3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11 * and Paul Mackerras (paulus@samba.org).
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
37 #include <linux/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/switch_to.h>
42 #include <asm/asm-prototypes.h>
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
48 * The parameter save area on the stack is used to store arguments being passed
49 * to callee function and is located at fixed offset from stack pointer.
52 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
53 #else /* CONFIG_PPC32 */
54 #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
57 struct pt_regs_offset
{
62 #define STR(s) #s /* convert to string */
63 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
64 #define GPR_OFFSET_NAME(num) \
65 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
66 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
67 #define REG_OFFSET_END {.name = NULL, .offset = 0}
69 #define TVSO(f) (offsetof(struct thread_vr_state, f))
70 #define TFSO(f) (offsetof(struct thread_fp_state, f))
71 #define TSO(f) (offsetof(struct thread_struct, f))
73 static const struct pt_regs_offset regoffset_table
[] = {
106 REG_OFFSET_NAME(nip
),
107 REG_OFFSET_NAME(msr
),
108 REG_OFFSET_NAME(ctr
),
109 REG_OFFSET_NAME(link
),
110 REG_OFFSET_NAME(xer
),
111 REG_OFFSET_NAME(ccr
),
113 REG_OFFSET_NAME(softe
),
117 REG_OFFSET_NAME(trap
),
118 REG_OFFSET_NAME(dar
),
119 REG_OFFSET_NAME(dsisr
),
123 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
124 static void flush_tmregs_to_thread(struct task_struct
*tsk
)
127 * If task is not current, it will have been flushed already to
128 * it's thread_struct during __switch_to().
130 * A reclaim flushes ALL the state or if not in TM save TM SPRs
131 * in the appropriate thread structures from live.
134 if ((!cpu_has_feature(CPU_FTR_TM
)) || (tsk
!= current
))
137 if (MSR_TM_SUSPENDED(mfmsr())) {
138 tm_reclaim_current(TM_CAUSE_SIGNAL
);
141 tm_save_sprs(&(tsk
->thread
));
145 static inline void flush_tmregs_to_thread(struct task_struct
*tsk
) { }
149 * regs_query_register_offset() - query register offset from its name
150 * @name: the name of a register
152 * regs_query_register_offset() returns the offset of a register in struct
153 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
155 int regs_query_register_offset(const char *name
)
157 const struct pt_regs_offset
*roff
;
158 for (roff
= regoffset_table
; roff
->name
!= NULL
; roff
++)
159 if (!strcmp(roff
->name
, name
))
165 * regs_query_register_name() - query register name from its offset
166 * @offset: the offset of a register in struct pt_regs.
168 * regs_query_register_name() returns the name of a register from its
169 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
171 const char *regs_query_register_name(unsigned int offset
)
173 const struct pt_regs_offset
*roff
;
174 for (roff
= regoffset_table
; roff
->name
!= NULL
; roff
++)
175 if (roff
->offset
== offset
)
181 * does not yet catch signals sent when the child dies.
182 * in exit.c or in signal.c.
186 * Set of msr bits that gdb can change on behalf of a process.
188 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
189 #define MSR_DEBUGCHANGE 0
191 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
195 * Max register writeable via put_reg
198 #define PT_MAX_PUT_REG PT_MQ
200 #define PT_MAX_PUT_REG PT_CCR
203 static unsigned long get_user_msr(struct task_struct
*task
)
205 return task
->thread
.regs
->msr
| task
->thread
.fpexc_mode
;
208 static int set_user_msr(struct task_struct
*task
, unsigned long msr
)
210 task
->thread
.regs
->msr
&= ~MSR_DEBUGCHANGE
;
211 task
->thread
.regs
->msr
|= msr
& MSR_DEBUGCHANGE
;
215 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
216 static unsigned long get_user_ckpt_msr(struct task_struct
*task
)
218 return task
->thread
.ckpt_regs
.msr
| task
->thread
.fpexc_mode
;
221 static int set_user_ckpt_msr(struct task_struct
*task
, unsigned long msr
)
223 task
->thread
.ckpt_regs
.msr
&= ~MSR_DEBUGCHANGE
;
224 task
->thread
.ckpt_regs
.msr
|= msr
& MSR_DEBUGCHANGE
;
228 static int set_user_ckpt_trap(struct task_struct
*task
, unsigned long trap
)
230 task
->thread
.ckpt_regs
.trap
= trap
& 0xfff0;
236 static int get_user_dscr(struct task_struct
*task
, unsigned long *data
)
238 *data
= task
->thread
.dscr
;
242 static int set_user_dscr(struct task_struct
*task
, unsigned long dscr
)
244 task
->thread
.dscr
= dscr
;
245 task
->thread
.dscr_inherit
= 1;
249 static int get_user_dscr(struct task_struct
*task
, unsigned long *data
)
254 static int set_user_dscr(struct task_struct
*task
, unsigned long dscr
)
261 * We prevent mucking around with the reserved area of trap
262 * which are used internally by the kernel.
264 static int set_user_trap(struct task_struct
*task
, unsigned long trap
)
266 task
->thread
.regs
->trap
= trap
& 0xfff0;
271 * Get contents of register REGNO in task TASK.
273 int ptrace_get_reg(struct task_struct
*task
, int regno
, unsigned long *data
)
275 if ((task
->thread
.regs
== NULL
) || !data
)
278 if (regno
== PT_MSR
) {
279 *data
= get_user_msr(task
);
283 if (regno
== PT_DSCR
)
284 return get_user_dscr(task
, data
);
286 if (regno
< (sizeof(struct pt_regs
) / sizeof(unsigned long))) {
287 *data
= ((unsigned long *)task
->thread
.regs
)[regno
];
295 * Write contents of register REGNO in task TASK.
297 int ptrace_put_reg(struct task_struct
*task
, int regno
, unsigned long data
)
299 if (task
->thread
.regs
== NULL
)
303 return set_user_msr(task
, data
);
304 if (regno
== PT_TRAP
)
305 return set_user_trap(task
, data
);
306 if (regno
== PT_DSCR
)
307 return set_user_dscr(task
, data
);
309 if (regno
<= PT_MAX_PUT_REG
) {
310 ((unsigned long *)task
->thread
.regs
)[regno
] = data
;
316 static int gpr_get(struct task_struct
*target
, const struct user_regset
*regset
,
317 unsigned int pos
, unsigned int count
,
318 void *kbuf
, void __user
*ubuf
)
322 if (target
->thread
.regs
== NULL
)
325 if (!FULL_REGS(target
->thread
.regs
)) {
326 /* We have a partial register set. Fill 14-31 with bogus values */
327 for (i
= 14; i
< 32; i
++)
328 target
->thread
.regs
->gpr
[i
] = NV_REG_POISON
;
331 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
333 0, offsetof(struct pt_regs
, msr
));
335 unsigned long msr
= get_user_msr(target
);
336 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, &msr
,
337 offsetof(struct pt_regs
, msr
),
338 offsetof(struct pt_regs
, msr
) +
342 BUILD_BUG_ON(offsetof(struct pt_regs
, orig_gpr3
) !=
343 offsetof(struct pt_regs
, msr
) + sizeof(long));
346 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
347 &target
->thread
.regs
->orig_gpr3
,
348 offsetof(struct pt_regs
, orig_gpr3
),
349 sizeof(struct pt_regs
));
351 ret
= user_regset_copyout_zero(&pos
, &count
, &kbuf
, &ubuf
,
352 sizeof(struct pt_regs
), -1);
357 static int gpr_set(struct task_struct
*target
, const struct user_regset
*regset
,
358 unsigned int pos
, unsigned int count
,
359 const void *kbuf
, const void __user
*ubuf
)
364 if (target
->thread
.regs
== NULL
)
367 CHECK_FULL_REGS(target
->thread
.regs
);
369 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
371 0, PT_MSR
* sizeof(reg
));
373 if (!ret
&& count
> 0) {
374 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, ®
,
375 PT_MSR
* sizeof(reg
),
376 (PT_MSR
+ 1) * sizeof(reg
));
378 ret
= set_user_msr(target
, reg
);
381 BUILD_BUG_ON(offsetof(struct pt_regs
, orig_gpr3
) !=
382 offsetof(struct pt_regs
, msr
) + sizeof(long));
385 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
386 &target
->thread
.regs
->orig_gpr3
,
387 PT_ORIG_R3
* sizeof(reg
),
388 (PT_MAX_PUT_REG
+ 1) * sizeof(reg
));
390 if (PT_MAX_PUT_REG
+ 1 < PT_TRAP
&& !ret
)
391 ret
= user_regset_copyin_ignore(
392 &pos
, &count
, &kbuf
, &ubuf
,
393 (PT_MAX_PUT_REG
+ 1) * sizeof(reg
),
394 PT_TRAP
* sizeof(reg
));
396 if (!ret
&& count
> 0) {
397 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, ®
,
398 PT_TRAP
* sizeof(reg
),
399 (PT_TRAP
+ 1) * sizeof(reg
));
401 ret
= set_user_trap(target
, reg
);
405 ret
= user_regset_copyin_ignore(
406 &pos
, &count
, &kbuf
, &ubuf
,
407 (PT_TRAP
+ 1) * sizeof(reg
), -1);
413 * Regardless of transactions, 'fp_state' holds the current running
414 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
415 * value of all FPR registers for the current transaction.
417 * Userspace interface buffer layout:
424 static int fpr_get(struct task_struct
*target
, const struct user_regset
*regset
,
425 unsigned int pos
, unsigned int count
,
426 void *kbuf
, void __user
*ubuf
)
432 flush_fp_to_thread(target
);
434 /* copy to local buffer then write that out */
435 for (i
= 0; i
< 32 ; i
++)
436 buf
[i
] = target
->thread
.TS_FPR(i
);
437 buf
[32] = target
->thread
.fp_state
.fpscr
;
438 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, buf
, 0, -1);
440 BUILD_BUG_ON(offsetof(struct thread_fp_state
, fpscr
) !=
441 offsetof(struct thread_fp_state
, fpr
[32]));
443 flush_fp_to_thread(target
);
445 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
446 &target
->thread
.fp_state
, 0, -1);
451 * Regardless of transactions, 'fp_state' holds the current running
452 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
453 * value of all FPR registers for the current transaction.
455 * Userspace interface buffer layout:
463 static int fpr_set(struct task_struct
*target
, const struct user_regset
*regset
,
464 unsigned int pos
, unsigned int count
,
465 const void *kbuf
, const void __user
*ubuf
)
471 flush_fp_to_thread(target
);
473 for (i
= 0; i
< 32 ; i
++)
474 buf
[i
] = target
->thread
.TS_FPR(i
);
475 buf
[32] = target
->thread
.fp_state
.fpscr
;
477 /* copy to local buffer then write that out */
478 i
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, buf
, 0, -1);
482 for (i
= 0; i
< 32 ; i
++)
483 target
->thread
.TS_FPR(i
) = buf
[i
];
484 target
->thread
.fp_state
.fpscr
= buf
[32];
487 BUILD_BUG_ON(offsetof(struct thread_fp_state
, fpscr
) !=
488 offsetof(struct thread_fp_state
, fpr
[32]));
490 flush_fp_to_thread(target
);
492 return user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
493 &target
->thread
.fp_state
, 0, -1);
497 #ifdef CONFIG_ALTIVEC
499 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
500 * The transfer totals 34 quadword. Quadwords 0-31 contain the
501 * corresponding vector registers. Quadword 32 contains the vscr as the
502 * last word (offset 12) within that quadword. Quadword 33 contains the
503 * vrsave as the first word (offset 0) within the quadword.
505 * This definition of the VMX state is compatible with the current PPC32
506 * ptrace interface. This allows signal handling and ptrace to use the
507 * same structures. This also simplifies the implementation of a bi-arch
508 * (combined (32- and 64-bit) gdb.
511 static int vr_active(struct task_struct
*target
,
512 const struct user_regset
*regset
)
514 flush_altivec_to_thread(target
);
515 return target
->thread
.used_vr
? regset
->n
: 0;
519 * Regardless of transactions, 'vr_state' holds the current running
520 * value of all the VMX registers and 'ckvr_state' holds the last
521 * checkpointed value of all the VMX registers for the current
522 * transaction to fall back on in case it aborts.
524 * Userspace interface buffer layout:
532 static int vr_get(struct task_struct
*target
, const struct user_regset
*regset
,
533 unsigned int pos
, unsigned int count
,
534 void *kbuf
, void __user
*ubuf
)
538 flush_altivec_to_thread(target
);
540 BUILD_BUG_ON(offsetof(struct thread_vr_state
, vscr
) !=
541 offsetof(struct thread_vr_state
, vr
[32]));
543 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
544 &target
->thread
.vr_state
, 0,
545 33 * sizeof(vector128
));
548 * Copy out only the low-order word of vrsave.
554 memset(&vrsave
, 0, sizeof(vrsave
));
556 vrsave
.word
= target
->thread
.vrsave
;
558 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, &vrsave
,
559 33 * sizeof(vector128
), -1);
566 * Regardless of transactions, 'vr_state' holds the current running
567 * value of all the VMX registers and 'ckvr_state' holds the last
568 * checkpointed value of all the VMX registers for the current
569 * transaction to fall back on in case it aborts.
571 * Userspace interface buffer layout:
579 static int vr_set(struct task_struct
*target
, const struct user_regset
*regset
,
580 unsigned int pos
, unsigned int count
,
581 const void *kbuf
, const void __user
*ubuf
)
585 flush_altivec_to_thread(target
);
587 BUILD_BUG_ON(offsetof(struct thread_vr_state
, vscr
) !=
588 offsetof(struct thread_vr_state
, vr
[32]));
590 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
591 &target
->thread
.vr_state
, 0,
592 33 * sizeof(vector128
));
593 if (!ret
&& count
> 0) {
595 * We use only the first word of vrsave.
601 memset(&vrsave
, 0, sizeof(vrsave
));
603 vrsave
.word
= target
->thread
.vrsave
;
605 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, &vrsave
,
606 33 * sizeof(vector128
), -1);
608 target
->thread
.vrsave
= vrsave
.word
;
613 #endif /* CONFIG_ALTIVEC */
617 * Currently to set and and get all the vsx state, you need to call
618 * the fp and VMX calls as well. This only get/sets the lower 32
619 * 128bit VSX registers.
622 static int vsr_active(struct task_struct
*target
,
623 const struct user_regset
*regset
)
625 flush_vsx_to_thread(target
);
626 return target
->thread
.used_vsr
? regset
->n
: 0;
630 * Regardless of transactions, 'fp_state' holds the current running
631 * value of all FPR registers and 'ckfp_state' holds the last
632 * checkpointed value of all FPR registers for the current
635 * Userspace interface buffer layout:
641 static int vsr_get(struct task_struct
*target
, const struct user_regset
*regset
,
642 unsigned int pos
, unsigned int count
,
643 void *kbuf
, void __user
*ubuf
)
648 flush_tmregs_to_thread(target
);
649 flush_fp_to_thread(target
);
650 flush_altivec_to_thread(target
);
651 flush_vsx_to_thread(target
);
653 for (i
= 0; i
< 32 ; i
++)
654 buf
[i
] = target
->thread
.fp_state
.fpr
[i
][TS_VSRLOWOFFSET
];
656 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
657 buf
, 0, 32 * sizeof(double));
663 * Regardless of transactions, 'fp_state' holds the current running
664 * value of all FPR registers and 'ckfp_state' holds the last
665 * checkpointed value of all FPR registers for the current
668 * Userspace interface buffer layout:
674 static int vsr_set(struct task_struct
*target
, const struct user_regset
*regset
,
675 unsigned int pos
, unsigned int count
,
676 const void *kbuf
, const void __user
*ubuf
)
681 flush_tmregs_to_thread(target
);
682 flush_fp_to_thread(target
);
683 flush_altivec_to_thread(target
);
684 flush_vsx_to_thread(target
);
686 for (i
= 0; i
< 32 ; i
++)
687 buf
[i
] = target
->thread
.fp_state
.fpr
[i
][TS_VSRLOWOFFSET
];
689 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
690 buf
, 0, 32 * sizeof(double));
692 for (i
= 0; i
< 32 ; i
++)
693 target
->thread
.fp_state
.fpr
[i
][TS_VSRLOWOFFSET
] = buf
[i
];
697 #endif /* CONFIG_VSX */
702 * For get_evrregs/set_evrregs functions 'data' has the following layout:
711 static int evr_active(struct task_struct
*target
,
712 const struct user_regset
*regset
)
714 flush_spe_to_thread(target
);
715 return target
->thread
.used_spe
? regset
->n
: 0;
718 static int evr_get(struct task_struct
*target
, const struct user_regset
*regset
,
719 unsigned int pos
, unsigned int count
,
720 void *kbuf
, void __user
*ubuf
)
724 flush_spe_to_thread(target
);
726 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
728 0, sizeof(target
->thread
.evr
));
730 BUILD_BUG_ON(offsetof(struct thread_struct
, acc
) + sizeof(u64
) !=
731 offsetof(struct thread_struct
, spefscr
));
734 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
736 sizeof(target
->thread
.evr
), -1);
741 static int evr_set(struct task_struct
*target
, const struct user_regset
*regset
,
742 unsigned int pos
, unsigned int count
,
743 const void *kbuf
, const void __user
*ubuf
)
747 flush_spe_to_thread(target
);
749 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
751 0, sizeof(target
->thread
.evr
));
753 BUILD_BUG_ON(offsetof(struct thread_struct
, acc
) + sizeof(u64
) !=
754 offsetof(struct thread_struct
, spefscr
));
757 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
759 sizeof(target
->thread
.evr
), -1);
763 #endif /* CONFIG_SPE */
765 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
767 * tm_cgpr_active - get active number of registers in CGPR
768 * @target: The target task.
769 * @regset: The user regset structure.
771 * This function checks for the active number of available
772 * regisers in transaction checkpointed GPR category.
774 static int tm_cgpr_active(struct task_struct
*target
,
775 const struct user_regset
*regset
)
777 if (!cpu_has_feature(CPU_FTR_TM
))
780 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
787 * tm_cgpr_get - get CGPR registers
788 * @target: The target task.
789 * @regset: The user regset structure.
790 * @pos: The buffer position.
791 * @count: Number of bytes to copy.
792 * @kbuf: Kernel buffer to copy from.
793 * @ubuf: User buffer to copy into.
795 * This function gets transaction checkpointed GPR registers.
797 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
798 * GPR register values for the current transaction to fall back on if it
799 * aborts in between. This function gets those checkpointed GPR registers.
800 * The userspace interface buffer layout is as follows.
803 * struct pt_regs ckpt_regs;
806 static int tm_cgpr_get(struct task_struct
*target
,
807 const struct user_regset
*regset
,
808 unsigned int pos
, unsigned int count
,
809 void *kbuf
, void __user
*ubuf
)
813 if (!cpu_has_feature(CPU_FTR_TM
))
816 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
819 flush_tmregs_to_thread(target
);
820 flush_fp_to_thread(target
);
821 flush_altivec_to_thread(target
);
823 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
824 &target
->thread
.ckpt_regs
,
825 0, offsetof(struct pt_regs
, msr
));
827 unsigned long msr
= get_user_ckpt_msr(target
);
829 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, &msr
,
830 offsetof(struct pt_regs
, msr
),
831 offsetof(struct pt_regs
, msr
) +
835 BUILD_BUG_ON(offsetof(struct pt_regs
, orig_gpr3
) !=
836 offsetof(struct pt_regs
, msr
) + sizeof(long));
839 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
840 &target
->thread
.ckpt_regs
.orig_gpr3
,
841 offsetof(struct pt_regs
, orig_gpr3
),
842 sizeof(struct pt_regs
));
844 ret
= user_regset_copyout_zero(&pos
, &count
, &kbuf
, &ubuf
,
845 sizeof(struct pt_regs
), -1);
851 * tm_cgpr_set - set the CGPR registers
852 * @target: The target task.
853 * @regset: The user regset structure.
854 * @pos: The buffer position.
855 * @count: Number of bytes to copy.
856 * @kbuf: Kernel buffer to copy into.
857 * @ubuf: User buffer to copy from.
859 * This function sets in transaction checkpointed GPR registers.
861 * When the transaction is active, 'ckpt_regs' holds the checkpointed
862 * GPR register values for the current transaction to fall back on if it
863 * aborts in between. This function sets those checkpointed GPR registers.
864 * The userspace interface buffer layout is as follows.
867 * struct pt_regs ckpt_regs;
870 static int tm_cgpr_set(struct task_struct
*target
,
871 const struct user_regset
*regset
,
872 unsigned int pos
, unsigned int count
,
873 const void *kbuf
, const void __user
*ubuf
)
878 if (!cpu_has_feature(CPU_FTR_TM
))
881 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
884 flush_tmregs_to_thread(target
);
885 flush_fp_to_thread(target
);
886 flush_altivec_to_thread(target
);
888 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
889 &target
->thread
.ckpt_regs
,
890 0, PT_MSR
* sizeof(reg
));
892 if (!ret
&& count
> 0) {
893 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, ®
,
894 PT_MSR
* sizeof(reg
),
895 (PT_MSR
+ 1) * sizeof(reg
));
897 ret
= set_user_ckpt_msr(target
, reg
);
900 BUILD_BUG_ON(offsetof(struct pt_regs
, orig_gpr3
) !=
901 offsetof(struct pt_regs
, msr
) + sizeof(long));
904 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
905 &target
->thread
.ckpt_regs
.orig_gpr3
,
906 PT_ORIG_R3
* sizeof(reg
),
907 (PT_MAX_PUT_REG
+ 1) * sizeof(reg
));
909 if (PT_MAX_PUT_REG
+ 1 < PT_TRAP
&& !ret
)
910 ret
= user_regset_copyin_ignore(
911 &pos
, &count
, &kbuf
, &ubuf
,
912 (PT_MAX_PUT_REG
+ 1) * sizeof(reg
),
913 PT_TRAP
* sizeof(reg
));
915 if (!ret
&& count
> 0) {
916 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, ®
,
917 PT_TRAP
* sizeof(reg
),
918 (PT_TRAP
+ 1) * sizeof(reg
));
920 ret
= set_user_ckpt_trap(target
, reg
);
924 ret
= user_regset_copyin_ignore(
925 &pos
, &count
, &kbuf
, &ubuf
,
926 (PT_TRAP
+ 1) * sizeof(reg
), -1);
932 * tm_cfpr_active - get active number of registers in CFPR
933 * @target: The target task.
934 * @regset: The user regset structure.
936 * This function checks for the active number of available
937 * regisers in transaction checkpointed FPR category.
939 static int tm_cfpr_active(struct task_struct
*target
,
940 const struct user_regset
*regset
)
942 if (!cpu_has_feature(CPU_FTR_TM
))
945 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
952 * tm_cfpr_get - get CFPR registers
953 * @target: The target task.
954 * @regset: The user regset structure.
955 * @pos: The buffer position.
956 * @count: Number of bytes to copy.
957 * @kbuf: Kernel buffer to copy from.
958 * @ubuf: User buffer to copy into.
960 * This function gets in transaction checkpointed FPR registers.
962 * When the transaction is active 'ckfp_state' holds the checkpointed
963 * values for the current transaction to fall back on if it aborts
964 * in between. This function gets those checkpointed FPR registers.
965 * The userspace interface buffer layout is as follows.
972 static int tm_cfpr_get(struct task_struct
*target
,
973 const struct user_regset
*regset
,
974 unsigned int pos
, unsigned int count
,
975 void *kbuf
, void __user
*ubuf
)
980 if (!cpu_has_feature(CPU_FTR_TM
))
983 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
986 flush_tmregs_to_thread(target
);
987 flush_fp_to_thread(target
);
988 flush_altivec_to_thread(target
);
990 /* copy to local buffer then write that out */
991 for (i
= 0; i
< 32 ; i
++)
992 buf
[i
] = target
->thread
.TS_CKFPR(i
);
993 buf
[32] = target
->thread
.ckfp_state
.fpscr
;
994 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, buf
, 0, -1);
998 * tm_cfpr_set - set CFPR registers
999 * @target: The target task.
1000 * @regset: The user regset structure.
1001 * @pos: The buffer position.
1002 * @count: Number of bytes to copy.
1003 * @kbuf: Kernel buffer to copy into.
1004 * @ubuf: User buffer to copy from.
1006 * This function sets in transaction checkpointed FPR registers.
1008 * When the transaction is active 'ckfp_state' holds the checkpointed
1009 * FPR register values for the current transaction to fall back on
1010 * if it aborts in between. This function sets these checkpointed
1011 * FPR registers. The userspace interface buffer layout is as follows.
1018 static int tm_cfpr_set(struct task_struct
*target
,
1019 const struct user_regset
*regset
,
1020 unsigned int pos
, unsigned int count
,
1021 const void *kbuf
, const void __user
*ubuf
)
1026 if (!cpu_has_feature(CPU_FTR_TM
))
1029 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1032 flush_tmregs_to_thread(target
);
1033 flush_fp_to_thread(target
);
1034 flush_altivec_to_thread(target
);
1036 for (i
= 0; i
< 32; i
++)
1037 buf
[i
] = target
->thread
.TS_CKFPR(i
);
1038 buf
[32] = target
->thread
.ckfp_state
.fpscr
;
1040 /* copy to local buffer then write that out */
1041 i
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, buf
, 0, -1);
1044 for (i
= 0; i
< 32 ; i
++)
1045 target
->thread
.TS_CKFPR(i
) = buf
[i
];
1046 target
->thread
.ckfp_state
.fpscr
= buf
[32];
1051 * tm_cvmx_active - get active number of registers in CVMX
1052 * @target: The target task.
1053 * @regset: The user regset structure.
1055 * This function checks for the active number of available
1056 * regisers in checkpointed VMX category.
1058 static int tm_cvmx_active(struct task_struct
*target
,
1059 const struct user_regset
*regset
)
1061 if (!cpu_has_feature(CPU_FTR_TM
))
1064 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1071 * tm_cvmx_get - get CMVX registers
1072 * @target: The target task.
1073 * @regset: The user regset structure.
1074 * @pos: The buffer position.
1075 * @count: Number of bytes to copy.
1076 * @kbuf: Kernel buffer to copy from.
1077 * @ubuf: User buffer to copy into.
1079 * This function gets in transaction checkpointed VMX registers.
1081 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1082 * the checkpointed values for the current transaction to fall
1083 * back on if it aborts in between. The userspace interface buffer
1084 * layout is as follows.
1092 static int tm_cvmx_get(struct task_struct
*target
,
1093 const struct user_regset
*regset
,
1094 unsigned int pos
, unsigned int count
,
1095 void *kbuf
, void __user
*ubuf
)
1099 BUILD_BUG_ON(TVSO(vscr
) != TVSO(vr
[32]));
1101 if (!cpu_has_feature(CPU_FTR_TM
))
1104 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1107 /* Flush the state */
1108 flush_tmregs_to_thread(target
);
1109 flush_fp_to_thread(target
);
1110 flush_altivec_to_thread(target
);
1112 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1113 &target
->thread
.ckvr_state
, 0,
1114 33 * sizeof(vector128
));
1117 * Copy out only the low-order word of vrsave.
1123 memset(&vrsave
, 0, sizeof(vrsave
));
1124 vrsave
.word
= target
->thread
.ckvrsave
;
1125 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, &vrsave
,
1126 33 * sizeof(vector128
), -1);
1133 * tm_cvmx_set - set CMVX registers
1134 * @target: The target task.
1135 * @regset: The user regset structure.
1136 * @pos: The buffer position.
1137 * @count: Number of bytes to copy.
1138 * @kbuf: Kernel buffer to copy into.
1139 * @ubuf: User buffer to copy from.
1141 * This function sets in transaction checkpointed VMX registers.
1143 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1144 * the checkpointed values for the current transaction to fall
1145 * back on if it aborts in between. The userspace interface buffer
1146 * layout is as follows.
1154 static int tm_cvmx_set(struct task_struct
*target
,
1155 const struct user_regset
*regset
,
1156 unsigned int pos
, unsigned int count
,
1157 const void *kbuf
, const void __user
*ubuf
)
1161 BUILD_BUG_ON(TVSO(vscr
) != TVSO(vr
[32]));
1163 if (!cpu_has_feature(CPU_FTR_TM
))
1166 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1169 flush_tmregs_to_thread(target
);
1170 flush_fp_to_thread(target
);
1171 flush_altivec_to_thread(target
);
1173 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1174 &target
->thread
.ckvr_state
, 0,
1175 33 * sizeof(vector128
));
1176 if (!ret
&& count
> 0) {
1178 * We use only the low-order word of vrsave.
1184 memset(&vrsave
, 0, sizeof(vrsave
));
1185 vrsave
.word
= target
->thread
.ckvrsave
;
1186 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, &vrsave
,
1187 33 * sizeof(vector128
), -1);
1189 target
->thread
.ckvrsave
= vrsave
.word
;
1196 * tm_cvsx_active - get active number of registers in CVSX
1197 * @target: The target task.
1198 * @regset: The user regset structure.
1200 * This function checks for the active number of available
1201 * regisers in transaction checkpointed VSX category.
1203 static int tm_cvsx_active(struct task_struct
*target
,
1204 const struct user_regset
*regset
)
1206 if (!cpu_has_feature(CPU_FTR_TM
))
1209 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1212 flush_vsx_to_thread(target
);
1213 return target
->thread
.used_vsr
? regset
->n
: 0;
1217 * tm_cvsx_get - get CVSX registers
1218 * @target: The target task.
1219 * @regset: The user regset structure.
1220 * @pos: The buffer position.
1221 * @count: Number of bytes to copy.
1222 * @kbuf: Kernel buffer to copy from.
1223 * @ubuf: User buffer to copy into.
1225 * This function gets in transaction checkpointed VSX registers.
1227 * When the transaction is active 'ckfp_state' holds the checkpointed
1228 * values for the current transaction to fall back on if it aborts
1229 * in between. This function gets those checkpointed VSX registers.
1230 * The userspace interface buffer layout is as follows.
1236 static int tm_cvsx_get(struct task_struct
*target
,
1237 const struct user_regset
*regset
,
1238 unsigned int pos
, unsigned int count
,
1239 void *kbuf
, void __user
*ubuf
)
1244 if (!cpu_has_feature(CPU_FTR_TM
))
1247 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1250 /* Flush the state */
1251 flush_tmregs_to_thread(target
);
1252 flush_fp_to_thread(target
);
1253 flush_altivec_to_thread(target
);
1254 flush_vsx_to_thread(target
);
1256 for (i
= 0; i
< 32 ; i
++)
1257 buf
[i
] = target
->thread
.ckfp_state
.fpr
[i
][TS_VSRLOWOFFSET
];
1258 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1259 buf
, 0, 32 * sizeof(double));
1265 * tm_cvsx_set - set CFPR registers
1266 * @target: The target task.
1267 * @regset: The user regset structure.
1268 * @pos: The buffer position.
1269 * @count: Number of bytes to copy.
1270 * @kbuf: Kernel buffer to copy into.
1271 * @ubuf: User buffer to copy from.
1273 * This function sets in transaction checkpointed VSX registers.
1275 * When the transaction is active 'ckfp_state' holds the checkpointed
1276 * VSX register values for the current transaction to fall back on
1277 * if it aborts in between. This function sets these checkpointed
1278 * FPR registers. The userspace interface buffer layout is as follows.
1284 static int tm_cvsx_set(struct task_struct
*target
,
1285 const struct user_regset
*regset
,
1286 unsigned int pos
, unsigned int count
,
1287 const void *kbuf
, const void __user
*ubuf
)
1292 if (!cpu_has_feature(CPU_FTR_TM
))
1295 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1298 /* Flush the state */
1299 flush_tmregs_to_thread(target
);
1300 flush_fp_to_thread(target
);
1301 flush_altivec_to_thread(target
);
1302 flush_vsx_to_thread(target
);
1304 for (i
= 0; i
< 32 ; i
++)
1305 buf
[i
] = target
->thread
.ckfp_state
.fpr
[i
][TS_VSRLOWOFFSET
];
1307 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1308 buf
, 0, 32 * sizeof(double));
1310 for (i
= 0; i
< 32 ; i
++)
1311 target
->thread
.ckfp_state
.fpr
[i
][TS_VSRLOWOFFSET
] = buf
[i
];
1317 * tm_spr_active - get active number of registers in TM SPR
1318 * @target: The target task.
1319 * @regset: The user regset structure.
1321 * This function checks the active number of available
1322 * regisers in the transactional memory SPR category.
1324 static int tm_spr_active(struct task_struct
*target
,
1325 const struct user_regset
*regset
)
1327 if (!cpu_has_feature(CPU_FTR_TM
))
1334 * tm_spr_get - get the TM related SPR registers
1335 * @target: The target task.
1336 * @regset: The user regset structure.
1337 * @pos: The buffer position.
1338 * @count: Number of bytes to copy.
1339 * @kbuf: Kernel buffer to copy from.
1340 * @ubuf: User buffer to copy into.
1342 * This function gets transactional memory related SPR registers.
1343 * The userspace interface buffer layout is as follows.
1351 static int tm_spr_get(struct task_struct
*target
,
1352 const struct user_regset
*regset
,
1353 unsigned int pos
, unsigned int count
,
1354 void *kbuf
, void __user
*ubuf
)
1359 BUILD_BUG_ON(TSO(tm_tfhar
) + sizeof(u64
) != TSO(tm_texasr
));
1360 BUILD_BUG_ON(TSO(tm_texasr
) + sizeof(u64
) != TSO(tm_tfiar
));
1361 BUILD_BUG_ON(TSO(tm_tfiar
) + sizeof(u64
) != TSO(ckpt_regs
));
1363 if (!cpu_has_feature(CPU_FTR_TM
))
1366 /* Flush the states */
1367 flush_tmregs_to_thread(target
);
1368 flush_fp_to_thread(target
);
1369 flush_altivec_to_thread(target
);
1371 /* TFHAR register */
1372 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1373 &target
->thread
.tm_tfhar
, 0, sizeof(u64
));
1375 /* TEXASR register */
1377 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1378 &target
->thread
.tm_texasr
, sizeof(u64
),
1381 /* TFIAR register */
1383 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1384 &target
->thread
.tm_tfiar
,
1385 2 * sizeof(u64
), 3 * sizeof(u64
));
1390 * tm_spr_set - set the TM related SPR registers
1391 * @target: The target task.
1392 * @regset: The user regset structure.
1393 * @pos: The buffer position.
1394 * @count: Number of bytes to copy.
1395 * @kbuf: Kernel buffer to copy into.
1396 * @ubuf: User buffer to copy from.
1398 * This function sets transactional memory related SPR registers.
1399 * The userspace interface buffer layout is as follows.
1407 static int tm_spr_set(struct task_struct
*target
,
1408 const struct user_regset
*regset
,
1409 unsigned int pos
, unsigned int count
,
1410 const void *kbuf
, const void __user
*ubuf
)
1415 BUILD_BUG_ON(TSO(tm_tfhar
) + sizeof(u64
) != TSO(tm_texasr
));
1416 BUILD_BUG_ON(TSO(tm_texasr
) + sizeof(u64
) != TSO(tm_tfiar
));
1417 BUILD_BUG_ON(TSO(tm_tfiar
) + sizeof(u64
) != TSO(ckpt_regs
));
1419 if (!cpu_has_feature(CPU_FTR_TM
))
1422 /* Flush the states */
1423 flush_tmregs_to_thread(target
);
1424 flush_fp_to_thread(target
);
1425 flush_altivec_to_thread(target
);
1427 /* TFHAR register */
1428 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1429 &target
->thread
.tm_tfhar
, 0, sizeof(u64
));
1431 /* TEXASR register */
1433 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1434 &target
->thread
.tm_texasr
, sizeof(u64
),
1437 /* TFIAR register */
1439 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1440 &target
->thread
.tm_tfiar
,
1441 2 * sizeof(u64
), 3 * sizeof(u64
));
1445 static int tm_tar_active(struct task_struct
*target
,
1446 const struct user_regset
*regset
)
1448 if (!cpu_has_feature(CPU_FTR_TM
))
1451 if (MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1457 static int tm_tar_get(struct task_struct
*target
,
1458 const struct user_regset
*regset
,
1459 unsigned int pos
, unsigned int count
,
1460 void *kbuf
, void __user
*ubuf
)
1464 if (!cpu_has_feature(CPU_FTR_TM
))
1467 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1470 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1471 &target
->thread
.tm_tar
, 0, sizeof(u64
));
1475 static int tm_tar_set(struct task_struct
*target
,
1476 const struct user_regset
*regset
,
1477 unsigned int pos
, unsigned int count
,
1478 const void *kbuf
, const void __user
*ubuf
)
1482 if (!cpu_has_feature(CPU_FTR_TM
))
1485 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1488 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1489 &target
->thread
.tm_tar
, 0, sizeof(u64
));
1493 static int tm_ppr_active(struct task_struct
*target
,
1494 const struct user_regset
*regset
)
1496 if (!cpu_has_feature(CPU_FTR_TM
))
1499 if (MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1506 static int tm_ppr_get(struct task_struct
*target
,
1507 const struct user_regset
*regset
,
1508 unsigned int pos
, unsigned int count
,
1509 void *kbuf
, void __user
*ubuf
)
1513 if (!cpu_has_feature(CPU_FTR_TM
))
1516 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1519 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1520 &target
->thread
.tm_ppr
, 0, sizeof(u64
));
1524 static int tm_ppr_set(struct task_struct
*target
,
1525 const struct user_regset
*regset
,
1526 unsigned int pos
, unsigned int count
,
1527 const void *kbuf
, const void __user
*ubuf
)
1531 if (!cpu_has_feature(CPU_FTR_TM
))
1534 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1537 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1538 &target
->thread
.tm_ppr
, 0, sizeof(u64
));
1542 static int tm_dscr_active(struct task_struct
*target
,
1543 const struct user_regset
*regset
)
1545 if (!cpu_has_feature(CPU_FTR_TM
))
1548 if (MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1554 static int tm_dscr_get(struct task_struct
*target
,
1555 const struct user_regset
*regset
,
1556 unsigned int pos
, unsigned int count
,
1557 void *kbuf
, void __user
*ubuf
)
1561 if (!cpu_has_feature(CPU_FTR_TM
))
1564 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1567 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1568 &target
->thread
.tm_dscr
, 0, sizeof(u64
));
1572 static int tm_dscr_set(struct task_struct
*target
,
1573 const struct user_regset
*regset
,
1574 unsigned int pos
, unsigned int count
,
1575 const void *kbuf
, const void __user
*ubuf
)
1579 if (!cpu_has_feature(CPU_FTR_TM
))
1582 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1585 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1586 &target
->thread
.tm_dscr
, 0, sizeof(u64
));
1589 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1592 static int ppr_get(struct task_struct
*target
,
1593 const struct user_regset
*regset
,
1594 unsigned int pos
, unsigned int count
,
1595 void *kbuf
, void __user
*ubuf
)
1599 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1600 &target
->thread
.ppr
, 0, sizeof(u64
));
1604 static int ppr_set(struct task_struct
*target
,
1605 const struct user_regset
*regset
,
1606 unsigned int pos
, unsigned int count
,
1607 const void *kbuf
, const void __user
*ubuf
)
1611 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1612 &target
->thread
.ppr
, 0, sizeof(u64
));
1616 static int dscr_get(struct task_struct
*target
,
1617 const struct user_regset
*regset
,
1618 unsigned int pos
, unsigned int count
,
1619 void *kbuf
, void __user
*ubuf
)
1623 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1624 &target
->thread
.dscr
, 0, sizeof(u64
));
1627 static int dscr_set(struct task_struct
*target
,
1628 const struct user_regset
*regset
,
1629 unsigned int pos
, unsigned int count
,
1630 const void *kbuf
, const void __user
*ubuf
)
1634 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1635 &target
->thread
.dscr
, 0, sizeof(u64
));
1639 #ifdef CONFIG_PPC_BOOK3S_64
1640 static int tar_get(struct task_struct
*target
,
1641 const struct user_regset
*regset
,
1642 unsigned int pos
, unsigned int count
,
1643 void *kbuf
, void __user
*ubuf
)
1647 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1648 &target
->thread
.tar
, 0, sizeof(u64
));
1651 static int tar_set(struct task_struct
*target
,
1652 const struct user_regset
*regset
,
1653 unsigned int pos
, unsigned int count
,
1654 const void *kbuf
, const void __user
*ubuf
)
1658 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1659 &target
->thread
.tar
, 0, sizeof(u64
));
1663 static int ebb_active(struct task_struct
*target
,
1664 const struct user_regset
*regset
)
1666 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
1669 if (target
->thread
.used_ebb
)
1675 static int ebb_get(struct task_struct
*target
,
1676 const struct user_regset
*regset
,
1677 unsigned int pos
, unsigned int count
,
1678 void *kbuf
, void __user
*ubuf
)
1681 BUILD_BUG_ON(TSO(ebbrr
) + sizeof(unsigned long) != TSO(ebbhr
));
1682 BUILD_BUG_ON(TSO(ebbhr
) + sizeof(unsigned long) != TSO(bescr
));
1684 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
1687 if (!target
->thread
.used_ebb
)
1690 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1691 &target
->thread
.ebbrr
, 0, 3 * sizeof(unsigned long));
1694 static int ebb_set(struct task_struct
*target
,
1695 const struct user_regset
*regset
,
1696 unsigned int pos
, unsigned int count
,
1697 const void *kbuf
, const void __user
*ubuf
)
1702 BUILD_BUG_ON(TSO(ebbrr
) + sizeof(unsigned long) != TSO(ebbhr
));
1703 BUILD_BUG_ON(TSO(ebbhr
) + sizeof(unsigned long) != TSO(bescr
));
1705 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
1708 if (target
->thread
.used_ebb
)
1711 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1712 &target
->thread
.ebbrr
, 0, sizeof(unsigned long));
1715 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1716 &target
->thread
.ebbhr
, sizeof(unsigned long),
1717 2 * sizeof(unsigned long));
1720 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1721 &target
->thread
.bescr
,
1722 2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1726 static int pmu_active(struct task_struct
*target
,
1727 const struct user_regset
*regset
)
1729 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
1735 static int pmu_get(struct task_struct
*target
,
1736 const struct user_regset
*regset
,
1737 unsigned int pos
, unsigned int count
,
1738 void *kbuf
, void __user
*ubuf
)
1741 BUILD_BUG_ON(TSO(siar
) + sizeof(unsigned long) != TSO(sdar
));
1742 BUILD_BUG_ON(TSO(sdar
) + sizeof(unsigned long) != TSO(sier
));
1743 BUILD_BUG_ON(TSO(sier
) + sizeof(unsigned long) != TSO(mmcr2
));
1744 BUILD_BUG_ON(TSO(mmcr2
) + sizeof(unsigned long) != TSO(mmcr0
));
1746 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
1749 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1750 &target
->thread
.siar
, 0,
1751 5 * sizeof(unsigned long));
1754 static int pmu_set(struct task_struct
*target
,
1755 const struct user_regset
*regset
,
1756 unsigned int pos
, unsigned int count
,
1757 const void *kbuf
, const void __user
*ubuf
)
1762 BUILD_BUG_ON(TSO(siar
) + sizeof(unsigned long) != TSO(sdar
));
1763 BUILD_BUG_ON(TSO(sdar
) + sizeof(unsigned long) != TSO(sier
));
1764 BUILD_BUG_ON(TSO(sier
) + sizeof(unsigned long) != TSO(mmcr2
));
1765 BUILD_BUG_ON(TSO(mmcr2
) + sizeof(unsigned long) != TSO(mmcr0
));
1767 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
1770 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1771 &target
->thread
.siar
, 0,
1772 sizeof(unsigned long));
1775 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1776 &target
->thread
.sdar
, sizeof(unsigned long),
1777 2 * sizeof(unsigned long));
1780 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1781 &target
->thread
.sier
, 2 * sizeof(unsigned long),
1782 3 * sizeof(unsigned long));
1785 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1786 &target
->thread
.mmcr2
, 3 * sizeof(unsigned long),
1787 4 * sizeof(unsigned long));
1790 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1791 &target
->thread
.mmcr0
, 4 * sizeof(unsigned long),
1792 5 * sizeof(unsigned long));
1797 * These are our native regset flavors.
1799 enum powerpc_regset
{
1802 #ifdef CONFIG_ALTIVEC
1811 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1812 REGSET_TM_CGPR
, /* TM checkpointed GPR registers */
1813 REGSET_TM_CFPR
, /* TM checkpointed FPR registers */
1814 REGSET_TM_CVMX
, /* TM checkpointed VMX registers */
1815 REGSET_TM_CVSX
, /* TM checkpointed VSX registers */
1816 REGSET_TM_SPR
, /* TM specific SPR registers */
1817 REGSET_TM_CTAR
, /* TM checkpointed TAR register */
1818 REGSET_TM_CPPR
, /* TM checkpointed PPR register */
1819 REGSET_TM_CDSCR
, /* TM checkpointed DSCR register */
1822 REGSET_PPR
, /* PPR register */
1823 REGSET_DSCR
, /* DSCR register */
1825 #ifdef CONFIG_PPC_BOOK3S_64
1826 REGSET_TAR
, /* TAR register */
1827 REGSET_EBB
, /* EBB registers */
1828 REGSET_PMR
, /* Performance Monitor Registers */
1832 static const struct user_regset native_regsets
[] = {
1834 .core_note_type
= NT_PRSTATUS
, .n
= ELF_NGREG
,
1835 .size
= sizeof(long), .align
= sizeof(long),
1836 .get
= gpr_get
, .set
= gpr_set
1839 .core_note_type
= NT_PRFPREG
, .n
= ELF_NFPREG
,
1840 .size
= sizeof(double), .align
= sizeof(double),
1841 .get
= fpr_get
, .set
= fpr_set
1843 #ifdef CONFIG_ALTIVEC
1845 .core_note_type
= NT_PPC_VMX
, .n
= 34,
1846 .size
= sizeof(vector128
), .align
= sizeof(vector128
),
1847 .active
= vr_active
, .get
= vr_get
, .set
= vr_set
1852 .core_note_type
= NT_PPC_VSX
, .n
= 32,
1853 .size
= sizeof(double), .align
= sizeof(double),
1854 .active
= vsr_active
, .get
= vsr_get
, .set
= vsr_set
1859 .core_note_type
= NT_PPC_SPE
, .n
= 35,
1860 .size
= sizeof(u32
), .align
= sizeof(u32
),
1861 .active
= evr_active
, .get
= evr_get
, .set
= evr_set
1864 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1865 [REGSET_TM_CGPR
] = {
1866 .core_note_type
= NT_PPC_TM_CGPR
, .n
= ELF_NGREG
,
1867 .size
= sizeof(long), .align
= sizeof(long),
1868 .active
= tm_cgpr_active
, .get
= tm_cgpr_get
, .set
= tm_cgpr_set
1870 [REGSET_TM_CFPR
] = {
1871 .core_note_type
= NT_PPC_TM_CFPR
, .n
= ELF_NFPREG
,
1872 .size
= sizeof(double), .align
= sizeof(double),
1873 .active
= tm_cfpr_active
, .get
= tm_cfpr_get
, .set
= tm_cfpr_set
1875 [REGSET_TM_CVMX
] = {
1876 .core_note_type
= NT_PPC_TM_CVMX
, .n
= ELF_NVMX
,
1877 .size
= sizeof(vector128
), .align
= sizeof(vector128
),
1878 .active
= tm_cvmx_active
, .get
= tm_cvmx_get
, .set
= tm_cvmx_set
1880 [REGSET_TM_CVSX
] = {
1881 .core_note_type
= NT_PPC_TM_CVSX
, .n
= ELF_NVSX
,
1882 .size
= sizeof(double), .align
= sizeof(double),
1883 .active
= tm_cvsx_active
, .get
= tm_cvsx_get
, .set
= tm_cvsx_set
1886 .core_note_type
= NT_PPC_TM_SPR
, .n
= ELF_NTMSPRREG
,
1887 .size
= sizeof(u64
), .align
= sizeof(u64
),
1888 .active
= tm_spr_active
, .get
= tm_spr_get
, .set
= tm_spr_set
1890 [REGSET_TM_CTAR
] = {
1891 .core_note_type
= NT_PPC_TM_CTAR
, .n
= 1,
1892 .size
= sizeof(u64
), .align
= sizeof(u64
),
1893 .active
= tm_tar_active
, .get
= tm_tar_get
, .set
= tm_tar_set
1895 [REGSET_TM_CPPR
] = {
1896 .core_note_type
= NT_PPC_TM_CPPR
, .n
= 1,
1897 .size
= sizeof(u64
), .align
= sizeof(u64
),
1898 .active
= tm_ppr_active
, .get
= tm_ppr_get
, .set
= tm_ppr_set
1900 [REGSET_TM_CDSCR
] = {
1901 .core_note_type
= NT_PPC_TM_CDSCR
, .n
= 1,
1902 .size
= sizeof(u64
), .align
= sizeof(u64
),
1903 .active
= tm_dscr_active
, .get
= tm_dscr_get
, .set
= tm_dscr_set
1908 .core_note_type
= NT_PPC_PPR
, .n
= 1,
1909 .size
= sizeof(u64
), .align
= sizeof(u64
),
1910 .get
= ppr_get
, .set
= ppr_set
1913 .core_note_type
= NT_PPC_DSCR
, .n
= 1,
1914 .size
= sizeof(u64
), .align
= sizeof(u64
),
1915 .get
= dscr_get
, .set
= dscr_set
1918 #ifdef CONFIG_PPC_BOOK3S_64
1920 .core_note_type
= NT_PPC_TAR
, .n
= 1,
1921 .size
= sizeof(u64
), .align
= sizeof(u64
),
1922 .get
= tar_get
, .set
= tar_set
1925 .core_note_type
= NT_PPC_EBB
, .n
= ELF_NEBB
,
1926 .size
= sizeof(u64
), .align
= sizeof(u64
),
1927 .active
= ebb_active
, .get
= ebb_get
, .set
= ebb_set
1930 .core_note_type
= NT_PPC_PMU
, .n
= ELF_NPMU
,
1931 .size
= sizeof(u64
), .align
= sizeof(u64
),
1932 .active
= pmu_active
, .get
= pmu_get
, .set
= pmu_set
1937 static const struct user_regset_view user_ppc_native_view
= {
1938 .name
= UTS_MACHINE
, .e_machine
= ELF_ARCH
, .ei_osabi
= ELF_OSABI
,
1939 .regsets
= native_regsets
, .n
= ARRAY_SIZE(native_regsets
)
1943 #include <linux/compat.h>
1945 static int gpr32_get_common(struct task_struct
*target
,
1946 const struct user_regset
*regset
,
1947 unsigned int pos
, unsigned int count
,
1948 void *kbuf
, void __user
*ubuf
,
1949 unsigned long *regs
)
1951 compat_ulong_t
*k
= kbuf
;
1952 compat_ulong_t __user
*u
= ubuf
;
1956 count
/= sizeof(reg
);
1959 for (; count
> 0 && pos
< PT_MSR
; --count
)
1962 for (; count
> 0 && pos
< PT_MSR
; --count
)
1963 if (__put_user((compat_ulong_t
) regs
[pos
++], u
++))
1966 if (count
> 0 && pos
== PT_MSR
) {
1967 reg
= get_user_msr(target
);
1970 else if (__put_user(reg
, u
++))
1977 for (; count
> 0 && pos
< PT_REGS_COUNT
; --count
)
1980 for (; count
> 0 && pos
< PT_REGS_COUNT
; --count
)
1981 if (__put_user((compat_ulong_t
) regs
[pos
++], u
++))
1987 count
*= sizeof(reg
);
1988 return user_regset_copyout_zero(&pos
, &count
, &kbuf
, &ubuf
,
1989 PT_REGS_COUNT
* sizeof(reg
), -1);
1992 static int gpr32_set_common(struct task_struct
*target
,
1993 const struct user_regset
*regset
,
1994 unsigned int pos
, unsigned int count
,
1995 const void *kbuf
, const void __user
*ubuf
,
1996 unsigned long *regs
)
1998 const compat_ulong_t
*k
= kbuf
;
1999 const compat_ulong_t __user
*u
= ubuf
;
2003 count
/= sizeof(reg
);
2006 for (; count
> 0 && pos
< PT_MSR
; --count
)
2009 for (; count
> 0 && pos
< PT_MSR
; --count
) {
2010 if (__get_user(reg
, u
++))
2016 if (count
> 0 && pos
== PT_MSR
) {
2019 else if (__get_user(reg
, u
++))
2021 set_user_msr(target
, reg
);
2027 for (; count
> 0 && pos
<= PT_MAX_PUT_REG
; --count
)
2029 for (; count
> 0 && pos
< PT_TRAP
; --count
, ++pos
)
2032 for (; count
> 0 && pos
<= PT_MAX_PUT_REG
; --count
) {
2033 if (__get_user(reg
, u
++))
2037 for (; count
> 0 && pos
< PT_TRAP
; --count
, ++pos
)
2038 if (__get_user(reg
, u
++))
2042 if (count
> 0 && pos
== PT_TRAP
) {
2045 else if (__get_user(reg
, u
++))
2047 set_user_trap(target
, reg
);
2055 count
*= sizeof(reg
);
2056 return user_regset_copyin_ignore(&pos
, &count
, &kbuf
, &ubuf
,
2057 (PT_TRAP
+ 1) * sizeof(reg
), -1);
2060 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2061 static int tm_cgpr32_get(struct task_struct
*target
,
2062 const struct user_regset
*regset
,
2063 unsigned int pos
, unsigned int count
,
2064 void *kbuf
, void __user
*ubuf
)
2066 return gpr32_get_common(target
, regset
, pos
, count
, kbuf
, ubuf
,
2067 &target
->thread
.ckpt_regs
.gpr
[0]);
2070 static int tm_cgpr32_set(struct task_struct
*target
,
2071 const struct user_regset
*regset
,
2072 unsigned int pos
, unsigned int count
,
2073 const void *kbuf
, const void __user
*ubuf
)
2075 return gpr32_set_common(target
, regset
, pos
, count
, kbuf
, ubuf
,
2076 &target
->thread
.ckpt_regs
.gpr
[0]);
2078 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2080 static int gpr32_get(struct task_struct
*target
,
2081 const struct user_regset
*regset
,
2082 unsigned int pos
, unsigned int count
,
2083 void *kbuf
, void __user
*ubuf
)
2087 if (target
->thread
.regs
== NULL
)
2090 if (!FULL_REGS(target
->thread
.regs
)) {
2092 * We have a partial register set.
2093 * Fill 14-31 with bogus values.
2095 for (i
= 14; i
< 32; i
++)
2096 target
->thread
.regs
->gpr
[i
] = NV_REG_POISON
;
2098 return gpr32_get_common(target
, regset
, pos
, count
, kbuf
, ubuf
,
2099 &target
->thread
.regs
->gpr
[0]);
2102 static int gpr32_set(struct task_struct
*target
,
2103 const struct user_regset
*regset
,
2104 unsigned int pos
, unsigned int count
,
2105 const void *kbuf
, const void __user
*ubuf
)
2107 if (target
->thread
.regs
== NULL
)
2110 CHECK_FULL_REGS(target
->thread
.regs
);
2111 return gpr32_set_common(target
, regset
, pos
, count
, kbuf
, ubuf
,
2112 &target
->thread
.regs
->gpr
[0]);
2116 * These are the regset flavors matching the CONFIG_PPC32 native set.
2118 static const struct user_regset compat_regsets
[] = {
2120 .core_note_type
= NT_PRSTATUS
, .n
= ELF_NGREG
,
2121 .size
= sizeof(compat_long_t
), .align
= sizeof(compat_long_t
),
2122 .get
= gpr32_get
, .set
= gpr32_set
2125 .core_note_type
= NT_PRFPREG
, .n
= ELF_NFPREG
,
2126 .size
= sizeof(double), .align
= sizeof(double),
2127 .get
= fpr_get
, .set
= fpr_set
2129 #ifdef CONFIG_ALTIVEC
2131 .core_note_type
= NT_PPC_VMX
, .n
= 34,
2132 .size
= sizeof(vector128
), .align
= sizeof(vector128
),
2133 .active
= vr_active
, .get
= vr_get
, .set
= vr_set
2138 .core_note_type
= NT_PPC_SPE
, .n
= 35,
2139 .size
= sizeof(u32
), .align
= sizeof(u32
),
2140 .active
= evr_active
, .get
= evr_get
, .set
= evr_set
2143 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2144 [REGSET_TM_CGPR
] = {
2145 .core_note_type
= NT_PPC_TM_CGPR
, .n
= ELF_NGREG
,
2146 .size
= sizeof(long), .align
= sizeof(long),
2147 .active
= tm_cgpr_active
,
2148 .get
= tm_cgpr32_get
, .set
= tm_cgpr32_set
2150 [REGSET_TM_CFPR
] = {
2151 .core_note_type
= NT_PPC_TM_CFPR
, .n
= ELF_NFPREG
,
2152 .size
= sizeof(double), .align
= sizeof(double),
2153 .active
= tm_cfpr_active
, .get
= tm_cfpr_get
, .set
= tm_cfpr_set
2155 [REGSET_TM_CVMX
] = {
2156 .core_note_type
= NT_PPC_TM_CVMX
, .n
= ELF_NVMX
,
2157 .size
= sizeof(vector128
), .align
= sizeof(vector128
),
2158 .active
= tm_cvmx_active
, .get
= tm_cvmx_get
, .set
= tm_cvmx_set
2160 [REGSET_TM_CVSX
] = {
2161 .core_note_type
= NT_PPC_TM_CVSX
, .n
= ELF_NVSX
,
2162 .size
= sizeof(double), .align
= sizeof(double),
2163 .active
= tm_cvsx_active
, .get
= tm_cvsx_get
, .set
= tm_cvsx_set
2166 .core_note_type
= NT_PPC_TM_SPR
, .n
= ELF_NTMSPRREG
,
2167 .size
= sizeof(u64
), .align
= sizeof(u64
),
2168 .active
= tm_spr_active
, .get
= tm_spr_get
, .set
= tm_spr_set
2170 [REGSET_TM_CTAR
] = {
2171 .core_note_type
= NT_PPC_TM_CTAR
, .n
= 1,
2172 .size
= sizeof(u64
), .align
= sizeof(u64
),
2173 .active
= tm_tar_active
, .get
= tm_tar_get
, .set
= tm_tar_set
2175 [REGSET_TM_CPPR
] = {
2176 .core_note_type
= NT_PPC_TM_CPPR
, .n
= 1,
2177 .size
= sizeof(u64
), .align
= sizeof(u64
),
2178 .active
= tm_ppr_active
, .get
= tm_ppr_get
, .set
= tm_ppr_set
2180 [REGSET_TM_CDSCR
] = {
2181 .core_note_type
= NT_PPC_TM_CDSCR
, .n
= 1,
2182 .size
= sizeof(u64
), .align
= sizeof(u64
),
2183 .active
= tm_dscr_active
, .get
= tm_dscr_get
, .set
= tm_dscr_set
2188 .core_note_type
= NT_PPC_PPR
, .n
= 1,
2189 .size
= sizeof(u64
), .align
= sizeof(u64
),
2190 .get
= ppr_get
, .set
= ppr_set
2193 .core_note_type
= NT_PPC_DSCR
, .n
= 1,
2194 .size
= sizeof(u64
), .align
= sizeof(u64
),
2195 .get
= dscr_get
, .set
= dscr_set
2198 #ifdef CONFIG_PPC_BOOK3S_64
2200 .core_note_type
= NT_PPC_TAR
, .n
= 1,
2201 .size
= sizeof(u64
), .align
= sizeof(u64
),
2202 .get
= tar_get
, .set
= tar_set
2205 .core_note_type
= NT_PPC_EBB
, .n
= ELF_NEBB
,
2206 .size
= sizeof(u64
), .align
= sizeof(u64
),
2207 .active
= ebb_active
, .get
= ebb_get
, .set
= ebb_set
2212 static const struct user_regset_view user_ppc_compat_view
= {
2213 .name
= "ppc", .e_machine
= EM_PPC
, .ei_osabi
= ELF_OSABI
,
2214 .regsets
= compat_regsets
, .n
= ARRAY_SIZE(compat_regsets
)
2216 #endif /* CONFIG_PPC64 */
2218 const struct user_regset_view
*task_user_regset_view(struct task_struct
*task
)
2221 if (test_tsk_thread_flag(task
, TIF_32BIT
))
2222 return &user_ppc_compat_view
;
2224 return &user_ppc_native_view
;
2228 void user_enable_single_step(struct task_struct
*task
)
2230 struct pt_regs
*regs
= task
->thread
.regs
;
2233 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2234 task
->thread
.debug
.dbcr0
&= ~DBCR0_BT
;
2235 task
->thread
.debug
.dbcr0
|= DBCR0_IDM
| DBCR0_IC
;
2236 regs
->msr
|= MSR_DE
;
2238 regs
->msr
&= ~MSR_BE
;
2239 regs
->msr
|= MSR_SE
;
2242 set_tsk_thread_flag(task
, TIF_SINGLESTEP
);
2245 void user_enable_block_step(struct task_struct
*task
)
2247 struct pt_regs
*regs
= task
->thread
.regs
;
2250 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2251 task
->thread
.debug
.dbcr0
&= ~DBCR0_IC
;
2252 task
->thread
.debug
.dbcr0
= DBCR0_IDM
| DBCR0_BT
;
2253 regs
->msr
|= MSR_DE
;
2255 regs
->msr
&= ~MSR_SE
;
2256 regs
->msr
|= MSR_BE
;
2259 set_tsk_thread_flag(task
, TIF_SINGLESTEP
);
2262 void user_disable_single_step(struct task_struct
*task
)
2264 struct pt_regs
*regs
= task
->thread
.regs
;
2267 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2269 * The logic to disable single stepping should be as
2270 * simple as turning off the Instruction Complete flag.
2271 * And, after doing so, if all debug flags are off, turn
2272 * off DBCR0(IDM) and MSR(DE) .... Torez
2274 task
->thread
.debug
.dbcr0
&= ~(DBCR0_IC
|DBCR0_BT
);
2276 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2278 if (!DBCR_ACTIVE_EVENTS(task
->thread
.debug
.dbcr0
,
2279 task
->thread
.debug
.dbcr1
)) {
2281 * All debug events were off.....
2283 task
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
2284 regs
->msr
&= ~MSR_DE
;
2287 regs
->msr
&= ~(MSR_SE
| MSR_BE
);
2290 clear_tsk_thread_flag(task
, TIF_SINGLESTEP
);
2293 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2294 void ptrace_triggered(struct perf_event
*bp
,
2295 struct perf_sample_data
*data
, struct pt_regs
*regs
)
2297 struct perf_event_attr attr
;
2300 * Disable the breakpoint request here since ptrace has defined a
2301 * one-shot behaviour for breakpoint exceptions in PPC64.
2302 * The SIGTRAP signal is generated automatically for us in do_dabr().
2303 * We don't have to do anything about that here
2306 attr
.disabled
= true;
2307 modify_user_hw_breakpoint(bp
, &attr
);
2309 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2311 static int ptrace_set_debugreg(struct task_struct
*task
, unsigned long addr
,
2314 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2316 struct thread_struct
*thread
= &(task
->thread
);
2317 struct perf_event
*bp
;
2318 struct perf_event_attr attr
;
2319 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2320 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2321 struct arch_hw_breakpoint hw_brk
;
2324 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2325 * For embedded processors we support one DAC and no IAC's at the
2331 /* The bottom 3 bits in dabr are flags */
2332 if ((data
& ~0x7UL
) >= TASK_SIZE
)
2335 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2336 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2337 * It was assumed, on previous implementations, that 3 bits were
2338 * passed together with the data address, fitting the design of the
2339 * DABR register, as follows:
2343 * bit 2: Breakpoint translation
2345 * Thus, we use them here as so.
2348 /* Ensure breakpoint translation bit is set */
2349 if (data
&& !(data
& HW_BRK_TYPE_TRANSLATE
))
2351 hw_brk
.address
= data
& (~HW_BRK_TYPE_DABR
);
2352 hw_brk
.type
= (data
& HW_BRK_TYPE_DABR
) | HW_BRK_TYPE_PRIV_ALL
;
2354 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2355 bp
= thread
->ptrace_bps
[0];
2356 if ((!data
) || !(hw_brk
.type
& HW_BRK_TYPE_RDWR
)) {
2358 unregister_hw_breakpoint(bp
);
2359 thread
->ptrace_bps
[0] = NULL
;
2365 attr
.bp_addr
= hw_brk
.address
;
2366 arch_bp_generic_fields(hw_brk
.type
, &attr
.bp_type
);
2368 /* Enable breakpoint */
2369 attr
.disabled
= false;
2371 ret
= modify_user_hw_breakpoint(bp
, &attr
);
2375 thread
->ptrace_bps
[0] = bp
;
2376 thread
->hw_brk
= hw_brk
;
2380 /* Create a new breakpoint request if one doesn't exist already */
2381 hw_breakpoint_init(&attr
);
2382 attr
.bp_addr
= hw_brk
.address
;
2383 arch_bp_generic_fields(hw_brk
.type
,
2386 thread
->ptrace_bps
[0] = bp
= register_user_hw_breakpoint(&attr
,
2387 ptrace_triggered
, NULL
, task
);
2389 thread
->ptrace_bps
[0] = NULL
;
2393 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2394 task
->thread
.hw_brk
= hw_brk
;
2395 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2396 /* As described above, it was assumed 3 bits were passed with the data
2397 * address, but we will assume only the mode bits will be passed
2398 * as to not cause alignment restrictions for DAC-based processors.
2401 /* DAC's hold the whole address without any mode flags */
2402 task
->thread
.debug
.dac1
= data
& ~0x3UL
;
2404 if (task
->thread
.debug
.dac1
== 0) {
2405 dbcr_dac(task
) &= ~(DBCR_DAC1R
| DBCR_DAC1W
);
2406 if (!DBCR_ACTIVE_EVENTS(task
->thread
.debug
.dbcr0
,
2407 task
->thread
.debug
.dbcr1
)) {
2408 task
->thread
.regs
->msr
&= ~MSR_DE
;
2409 task
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
2414 /* Read or Write bits must be set */
2416 if (!(data
& 0x3UL
))
2419 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2421 task
->thread
.debug
.dbcr0
|= DBCR0_IDM
;
2423 /* Check for write and read flags and set DBCR0
2425 dbcr_dac(task
) &= ~(DBCR_DAC1R
|DBCR_DAC1W
);
2427 dbcr_dac(task
) |= DBCR_DAC1R
;
2429 dbcr_dac(task
) |= DBCR_DAC1W
;
2430 task
->thread
.regs
->msr
|= MSR_DE
;
2431 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2436 * Called by kernel/ptrace.c when detaching..
2438 * Make sure single step bits etc are not set.
2440 void ptrace_disable(struct task_struct
*child
)
2442 /* make sure the single step bit is not set. */
2443 user_disable_single_step(child
);
2446 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2447 static long set_instruction_bp(struct task_struct
*child
,
2448 struct ppc_hw_breakpoint
*bp_info
)
2451 int slot1_in_use
= ((child
->thread
.debug
.dbcr0
& DBCR0_IAC1
) != 0);
2452 int slot2_in_use
= ((child
->thread
.debug
.dbcr0
& DBCR0_IAC2
) != 0);
2453 int slot3_in_use
= ((child
->thread
.debug
.dbcr0
& DBCR0_IAC3
) != 0);
2454 int slot4_in_use
= ((child
->thread
.debug
.dbcr0
& DBCR0_IAC4
) != 0);
2456 if (dbcr_iac_range(child
) & DBCR_IAC12MODE
)
2458 if (dbcr_iac_range(child
) & DBCR_IAC34MODE
)
2461 if (bp_info
->addr
>= TASK_SIZE
)
2464 if (bp_info
->addr_mode
!= PPC_BREAKPOINT_MODE_EXACT
) {
2466 /* Make sure range is valid. */
2467 if (bp_info
->addr2
>= TASK_SIZE
)
2470 /* We need a pair of IAC regsisters */
2471 if ((!slot1_in_use
) && (!slot2_in_use
)) {
2473 child
->thread
.debug
.iac1
= bp_info
->addr
;
2474 child
->thread
.debug
.iac2
= bp_info
->addr2
;
2475 child
->thread
.debug
.dbcr0
|= DBCR0_IAC1
;
2476 if (bp_info
->addr_mode
==
2477 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE
)
2478 dbcr_iac_range(child
) |= DBCR_IAC12X
;
2480 dbcr_iac_range(child
) |= DBCR_IAC12I
;
2481 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2482 } else if ((!slot3_in_use
) && (!slot4_in_use
)) {
2484 child
->thread
.debug
.iac3
= bp_info
->addr
;
2485 child
->thread
.debug
.iac4
= bp_info
->addr2
;
2486 child
->thread
.debug
.dbcr0
|= DBCR0_IAC3
;
2487 if (bp_info
->addr_mode
==
2488 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE
)
2489 dbcr_iac_range(child
) |= DBCR_IAC34X
;
2491 dbcr_iac_range(child
) |= DBCR_IAC34I
;
2496 /* We only need one. If possible leave a pair free in
2497 * case a range is needed later
2499 if (!slot1_in_use
) {
2501 * Don't use iac1 if iac1-iac2 are free and either
2502 * iac3 or iac4 (but not both) are free
2504 if (slot2_in_use
|| (slot3_in_use
== slot4_in_use
)) {
2506 child
->thread
.debug
.iac1
= bp_info
->addr
;
2507 child
->thread
.debug
.dbcr0
|= DBCR0_IAC1
;
2511 if (!slot2_in_use
) {
2513 child
->thread
.debug
.iac2
= bp_info
->addr
;
2514 child
->thread
.debug
.dbcr0
|= DBCR0_IAC2
;
2515 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2516 } else if (!slot3_in_use
) {
2518 child
->thread
.debug
.iac3
= bp_info
->addr
;
2519 child
->thread
.debug
.dbcr0
|= DBCR0_IAC3
;
2520 } else if (!slot4_in_use
) {
2522 child
->thread
.debug
.iac4
= bp_info
->addr
;
2523 child
->thread
.debug
.dbcr0
|= DBCR0_IAC4
;
2529 child
->thread
.debug
.dbcr0
|= DBCR0_IDM
;
2530 child
->thread
.regs
->msr
|= MSR_DE
;
2535 static int del_instruction_bp(struct task_struct
*child
, int slot
)
2539 if ((child
->thread
.debug
.dbcr0
& DBCR0_IAC1
) == 0)
2542 if (dbcr_iac_range(child
) & DBCR_IAC12MODE
) {
2543 /* address range - clear slots 1 & 2 */
2544 child
->thread
.debug
.iac2
= 0;
2545 dbcr_iac_range(child
) &= ~DBCR_IAC12MODE
;
2547 child
->thread
.debug
.iac1
= 0;
2548 child
->thread
.debug
.dbcr0
&= ~DBCR0_IAC1
;
2551 if ((child
->thread
.debug
.dbcr0
& DBCR0_IAC2
) == 0)
2554 if (dbcr_iac_range(child
) & DBCR_IAC12MODE
)
2555 /* used in a range */
2557 child
->thread
.debug
.iac2
= 0;
2558 child
->thread
.debug
.dbcr0
&= ~DBCR0_IAC2
;
2560 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2562 if ((child
->thread
.debug
.dbcr0
& DBCR0_IAC3
) == 0)
2565 if (dbcr_iac_range(child
) & DBCR_IAC34MODE
) {
2566 /* address range - clear slots 3 & 4 */
2567 child
->thread
.debug
.iac4
= 0;
2568 dbcr_iac_range(child
) &= ~DBCR_IAC34MODE
;
2570 child
->thread
.debug
.iac3
= 0;
2571 child
->thread
.debug
.dbcr0
&= ~DBCR0_IAC3
;
2574 if ((child
->thread
.debug
.dbcr0
& DBCR0_IAC4
) == 0)
2577 if (dbcr_iac_range(child
) & DBCR_IAC34MODE
)
2578 /* Used in a range */
2580 child
->thread
.debug
.iac4
= 0;
2581 child
->thread
.debug
.dbcr0
&= ~DBCR0_IAC4
;
2590 static int set_dac(struct task_struct
*child
, struct ppc_hw_breakpoint
*bp_info
)
2593 (bp_info
->condition_mode
>> PPC_BREAKPOINT_CONDITION_BE_SHIFT
)
2595 int condition_mode
=
2596 bp_info
->condition_mode
& PPC_BREAKPOINT_CONDITION_MODE
;
2599 if (byte_enable
&& (condition_mode
== 0))
2602 if (bp_info
->addr
>= TASK_SIZE
)
2605 if ((dbcr_dac(child
) & (DBCR_DAC1R
| DBCR_DAC1W
)) == 0) {
2607 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_READ
)
2608 dbcr_dac(child
) |= DBCR_DAC1R
;
2609 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_WRITE
)
2610 dbcr_dac(child
) |= DBCR_DAC1W
;
2611 child
->thread
.debug
.dac1
= (unsigned long)bp_info
->addr
;
2612 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2614 child
->thread
.debug
.dvc1
=
2615 (unsigned long)bp_info
->condition_value
;
2616 child
->thread
.debug
.dbcr2
|=
2617 ((byte_enable
<< DBCR2_DVC1BE_SHIFT
) |
2618 (condition_mode
<< DBCR2_DVC1M_SHIFT
));
2621 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2622 } else if (child
->thread
.debug
.dbcr2
& DBCR2_DAC12MODE
) {
2623 /* Both dac1 and dac2 are part of a range */
2626 } else if ((dbcr_dac(child
) & (DBCR_DAC2R
| DBCR_DAC2W
)) == 0) {
2628 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_READ
)
2629 dbcr_dac(child
) |= DBCR_DAC2R
;
2630 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_WRITE
)
2631 dbcr_dac(child
) |= DBCR_DAC2W
;
2632 child
->thread
.debug
.dac2
= (unsigned long)bp_info
->addr
;
2633 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2635 child
->thread
.debug
.dvc2
=
2636 (unsigned long)bp_info
->condition_value
;
2637 child
->thread
.debug
.dbcr2
|=
2638 ((byte_enable
<< DBCR2_DVC2BE_SHIFT
) |
2639 (condition_mode
<< DBCR2_DVC2M_SHIFT
));
2644 child
->thread
.debug
.dbcr0
|= DBCR0_IDM
;
2645 child
->thread
.regs
->msr
|= MSR_DE
;
2650 static int del_dac(struct task_struct
*child
, int slot
)
2653 if ((dbcr_dac(child
) & (DBCR_DAC1R
| DBCR_DAC1W
)) == 0)
2656 child
->thread
.debug
.dac1
= 0;
2657 dbcr_dac(child
) &= ~(DBCR_DAC1R
| DBCR_DAC1W
);
2658 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2659 if (child
->thread
.debug
.dbcr2
& DBCR2_DAC12MODE
) {
2660 child
->thread
.debug
.dac2
= 0;
2661 child
->thread
.debug
.dbcr2
&= ~DBCR2_DAC12MODE
;
2663 child
->thread
.debug
.dbcr2
&= ~(DBCR2_DVC1M
| DBCR2_DVC1BE
);
2665 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2666 child
->thread
.debug
.dvc1
= 0;
2668 } else if (slot
== 2) {
2669 if ((dbcr_dac(child
) & (DBCR_DAC2R
| DBCR_DAC2W
)) == 0)
2672 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2673 if (child
->thread
.debug
.dbcr2
& DBCR2_DAC12MODE
)
2674 /* Part of a range */
2676 child
->thread
.debug
.dbcr2
&= ~(DBCR2_DVC2M
| DBCR2_DVC2BE
);
2678 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2679 child
->thread
.debug
.dvc2
= 0;
2681 child
->thread
.debug
.dac2
= 0;
2682 dbcr_dac(child
) &= ~(DBCR_DAC2R
| DBCR_DAC2W
);
2688 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2690 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2691 static int set_dac_range(struct task_struct
*child
,
2692 struct ppc_hw_breakpoint
*bp_info
)
2694 int mode
= bp_info
->addr_mode
& PPC_BREAKPOINT_MODE_MASK
;
2696 /* We don't allow range watchpoints to be used with DVC */
2697 if (bp_info
->condition_mode
)
2701 * Best effort to verify the address range. The user/supervisor bits
2702 * prevent trapping in kernel space, but let's fail on an obvious bad
2703 * range. The simple test on the mask is not fool-proof, and any
2704 * exclusive range will spill over into kernel space.
2706 if (bp_info
->addr
>= TASK_SIZE
)
2708 if (mode
== PPC_BREAKPOINT_MODE_MASK
) {
2710 * dac2 is a bitmask. Don't allow a mask that makes a
2711 * kernel space address from a valid dac1 value
2713 if (~((unsigned long)bp_info
->addr2
) >= TASK_SIZE
)
2717 * For range breakpoints, addr2 must also be a valid address
2719 if (bp_info
->addr2
>= TASK_SIZE
)
2723 if (child
->thread
.debug
.dbcr0
&
2724 (DBCR0_DAC1R
| DBCR0_DAC1W
| DBCR0_DAC2R
| DBCR0_DAC2W
))
2727 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_READ
)
2728 child
->thread
.debug
.dbcr0
|= (DBCR0_DAC1R
| DBCR0_IDM
);
2729 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_WRITE
)
2730 child
->thread
.debug
.dbcr0
|= (DBCR0_DAC1W
| DBCR0_IDM
);
2731 child
->thread
.debug
.dac1
= bp_info
->addr
;
2732 child
->thread
.debug
.dac2
= bp_info
->addr2
;
2733 if (mode
== PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE
)
2734 child
->thread
.debug
.dbcr2
|= DBCR2_DAC12M
;
2735 else if (mode
== PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE
)
2736 child
->thread
.debug
.dbcr2
|= DBCR2_DAC12MX
;
2737 else /* PPC_BREAKPOINT_MODE_MASK */
2738 child
->thread
.debug
.dbcr2
|= DBCR2_DAC12MM
;
2739 child
->thread
.regs
->msr
|= MSR_DE
;
2743 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2745 static long ppc_set_hwdebug(struct task_struct
*child
,
2746 struct ppc_hw_breakpoint
*bp_info
)
2748 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2750 struct thread_struct
*thread
= &(child
->thread
);
2751 struct perf_event
*bp
;
2752 struct perf_event_attr attr
;
2753 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2754 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2755 struct arch_hw_breakpoint brk
;
2758 if (bp_info
->version
!= 1)
2760 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2762 * Check for invalid flags and combinations
2764 if ((bp_info
->trigger_type
== 0) ||
2765 (bp_info
->trigger_type
& ~(PPC_BREAKPOINT_TRIGGER_EXECUTE
|
2766 PPC_BREAKPOINT_TRIGGER_RW
)) ||
2767 (bp_info
->addr_mode
& ~PPC_BREAKPOINT_MODE_MASK
) ||
2768 (bp_info
->condition_mode
&
2769 ~(PPC_BREAKPOINT_CONDITION_MODE
|
2770 PPC_BREAKPOINT_CONDITION_BE_ALL
)))
2772 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2773 if (bp_info
->condition_mode
!= PPC_BREAKPOINT_CONDITION_NONE
)
2777 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_EXECUTE
) {
2778 if ((bp_info
->trigger_type
!= PPC_BREAKPOINT_TRIGGER_EXECUTE
) ||
2779 (bp_info
->condition_mode
!= PPC_BREAKPOINT_CONDITION_NONE
))
2781 return set_instruction_bp(child
, bp_info
);
2783 if (bp_info
->addr_mode
== PPC_BREAKPOINT_MODE_EXACT
)
2784 return set_dac(child
, bp_info
);
2786 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2787 return set_dac_range(child
, bp_info
);
2791 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2793 * We only support one data breakpoint
2795 if ((bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_RW
) == 0 ||
2796 (bp_info
->trigger_type
& ~PPC_BREAKPOINT_TRIGGER_RW
) != 0 ||
2797 bp_info
->condition_mode
!= PPC_BREAKPOINT_CONDITION_NONE
)
2800 if ((unsigned long)bp_info
->addr
>= TASK_SIZE
)
2803 brk
.address
= bp_info
->addr
& ~7UL;
2804 brk
.type
= HW_BRK_TYPE_TRANSLATE
;
2806 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_READ
)
2807 brk
.type
|= HW_BRK_TYPE_READ
;
2808 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_WRITE
)
2809 brk
.type
|= HW_BRK_TYPE_WRITE
;
2810 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2812 * Check if the request is for 'range' breakpoints. We can
2813 * support it if range < 8 bytes.
2815 if (bp_info
->addr_mode
== PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE
)
2816 len
= bp_info
->addr2
- bp_info
->addr
;
2817 else if (bp_info
->addr_mode
== PPC_BREAKPOINT_MODE_EXACT
)
2821 bp
= thread
->ptrace_bps
[0];
2825 /* Create a new breakpoint request if one doesn't exist already */
2826 hw_breakpoint_init(&attr
);
2827 attr
.bp_addr
= (unsigned long)bp_info
->addr
& ~HW_BREAKPOINT_ALIGN
;
2829 arch_bp_generic_fields(brk
.type
, &attr
.bp_type
);
2831 thread
->ptrace_bps
[0] = bp
= register_user_hw_breakpoint(&attr
,
2832 ptrace_triggered
, NULL
, child
);
2834 thread
->ptrace_bps
[0] = NULL
;
2839 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2841 if (bp_info
->addr_mode
!= PPC_BREAKPOINT_MODE_EXACT
)
2844 if (child
->thread
.hw_brk
.address
)
2847 child
->thread
.hw_brk
= brk
;
2850 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2853 static long ppc_del_hwdebug(struct task_struct
*child
, long data
)
2855 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2857 struct thread_struct
*thread
= &(child
->thread
);
2858 struct perf_event
*bp
;
2859 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2860 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2864 rc
= del_instruction_bp(child
, (int)data
);
2866 rc
= del_dac(child
, (int)data
- 4);
2869 if (!DBCR_ACTIVE_EVENTS(child
->thread
.debug
.dbcr0
,
2870 child
->thread
.debug
.dbcr1
)) {
2871 child
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
2872 child
->thread
.regs
->msr
&= ~MSR_DE
;
2880 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2881 bp
= thread
->ptrace_bps
[0];
2883 unregister_hw_breakpoint(bp
);
2884 thread
->ptrace_bps
[0] = NULL
;
2888 #else /* CONFIG_HAVE_HW_BREAKPOINT */
2889 if (child
->thread
.hw_brk
.address
== 0)
2892 child
->thread
.hw_brk
.address
= 0;
2893 child
->thread
.hw_brk
.type
= 0;
2894 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2900 long arch_ptrace(struct task_struct
*child
, long request
,
2901 unsigned long addr
, unsigned long data
)
2904 void __user
*datavp
= (void __user
*) data
;
2905 unsigned long __user
*datalp
= datavp
;
2908 /* read the word at location addr in the USER area. */
2909 case PTRACE_PEEKUSR
: {
2910 unsigned long index
, tmp
;
2913 /* convert to index and check */
2916 if ((addr
& 3) || (index
> PT_FPSCR
)
2917 || (child
->thread
.regs
== NULL
))
2920 if ((addr
& 7) || (index
> PT_FPSCR
))
2924 CHECK_FULL_REGS(child
->thread
.regs
);
2925 if (index
< PT_FPR0
) {
2926 ret
= ptrace_get_reg(child
, (int) index
, &tmp
);
2930 unsigned int fpidx
= index
- PT_FPR0
;
2932 flush_fp_to_thread(child
);
2933 if (fpidx
< (PT_FPSCR
- PT_FPR0
))
2934 memcpy(&tmp
, &child
->thread
.TS_FPR(fpidx
),
2937 tmp
= child
->thread
.fp_state
.fpscr
;
2939 ret
= put_user(tmp
, datalp
);
2943 /* write the word at location addr in the USER area */
2944 case PTRACE_POKEUSR
: {
2945 unsigned long index
;
2948 /* convert to index and check */
2951 if ((addr
& 3) || (index
> PT_FPSCR
)
2952 || (child
->thread
.regs
== NULL
))
2955 if ((addr
& 7) || (index
> PT_FPSCR
))
2959 CHECK_FULL_REGS(child
->thread
.regs
);
2960 if (index
< PT_FPR0
) {
2961 ret
= ptrace_put_reg(child
, index
, data
);
2963 unsigned int fpidx
= index
- PT_FPR0
;
2965 flush_fp_to_thread(child
);
2966 if (fpidx
< (PT_FPSCR
- PT_FPR0
))
2967 memcpy(&child
->thread
.TS_FPR(fpidx
), &data
,
2970 child
->thread
.fp_state
.fpscr
= data
;
2976 case PPC_PTRACE_GETHWDBGINFO
: {
2977 struct ppc_debug_info dbginfo
;
2979 dbginfo
.version
= 1;
2980 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2981 dbginfo
.num_instruction_bps
= CONFIG_PPC_ADV_DEBUG_IACS
;
2982 dbginfo
.num_data_bps
= CONFIG_PPC_ADV_DEBUG_DACS
;
2983 dbginfo
.num_condition_regs
= CONFIG_PPC_ADV_DEBUG_DVCS
;
2984 dbginfo
.data_bp_alignment
= 4;
2985 dbginfo
.sizeof_condition
= 4;
2986 dbginfo
.features
= PPC_DEBUG_FEATURE_INSN_BP_RANGE
|
2987 PPC_DEBUG_FEATURE_INSN_BP_MASK
;
2988 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2990 PPC_DEBUG_FEATURE_DATA_BP_RANGE
|
2991 PPC_DEBUG_FEATURE_DATA_BP_MASK
;
2993 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
2994 dbginfo
.num_instruction_bps
= 0;
2995 dbginfo
.num_data_bps
= 1;
2996 dbginfo
.num_condition_regs
= 0;
2998 dbginfo
.data_bp_alignment
= 8;
3000 dbginfo
.data_bp_alignment
= 4;
3002 dbginfo
.sizeof_condition
= 0;
3003 #ifdef CONFIG_HAVE_HW_BREAKPOINT
3004 dbginfo
.features
= PPC_DEBUG_FEATURE_DATA_BP_RANGE
;
3005 if (cpu_has_feature(CPU_FTR_DAWR
))
3006 dbginfo
.features
|= PPC_DEBUG_FEATURE_DATA_BP_DAWR
;
3008 dbginfo
.features
= 0;
3009 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
3010 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3012 if (!access_ok(VERIFY_WRITE
, datavp
,
3013 sizeof(struct ppc_debug_info
)))
3015 ret
= __copy_to_user(datavp
, &dbginfo
,
3016 sizeof(struct ppc_debug_info
)) ?
3021 case PPC_PTRACE_SETHWDEBUG
: {
3022 struct ppc_hw_breakpoint bp_info
;
3024 if (!access_ok(VERIFY_READ
, datavp
,
3025 sizeof(struct ppc_hw_breakpoint
)))
3027 ret
= __copy_from_user(&bp_info
, datavp
,
3028 sizeof(struct ppc_hw_breakpoint
)) ?
3031 ret
= ppc_set_hwdebug(child
, &bp_info
);
3035 case PPC_PTRACE_DELHWDEBUG
: {
3036 ret
= ppc_del_hwdebug(child
, data
);
3040 case PTRACE_GET_DEBUGREG
: {
3041 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
3042 unsigned long dabr_fake
;
3045 /* We only support one DABR and no IABRS at the moment */
3048 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3049 ret
= put_user(child
->thread
.debug
.dac1
, datalp
);
3051 dabr_fake
= ((child
->thread
.hw_brk
.address
& (~HW_BRK_TYPE_DABR
)) |
3052 (child
->thread
.hw_brk
.type
& HW_BRK_TYPE_DABR
));
3053 ret
= put_user(dabr_fake
, datalp
);
3058 case PTRACE_SET_DEBUGREG
:
3059 ret
= ptrace_set_debugreg(child
, addr
, data
);
3063 case PTRACE_GETREGS64
:
3065 case PTRACE_GETREGS
: /* Get all pt_regs from the child. */
3066 return copy_regset_to_user(child
, &user_ppc_native_view
,
3068 0, sizeof(struct pt_regs
),
3072 case PTRACE_SETREGS64
:
3074 case PTRACE_SETREGS
: /* Set all gp regs in the child. */
3075 return copy_regset_from_user(child
, &user_ppc_native_view
,
3077 0, sizeof(struct pt_regs
),
3080 case PTRACE_GETFPREGS
: /* Get the child FPU state (FPR0...31 + FPSCR) */
3081 return copy_regset_to_user(child
, &user_ppc_native_view
,
3083 0, sizeof(elf_fpregset_t
),
3086 case PTRACE_SETFPREGS
: /* Set the child FPU state (FPR0...31 + FPSCR) */
3087 return copy_regset_from_user(child
, &user_ppc_native_view
,
3089 0, sizeof(elf_fpregset_t
),
3092 #ifdef CONFIG_ALTIVEC
3093 case PTRACE_GETVRREGS
:
3094 return copy_regset_to_user(child
, &user_ppc_native_view
,
3096 0, (33 * sizeof(vector128
) +
3100 case PTRACE_SETVRREGS
:
3101 return copy_regset_from_user(child
, &user_ppc_native_view
,
3103 0, (33 * sizeof(vector128
) +
3108 case PTRACE_GETVSRREGS
:
3109 return copy_regset_to_user(child
, &user_ppc_native_view
,
3111 0, 32 * sizeof(double),
3114 case PTRACE_SETVSRREGS
:
3115 return copy_regset_from_user(child
, &user_ppc_native_view
,
3117 0, 32 * sizeof(double),
3121 case PTRACE_GETEVRREGS
:
3122 /* Get the child spe register state. */
3123 return copy_regset_to_user(child
, &user_ppc_native_view
,
3124 REGSET_SPE
, 0, 35 * sizeof(u32
),
3127 case PTRACE_SETEVRREGS
:
3128 /* Set the child spe register state. */
3129 return copy_regset_from_user(child
, &user_ppc_native_view
,
3130 REGSET_SPE
, 0, 35 * sizeof(u32
),
3135 ret
= ptrace_request(child
, request
, addr
, data
);
3141 #ifdef CONFIG_SECCOMP
3142 static int do_seccomp(struct pt_regs
*regs
)
3144 if (!test_thread_flag(TIF_SECCOMP
))
3148 * The ABI we present to seccomp tracers is that r3 contains
3149 * the syscall return value and orig_gpr3 contains the first
3150 * syscall parameter. This is different to the ptrace ABI where
3151 * both r3 and orig_gpr3 contain the first syscall parameter.
3153 regs
->gpr
[3] = -ENOSYS
;
3156 * We use the __ version here because we have already checked
3157 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3158 * have already loaded -ENOSYS into r3, or seccomp has put
3159 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3161 if (__secure_computing(NULL
))
3165 * The syscall was allowed by seccomp, restore the register
3166 * state to what audit expects.
3167 * Note that we use orig_gpr3, which means a seccomp tracer can
3168 * modify the first syscall parameter (in orig_gpr3) and also
3169 * allow the syscall to proceed.
3171 regs
->gpr
[3] = regs
->orig_gpr3
;
3176 static inline int do_seccomp(struct pt_regs
*regs
) { return 0; }
3177 #endif /* CONFIG_SECCOMP */
3180 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3181 * @regs: the pt_regs of the task to trace (current)
3183 * Performs various types of tracing on syscall entry. This includes seccomp,
3184 * ptrace, syscall tracepoints and audit.
3186 * The pt_regs are potentially visible to userspace via ptrace, so their
3189 * One or more of the tracers may modify the contents of pt_regs, in particular
3190 * to modify arguments or even the syscall number itself.
3192 * It's also possible that a tracer can choose to reject the system call. In
3193 * that case this function will return an illegal syscall number, and will put
3194 * an appropriate return value in regs->r3.
3196 * Return: the (possibly changed) syscall number.
3198 long do_syscall_trace_enter(struct pt_regs
*regs
)
3203 * The tracer may decide to abort the syscall, if so tracehook
3204 * will return !0. Note that the tracer may also just change
3205 * regs->gpr[0] to an invalid syscall number, that is handled
3206 * below on the exit path.
3208 if (test_thread_flag(TIF_SYSCALL_TRACE
) &&
3209 tracehook_report_syscall_entry(regs
))
3212 /* Run seccomp after ptrace; allow it to set gpr[3]. */
3213 if (do_seccomp(regs
))
3216 /* Avoid trace and audit when syscall is invalid. */
3217 if (regs
->gpr
[0] >= NR_syscalls
)
3220 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT
)))
3221 trace_sys_enter(regs
, regs
->gpr
[0]);
3224 if (!is_32bit_task())
3225 audit_syscall_entry(regs
->gpr
[0], regs
->gpr
[3], regs
->gpr
[4],
3226 regs
->gpr
[5], regs
->gpr
[6]);
3229 audit_syscall_entry(regs
->gpr
[0],
3230 regs
->gpr
[3] & 0xffffffff,
3231 regs
->gpr
[4] & 0xffffffff,
3232 regs
->gpr
[5] & 0xffffffff,
3233 regs
->gpr
[6] & 0xffffffff);
3235 /* Return the possibly modified but valid syscall number */
3236 return regs
->gpr
[0];
3240 * If we are aborting explicitly, or if the syscall number is
3241 * now invalid, set the return value to -ENOSYS.
3243 regs
->gpr
[3] = -ENOSYS
;
3247 void do_syscall_trace_leave(struct pt_regs
*regs
)
3251 audit_syscall_exit(regs
);
3253 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT
)))
3254 trace_sys_exit(regs
, regs
->result
);
3256 step
= test_thread_flag(TIF_SINGLESTEP
);
3257 if (step
|| test_thread_flag(TIF_SYSCALL_TRACE
))
3258 tracehook_report_syscall_exit(regs
, step
);