Linux 4.13.16
[linux/fpc-iii.git] / arch / powerpc / kernel / eeh_pe.c
blobcc4b206f77e422872e8e0691d2cc90900509d91e
1 /*
2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
35 static int eeh_pe_aux_size = 0;
36 static LIST_HEAD(eeh_phb_pe);
38 /**
39 * eeh_set_pe_aux_size - Set PE auxillary data size
40 * @size: PE auxillary data size
42 * Set PE auxillary data size
44 void eeh_set_pe_aux_size(int size)
46 if (size < 0)
47 return;
49 eeh_pe_aux_size = size;
52 /**
53 * eeh_pe_alloc - Allocate PE
54 * @phb: PCI controller
55 * @type: PE type
57 * Allocate PE instance dynamically.
59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
61 struct eeh_pe *pe;
62 size_t alloc_size;
64 alloc_size = sizeof(struct eeh_pe);
65 if (eeh_pe_aux_size) {
66 alloc_size = ALIGN(alloc_size, cache_line_size());
67 alloc_size += eeh_pe_aux_size;
70 /* Allocate PHB PE */
71 pe = kzalloc(alloc_size, GFP_KERNEL);
72 if (!pe) return NULL;
74 /* Initialize PHB PE */
75 pe->type = type;
76 pe->phb = phb;
77 INIT_LIST_HEAD(&pe->child_list);
78 INIT_LIST_HEAD(&pe->child);
79 INIT_LIST_HEAD(&pe->edevs);
81 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
82 cache_line_size());
83 return pe;
86 /**
87 * eeh_phb_pe_create - Create PHB PE
88 * @phb: PCI controller
90 * The function should be called while the PHB is detected during
91 * system boot or PCI hotplug in order to create PHB PE.
93 int eeh_phb_pe_create(struct pci_controller *phb)
95 struct eeh_pe *pe;
97 /* Allocate PHB PE */
98 pe = eeh_pe_alloc(phb, EEH_PE_PHB);
99 if (!pe) {
100 pr_err("%s: out of memory!\n", __func__);
101 return -ENOMEM;
104 /* Put it into the list */
105 list_add_tail(&pe->child, &eeh_phb_pe);
107 pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
109 return 0;
113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114 * @phb: PCI controller
116 * The overall PEs form hierarchy tree. The first layer of the
117 * hierarchy tree is composed of PHB PEs. The function is used
118 * to retrieve the corresponding PHB PE according to the given PHB.
120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
122 struct eeh_pe *pe;
124 list_for_each_entry(pe, &eeh_phb_pe, child) {
126 * Actually, we needn't check the type since
127 * the PE for PHB has been determined when that
128 * was created.
130 if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
131 return pe;
134 return NULL;
138 * eeh_pe_next - Retrieve the next PE in the tree
139 * @pe: current PE
140 * @root: root PE
142 * The function is used to retrieve the next PE in the
143 * hierarchy PE tree.
145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
146 struct eeh_pe *root)
148 struct list_head *next = pe->child_list.next;
150 if (next == &pe->child_list) {
151 while (1) {
152 if (pe == root)
153 return NULL;
154 next = pe->child.next;
155 if (next != &pe->parent->child_list)
156 break;
157 pe = pe->parent;
161 return list_entry(next, struct eeh_pe, child);
165 * eeh_pe_traverse - Traverse PEs in the specified PHB
166 * @root: root PE
167 * @fn: callback
168 * @flag: extra parameter to callback
170 * The function is used to traverse the specified PE and its
171 * child PEs. The traversing is to be terminated once the
172 * callback returns something other than NULL, or no more PEs
173 * to be traversed.
175 void *eeh_pe_traverse(struct eeh_pe *root,
176 eeh_traverse_func fn, void *flag)
178 struct eeh_pe *pe;
179 void *ret;
181 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
182 ret = fn(pe, flag);
183 if (ret) return ret;
186 return NULL;
190 * eeh_pe_dev_traverse - Traverse the devices from the PE
191 * @root: EEH PE
192 * @fn: function callback
193 * @flag: extra parameter to callback
195 * The function is used to traverse the devices of the specified
196 * PE and its child PEs.
198 void *eeh_pe_dev_traverse(struct eeh_pe *root,
199 eeh_traverse_func fn, void *flag)
201 struct eeh_pe *pe;
202 struct eeh_dev *edev, *tmp;
203 void *ret;
205 if (!root) {
206 pr_warn("%s: Invalid PE %p\n",
207 __func__, root);
208 return NULL;
211 /* Traverse root PE */
212 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
213 eeh_pe_for_each_dev(pe, edev, tmp) {
214 ret = fn(edev, flag);
215 if (ret)
216 return ret;
220 return NULL;
224 * __eeh_pe_get - Check the PE address
225 * @data: EEH PE
226 * @flag: EEH device
228 * For one particular PE, it can be identified by PE address
229 * or tranditional BDF address. BDF address is composed of
230 * Bus/Device/Function number. The extra data referred by flag
231 * indicates which type of address should be used.
233 static void *__eeh_pe_get(void *data, void *flag)
235 struct eeh_pe *pe = (struct eeh_pe *)data;
236 struct eeh_dev *edev = (struct eeh_dev *)flag;
238 /* Unexpected PHB PE */
239 if (pe->type & EEH_PE_PHB)
240 return NULL;
243 * We prefer PE address. For most cases, we should
244 * have non-zero PE address
246 if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
247 if (edev->pe_config_addr == pe->addr)
248 return pe;
249 } else {
250 if (edev->pe_config_addr &&
251 (edev->pe_config_addr == pe->addr))
252 return pe;
255 /* Try BDF address */
256 if (edev->config_addr &&
257 (edev->config_addr == pe->config_addr))
258 return pe;
260 return NULL;
264 * eeh_pe_get - Search PE based on the given address
265 * @edev: EEH device
267 * Search the corresponding PE based on the specified address which
268 * is included in the eeh device. The function is used to check if
269 * the associated PE has been created against the PE address. It's
270 * notable that the PE address has 2 format: traditional PE address
271 * which is composed of PCI bus/device/function number, or unified
272 * PE address.
274 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
276 struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
277 struct eeh_pe *pe;
279 pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
281 return pe;
285 * eeh_pe_get_parent - Retrieve the parent PE
286 * @edev: EEH device
288 * The whole PEs existing in the system are organized as hierarchy
289 * tree. The function is used to retrieve the parent PE according
290 * to the parent EEH device.
292 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
294 struct eeh_dev *parent;
295 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
298 * It might have the case for the indirect parent
299 * EEH device already having associated PE, but
300 * the direct parent EEH device doesn't have yet.
302 if (edev->physfn)
303 pdn = pci_get_pdn(edev->physfn);
304 else
305 pdn = pdn ? pdn->parent : NULL;
306 while (pdn) {
307 /* We're poking out of PCI territory */
308 parent = pdn_to_eeh_dev(pdn);
309 if (!parent)
310 return NULL;
312 if (parent->pe)
313 return parent->pe;
315 pdn = pdn->parent;
318 return NULL;
322 * eeh_add_to_parent_pe - Add EEH device to parent PE
323 * @edev: EEH device
325 * Add EEH device to the parent PE. If the parent PE already
326 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
327 * we have to create new PE to hold the EEH device and the new
328 * PE will be linked to its parent PE as well.
330 int eeh_add_to_parent_pe(struct eeh_dev *edev)
332 struct eeh_pe *pe, *parent;
334 /* Check if the PE number is valid */
335 if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
336 pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%x\n",
337 __func__, edev->config_addr, edev->phb->global_number);
338 return -EINVAL;
342 * Search the PE has been existing or not according
343 * to the PE address. If that has been existing, the
344 * PE should be composed of PCI bus and its subordinate
345 * components.
347 pe = eeh_pe_get(edev);
348 if (pe && !(pe->type & EEH_PE_INVALID)) {
349 /* Mark the PE as type of PCI bus */
350 pe->type = EEH_PE_BUS;
351 edev->pe = pe;
353 /* Put the edev to PE */
354 list_add_tail(&edev->list, &pe->edevs);
355 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
356 edev->phb->global_number,
357 edev->config_addr >> 8,
358 PCI_SLOT(edev->config_addr & 0xFF),
359 PCI_FUNC(edev->config_addr & 0xFF),
360 pe->addr);
361 return 0;
362 } else if (pe && (pe->type & EEH_PE_INVALID)) {
363 list_add_tail(&edev->list, &pe->edevs);
364 edev->pe = pe;
366 * We're running to here because of PCI hotplug caused by
367 * EEH recovery. We need clear EEH_PE_INVALID until the top.
369 parent = pe;
370 while (parent) {
371 if (!(parent->type & EEH_PE_INVALID))
372 break;
373 parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
374 parent = parent->parent;
377 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
378 "PE#%x, Parent PE#%x\n",
379 edev->phb->global_number,
380 edev->config_addr >> 8,
381 PCI_SLOT(edev->config_addr & 0xFF),
382 PCI_FUNC(edev->config_addr & 0xFF),
383 pe->addr, pe->parent->addr);
384 return 0;
387 /* Create a new EEH PE */
388 if (edev->physfn)
389 pe = eeh_pe_alloc(edev->phb, EEH_PE_VF);
390 else
391 pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
392 if (!pe) {
393 pr_err("%s: out of memory!\n", __func__);
394 return -ENOMEM;
396 pe->addr = edev->pe_config_addr;
397 pe->config_addr = edev->config_addr;
400 * Put the new EEH PE into hierarchy tree. If the parent
401 * can't be found, the newly created PE will be attached
402 * to PHB directly. Otherwise, we have to associate the
403 * PE with its parent.
405 parent = eeh_pe_get_parent(edev);
406 if (!parent) {
407 parent = eeh_phb_pe_get(edev->phb);
408 if (!parent) {
409 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
410 __func__, edev->phb->global_number);
411 edev->pe = NULL;
412 kfree(pe);
413 return -EEXIST;
416 pe->parent = parent;
419 * Put the newly created PE into the child list and
420 * link the EEH device accordingly.
422 list_add_tail(&pe->child, &parent->child_list);
423 list_add_tail(&edev->list, &pe->edevs);
424 edev->pe = pe;
425 pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
426 "Device PE#%x, Parent PE#%x\n",
427 edev->phb->global_number,
428 edev->config_addr >> 8,
429 PCI_SLOT(edev->config_addr & 0xFF),
430 PCI_FUNC(edev->config_addr & 0xFF),
431 pe->addr, pe->parent->addr);
433 return 0;
437 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
438 * @edev: EEH device
440 * The PE hierarchy tree might be changed when doing PCI hotplug.
441 * Also, the PCI devices or buses could be removed from the system
442 * during EEH recovery. So we have to call the function remove the
443 * corresponding PE accordingly if necessary.
445 int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
447 struct eeh_pe *pe, *parent, *child;
448 int cnt;
450 if (!edev->pe) {
451 pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
452 __func__, edev->phb->global_number,
453 edev->config_addr >> 8,
454 PCI_SLOT(edev->config_addr & 0xFF),
455 PCI_FUNC(edev->config_addr & 0xFF));
456 return -EEXIST;
459 /* Remove the EEH device */
460 pe = eeh_dev_to_pe(edev);
461 edev->pe = NULL;
462 list_del(&edev->list);
465 * Check if the parent PE includes any EEH devices.
466 * If not, we should delete that. Also, we should
467 * delete the parent PE if it doesn't have associated
468 * child PEs and EEH devices.
470 while (1) {
471 parent = pe->parent;
472 if (pe->type & EEH_PE_PHB)
473 break;
475 if (!(pe->state & EEH_PE_KEEP)) {
476 if (list_empty(&pe->edevs) &&
477 list_empty(&pe->child_list)) {
478 list_del(&pe->child);
479 kfree(pe);
480 } else {
481 break;
483 } else {
484 if (list_empty(&pe->edevs)) {
485 cnt = 0;
486 list_for_each_entry(child, &pe->child_list, child) {
487 if (!(child->type & EEH_PE_INVALID)) {
488 cnt++;
489 break;
493 if (!cnt)
494 pe->type |= EEH_PE_INVALID;
495 else
496 break;
500 pe = parent;
503 return 0;
507 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
508 * @pe: EEH PE
510 * We have time stamp for each PE to trace its time of getting
511 * frozen in last hour. The function should be called to update
512 * the time stamp on first error of the specific PE. On the other
513 * handle, we needn't account for errors happened in last hour.
515 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
517 struct timeval tstamp;
519 if (!pe) return;
521 if (pe->freeze_count <= 0) {
522 pe->freeze_count = 0;
523 do_gettimeofday(&pe->tstamp);
524 } else {
525 do_gettimeofday(&tstamp);
526 if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
527 pe->tstamp = tstamp;
528 pe->freeze_count = 0;
534 * __eeh_pe_state_mark - Mark the state for the PE
535 * @data: EEH PE
536 * @flag: state
538 * The function is used to mark the indicated state for the given
539 * PE. Also, the associated PCI devices will be put into IO frozen
540 * state as well.
542 static void *__eeh_pe_state_mark(void *data, void *flag)
544 struct eeh_pe *pe = (struct eeh_pe *)data;
545 int state = *((int *)flag);
546 struct eeh_dev *edev, *tmp;
547 struct pci_dev *pdev;
549 /* Keep the state of permanently removed PE intact */
550 if (pe->state & EEH_PE_REMOVED)
551 return NULL;
553 pe->state |= state;
555 /* Offline PCI devices if applicable */
556 if (!(state & EEH_PE_ISOLATED))
557 return NULL;
559 eeh_pe_for_each_dev(pe, edev, tmp) {
560 pdev = eeh_dev_to_pci_dev(edev);
561 if (pdev)
562 pdev->error_state = pci_channel_io_frozen;
565 /* Block PCI config access if required */
566 if (pe->state & EEH_PE_CFG_RESTRICTED)
567 pe->state |= EEH_PE_CFG_BLOCKED;
569 return NULL;
573 * eeh_pe_state_mark - Mark specified state for PE and its associated device
574 * @pe: EEH PE
576 * EEH error affects the current PE and its child PEs. The function
577 * is used to mark appropriate state for the affected PEs and the
578 * associated devices.
580 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
582 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
584 EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
586 static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
588 struct eeh_dev *edev = data;
589 int mode = *((int *)flag);
591 edev->mode |= mode;
593 return NULL;
597 * eeh_pe_dev_state_mark - Mark state for all device under the PE
598 * @pe: EEH PE
600 * Mark specific state for all child devices of the PE.
602 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
604 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
608 * __eeh_pe_state_clear - Clear state for the PE
609 * @data: EEH PE
610 * @flag: state
612 * The function is used to clear the indicated state from the
613 * given PE. Besides, we also clear the check count of the PE
614 * as well.
616 static void *__eeh_pe_state_clear(void *data, void *flag)
618 struct eeh_pe *pe = (struct eeh_pe *)data;
619 int state = *((int *)flag);
620 struct eeh_dev *edev, *tmp;
621 struct pci_dev *pdev;
623 /* Keep the state of permanently removed PE intact */
624 if (pe->state & EEH_PE_REMOVED)
625 return NULL;
627 pe->state &= ~state;
630 * Special treatment on clearing isolated state. Clear
631 * check count since last isolation and put all affected
632 * devices to normal state.
634 if (!(state & EEH_PE_ISOLATED))
635 return NULL;
637 pe->check_count = 0;
638 eeh_pe_for_each_dev(pe, edev, tmp) {
639 pdev = eeh_dev_to_pci_dev(edev);
640 if (!pdev)
641 continue;
643 pdev->error_state = pci_channel_io_normal;
646 /* Unblock PCI config access if required */
647 if (pe->state & EEH_PE_CFG_RESTRICTED)
648 pe->state &= ~EEH_PE_CFG_BLOCKED;
650 return NULL;
654 * eeh_pe_state_clear - Clear state for the PE and its children
655 * @pe: PE
656 * @state: state to be cleared
658 * When the PE and its children has been recovered from error,
659 * we need clear the error state for that. The function is used
660 * for the purpose.
662 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
664 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
668 * eeh_pe_state_mark_with_cfg - Mark PE state with unblocked config space
669 * @pe: PE
670 * @state: PE state to be set
672 * Set specified flag to PE and its child PEs. The PCI config space
673 * of some PEs is blocked automatically when EEH_PE_ISOLATED is set,
674 * which isn't needed in some situations. The function allows to set
675 * the specified flag to indicated PEs without blocking their PCI
676 * config space.
678 void eeh_pe_state_mark_with_cfg(struct eeh_pe *pe, int state)
680 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
681 if (!(state & EEH_PE_ISOLATED))
682 return;
684 /* Clear EEH_PE_CFG_BLOCKED, which might be set just now */
685 state = EEH_PE_CFG_BLOCKED;
686 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
690 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
691 * buses assigned explicitly by firmware, and we probably have
692 * lost that after reset. So we have to delay the check until
693 * the PCI-CFG registers have been restored for the parent
694 * bridge.
696 * Don't use normal PCI-CFG accessors, which probably has been
697 * blocked on normal path during the stage. So we need utilize
698 * eeh operations, which is always permitted.
700 static void eeh_bridge_check_link(struct eeh_dev *edev)
702 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
703 int cap;
704 uint32_t val;
705 int timeout = 0;
708 * We only check root port and downstream ports of
709 * PCIe switches
711 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
712 return;
714 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
715 __func__, edev->phb->global_number,
716 edev->config_addr >> 8,
717 PCI_SLOT(edev->config_addr & 0xFF),
718 PCI_FUNC(edev->config_addr & 0xFF));
720 /* Check slot status */
721 cap = edev->pcie_cap;
722 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
723 if (!(val & PCI_EXP_SLTSTA_PDS)) {
724 pr_debug(" No card in the slot (0x%04x) !\n", val);
725 return;
728 /* Check power status if we have the capability */
729 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
730 if (val & PCI_EXP_SLTCAP_PCP) {
731 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
732 if (val & PCI_EXP_SLTCTL_PCC) {
733 pr_debug(" In power-off state, power it on ...\n");
734 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
735 val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
736 eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
737 msleep(2 * 1000);
741 /* Enable link */
742 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
743 val &= ~PCI_EXP_LNKCTL_LD;
744 eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
746 /* Check link */
747 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
748 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
749 pr_debug(" No link reporting capability (0x%08x) \n", val);
750 msleep(1000);
751 return;
754 /* Wait the link is up until timeout (5s) */
755 timeout = 0;
756 while (timeout < 5000) {
757 msleep(20);
758 timeout += 20;
760 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
761 if (val & PCI_EXP_LNKSTA_DLLLA)
762 break;
765 if (val & PCI_EXP_LNKSTA_DLLLA)
766 pr_debug(" Link up (%s)\n",
767 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
768 else
769 pr_debug(" Link not ready (0x%04x)\n", val);
772 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
773 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
775 static void eeh_restore_bridge_bars(struct eeh_dev *edev)
777 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
778 int i;
781 * Device BARs: 0x10 - 0x18
782 * Bus numbers and windows: 0x18 - 0x30
784 for (i = 4; i < 13; i++)
785 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
786 /* Rom: 0x38 */
787 eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
789 /* Cache line & Latency timer: 0xC 0xD */
790 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
791 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
792 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
793 SAVED_BYTE(PCI_LATENCY_TIMER));
794 /* Max latency, min grant, interrupt ping and line: 0x3C */
795 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
797 /* PCI Command: 0x4 */
798 eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1]);
800 /* Check the PCIe link is ready */
801 eeh_bridge_check_link(edev);
804 static void eeh_restore_device_bars(struct eeh_dev *edev)
806 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
807 int i;
808 u32 cmd;
810 for (i = 4; i < 10; i++)
811 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
812 /* 12 == Expansion ROM Address */
813 eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
815 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
816 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
817 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
818 SAVED_BYTE(PCI_LATENCY_TIMER));
820 /* max latency, min grant, interrupt pin and line */
821 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
824 * Restore PERR & SERR bits, some devices require it,
825 * don't touch the other command bits
827 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
828 if (edev->config_space[1] & PCI_COMMAND_PARITY)
829 cmd |= PCI_COMMAND_PARITY;
830 else
831 cmd &= ~PCI_COMMAND_PARITY;
832 if (edev->config_space[1] & PCI_COMMAND_SERR)
833 cmd |= PCI_COMMAND_SERR;
834 else
835 cmd &= ~PCI_COMMAND_SERR;
836 eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
840 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
841 * @data: EEH device
842 * @flag: Unused
844 * Loads the PCI configuration space base address registers,
845 * the expansion ROM base address, the latency timer, and etc.
846 * from the saved values in the device node.
848 static void *eeh_restore_one_device_bars(void *data, void *flag)
850 struct eeh_dev *edev = (struct eeh_dev *)data;
851 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
853 /* Do special restore for bridges */
854 if (edev->mode & EEH_DEV_BRIDGE)
855 eeh_restore_bridge_bars(edev);
856 else
857 eeh_restore_device_bars(edev);
859 if (eeh_ops->restore_config && pdn)
860 eeh_ops->restore_config(pdn);
862 return NULL;
866 * eeh_pe_restore_bars - Restore the PCI config space info
867 * @pe: EEH PE
869 * This routine performs a recursive walk to the children
870 * of this device as well.
872 void eeh_pe_restore_bars(struct eeh_pe *pe)
875 * We needn't take the EEH lock since eeh_pe_dev_traverse()
876 * will take that.
878 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
882 * eeh_pe_loc_get - Retrieve location code binding to the given PE
883 * @pe: EEH PE
885 * Retrieve the location code of the given PE. If the primary PE bus
886 * is root bus, we will grab location code from PHB device tree node
887 * or root port. Otherwise, the upstream bridge's device tree node
888 * of the primary PE bus will be checked for the location code.
890 const char *eeh_pe_loc_get(struct eeh_pe *pe)
892 struct pci_bus *bus = eeh_pe_bus_get(pe);
893 struct device_node *dn;
894 const char *loc = NULL;
896 while (bus) {
897 dn = pci_bus_to_OF_node(bus);
898 if (!dn) {
899 bus = bus->parent;
900 continue;
903 if (pci_is_root_bus(bus))
904 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
905 else
906 loc = of_get_property(dn, "ibm,slot-location-code",
907 NULL);
909 if (loc)
910 return loc;
912 bus = bus->parent;
915 return "N/A";
919 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
920 * @pe: EEH PE
922 * Retrieve the PCI bus according to the given PE. Basically,
923 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
924 * primary PCI bus will be retrieved. The parent bus will be
925 * returned for BUS PE. However, we don't have associated PCI
926 * bus for DEVICE PE.
928 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
930 struct eeh_dev *edev;
931 struct pci_dev *pdev;
933 if (pe->type & EEH_PE_PHB)
934 return pe->phb->bus;
936 /* The primary bus might be cached during probe time */
937 if (pe->state & EEH_PE_PRI_BUS)
938 return pe->bus;
940 /* Retrieve the parent PCI bus of first (top) PCI device */
941 edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list);
942 pdev = eeh_dev_to_pci_dev(edev);
943 if (pdev)
944 return pdev->bus;
946 return NULL;