Linux 4.13.16
[linux/fpc-iii.git] / arch / powerpc / kernel / rtasd.c
blob0f0b1b2f3b60068ea2a4e9ef9d63526383172841
1 /*
2 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Communication to userspace based on kernel/printk.c
12 #include <linux/types.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/init.h>
19 #include <linux/vmalloc.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpu.h>
22 #include <linux/workqueue.h>
23 #include <linux/slab.h>
24 #include <linux/topology.h>
26 #include <linux/uaccess.h>
27 #include <asm/io.h>
28 #include <asm/rtas.h>
29 #include <asm/prom.h>
30 #include <asm/nvram.h>
31 #include <linux/atomic.h>
32 #include <asm/machdep.h>
33 #include <asm/topology.h>
36 static DEFINE_SPINLOCK(rtasd_log_lock);
38 static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
40 static char *rtas_log_buf;
41 static unsigned long rtas_log_start;
42 static unsigned long rtas_log_size;
44 static int surveillance_timeout = -1;
46 static unsigned int rtas_error_log_max;
47 static unsigned int rtas_error_log_buffer_max;
49 /* RTAS service tokens */
50 static unsigned int event_scan;
51 static unsigned int rtas_event_scan_rate;
53 static bool full_rtas_msgs;
55 /* Stop logging to nvram after first fatal error */
56 static int logging_enabled; /* Until we initialize everything,
57 * make sure we don't try logging
58 * anything */
59 static int error_log_cnt;
62 * Since we use 32 bit RTAS, the physical address of this must be below
63 * 4G or else bad things happen. Allocate this in the kernel data and
64 * make it big enough.
66 static unsigned char logdata[RTAS_ERROR_LOG_MAX];
68 static char *rtas_type[] = {
69 "Unknown", "Retry", "TCE Error", "Internal Device Failure",
70 "Timeout", "Data Parity", "Address Parity", "Cache Parity",
71 "Address Invalid", "ECC Uncorrected", "ECC Corrupted",
74 static char *rtas_event_type(int type)
76 if ((type > 0) && (type < 11))
77 return rtas_type[type];
79 switch (type) {
80 case RTAS_TYPE_EPOW:
81 return "EPOW";
82 case RTAS_TYPE_PLATFORM:
83 return "Platform Error";
84 case RTAS_TYPE_IO:
85 return "I/O Event";
86 case RTAS_TYPE_INFO:
87 return "Platform Information Event";
88 case RTAS_TYPE_DEALLOC:
89 return "Resource Deallocation Event";
90 case RTAS_TYPE_DUMP:
91 return "Dump Notification Event";
92 case RTAS_TYPE_PRRN:
93 return "Platform Resource Reassignment Event";
96 return rtas_type[0];
99 /* To see this info, grep RTAS /var/log/messages and each entry
100 * will be collected together with obvious begin/end.
101 * There will be a unique identifier on the begin and end lines.
102 * This will persist across reboots.
104 * format of error logs returned from RTAS:
105 * bytes (size) : contents
106 * --------------------------------------------------------
107 * 0-7 (8) : rtas_error_log
108 * 8-47 (40) : extended info
109 * 48-51 (4) : vendor id
110 * 52-1023 (vendor specific) : location code and debug data
112 static void printk_log_rtas(char *buf, int len)
115 int i,j,n = 0;
116 int perline = 16;
117 char buffer[64];
118 char * str = "RTAS event";
120 if (full_rtas_msgs) {
121 printk(RTAS_DEBUG "%d -------- %s begin --------\n",
122 error_log_cnt, str);
125 * Print perline bytes on each line, each line will start
126 * with RTAS and a changing number, so syslogd will
127 * print lines that are otherwise the same. Separate every
128 * 4 bytes with a space.
130 for (i = 0; i < len; i++) {
131 j = i % perline;
132 if (j == 0) {
133 memset(buffer, 0, sizeof(buffer));
134 n = sprintf(buffer, "RTAS %d:", i/perline);
137 if ((i % 4) == 0)
138 n += sprintf(buffer+n, " ");
140 n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
142 if (j == (perline-1))
143 printk(KERN_DEBUG "%s\n", buffer);
145 if ((i % perline) != 0)
146 printk(KERN_DEBUG "%s\n", buffer);
148 printk(RTAS_DEBUG "%d -------- %s end ----------\n",
149 error_log_cnt, str);
150 } else {
151 struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
153 printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
154 error_log_cnt, rtas_event_type(rtas_error_type(errlog)),
155 rtas_error_severity(errlog));
159 static int log_rtas_len(char * buf)
161 int len;
162 struct rtas_error_log *err;
163 uint32_t extended_log_length;
165 /* rtas fixed header */
166 len = 8;
167 err = (struct rtas_error_log *)buf;
168 extended_log_length = rtas_error_extended_log_length(err);
169 if (rtas_error_extended(err) && extended_log_length) {
171 /* extended header */
172 len += extended_log_length;
175 if (rtas_error_log_max == 0)
176 rtas_error_log_max = rtas_get_error_log_max();
178 if (len > rtas_error_log_max)
179 len = rtas_error_log_max;
181 return len;
185 * First write to nvram, if fatal error, that is the only
186 * place we log the info. The error will be picked up
187 * on the next reboot by rtasd. If not fatal, run the
188 * method for the type of error. Currently, only RTAS
189 * errors have methods implemented, but in the future
190 * there might be a need to store data in nvram before a
191 * call to panic().
193 * XXX We write to nvram periodically, to indicate error has
194 * been written and sync'd, but there is a possibility
195 * that if we don't shutdown correctly, a duplicate error
196 * record will be created on next reboot.
198 void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
200 unsigned long offset;
201 unsigned long s;
202 int len = 0;
204 pr_debug("rtasd: logging event\n");
205 if (buf == NULL)
206 return;
208 spin_lock_irqsave(&rtasd_log_lock, s);
210 /* get length and increase count */
211 switch (err_type & ERR_TYPE_MASK) {
212 case ERR_TYPE_RTAS_LOG:
213 len = log_rtas_len(buf);
214 if (!(err_type & ERR_FLAG_BOOT))
215 error_log_cnt++;
216 break;
217 case ERR_TYPE_KERNEL_PANIC:
218 default:
219 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
220 spin_unlock_irqrestore(&rtasd_log_lock, s);
221 return;
224 #ifdef CONFIG_PPC64
225 /* Write error to NVRAM */
226 if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
227 nvram_write_error_log(buf, len, err_type, error_log_cnt);
228 #endif /* CONFIG_PPC64 */
231 * rtas errors can occur during boot, and we do want to capture
232 * those somewhere, even if nvram isn't ready (why not?), and even
233 * if rtasd isn't ready. Put them into the boot log, at least.
235 if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
236 printk_log_rtas(buf, len);
238 /* Check to see if we need to or have stopped logging */
239 if (fatal || !logging_enabled) {
240 logging_enabled = 0;
241 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
242 spin_unlock_irqrestore(&rtasd_log_lock, s);
243 return;
246 /* call type specific method for error */
247 switch (err_type & ERR_TYPE_MASK) {
248 case ERR_TYPE_RTAS_LOG:
249 offset = rtas_error_log_buffer_max *
250 ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
252 /* First copy over sequence number */
253 memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
255 /* Second copy over error log data */
256 offset += sizeof(int);
257 memcpy(&rtas_log_buf[offset], buf, len);
259 if (rtas_log_size < LOG_NUMBER)
260 rtas_log_size += 1;
261 else
262 rtas_log_start += 1;
264 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
265 spin_unlock_irqrestore(&rtasd_log_lock, s);
266 wake_up_interruptible(&rtas_log_wait);
267 break;
268 case ERR_TYPE_KERNEL_PANIC:
269 default:
270 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
271 spin_unlock_irqrestore(&rtasd_log_lock, s);
272 return;
276 #ifdef CONFIG_PPC_PSERIES
277 static s32 prrn_update_scope;
279 static void prrn_work_fn(struct work_struct *work)
282 * For PRRN, we must pass the negative of the scope value in
283 * the RTAS event.
285 pseries_devicetree_update(-prrn_update_scope);
286 numa_update_cpu_topology(false);
289 static DECLARE_WORK(prrn_work, prrn_work_fn);
291 static void prrn_schedule_update(u32 scope)
293 flush_work(&prrn_work);
294 prrn_update_scope = scope;
295 schedule_work(&prrn_work);
298 static void handle_rtas_event(const struct rtas_error_log *log)
300 if (rtas_error_type(log) != RTAS_TYPE_PRRN || !prrn_is_enabled())
301 return;
303 /* For PRRN Events the extended log length is used to denote
304 * the scope for calling rtas update-nodes.
306 prrn_schedule_update(rtas_error_extended_log_length(log));
309 #else
311 static void handle_rtas_event(const struct rtas_error_log *log)
313 return;
316 #endif
318 static int rtas_log_open(struct inode * inode, struct file * file)
320 return 0;
323 static int rtas_log_release(struct inode * inode, struct file * file)
325 return 0;
328 /* This will check if all events are logged, if they are then, we
329 * know that we can safely clear the events in NVRAM.
330 * Next we'll sit and wait for something else to log.
332 static ssize_t rtas_log_read(struct file * file, char __user * buf,
333 size_t count, loff_t *ppos)
335 int error;
336 char *tmp;
337 unsigned long s;
338 unsigned long offset;
340 if (!buf || count < rtas_error_log_buffer_max)
341 return -EINVAL;
343 count = rtas_error_log_buffer_max;
345 if (!access_ok(VERIFY_WRITE, buf, count))
346 return -EFAULT;
348 tmp = kmalloc(count, GFP_KERNEL);
349 if (!tmp)
350 return -ENOMEM;
352 spin_lock_irqsave(&rtasd_log_lock, s);
354 /* if it's 0, then we know we got the last one (the one in NVRAM) */
355 while (rtas_log_size == 0) {
356 if (file->f_flags & O_NONBLOCK) {
357 spin_unlock_irqrestore(&rtasd_log_lock, s);
358 error = -EAGAIN;
359 goto out;
362 if (!logging_enabled) {
363 spin_unlock_irqrestore(&rtasd_log_lock, s);
364 error = -ENODATA;
365 goto out;
367 #ifdef CONFIG_PPC64
368 nvram_clear_error_log();
369 #endif /* CONFIG_PPC64 */
371 spin_unlock_irqrestore(&rtasd_log_lock, s);
372 error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
373 if (error)
374 goto out;
375 spin_lock_irqsave(&rtasd_log_lock, s);
378 offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
379 memcpy(tmp, &rtas_log_buf[offset], count);
381 rtas_log_start += 1;
382 rtas_log_size -= 1;
383 spin_unlock_irqrestore(&rtasd_log_lock, s);
385 error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
386 out:
387 kfree(tmp);
388 return error;
391 static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
393 poll_wait(file, &rtas_log_wait, wait);
394 if (rtas_log_size)
395 return POLLIN | POLLRDNORM;
396 return 0;
399 static const struct file_operations proc_rtas_log_operations = {
400 .read = rtas_log_read,
401 .poll = rtas_log_poll,
402 .open = rtas_log_open,
403 .release = rtas_log_release,
404 .llseek = noop_llseek,
407 static int enable_surveillance(int timeout)
409 int error;
411 error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
413 if (error == 0)
414 return 0;
416 if (error == -EINVAL) {
417 printk(KERN_DEBUG "rtasd: surveillance not supported\n");
418 return 0;
421 printk(KERN_ERR "rtasd: could not update surveillance\n");
422 return -1;
425 static void do_event_scan(void)
427 int error;
428 do {
429 memset(logdata, 0, rtas_error_log_max);
430 error = rtas_call(event_scan, 4, 1, NULL,
431 RTAS_EVENT_SCAN_ALL_EVENTS, 0,
432 __pa(logdata), rtas_error_log_max);
433 if (error == -1) {
434 printk(KERN_ERR "event-scan failed\n");
435 break;
438 if (error == 0) {
439 if (rtas_error_type((struct rtas_error_log *)logdata) !=
440 RTAS_TYPE_PRRN)
441 pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG,
443 handle_rtas_event((struct rtas_error_log *)logdata);
446 } while(error == 0);
449 static void rtas_event_scan(struct work_struct *w);
450 static DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
453 * Delay should be at least one second since some machines have problems if
454 * we call event-scan too quickly.
456 static unsigned long event_scan_delay = 1*HZ;
457 static int first_pass = 1;
459 static void rtas_event_scan(struct work_struct *w)
461 unsigned int cpu;
463 do_event_scan();
465 get_online_cpus();
467 /* raw_ OK because just using CPU as starting point. */
468 cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
469 if (cpu >= nr_cpu_ids) {
470 cpu = cpumask_first(cpu_online_mask);
472 if (first_pass) {
473 first_pass = 0;
474 event_scan_delay = 30*HZ/rtas_event_scan_rate;
476 if (surveillance_timeout != -1) {
477 pr_debug("rtasd: enabling surveillance\n");
478 enable_surveillance(surveillance_timeout);
479 pr_debug("rtasd: surveillance enabled\n");
484 schedule_delayed_work_on(cpu, &event_scan_work,
485 __round_jiffies_relative(event_scan_delay, cpu));
487 put_online_cpus();
490 #ifdef CONFIG_PPC64
491 static void retrieve_nvram_error_log(void)
493 unsigned int err_type ;
494 int rc ;
496 /* See if we have any error stored in NVRAM */
497 memset(logdata, 0, rtas_error_log_max);
498 rc = nvram_read_error_log(logdata, rtas_error_log_max,
499 &err_type, &error_log_cnt);
500 /* We can use rtas_log_buf now */
501 logging_enabled = 1;
502 if (!rc) {
503 if (err_type != ERR_FLAG_ALREADY_LOGGED) {
504 pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
508 #else /* CONFIG_PPC64 */
509 static void retrieve_nvram_error_log(void)
512 #endif /* CONFIG_PPC64 */
514 static void start_event_scan(void)
516 printk(KERN_DEBUG "RTAS daemon started\n");
517 pr_debug("rtasd: will sleep for %d milliseconds\n",
518 (30000 / rtas_event_scan_rate));
520 /* Retrieve errors from nvram if any */
521 retrieve_nvram_error_log();
523 schedule_delayed_work_on(cpumask_first(cpu_online_mask),
524 &event_scan_work, event_scan_delay);
527 /* Cancel the rtas event scan work */
528 void rtas_cancel_event_scan(void)
530 cancel_delayed_work_sync(&event_scan_work);
532 EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);
534 static int __init rtas_event_scan_init(void)
536 if (!machine_is(pseries) && !machine_is(chrp))
537 return 0;
539 /* No RTAS */
540 event_scan = rtas_token("event-scan");
541 if (event_scan == RTAS_UNKNOWN_SERVICE) {
542 printk(KERN_INFO "rtasd: No event-scan on system\n");
543 return -ENODEV;
546 rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
547 if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
548 printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
549 return -ENODEV;
552 if (!rtas_event_scan_rate) {
553 /* Broken firmware: take a rate of zero to mean don't scan */
554 printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
555 return 0;
558 /* Make room for the sequence number */
559 rtas_error_log_max = rtas_get_error_log_max();
560 rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
562 rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
563 if (!rtas_log_buf) {
564 printk(KERN_ERR "rtasd: no memory\n");
565 return -ENOMEM;
568 start_event_scan();
570 return 0;
572 arch_initcall(rtas_event_scan_init);
574 static int __init rtas_init(void)
576 struct proc_dir_entry *entry;
578 if (!machine_is(pseries) && !machine_is(chrp))
579 return 0;
581 if (!rtas_log_buf)
582 return -ENODEV;
584 entry = proc_create("powerpc/rtas/error_log", S_IRUSR, NULL,
585 &proc_rtas_log_operations);
586 if (!entry)
587 printk(KERN_ERR "Failed to create error_log proc entry\n");
589 return 0;
591 __initcall(rtas_init);
593 static int __init surveillance_setup(char *str)
595 int i;
597 /* We only do surveillance on pseries */
598 if (!machine_is(pseries))
599 return 0;
601 if (get_option(&str,&i)) {
602 if (i >= 0 && i <= 255)
603 surveillance_timeout = i;
606 return 1;
608 __setup("surveillance=", surveillance_setup);
610 static int __init rtasmsgs_setup(char *str)
612 return (kstrtobool(str, &full_rtas_msgs) == 0);
614 __setup("rtasmsgs=", rtasmsgs_setup);