
, int state
)
582 eeh_pe_traverse(pe
, __eeh_pe_state_mark
, &state
);
584 EXPORT_SYMBOL_GPL(eeh_pe_state_mark
);
586 static void *__eeh_pe_dev_mode_mark(void *data
, void *flag
)
588 struct eeh_dev
*edev
= data
;
589 int mode
= *((int *)flag
);
597 * eeh_pe_dev_state_mark - Mark state for all device under the PE
600 * Mark specific state for all child devices of the PE.
602 void eeh_pe_dev_mode_mark(struct eeh_pe
*pe
, int mode
)
604 eeh_pe_dev_traverse(pe
, __eeh_pe_dev_mode_mark
, &mode
);
608 * __eeh_pe_state_clear - Clear state for the PE
612 * The function is used to clear the indicated state from the
613 * given PE. Besides, we also clear the check count of the PE
616 static void *__eeh_pe_state_clear(void *data
, void *flag
)
618 struct eeh_pe
*pe
= (struct eeh_pe
*)data
;
619 int state
= *((int *)flag
);
620 struct eeh_dev
*edev
, *tmp
;
621 struct pci_dev
*pdev
;
623 /* Keep the state of permanently removed PE intact */
624 if (pe
->state
& EEH_PE_REMOVED
)
630 * Special treatment on clearing isolated state. Clear
631 * check count since last isolation and put all affected
632 * devices to normal state.
634 if (!(state
& EEH_PE_ISOLATED
))
638 eeh_pe_for_each_dev(pe
, edev
, tmp
) {
639 pdev
= eeh_dev_to_pci_dev(edev
);
643 pdev
->error_state
= pci_channel_io_normal
;
646 /* Unblock PCI config access if required */
647 if (pe
->state
& EEH_PE_CFG_RESTRICTED
)
648 pe
->state
&= ~EEH_PE_CFG_BLOCKED
;
654 * eeh_pe_state_clear - Clear state for the PE and its children
656 * @state: state to be cleared
658 * When the PE and its children has been recovered from error,
659 * we need clear the error state for that. The function is used
662 void eeh_pe_state_clear(struct eeh_pe
*pe
, int state
)
664 eeh_pe_traverse(pe
, __eeh_pe_state_clear
, &state
);
668 * eeh_pe_state_mark_with_cfg - Mark PE state with unblocked config space
670 * @state: PE state to be set
672 * Set specified flag to PE and its child PEs. The PCI config space
673 * of some PEs is blocked automatically when EEH_PE_ISOLATED is set,
674 * which isn't needed in some situations. The function allows to set
675 * the specified flag to indicated PEs without blocking their PCI
678 void eeh_pe_state_mark_with_cfg(struct eeh_pe
*pe
, int state
)
680 eeh_pe_traverse(pe
, __eeh_pe_state_mark
, &state
);
681 if (!(state
& EEH_PE_ISOLATED
))
684 /* Clear EEH_PE_CFG_BLOCKED, which might be set just now */
685 state
= EEH_PE_CFG_BLOCKED
;
686 eeh_pe_traverse(pe
, __eeh_pe_state_clear
, &state
);
690 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
691 * buses assigned explicitly by firmware, and we probably have
692 * lost that after reset. So we have to delay the check until
693 * the PCI-CFG registers have been restored for the parent
696 * Don't use normal PCI-CFG accessors, which probably has been
697 * blocked on normal path during the stage. So we need utilize
698 * eeh operations, which is always permitted.
700 static void eeh_bridge_check_link(struct eeh_dev
*edev
)
702 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
708 * We only check root port and downstream ports of
711 if (!(edev
->mode
& (EEH_DEV_ROOT_PORT
| EEH_DEV_DS_PORT
)))
714 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
715 __func__
, edev
->phb
->global_number
,
716 edev
->config_addr
>> 8,
717 PCI_SLOT(edev
->config_addr
& 0xFF),
718 PCI_FUNC(edev
->config_addr
& 0xFF));
720 /* Check slot status */
721 cap
= edev
->pcie_cap
;
722 eeh_ops
->read_config(pdn
, cap
+ PCI_EXP_SLTSTA
, 2, &val
);
723 if (!(val
& PCI_EXP_SLTSTA_PDS
)) {
724 pr_debug(" No card in the slot (0x%04x) !\n", val
);
728 /* Check power status if we have the capability */
729 eeh_ops
->read_config(pdn
, cap
+ PCI_EXP_SLTCAP
, 2, &val
);
730 if (val
& PCI_EXP_SLTCAP_PCP
) {
731 eeh_ops
->read_config(pdn
, cap
+ PCI_EXP_SLTCTL
, 2, &val
);
732 if (val
& PCI_EXP_SLTCTL_PCC
) {
733 pr_debug(" In power-off state, power it on ...\n");
734 val
&= ~(PCI_EXP_SLTCTL_PCC
| PCI_EXP_SLTCTL_PIC
);
735 val
|= (0x0100 & PCI_EXP_SLTCTL_PIC
);
736 eeh_ops
->write_config(pdn
, cap
+ PCI_EXP_SLTCTL
, 2, val
);
742 eeh_ops
->read_config(pdn
, cap
+ PCI_EXP_LNKCTL
, 2, &val
);
743 val
&= ~PCI_EXP_LNKCTL_LD
;
744 eeh_ops
->write_config(pdn
, cap
+ PCI_EXP_LNKCTL
, 2, val
);
747 eeh_ops
->read_config(pdn
, cap
+ PCI_EXP_LNKCAP
, 4, &val
);
748 if (!(val
& PCI_EXP_LNKCAP_DLLLARC
)) {
749 pr_debug(" No link reporting capability (0x%08x) \n", val
);
754 /* Wait the link is up until timeout (5s) */
756 while (timeout
< 5000) {
760 eeh_ops
->read_config(pdn
, cap
+ PCI_EXP_LNKSTA
, 2, &val
);
761 if (val
& PCI_EXP_LNKSTA_DLLLA
)
765 if (val
& PCI_EXP_LNKSTA_DLLLA
)
766 pr_debug(" Link up (%s)\n",
767 (val
& PCI_EXP_LNKSTA_CLS_2_5GB
) ? "2.5GB" : "5GB");
769 pr_debug(" Link not ready (0x%04x)\n", val
);
772 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
773 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
775 static void eeh_restore_bridge_bars(struct eeh_dev
*edev
)
777 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
781 * Device BARs: 0x10 - 0x18
782 * Bus numbers and windows: 0x18 - 0x30
784 for (i
= 4; i
< 13; i
++)
785 eeh_ops
->write_config(pdn
, i
*4, 4, edev
->config_space
[i
]);
787 eeh_ops
->write_config(pdn
, 14*4, 4, edev
->config_space
[14]);
789 /* Cache line & Latency timer: 0xC 0xD */
790 eeh_ops
->write_config(pdn
, PCI_CACHE_LINE_SIZE
, 1,
791 SAVED_BYTE(PCI_CACHE_LINE_SIZE
));
792 eeh_ops
->write_config(pdn
, PCI_LATENCY_TIMER
, 1,
793 SAVED_BYTE(PCI_LATENCY_TIMER
));
794 /* Max latency, min grant, interrupt ping and line: 0x3C */
795 eeh_ops
->write_config(pdn
, 15*4, 4, edev
->config_space
[15]);
797 /* PCI Command: 0x4 */
798 eeh_ops
->write_config(pdn
, PCI_COMMAND
, 4, edev
->config_space
[1]);
800 /* Check the PCIe link is ready */
801 eeh_bridge_check_link(edev
);
804 static void eeh_restore_device_bars(struct eeh_dev
*edev
)
806 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
810 for (i
= 4; i
< 10; i
++)
811 eeh_ops
->write_config(pdn
, i
*4, 4, edev
->config_space
[i
]);
812 /* 12 == Expansion ROM Address */
813 eeh_ops
->write_config(pdn
, 12*4, 4, edev
->config_space
[12]);
815 eeh_ops
->write_config(pdn
, PCI_CACHE_LINE_SIZE
, 1,
816 SAVED_BYTE(PCI_CACHE_LINE_SIZE
));
817 eeh_ops
->write_config(pdn
, PCI_LATENCY_TIMER
, 1,
818 SAVED_BYTE(PCI_LATENCY_TIMER
));
820 /* max latency, min grant, interrupt pin and line */
821 eeh_ops
->write_config(pdn
, 15*4, 4, edev
->config_space
[15]);
824 * Restore PERR & SERR bits, some devices require it,
825 * don't touch the other command bits
827 eeh_ops
->read_config(pdn
, PCI_COMMAND
, 4, &cmd
);
828 if (edev
->config_space
[1] & PCI_COMMAND_PARITY
)
829 cmd
|= PCI_COMMAND_PARITY
;
831 cmd
&= ~PCI_COMMAND_PARITY
;
832 if (edev
->config_space
[1] & PCI_COMMAND_SERR
)
833 cmd
|= PCI_COMMAND_SERR
;
835 cmd
&= ~PCI_COMMAND_SERR
;
836 eeh_ops
->write_config(pdn
, PCI_COMMAND
, 4, cmd
);
840 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
844 * Loads the PCI configuration space base address registers,
845 * the expansion ROM base address, the latency timer, and etc.
846 * from the saved values in the device node.
848 static void *eeh_restore_one_device_bars(void *data
, void *flag
)
850 struct eeh_dev
*edev
= (struct eeh_dev
*)data
;
851 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
853 /* Do special restore for bridges */
854 if (edev
->mode
& EEH_DEV_BRIDGE
)
855 eeh_restore_bridge_bars(edev
);
857 eeh_restore_device_bars(edev
);
859 if (eeh_ops
->restore_config
&& pdn
)
860 eeh_ops
->restore_config(pdn
);
866 * eeh_pe_restore_bars - Restore the PCI config space info
869 * This routine performs a recursive walk to the children
870 * of this device as well.
872 void eeh_pe_restore_bars(struct eeh_pe
*pe
)
875 * We needn't take the EEH lock since eeh_pe_dev_traverse()
878 eeh_pe_dev_traverse(pe
, eeh_restore_one_device_bars
, NULL
);
882 * eeh_pe_loc_get - Retrieve location code binding to the given PE
885 * Retrieve the location code of the given PE. If the primary PE bus
886 * is root bus, we will grab location code from PHB device tree node
887 * or root port. Otherwise, the upstream bridge's device tree node
888 * of the primary PE bus will be checked for the location code.
890 const char *eeh_pe_loc_get(struct eeh_pe
*pe
)
892 struct pci_bus
*bus
= eeh_pe_bus_get(pe
);
893 struct device_node
*dn
;
894 const char *loc
= NULL
;
897 dn
= pci_bus_to_OF_node(bus
);
903 if (pci_is_root_bus(bus
))
904 loc
= of_get_property(dn
, "ibm,io-base-loc-code", NULL
);
906 loc
= of_get_property(dn
, "ibm,slot-location-code",
919 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
922 * Retrieve the PCI bus according to the given PE. Basically,
923 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
924 * primary PCI bus will be retrieved. The parent bus will be
925 * returned for BUS PE. However, we don't have associated PCI
928 struct pci_bus
*eeh_pe_bus_get(struct eeh_pe
*pe
)
930 struct eeh_dev
*edev
;
931 struct pci_dev
*pdev
;
933 if (pe
->type
& EEH_PE_PHB
)
936 /* The primary bus might be cached during probe time */
937 if (pe
->state
& EEH_PE_PRI_BUS
)
940 /* Retrieve the parent PCI bus of first (top) PCI device */
941 edev
= list_first_entry_or_null(&pe
->edevs
, struct eeh_dev
, list
);
942 pdev
= eeh_dev_to_pci_dev(edev
);