3 * Common boot and setup code.
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/memory.h>
39 #include <linux/nmi.h>
42 #include <asm/kdump.h>
44 #include <asm/processor.h>
45 #include <asm/pgtable.h>
48 #include <asm/machdep.h>
51 #include <asm/cputable.h>
52 #include <asm/dt_cpu_ftrs.h>
53 #include <asm/sections.h>
54 #include <asm/btext.h>
55 #include <asm/nvram.h>
56 #include <asm/setup.h>
58 #include <asm/iommu.h>
59 #include <asm/serial.h>
60 #include <asm/cache.h>
63 #include <asm/firmware.h>
66 #include <asm/kexec.h>
67 #include <asm/code-patching.h>
68 #include <asm/livepatch.h>
70 #include <asm/cputhreads.h>
73 #define DBG(fmt...) udbg_printf(fmt)
78 int spinning_secondaries
;
81 struct ppc64_caches ppc64_caches
= {
91 EXPORT_SYMBOL_GPL(ppc64_caches
);
93 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
94 void __init
setup_tlb_core_data(void)
98 BUILD_BUG_ON(offsetof(struct tlb_core_data
, lock
) != 0);
100 for_each_possible_cpu(cpu
) {
101 int first
= cpu_first_thread_sibling(cpu
);
104 * If we boot via kdump on a non-primary thread,
105 * make sure we point at the thread that actually
108 if (cpu_first_thread_sibling(boot_cpuid
) == first
)
111 paca
[cpu
].tcd_ptr
= &paca
[first
].tcd
;
114 * If we have threads, we need either tlbsrx.
115 * or e6500 tablewalk mode, or else TLB handlers
116 * will be racy and could produce duplicate entries.
117 * Should we panic instead?
119 WARN_ONCE(smt_enabled_at_boot
>= 2 &&
120 !mmu_has_feature(MMU_FTR_USE_TLBRSRV
) &&
121 book3e_htw_mode
!= PPC_HTW_E6500
,
122 "%s: unsupported MMU configuration\n", __func__
);
129 static char *smt_enabled_cmdline
;
131 /* Look for ibm,smt-enabled OF option */
132 void __init
check_smt_enabled(void)
134 struct device_node
*dn
;
135 const char *smt_option
;
137 /* Default to enabling all threads */
138 smt_enabled_at_boot
= threads_per_core
;
140 /* Allow the command line to overrule the OF option */
141 if (smt_enabled_cmdline
) {
142 if (!strcmp(smt_enabled_cmdline
, "on"))
143 smt_enabled_at_boot
= threads_per_core
;
144 else if (!strcmp(smt_enabled_cmdline
, "off"))
145 smt_enabled_at_boot
= 0;
150 rc
= kstrtoint(smt_enabled_cmdline
, 10, &smt
);
152 smt_enabled_at_boot
=
153 min(threads_per_core
, smt
);
156 dn
= of_find_node_by_path("/options");
158 smt_option
= of_get_property(dn
, "ibm,smt-enabled",
162 if (!strcmp(smt_option
, "on"))
163 smt_enabled_at_boot
= threads_per_core
;
164 else if (!strcmp(smt_option
, "off"))
165 smt_enabled_at_boot
= 0;
173 /* Look for smt-enabled= cmdline option */
174 static int __init
early_smt_enabled(char *p
)
176 smt_enabled_cmdline
= p
;
179 early_param("smt-enabled", early_smt_enabled
);
181 #endif /* CONFIG_SMP */
183 /** Fix up paca fields required for the boot cpu */
184 static void __init
fixup_boot_paca(void)
186 /* The boot cpu is started */
187 get_paca()->cpu_start
= 1;
188 /* Allow percpu accesses to work until we setup percpu data */
189 get_paca()->data_offset
= 0;
192 static void __init
configure_exceptions(void)
195 * Setup the trampolines from the lowmem exception vectors
196 * to the kdump kernel when not using a relocatable kernel.
198 setup_kdump_trampoline();
200 /* Under a PAPR hypervisor, we need hypercalls */
201 if (firmware_has_feature(FW_FEATURE_SET_MODE
)) {
202 /* Enable AIL if possible */
203 pseries_enable_reloc_on_exc();
206 * Tell the hypervisor that we want our exceptions to
207 * be taken in little endian mode.
209 * We don't call this for big endian as our calling convention
210 * makes us always enter in BE, and the call may fail under
211 * some circumstances with kdump.
213 #ifdef __LITTLE_ENDIAN__
214 pseries_little_endian_exceptions();
217 /* Set endian mode using OPAL */
218 if (firmware_has_feature(FW_FEATURE_OPAL
))
219 opal_configure_cores();
221 /* AIL on native is done in cpu_ready_for_interrupts() */
225 static void cpu_ready_for_interrupts(void)
228 * Enable AIL if supported, and we are in hypervisor mode. This
229 * is called once for every processor.
231 * If we are not in hypervisor mode the job is done once for
232 * the whole partition in configure_exceptions().
234 if (cpu_has_feature(CPU_FTR_HVMODE
) &&
235 cpu_has_feature(CPU_FTR_ARCH_207S
)) {
236 unsigned long lpcr
= mfspr(SPRN_LPCR
);
237 mtspr(SPRN_LPCR
, lpcr
| LPCR_AIL_3
);
241 * Fixup HFSCR:TM based on CPU features. The bit is set by our
242 * early asm init because at that point we haven't updated our
243 * CPU features from firmware and device-tree. Here we have,
246 if (cpu_has_feature(CPU_FTR_HVMODE
) && !cpu_has_feature(CPU_FTR_TM_COMP
))
247 mtspr(SPRN_HFSCR
, mfspr(SPRN_HFSCR
) & ~HFSCR_TM
);
249 /* Set IR and DR in PACA MSR */
250 get_paca()->kernel_msr
= MSR_KERNEL
;
254 * Early initialization entry point. This is called by head.S
255 * with MMU translation disabled. We rely on the "feature" of
256 * the CPU that ignores the top 2 bits of the address in real
257 * mode so we can access kernel globals normally provided we
258 * only toy with things in the RMO region. From here, we do
259 * some early parsing of the device-tree to setup out MEMBLOCK
260 * data structures, and allocate & initialize the hash table
261 * and segment tables so we can start running with translation
264 * It is this function which will call the probe() callback of
265 * the various platform types and copy the matching one to the
266 * global ppc_md structure. Your platform can eventually do
267 * some very early initializations from the probe() routine, but
268 * this is not recommended, be very careful as, for example, the
269 * device-tree is not accessible via normal means at this point.
272 void __init
early_setup(unsigned long dt_ptr
)
274 static __initdata
struct paca_struct boot_paca
;
276 /* -------- printk is _NOT_ safe to use here ! ------- */
278 /* Try new device tree based feature discovery ... */
279 if (!dt_cpu_ftrs_init(__va(dt_ptr
)))
280 /* Otherwise use the old style CPU table */
281 identify_cpu(0, mfspr(SPRN_PVR
));
283 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
284 initialise_paca(&boot_paca
, 0);
285 setup_paca(&boot_paca
);
288 /* -------- printk is now safe to use ------- */
290 /* Enable early debugging if any specified (see udbg.h) */
293 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr
);
296 * Do early initialization using the flattened device
297 * tree, such as retrieving the physical memory map or
298 * calculating/retrieving the hash table size.
300 early_init_devtree(__va(dt_ptr
));
302 /* Now we know the logical id of our boot cpu, setup the paca. */
303 setup_paca(&paca
[boot_cpuid
]);
307 * Configure exception handlers. This include setting up trampolines
308 * if needed, setting exception endian mode, etc...
310 configure_exceptions();
312 /* Apply all the dynamic patching */
313 apply_feature_fixups();
314 setup_feature_keys();
316 /* Initialize the hash table or TLB handling */
320 * At this point, we can let interrupts switch to virtual mode
321 * (the MMU has been setup), so adjust the MSR in the PACA to
322 * have IR and DR set and enable AIL if it exists
324 cpu_ready_for_interrupts();
326 DBG(" <- early_setup()\n");
328 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
330 * This needs to be done *last* (after the above DBG() even)
332 * Right after we return from this function, we turn on the MMU
333 * which means the real-mode access trick that btext does will
334 * no longer work, it needs to switch to using a real MMU
335 * mapping. This call will ensure that it does
338 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
342 void early_setup_secondary(void)
344 /* Mark interrupts disabled in PACA */
345 get_paca()->soft_enabled
= 0;
347 /* Initialize the hash table or TLB handling */
348 early_init_mmu_secondary();
351 * At this point, we can let interrupts switch to virtual mode
352 * (the MMU has been setup), so adjust the MSR in the PACA to
353 * have IR and DR set.
355 cpu_ready_for_interrupts();
358 #endif /* CONFIG_SMP */
360 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
361 static bool use_spinloop(void)
363 if (!IS_ENABLED(CONFIG_PPC_BOOK3E
))
367 * When book3e boots from kexec, the ePAPR spin table does
370 return of_property_read_bool(of_chosen
, "linux,booted-from-kexec");
373 void smp_release_cpus(void)
381 DBG(" -> smp_release_cpus()\n");
383 /* All secondary cpus are spinning on a common spinloop, release them
384 * all now so they can start to spin on their individual paca
385 * spinloops. For non SMP kernels, the secondary cpus never get out
386 * of the common spinloop.
389 ptr
= (unsigned long *)((unsigned long)&__secondary_hold_spinloop
391 *ptr
= ppc_function_entry(generic_secondary_smp_init
);
393 /* And wait a bit for them to catch up */
394 for (i
= 0; i
< 100000; i
++) {
397 if (spinning_secondaries
== 0)
401 DBG("spinning_secondaries = %d\n", spinning_secondaries
);
403 DBG(" <- smp_release_cpus()\n");
405 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
408 * Initialize some remaining members of the ppc64_caches and systemcfg
410 * (at least until we get rid of them completely). This is mostly some
411 * cache informations about the CPU that will be used by cache flush
412 * routines and/or provided to userland
415 static void init_cache_info(struct ppc_cache_info
*info
, u32 size
, u32 lsize
,
420 info
->line_size
= lsize
;
421 info
->block_size
= bsize
;
422 info
->log_block_size
= __ilog2(bsize
);
424 info
->blocks_per_page
= PAGE_SIZE
/ bsize
;
426 info
->blocks_per_page
= 0;
429 info
->assoc
= 0xffff;
431 info
->assoc
= size
/ (sets
* lsize
);
434 static bool __init
parse_cache_info(struct device_node
*np
,
436 struct ppc_cache_info
*info
)
438 static const char *ipropnames
[] __initdata
= {
441 "i-cache-block-size",
444 static const char *dpropnames
[] __initdata
= {
447 "d-cache-block-size",
450 const char **propnames
= icache
? ipropnames
: dpropnames
;
451 const __be32
*sizep
, *lsizep
, *bsizep
, *setsp
;
452 u32 size
, lsize
, bsize
, sets
;
457 lsize
= bsize
= cur_cpu_spec
->dcache_bsize
;
458 sizep
= of_get_property(np
, propnames
[0], NULL
);
460 size
= be32_to_cpu(*sizep
);
461 setsp
= of_get_property(np
, propnames
[1], NULL
);
463 sets
= be32_to_cpu(*setsp
);
464 bsizep
= of_get_property(np
, propnames
[2], NULL
);
465 lsizep
= of_get_property(np
, propnames
[3], NULL
);
469 lsize
= be32_to_cpu(*lsizep
);
471 bsize
= be32_to_cpu(*bsizep
);
472 if (sizep
== NULL
|| bsizep
== NULL
|| lsizep
== NULL
)
476 * OF is weird .. it represents fully associative caches
477 * as "1 way" which doesn't make much sense and doesn't
478 * leave room for direct mapped. We'll assume that 0
479 * in OF means direct mapped for that reason.
486 init_cache_info(info
, size
, lsize
, bsize
, sets
);
491 void __init
initialize_cache_info(void)
493 struct device_node
*cpu
= NULL
, *l2
, *l3
= NULL
;
496 DBG(" -> initialize_cache_info()\n");
499 * All shipping POWER8 machines have a firmware bug that
500 * puts incorrect information in the device-tree. This will
501 * be (hopefully) fixed for future chips but for now hard
502 * code the values if we are running on one of these
504 pvr
= PVR_VER(mfspr(SPRN_PVR
));
505 if (pvr
== PVR_POWER8
|| pvr
== PVR_POWER8E
||
506 pvr
== PVR_POWER8NVL
) {
507 /* size lsize blk sets */
508 init_cache_info(&ppc64_caches
.l1i
, 0x8000, 128, 128, 32);
509 init_cache_info(&ppc64_caches
.l1d
, 0x10000, 128, 128, 64);
510 init_cache_info(&ppc64_caches
.l2
, 0x80000, 128, 0, 512);
511 init_cache_info(&ppc64_caches
.l3
, 0x800000, 128, 0, 8192);
513 cpu
= of_find_node_by_type(NULL
, "cpu");
516 * We're assuming *all* of the CPUs have the same
517 * d-cache and i-cache sizes... -Peter
520 if (!parse_cache_info(cpu
, false, &ppc64_caches
.l1d
))
521 DBG("Argh, can't find dcache properties !\n");
523 if (!parse_cache_info(cpu
, true, &ppc64_caches
.l1i
))
524 DBG("Argh, can't find icache properties !\n");
527 * Try to find the L2 and L3 if any. Assume they are
528 * unified and use the D-side properties.
530 l2
= of_find_next_cache_node(cpu
);
533 parse_cache_info(l2
, false, &ppc64_caches
.l2
);
534 l3
= of_find_next_cache_node(l2
);
538 parse_cache_info(l3
, false, &ppc64_caches
.l3
);
543 /* For use by binfmt_elf */
544 dcache_bsize
= ppc64_caches
.l1d
.block_size
;
545 icache_bsize
= ppc64_caches
.l1i
.block_size
;
547 cur_cpu_spec
->dcache_bsize
= dcache_bsize
;
548 cur_cpu_spec
->icache_bsize
= icache_bsize
;
550 DBG(" <- initialize_cache_info()\n");
553 /* This returns the limit below which memory accesses to the linear
554 * mapping are guarnateed not to cause a TLB or SLB miss. This is
555 * used to allocate interrupt or emergency stacks for which our
556 * exception entry path doesn't deal with being interrupted.
558 static __init u64
safe_stack_limit(void)
560 #ifdef CONFIG_PPC_BOOK3E
561 /* Freescale BookE bolts the entire linear mapping */
562 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E
))
563 return linear_map_top
;
564 /* Other BookE, we assume the first GB is bolted */
567 /* BookS, the first segment is bolted */
568 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
))
569 return 1UL << SID_SHIFT_1T
;
570 return 1UL << SID_SHIFT
;
574 void __init
irqstack_early_init(void)
576 u64 limit
= safe_stack_limit();
580 * Interrupt stacks must be in the first segment since we
581 * cannot afford to take SLB misses on them.
583 for_each_possible_cpu(i
) {
584 softirq_ctx
[i
] = (struct thread_info
*)
585 __va(memblock_alloc_base(THREAD_SIZE
,
586 THREAD_SIZE
, limit
));
587 hardirq_ctx
[i
] = (struct thread_info
*)
588 __va(memblock_alloc_base(THREAD_SIZE
,
589 THREAD_SIZE
, limit
));
593 #ifdef CONFIG_PPC_BOOK3E
594 void __init
exc_lvl_early_init(void)
599 for_each_possible_cpu(i
) {
600 sp
= memblock_alloc(THREAD_SIZE
, THREAD_SIZE
);
601 critirq_ctx
[i
] = (struct thread_info
*)__va(sp
);
602 paca
[i
].crit_kstack
= __va(sp
+ THREAD_SIZE
);
604 sp
= memblock_alloc(THREAD_SIZE
, THREAD_SIZE
);
605 dbgirq_ctx
[i
] = (struct thread_info
*)__va(sp
);
606 paca
[i
].dbg_kstack
= __va(sp
+ THREAD_SIZE
);
608 sp
= memblock_alloc(THREAD_SIZE
, THREAD_SIZE
);
609 mcheckirq_ctx
[i
] = (struct thread_info
*)__va(sp
);
610 paca
[i
].mc_kstack
= __va(sp
+ THREAD_SIZE
);
613 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC
))
614 patch_exception(0x040, exc_debug_debug_book3e
);
619 * Emergency stacks are used for a range of things, from asynchronous
620 * NMIs (system reset, machine check) to synchronous, process context.
621 * We set preempt_count to zero, even though that isn't necessarily correct. To
622 * get the right value we'd need to copy it from the previous thread_info, but
623 * doing that might fault causing more problems.
624 * TODO: what to do with accounting?
626 static void emerg_stack_init_thread_info(struct thread_info
*ti
, int cpu
)
630 ti
->preempt_count
= 0;
633 klp_init_thread_info(ti
);
637 * Stack space used when we detect a bad kernel stack pointer, and
638 * early in SMP boots before relocation is enabled. Exclusive emergency
639 * stack for machine checks.
641 void __init
emergency_stack_init(void)
647 * Emergency stacks must be under 256MB, we cannot afford to take
648 * SLB misses on them. The ABI also requires them to be 128-byte
651 * Since we use these as temporary stacks during secondary CPU
652 * bringup, we need to get at them in real mode. This means they
653 * must also be within the RMO region.
655 * The IRQ stacks allocated elsewhere in this file are zeroed and
656 * initialized in kernel/irq.c. These are initialized here in order
657 * to have emergency stacks available as early as possible.
659 limit
= min(safe_stack_limit(), ppc64_rma_size
);
661 for_each_possible_cpu(i
) {
662 struct thread_info
*ti
;
663 ti
= __va(memblock_alloc_base(THREAD_SIZE
, THREAD_SIZE
, limit
));
664 memset(ti
, 0, THREAD_SIZE
);
665 emerg_stack_init_thread_info(ti
, i
);
666 paca
[i
].emergency_sp
= (void *)ti
+ THREAD_SIZE
;
668 #ifdef CONFIG_PPC_BOOK3S_64
669 /* emergency stack for NMI exception handling. */
670 ti
= __va(memblock_alloc_base(THREAD_SIZE
, THREAD_SIZE
, limit
));
671 memset(ti
, 0, THREAD_SIZE
);
672 emerg_stack_init_thread_info(ti
, i
);
673 paca
[i
].nmi_emergency_sp
= (void *)ti
+ THREAD_SIZE
;
675 /* emergency stack for machine check exception handling. */
676 ti
= __va(memblock_alloc_base(THREAD_SIZE
, THREAD_SIZE
, limit
));
677 memset(ti
, 0, THREAD_SIZE
);
678 emerg_stack_init_thread_info(ti
, i
);
679 paca
[i
].mc_emergency_sp
= (void *)ti
+ THREAD_SIZE
;
685 #define PCPU_DYN_SIZE ()
687 static void * __init
pcpu_fc_alloc(unsigned int cpu
, size_t size
, size_t align
)
689 return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu
)), size
, align
,
690 __pa(MAX_DMA_ADDRESS
));
693 static void __init
pcpu_fc_free(void *ptr
, size_t size
)
695 free_bootmem(__pa(ptr
), size
);
698 static int pcpu_cpu_distance(unsigned int from
, unsigned int to
)
700 if (early_cpu_to_node(from
) == early_cpu_to_node(to
))
701 return LOCAL_DISTANCE
;
703 return REMOTE_DISTANCE
;
706 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
707 EXPORT_SYMBOL(__per_cpu_offset
);
709 void __init
setup_per_cpu_areas(void)
711 const size_t dyn_size
= PERCPU_MODULE_RESERVE
+ PERCPU_DYNAMIC_RESERVE
;
718 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
719 * to group units. For larger mappings, use 1M atom which
720 * should be large enough to contain a number of units.
722 if (mmu_linear_psize
== MMU_PAGE_4K
)
723 atom_size
= PAGE_SIZE
;
727 rc
= pcpu_embed_first_chunk(0, dyn_size
, atom_size
, pcpu_cpu_distance
,
728 pcpu_fc_alloc
, pcpu_fc_free
);
730 panic("cannot initialize percpu area (err=%d)", rc
);
732 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
733 for_each_possible_cpu(cpu
) {
734 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
735 paca
[cpu
].data_offset
= __per_cpu_offset
[cpu
];
740 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
741 unsigned long memory_block_size_bytes(void)
743 if (ppc_md
.memory_block_size
)
744 return ppc_md
.memory_block_size();
746 return MIN_MEMORY_BLOCK_SIZE
;
750 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
751 struct ppc_pci_io ppc_pci_io
;
752 EXPORT_SYMBOL(ppc_pci_io
);