Linux 4.13.16
[linux/fpc-iii.git] / arch / powerpc / kernel / kprobes.c
blobbebc3007a793af02394909f47d29f30ab79c5b86
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26 * for PPC64
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/extable.h>
33 #include <linux/kdebug.h>
34 #include <linux/slab.h>
35 #include <asm/code-patching.h>
36 #include <asm/cacheflush.h>
37 #include <asm/sstep.h>
38 #include <asm/sections.h>
39 #include <linux/uaccess.h>
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
44 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
46 int is_current_kprobe_addr(unsigned long addr)
48 struct kprobe *p = kprobe_running();
49 return (p && (unsigned long)p->addr == addr) ? 1 : 0;
52 bool arch_within_kprobe_blacklist(unsigned long addr)
54 return (addr >= (unsigned long)__kprobes_text_start &&
55 addr < (unsigned long)__kprobes_text_end) ||
56 (addr >= (unsigned long)_stext &&
57 addr < (unsigned long)__head_end);
60 kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
62 kprobe_opcode_t *addr;
64 #ifdef PPC64_ELF_ABI_v2
65 /* PPC64 ABIv2 needs local entry point */
66 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
67 if (addr && !offset) {
68 #ifdef CONFIG_KPROBES_ON_FTRACE
69 unsigned long faddr;
71 * Per livepatch.h, ftrace location is always within the first
72 * 16 bytes of a function on powerpc with -mprofile-kernel.
74 faddr = ftrace_location_range((unsigned long)addr,
75 (unsigned long)addr + 16);
76 if (faddr)
77 addr = (kprobe_opcode_t *)faddr;
78 else
79 #endif
80 addr = (kprobe_opcode_t *)ppc_function_entry(addr);
82 #elif defined(PPC64_ELF_ABI_v1)
84 * 64bit powerpc ABIv1 uses function descriptors:
85 * - Check for the dot variant of the symbol first.
86 * - If that fails, try looking up the symbol provided.
88 * This ensures we always get to the actual symbol and not
89 * the descriptor.
91 * Also handle <module:symbol> format.
93 char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
94 const char *modsym;
95 bool dot_appended = false;
96 if ((modsym = strchr(name, ':')) != NULL) {
97 modsym++;
98 if (*modsym != '\0' && *modsym != '.') {
99 /* Convert to <module:.symbol> */
100 strncpy(dot_name, name, modsym - name);
101 dot_name[modsym - name] = '.';
102 dot_name[modsym - name + 1] = '\0';
103 strncat(dot_name, modsym,
104 sizeof(dot_name) - (modsym - name) - 2);
105 dot_appended = true;
106 } else {
107 dot_name[0] = '\0';
108 strncat(dot_name, name, sizeof(dot_name) - 1);
110 } else if (name[0] != '.') {
111 dot_name[0] = '.';
112 dot_name[1] = '\0';
113 strncat(dot_name, name, KSYM_NAME_LEN - 2);
114 dot_appended = true;
115 } else {
116 dot_name[0] = '\0';
117 strncat(dot_name, name, KSYM_NAME_LEN - 1);
119 addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
120 if (!addr && dot_appended) {
121 /* Let's try the original non-dot symbol lookup */
122 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
124 #else
125 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
126 #endif
128 return addr;
131 int arch_prepare_kprobe(struct kprobe *p)
133 int ret = 0;
134 kprobe_opcode_t insn = *p->addr;
136 if ((unsigned long)p->addr & 0x03) {
137 printk("Attempt to register kprobe at an unaligned address\n");
138 ret = -EINVAL;
139 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
140 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
141 ret = -EINVAL;
144 /* insn must be on a special executable page on ppc64. This is
145 * not explicitly required on ppc32 (right now), but it doesn't hurt */
146 if (!ret) {
147 p->ainsn.insn = get_insn_slot();
148 if (!p->ainsn.insn)
149 ret = -ENOMEM;
152 if (!ret) {
153 memcpy(p->ainsn.insn, p->addr,
154 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
155 p->opcode = *p->addr;
156 flush_icache_range((unsigned long)p->ainsn.insn,
157 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
160 p->ainsn.boostable = 0;
161 return ret;
163 NOKPROBE_SYMBOL(arch_prepare_kprobe);
165 void arch_arm_kprobe(struct kprobe *p)
167 patch_instruction(p->addr, BREAKPOINT_INSTRUCTION);
169 NOKPROBE_SYMBOL(arch_arm_kprobe);
171 void arch_disarm_kprobe(struct kprobe *p)
173 patch_instruction(p->addr, p->opcode);
175 NOKPROBE_SYMBOL(arch_disarm_kprobe);
177 void arch_remove_kprobe(struct kprobe *p)
179 if (p->ainsn.insn) {
180 free_insn_slot(p->ainsn.insn, 0);
181 p->ainsn.insn = NULL;
184 NOKPROBE_SYMBOL(arch_remove_kprobe);
186 static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
188 enable_single_step(regs);
191 * On powerpc we should single step on the original
192 * instruction even if the probed insn is a trap
193 * variant as values in regs could play a part in
194 * if the trap is taken or not
196 regs->nip = (unsigned long)p->ainsn.insn;
199 static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
201 kcb->prev_kprobe.kp = kprobe_running();
202 kcb->prev_kprobe.status = kcb->kprobe_status;
203 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
206 static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
208 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
209 kcb->kprobe_status = kcb->prev_kprobe.status;
210 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
213 static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
214 struct kprobe_ctlblk *kcb)
216 __this_cpu_write(current_kprobe, p);
217 kcb->kprobe_saved_msr = regs->msr;
220 bool arch_kprobe_on_func_entry(unsigned long offset)
222 #ifdef PPC64_ELF_ABI_v2
223 #ifdef CONFIG_KPROBES_ON_FTRACE
224 return offset <= 16;
225 #else
226 return offset <= 8;
227 #endif
228 #else
229 return !offset;
230 #endif
233 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
235 ri->ret_addr = (kprobe_opcode_t *)regs->link;
237 /* Replace the return addr with trampoline addr */
238 regs->link = (unsigned long)kretprobe_trampoline;
240 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
242 int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
244 int ret;
245 unsigned int insn = *p->ainsn.insn;
247 /* regs->nip is also adjusted if emulate_step returns 1 */
248 ret = emulate_step(regs, insn);
249 if (ret > 0) {
251 * Once this instruction has been boosted
252 * successfully, set the boostable flag
254 if (unlikely(p->ainsn.boostable == 0))
255 p->ainsn.boostable = 1;
256 } else if (ret < 0) {
258 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
259 * So, we should never get here... but, its still
260 * good to catch them, just in case...
262 printk("Can't step on instruction %x\n", insn);
263 BUG();
264 } else if (ret == 0)
265 /* This instruction can't be boosted */
266 p->ainsn.boostable = -1;
268 return ret;
270 NOKPROBE_SYMBOL(try_to_emulate);
272 int kprobe_handler(struct pt_regs *regs)
274 struct kprobe *p;
275 int ret = 0;
276 unsigned int *addr = (unsigned int *)regs->nip;
277 struct kprobe_ctlblk *kcb;
279 if (user_mode(regs))
280 return 0;
283 * We don't want to be preempted for the entire
284 * duration of kprobe processing
286 preempt_disable();
287 kcb = get_kprobe_ctlblk();
289 /* Check we're not actually recursing */
290 if (kprobe_running()) {
291 p = get_kprobe(addr);
292 if (p) {
293 kprobe_opcode_t insn = *p->ainsn.insn;
294 if (kcb->kprobe_status == KPROBE_HIT_SS &&
295 is_trap(insn)) {
296 /* Turn off 'trace' bits */
297 regs->msr &= ~MSR_SINGLESTEP;
298 regs->msr |= kcb->kprobe_saved_msr;
299 goto no_kprobe;
301 /* We have reentered the kprobe_handler(), since
302 * another probe was hit while within the handler.
303 * We here save the original kprobes variables and
304 * just single step on the instruction of the new probe
305 * without calling any user handlers.
307 save_previous_kprobe(kcb);
308 set_current_kprobe(p, regs, kcb);
309 kprobes_inc_nmissed_count(p);
310 kcb->kprobe_status = KPROBE_REENTER;
311 if (p->ainsn.boostable >= 0) {
312 ret = try_to_emulate(p, regs);
314 if (ret > 0) {
315 restore_previous_kprobe(kcb);
316 preempt_enable_no_resched();
317 return 1;
320 prepare_singlestep(p, regs);
321 return 1;
322 } else {
323 if (*addr != BREAKPOINT_INSTRUCTION) {
324 /* If trap variant, then it belongs not to us */
325 kprobe_opcode_t cur_insn = *addr;
326 if (is_trap(cur_insn))
327 goto no_kprobe;
328 /* The breakpoint instruction was removed by
329 * another cpu right after we hit, no further
330 * handling of this interrupt is appropriate
332 ret = 1;
333 goto no_kprobe;
335 p = __this_cpu_read(current_kprobe);
336 if (p->break_handler && p->break_handler(p, regs)) {
337 if (!skip_singlestep(p, regs, kcb))
338 goto ss_probe;
339 ret = 1;
342 goto no_kprobe;
345 p = get_kprobe(addr);
346 if (!p) {
347 if (*addr != BREAKPOINT_INSTRUCTION) {
349 * PowerPC has multiple variants of the "trap"
350 * instruction. If the current instruction is a
351 * trap variant, it could belong to someone else
353 kprobe_opcode_t cur_insn = *addr;
354 if (is_trap(cur_insn))
355 goto no_kprobe;
357 * The breakpoint instruction was removed right
358 * after we hit it. Another cpu has removed
359 * either a probepoint or a debugger breakpoint
360 * at this address. In either case, no further
361 * handling of this interrupt is appropriate.
363 ret = 1;
365 /* Not one of ours: let kernel handle it */
366 goto no_kprobe;
369 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
370 set_current_kprobe(p, regs, kcb);
371 if (p->pre_handler && p->pre_handler(p, regs))
372 /* handler has already set things up, so skip ss setup */
373 return 1;
375 ss_probe:
376 if (p->ainsn.boostable >= 0) {
377 ret = try_to_emulate(p, regs);
379 if (ret > 0) {
380 if (p->post_handler)
381 p->post_handler(p, regs, 0);
383 kcb->kprobe_status = KPROBE_HIT_SSDONE;
384 reset_current_kprobe();
385 preempt_enable_no_resched();
386 return 1;
389 prepare_singlestep(p, regs);
390 kcb->kprobe_status = KPROBE_HIT_SS;
391 return 1;
393 no_kprobe:
394 preempt_enable_no_resched();
395 return ret;
397 NOKPROBE_SYMBOL(kprobe_handler);
400 * Function return probe trampoline:
401 * - init_kprobes() establishes a probepoint here
402 * - When the probed function returns, this probe
403 * causes the handlers to fire
405 asm(".global kretprobe_trampoline\n"
406 ".type kretprobe_trampoline, @function\n"
407 "kretprobe_trampoline:\n"
408 "nop\n"
409 "blr\n"
410 ".size kretprobe_trampoline, .-kretprobe_trampoline\n");
413 * Called when the probe at kretprobe trampoline is hit
415 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
417 struct kretprobe_instance *ri = NULL;
418 struct hlist_head *head, empty_rp;
419 struct hlist_node *tmp;
420 unsigned long flags, orig_ret_address = 0;
421 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
423 INIT_HLIST_HEAD(&empty_rp);
424 kretprobe_hash_lock(current, &head, &flags);
427 * It is possible to have multiple instances associated with a given
428 * task either because an multiple functions in the call path
429 * have a return probe installed on them, and/or more than one return
430 * return probe was registered for a target function.
432 * We can handle this because:
433 * - instances are always inserted at the head of the list
434 * - when multiple return probes are registered for the same
435 * function, the first instance's ret_addr will point to the
436 * real return address, and all the rest will point to
437 * kretprobe_trampoline
439 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
440 if (ri->task != current)
441 /* another task is sharing our hash bucket */
442 continue;
444 if (ri->rp && ri->rp->handler)
445 ri->rp->handler(ri, regs);
447 orig_ret_address = (unsigned long)ri->ret_addr;
448 recycle_rp_inst(ri, &empty_rp);
450 if (orig_ret_address != trampoline_address)
452 * This is the real return address. Any other
453 * instances associated with this task are for
454 * other calls deeper on the call stack
456 break;
459 kretprobe_assert(ri, orig_ret_address, trampoline_address);
460 regs->nip = orig_ret_address;
462 * Make LR point to the orig_ret_address.
463 * When the 'nop' inside the kretprobe_trampoline
464 * is optimized, we can do a 'blr' after executing the
465 * detour buffer code.
467 regs->link = orig_ret_address;
469 reset_current_kprobe();
470 kretprobe_hash_unlock(current, &flags);
471 preempt_enable_no_resched();
473 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
474 hlist_del(&ri->hlist);
475 kfree(ri);
478 * By returning a non-zero value, we are telling
479 * kprobe_handler() that we don't want the post_handler
480 * to run (and have re-enabled preemption)
482 return 1;
484 NOKPROBE_SYMBOL(trampoline_probe_handler);
487 * Called after single-stepping. p->addr is the address of the
488 * instruction whose first byte has been replaced by the "breakpoint"
489 * instruction. To avoid the SMP problems that can occur when we
490 * temporarily put back the original opcode to single-step, we
491 * single-stepped a copy of the instruction. The address of this
492 * copy is p->ainsn.insn.
494 int kprobe_post_handler(struct pt_regs *regs)
496 struct kprobe *cur = kprobe_running();
497 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
499 if (!cur || user_mode(regs))
500 return 0;
502 /* make sure we got here for instruction we have a kprobe on */
503 if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
504 return 0;
506 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
507 kcb->kprobe_status = KPROBE_HIT_SSDONE;
508 cur->post_handler(cur, regs, 0);
511 /* Adjust nip to after the single-stepped instruction */
512 regs->nip = (unsigned long)cur->addr + 4;
513 regs->msr |= kcb->kprobe_saved_msr;
515 /*Restore back the original saved kprobes variables and continue. */
516 if (kcb->kprobe_status == KPROBE_REENTER) {
517 restore_previous_kprobe(kcb);
518 goto out;
520 reset_current_kprobe();
521 out:
522 preempt_enable_no_resched();
525 * if somebody else is singlestepping across a probe point, msr
526 * will have DE/SE set, in which case, continue the remaining processing
527 * of do_debug, as if this is not a probe hit.
529 if (regs->msr & MSR_SINGLESTEP)
530 return 0;
532 return 1;
534 NOKPROBE_SYMBOL(kprobe_post_handler);
536 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
538 struct kprobe *cur = kprobe_running();
539 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
540 const struct exception_table_entry *entry;
542 switch(kcb->kprobe_status) {
543 case KPROBE_HIT_SS:
544 case KPROBE_REENTER:
546 * We are here because the instruction being single
547 * stepped caused a page fault. We reset the current
548 * kprobe and the nip points back to the probe address
549 * and allow the page fault handler to continue as a
550 * normal page fault.
552 regs->nip = (unsigned long)cur->addr;
553 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
554 regs->msr |= kcb->kprobe_saved_msr;
555 if (kcb->kprobe_status == KPROBE_REENTER)
556 restore_previous_kprobe(kcb);
557 else
558 reset_current_kprobe();
559 preempt_enable_no_resched();
560 break;
561 case KPROBE_HIT_ACTIVE:
562 case KPROBE_HIT_SSDONE:
564 * We increment the nmissed count for accounting,
565 * we can also use npre/npostfault count for accounting
566 * these specific fault cases.
568 kprobes_inc_nmissed_count(cur);
571 * We come here because instructions in the pre/post
572 * handler caused the page_fault, this could happen
573 * if handler tries to access user space by
574 * copy_from_user(), get_user() etc. Let the
575 * user-specified handler try to fix it first.
577 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
578 return 1;
581 * In case the user-specified fault handler returned
582 * zero, try to fix up.
584 if ((entry = search_exception_tables(regs->nip)) != NULL) {
585 regs->nip = extable_fixup(entry);
586 return 1;
590 * fixup_exception() could not handle it,
591 * Let do_page_fault() fix it.
593 break;
594 default:
595 break;
597 return 0;
599 NOKPROBE_SYMBOL(kprobe_fault_handler);
601 unsigned long arch_deref_entry_point(void *entry)
603 #ifdef PPC64_ELF_ABI_v1
604 if (!kernel_text_address((unsigned long)entry))
605 return ppc_global_function_entry(entry);
606 else
607 #endif
608 return (unsigned long)entry;
610 NOKPROBE_SYMBOL(arch_deref_entry_point);
612 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
614 struct jprobe *jp = container_of(p, struct jprobe, kp);
615 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
617 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
619 /* setup return addr to the jprobe handler routine */
620 regs->nip = arch_deref_entry_point(jp->entry);
621 #ifdef PPC64_ELF_ABI_v2
622 regs->gpr[12] = (unsigned long)jp->entry;
623 #elif defined(PPC64_ELF_ABI_v1)
624 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
625 #endif
628 * jprobes use jprobe_return() which skips the normal return
629 * path of the function, and this messes up the accounting of the
630 * function graph tracer.
632 * Pause function graph tracing while performing the jprobe function.
634 pause_graph_tracing();
636 return 1;
638 NOKPROBE_SYMBOL(setjmp_pre_handler);
640 void __used jprobe_return(void)
642 asm volatile("trap" ::: "memory");
644 NOKPROBE_SYMBOL(jprobe_return);
646 static void __used jprobe_return_end(void)
649 NOKPROBE_SYMBOL(jprobe_return_end);
651 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
653 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
656 * FIXME - we should ideally be validating that we got here 'cos
657 * of the "trap" in jprobe_return() above, before restoring the
658 * saved regs...
660 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
661 /* It's OK to start function graph tracing again */
662 unpause_graph_tracing();
663 preempt_enable_no_resched();
664 return 1;
666 NOKPROBE_SYMBOL(longjmp_break_handler);
668 static struct kprobe trampoline_p = {
669 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
670 .pre_handler = trampoline_probe_handler
673 int __init arch_init_kprobes(void)
675 return register_kprobe(&trampoline_p);
678 int arch_trampoline_kprobe(struct kprobe *p)
680 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
681 return 1;
683 return 0;
685 NOKPROBE_SYMBOL(arch_trampoline_kprobe);