Linux 4.13.16
[linux/fpc-iii.git] / arch / powerpc / kernel / signal_32.c
blob97bb1385e77152d95215d83278771a0fbe972982
1 /*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
4 * PowerPC version
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
10 * Derived from "arch/i386/kernel/signal.c"
11 * Copyright (C) 1991, 1992 Linus Torvalds
12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
40 #include <linux/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #include <asm/asm-prototypes.h>
48 #ifdef CONFIG_PPC64
49 #include "ppc32.h"
50 #include <asm/unistd.h>
51 #else
52 #include <asm/ucontext.h>
53 #include <asm/pgtable.h>
54 #endif
56 #include "signal.h"
59 #ifdef CONFIG_PPC64
60 #define sys_rt_sigreturn compat_sys_rt_sigreturn
61 #define sys_swapcontext compat_sys_swapcontext
62 #define sys_sigreturn compat_sys_sigreturn
64 #define old_sigaction old_sigaction32
65 #define sigcontext sigcontext32
66 #define mcontext mcontext32
67 #define ucontext ucontext32
69 #define __save_altstack __compat_save_altstack
72 * Userspace code may pass a ucontext which doesn't include VSX added
73 * at the end. We need to check for this case.
75 #define UCONTEXTSIZEWITHOUTVSX \
76 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
79 * Returning 0 means we return to userspace via
80 * ret_from_except and thus restore all user
81 * registers from *regs. This is what we need
82 * to do when a signal has been delivered.
85 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86 #undef __SIGNAL_FRAMESIZE
87 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32
88 #undef ELF_NVRREG
89 #define ELF_NVRREG ELF_NVRREG32
92 * Functions for flipping sigsets (thanks to brain dead generic
93 * implementation that makes things simple for little endian only)
95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
97 compat_sigset_t cset;
99 switch (_NSIG_WORDS) {
100 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101 cset.sig[7] = set->sig[3] >> 32;
102 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103 cset.sig[5] = set->sig[2] >> 32;
104 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105 cset.sig[3] = set->sig[1] >> 32;
106 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107 cset.sig[1] = set->sig[0] >> 32;
109 return copy_to_user(uset, &cset, sizeof(*uset));
112 static inline int get_sigset_t(sigset_t *set,
113 const compat_sigset_t __user *uset)
115 compat_sigset_t s32;
117 if (copy_from_user(&s32, uset, sizeof(*uset)))
118 return -EFAULT;
121 * Swap the 2 words of the 64-bit sigset_t (they are stored
122 * in the "wrong" endian in 32-bit user storage).
124 switch (_NSIG_WORDS) {
125 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
130 return 0;
133 #define to_user_ptr(p) ptr_to_compat(p)
134 #define from_user_ptr(p) compat_ptr(p)
136 static inline int save_general_regs(struct pt_regs *regs,
137 struct mcontext __user *frame)
139 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140 int i;
142 WARN_ON(!FULL_REGS(regs));
144 for (i = 0; i <= PT_RESULT; i ++) {
145 if (i == 14 && !FULL_REGS(regs))
146 i = 32;
147 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148 return -EFAULT;
150 return 0;
153 static inline int restore_general_regs(struct pt_regs *regs,
154 struct mcontext __user *sr)
156 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157 int i;
159 for (i = 0; i <= PT_RESULT; i++) {
160 if ((i == PT_MSR) || (i == PT_SOFTE))
161 continue;
162 if (__get_user(gregs[i], &sr->mc_gregs[i]))
163 return -EFAULT;
165 return 0;
168 #else /* CONFIG_PPC64 */
170 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
174 return copy_to_user(uset, set, sizeof(*uset));
177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
179 return copy_from_user(set, uset, sizeof(*uset));
182 #define to_user_ptr(p) ((unsigned long)(p))
183 #define from_user_ptr(p) ((void __user *)(p))
185 static inline int save_general_regs(struct pt_regs *regs,
186 struct mcontext __user *frame)
188 WARN_ON(!FULL_REGS(regs));
189 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
192 static inline int restore_general_regs(struct pt_regs *regs,
193 struct mcontext __user *sr)
195 /* copy up to but not including MSR */
196 if (__copy_from_user(regs, &sr->mc_gregs,
197 PT_MSR * sizeof(elf_greg_t)))
198 return -EFAULT;
199 /* copy from orig_r3 (the word after the MSR) up to the end */
200 if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202 return -EFAULT;
203 return 0;
205 #endif
208 * When we have signals to deliver, we set up on the
209 * user stack, going down from the original stack pointer:
210 * an ABI gap of 56 words
211 * an mcontext struct
212 * a sigcontext struct
213 * a gap of __SIGNAL_FRAMESIZE bytes
215 * Each of these things must be a multiple of 16 bytes in size. The following
216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
219 struct sigframe {
220 struct sigcontext sctx; /* the sigcontext */
221 struct mcontext mctx; /* all the register values */
222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223 struct sigcontext sctx_transact;
224 struct mcontext mctx_transact;
225 #endif
227 * Programs using the rs6000/xcoff abi can save up to 19 gp
228 * regs and 18 fp regs below sp before decrementing it.
230 int abigap[56];
233 /* We use the mc_pad field for the signal return trampoline. */
234 #define tramp mc_pad
237 * When we have rt signals to deliver, we set up on the
238 * user stack, going down from the original stack pointer:
239 * one rt_sigframe struct (siginfo + ucontext + ABI gap)
240 * a gap of __SIGNAL_FRAMESIZE+16 bytes
241 * (the +16 is to get the siginfo and ucontext in the same
242 * positions as in older kernels).
244 * Each of these things must be a multiple of 16 bytes in size.
247 struct rt_sigframe {
248 #ifdef CONFIG_PPC64
249 compat_siginfo_t info;
250 #else
251 struct siginfo info;
252 #endif
253 struct ucontext uc;
254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255 struct ucontext uc_transact;
256 #endif
258 * Programs using the rs6000/xcoff abi can save up to 19 gp
259 * regs and 18 fp regs below sp before decrementing it.
261 int abigap[56];
264 #ifdef CONFIG_VSX
265 unsigned long copy_fpr_to_user(void __user *to,
266 struct task_struct *task)
268 u64 buf[ELF_NFPREG];
269 int i;
271 /* save FPR copy to local buffer then write to the thread_struct */
272 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273 buf[i] = task->thread.TS_FPR(i);
274 buf[i] = task->thread.fp_state.fpscr;
275 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
278 unsigned long copy_fpr_from_user(struct task_struct *task,
279 void __user *from)
281 u64 buf[ELF_NFPREG];
282 int i;
284 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285 return 1;
286 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287 task->thread.TS_FPR(i) = buf[i];
288 task->thread.fp_state.fpscr = buf[i];
290 return 0;
293 unsigned long copy_vsx_to_user(void __user *to,
294 struct task_struct *task)
296 u64 buf[ELF_NVSRHALFREG];
297 int i;
299 /* save FPR copy to local buffer then write to the thread_struct */
300 for (i = 0; i < ELF_NVSRHALFREG; i++)
301 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
302 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
305 unsigned long copy_vsx_from_user(struct task_struct *task,
306 void __user *from)
308 u64 buf[ELF_NVSRHALFREG];
309 int i;
311 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312 return 1;
313 for (i = 0; i < ELF_NVSRHALFREG ; i++)
314 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315 return 0;
318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319 unsigned long copy_ckfpr_to_user(void __user *to,
320 struct task_struct *task)
322 u64 buf[ELF_NFPREG];
323 int i;
325 /* save FPR copy to local buffer then write to the thread_struct */
326 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327 buf[i] = task->thread.TS_CKFPR(i);
328 buf[i] = task->thread.ckfp_state.fpscr;
329 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
332 unsigned long copy_ckfpr_from_user(struct task_struct *task,
333 void __user *from)
335 u64 buf[ELF_NFPREG];
336 int i;
338 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339 return 1;
340 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341 task->thread.TS_CKFPR(i) = buf[i];
342 task->thread.ckfp_state.fpscr = buf[i];
344 return 0;
347 unsigned long copy_ckvsx_to_user(void __user *to,
348 struct task_struct *task)
350 u64 buf[ELF_NVSRHALFREG];
351 int i;
353 /* save FPR copy to local buffer then write to the thread_struct */
354 for (i = 0; i < ELF_NVSRHALFREG; i++)
355 buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
356 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
359 unsigned long copy_ckvsx_from_user(struct task_struct *task,
360 void __user *from)
362 u64 buf[ELF_NVSRHALFREG];
363 int i;
365 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366 return 1;
367 for (i = 0; i < ELF_NVSRHALFREG ; i++)
368 task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
369 return 0;
371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372 #else
373 inline unsigned long copy_fpr_to_user(void __user *to,
374 struct task_struct *task)
376 return __copy_to_user(to, task->thread.fp_state.fpr,
377 ELF_NFPREG * sizeof(double));
380 inline unsigned long copy_fpr_from_user(struct task_struct *task,
381 void __user *from)
383 return __copy_from_user(task->thread.fp_state.fpr, from,
384 ELF_NFPREG * sizeof(double));
387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388 inline unsigned long copy_ckfpr_to_user(void __user *to,
389 struct task_struct *task)
391 return __copy_to_user(to, task->thread.ckfp_state.fpr,
392 ELF_NFPREG * sizeof(double));
395 inline unsigned long copy_ckfpr_from_user(struct task_struct *task,
396 void __user *from)
398 return __copy_from_user(task->thread.ckfp_state.fpr, from,
399 ELF_NFPREG * sizeof(double));
401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402 #endif
405 * Save the current user registers on the user stack.
406 * We only save the altivec/spe registers if the process has used
407 * altivec/spe instructions at some point.
409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410 struct mcontext __user *tm_frame, int sigret,
411 int ctx_has_vsx_region)
413 unsigned long msr = regs->msr;
415 /* Make sure floating point registers are stored in regs */
416 flush_fp_to_thread(current);
418 /* save general registers */
419 if (save_general_regs(regs, frame))
420 return 1;
422 #ifdef CONFIG_ALTIVEC
423 /* save altivec registers */
424 if (current->thread.used_vr) {
425 flush_altivec_to_thread(current);
426 if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
427 ELF_NVRREG * sizeof(vector128)))
428 return 1;
429 /* set MSR_VEC in the saved MSR value to indicate that
430 frame->mc_vregs contains valid data */
431 msr |= MSR_VEC;
433 /* else assert((regs->msr & MSR_VEC) == 0) */
435 /* We always copy to/from vrsave, it's 0 if we don't have or don't
436 * use altivec. Since VSCR only contains 32 bits saved in the least
437 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
438 * most significant bits of that same vector. --BenH
439 * Note that the current VRSAVE value is in the SPR at this point.
441 if (cpu_has_feature(CPU_FTR_ALTIVEC))
442 current->thread.vrsave = mfspr(SPRN_VRSAVE);
443 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
444 return 1;
445 #endif /* CONFIG_ALTIVEC */
446 if (copy_fpr_to_user(&frame->mc_fregs, current))
447 return 1;
450 * Clear the MSR VSX bit to indicate there is no valid state attached
451 * to this context, except in the specific case below where we set it.
453 msr &= ~MSR_VSX;
454 #ifdef CONFIG_VSX
456 * Copy VSR 0-31 upper half from thread_struct to local
457 * buffer, then write that to userspace. Also set MSR_VSX in
458 * the saved MSR value to indicate that frame->mc_vregs
459 * contains valid data
461 if (current->thread.used_vsr && ctx_has_vsx_region) {
462 flush_vsx_to_thread(current);
463 if (copy_vsx_to_user(&frame->mc_vsregs, current))
464 return 1;
465 msr |= MSR_VSX;
467 #endif /* CONFIG_VSX */
468 #ifdef CONFIG_SPE
469 /* save spe registers */
470 if (current->thread.used_spe) {
471 flush_spe_to_thread(current);
472 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
473 ELF_NEVRREG * sizeof(u32)))
474 return 1;
475 /* set MSR_SPE in the saved MSR value to indicate that
476 frame->mc_vregs contains valid data */
477 msr |= MSR_SPE;
479 /* else assert((regs->msr & MSR_SPE) == 0) */
481 /* We always copy to/from spefscr */
482 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
483 return 1;
484 #endif /* CONFIG_SPE */
486 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
487 return 1;
488 /* We need to write 0 the MSR top 32 bits in the tm frame so that we
489 * can check it on the restore to see if TM is active
491 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
492 return 1;
494 if (sigret) {
495 /* Set up the sigreturn trampoline: li r0,sigret; sc */
496 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
497 || __put_user(0x44000002UL, &frame->tramp[1]))
498 return 1;
499 flush_icache_range((unsigned long) &frame->tramp[0],
500 (unsigned long) &frame->tramp[2]);
503 return 0;
506 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
508 * Save the current user registers on the user stack.
509 * We only save the altivec/spe registers if the process has used
510 * altivec/spe instructions at some point.
511 * We also save the transactional registers to a second ucontext in the
512 * frame.
514 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
516 static int save_tm_user_regs(struct pt_regs *regs,
517 struct mcontext __user *frame,
518 struct mcontext __user *tm_frame, int sigret)
520 unsigned long msr = regs->msr;
522 /* Remove TM bits from thread's MSR. The MSR in the sigcontext
523 * just indicates to userland that we were doing a transaction, but we
524 * don't want to return in transactional state. This also ensures
525 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
527 regs->msr &= ~MSR_TS_MASK;
529 /* Save both sets of general registers */
530 if (save_general_regs(&current->thread.ckpt_regs, frame)
531 || save_general_regs(regs, tm_frame))
532 return 1;
534 /* Stash the top half of the 64bit MSR into the 32bit MSR word
535 * of the transactional mcontext. This way we have a backward-compatible
536 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
537 * also look at what type of transaction (T or S) was active at the
538 * time of the signal.
540 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
541 return 1;
543 #ifdef CONFIG_ALTIVEC
544 /* save altivec registers */
545 if (current->thread.used_vr) {
546 if (__copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
547 ELF_NVRREG * sizeof(vector128)))
548 return 1;
549 if (msr & MSR_VEC) {
550 if (__copy_to_user(&tm_frame->mc_vregs,
551 &current->thread.vr_state,
552 ELF_NVRREG * sizeof(vector128)))
553 return 1;
554 } else {
555 if (__copy_to_user(&tm_frame->mc_vregs,
556 &current->thread.ckvr_state,
557 ELF_NVRREG * sizeof(vector128)))
558 return 1;
561 /* set MSR_VEC in the saved MSR value to indicate that
562 * frame->mc_vregs contains valid data
564 msr |= MSR_VEC;
567 /* We always copy to/from vrsave, it's 0 if we don't have or don't
568 * use altivec. Since VSCR only contains 32 bits saved in the least
569 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
570 * most significant bits of that same vector. --BenH
572 if (cpu_has_feature(CPU_FTR_ALTIVEC))
573 current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
574 if (__put_user(current->thread.ckvrsave,
575 (u32 __user *)&frame->mc_vregs[32]))
576 return 1;
577 if (msr & MSR_VEC) {
578 if (__put_user(current->thread.vrsave,
579 (u32 __user *)&tm_frame->mc_vregs[32]))
580 return 1;
581 } else {
582 if (__put_user(current->thread.ckvrsave,
583 (u32 __user *)&tm_frame->mc_vregs[32]))
584 return 1;
586 #endif /* CONFIG_ALTIVEC */
588 if (copy_ckfpr_to_user(&frame->mc_fregs, current))
589 return 1;
590 if (msr & MSR_FP) {
591 if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
592 return 1;
593 } else {
594 if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current))
595 return 1;
598 #ifdef CONFIG_VSX
600 * Copy VSR 0-31 upper half from thread_struct to local
601 * buffer, then write that to userspace. Also set MSR_VSX in
602 * the saved MSR value to indicate that frame->mc_vregs
603 * contains valid data
605 if (current->thread.used_vsr) {
606 if (copy_ckvsx_to_user(&frame->mc_vsregs, current))
607 return 1;
608 if (msr & MSR_VSX) {
609 if (copy_vsx_to_user(&tm_frame->mc_vsregs,
610 current))
611 return 1;
612 } else {
613 if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current))
614 return 1;
617 msr |= MSR_VSX;
619 #endif /* CONFIG_VSX */
620 #ifdef CONFIG_SPE
621 /* SPE regs are not checkpointed with TM, so this section is
622 * simply the same as in save_user_regs().
624 if (current->thread.used_spe) {
625 flush_spe_to_thread(current);
626 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
627 ELF_NEVRREG * sizeof(u32)))
628 return 1;
629 /* set MSR_SPE in the saved MSR value to indicate that
630 * frame->mc_vregs contains valid data */
631 msr |= MSR_SPE;
634 /* We always copy to/from spefscr */
635 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
636 return 1;
637 #endif /* CONFIG_SPE */
639 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
640 return 1;
641 if (sigret) {
642 /* Set up the sigreturn trampoline: li r0,sigret; sc */
643 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
644 || __put_user(0x44000002UL, &frame->tramp[1]))
645 return 1;
646 flush_icache_range((unsigned long) &frame->tramp[0],
647 (unsigned long) &frame->tramp[2]);
650 return 0;
652 #endif
655 * Restore the current user register values from the user stack,
656 * (except for MSR).
658 static long restore_user_regs(struct pt_regs *regs,
659 struct mcontext __user *sr, int sig)
661 long err;
662 unsigned int save_r2 = 0;
663 unsigned long msr;
664 #ifdef CONFIG_VSX
665 int i;
666 #endif
669 * restore general registers but not including MSR or SOFTE. Also
670 * take care of keeping r2 (TLS) intact if not a signal
672 if (!sig)
673 save_r2 = (unsigned int)regs->gpr[2];
674 err = restore_general_regs(regs, sr);
675 regs->trap = 0;
676 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
677 if (!sig)
678 regs->gpr[2] = (unsigned long) save_r2;
679 if (err)
680 return 1;
682 /* if doing signal return, restore the previous little-endian mode */
683 if (sig)
684 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
686 #ifdef CONFIG_ALTIVEC
688 * Force the process to reload the altivec registers from
689 * current->thread when it next does altivec instructions
691 regs->msr &= ~MSR_VEC;
692 if (msr & MSR_VEC) {
693 /* restore altivec registers from the stack */
694 if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
695 sizeof(sr->mc_vregs)))
696 return 1;
697 current->thread.used_vr = true;
698 } else if (current->thread.used_vr)
699 memset(&current->thread.vr_state, 0,
700 ELF_NVRREG * sizeof(vector128));
702 /* Always get VRSAVE back */
703 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
704 return 1;
705 if (cpu_has_feature(CPU_FTR_ALTIVEC))
706 mtspr(SPRN_VRSAVE, current->thread.vrsave);
707 #endif /* CONFIG_ALTIVEC */
708 if (copy_fpr_from_user(current, &sr->mc_fregs))
709 return 1;
711 #ifdef CONFIG_VSX
713 * Force the process to reload the VSX registers from
714 * current->thread when it next does VSX instruction.
716 regs->msr &= ~MSR_VSX;
717 if (msr & MSR_VSX) {
719 * Restore altivec registers from the stack to a local
720 * buffer, then write this out to the thread_struct
722 if (copy_vsx_from_user(current, &sr->mc_vsregs))
723 return 1;
724 current->thread.used_vsr = true;
725 } else if (current->thread.used_vsr)
726 for (i = 0; i < 32 ; i++)
727 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
728 #endif /* CONFIG_VSX */
730 * force the process to reload the FP registers from
731 * current->thread when it next does FP instructions
733 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
735 #ifdef CONFIG_SPE
736 /* force the process to reload the spe registers from
737 current->thread when it next does spe instructions */
738 regs->msr &= ~MSR_SPE;
739 if (msr & MSR_SPE) {
740 /* restore spe registers from the stack */
741 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
742 ELF_NEVRREG * sizeof(u32)))
743 return 1;
744 current->thread.used_spe = true;
745 } else if (current->thread.used_spe)
746 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
748 /* Always get SPEFSCR back */
749 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
750 return 1;
751 #endif /* CONFIG_SPE */
753 return 0;
756 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
758 * Restore the current user register values from the user stack, except for
759 * MSR, and recheckpoint the original checkpointed register state for processes
760 * in transactions.
762 static long restore_tm_user_regs(struct pt_regs *regs,
763 struct mcontext __user *sr,
764 struct mcontext __user *tm_sr)
766 long err;
767 unsigned long msr, msr_hi;
768 #ifdef CONFIG_VSX
769 int i;
770 #endif
773 * restore general registers but not including MSR or SOFTE. Also
774 * take care of keeping r2 (TLS) intact if not a signal.
775 * See comment in signal_64.c:restore_tm_sigcontexts();
776 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
777 * were set by the signal delivery.
779 err = restore_general_regs(regs, tm_sr);
780 err |= restore_general_regs(&current->thread.ckpt_regs, sr);
782 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
784 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
785 if (err)
786 return 1;
788 /* Restore the previous little-endian mode */
789 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
791 #ifdef CONFIG_ALTIVEC
792 regs->msr &= ~MSR_VEC;
793 if (msr & MSR_VEC) {
794 /* restore altivec registers from the stack */
795 if (__copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
796 sizeof(sr->mc_vregs)) ||
797 __copy_from_user(&current->thread.vr_state,
798 &tm_sr->mc_vregs,
799 sizeof(sr->mc_vregs)))
800 return 1;
801 current->thread.used_vr = true;
802 } else if (current->thread.used_vr) {
803 memset(&current->thread.vr_state, 0,
804 ELF_NVRREG * sizeof(vector128));
805 memset(&current->thread.ckvr_state, 0,
806 ELF_NVRREG * sizeof(vector128));
809 /* Always get VRSAVE back */
810 if (__get_user(current->thread.ckvrsave,
811 (u32 __user *)&sr->mc_vregs[32]) ||
812 __get_user(current->thread.vrsave,
813 (u32 __user *)&tm_sr->mc_vregs[32]))
814 return 1;
815 if (cpu_has_feature(CPU_FTR_ALTIVEC))
816 mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
817 #endif /* CONFIG_ALTIVEC */
819 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
821 if (copy_fpr_from_user(current, &sr->mc_fregs) ||
822 copy_ckfpr_from_user(current, &tm_sr->mc_fregs))
823 return 1;
825 #ifdef CONFIG_VSX
826 regs->msr &= ~MSR_VSX;
827 if (msr & MSR_VSX) {
829 * Restore altivec registers from the stack to a local
830 * buffer, then write this out to the thread_struct
832 if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) ||
833 copy_ckvsx_from_user(current, &sr->mc_vsregs))
834 return 1;
835 current->thread.used_vsr = true;
836 } else if (current->thread.used_vsr)
837 for (i = 0; i < 32 ; i++) {
838 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
839 current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
841 #endif /* CONFIG_VSX */
843 #ifdef CONFIG_SPE
844 /* SPE regs are not checkpointed with TM, so this section is
845 * simply the same as in restore_user_regs().
847 regs->msr &= ~MSR_SPE;
848 if (msr & MSR_SPE) {
849 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
850 ELF_NEVRREG * sizeof(u32)))
851 return 1;
852 current->thread.used_spe = true;
853 } else if (current->thread.used_spe)
854 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
856 /* Always get SPEFSCR back */
857 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
858 + ELF_NEVRREG))
859 return 1;
860 #endif /* CONFIG_SPE */
862 /* Get the top half of the MSR from the user context */
863 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
864 return 1;
865 msr_hi <<= 32;
866 /* If TM bits are set to the reserved value, it's an invalid context */
867 if (MSR_TM_RESV(msr_hi))
868 return 1;
869 /* Pull in the MSR TM bits from the user context */
870 regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
871 /* Now, recheckpoint. This loads up all of the checkpointed (older)
872 * registers, including FP and V[S]Rs. After recheckpointing, the
873 * transactional versions should be loaded.
875 tm_enable();
876 /* Make sure the transaction is marked as failed */
877 current->thread.tm_texasr |= TEXASR_FS;
878 /* This loads the checkpointed FP/VEC state, if used */
879 tm_recheckpoint(&current->thread, msr);
881 /* This loads the speculative FP/VEC state, if used */
882 msr_check_and_set(msr & (MSR_FP | MSR_VEC));
883 if (msr & MSR_FP) {
884 load_fp_state(&current->thread.fp_state);
885 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
887 #ifdef CONFIG_ALTIVEC
888 if (msr & MSR_VEC) {
889 load_vr_state(&current->thread.vr_state);
890 regs->msr |= MSR_VEC;
892 #endif
894 return 0;
896 #endif
898 #ifdef CONFIG_PPC64
899 int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
901 int err;
903 if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
904 return -EFAULT;
906 /* If you change siginfo_t structure, please be sure
907 * this code is fixed accordingly.
908 * It should never copy any pad contained in the structure
909 * to avoid security leaks, but must copy the generic
910 * 3 ints plus the relevant union member.
911 * This routine must convert siginfo from 64bit to 32bit as well
912 * at the same time.
914 err = __put_user(s->si_signo, &d->si_signo);
915 err |= __put_user(s->si_errno, &d->si_errno);
916 err |= __put_user((short)s->si_code, &d->si_code);
917 if (s->si_code < 0)
918 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
919 SI_PAD_SIZE32);
920 else switch(s->si_code >> 16) {
921 case __SI_CHLD >> 16:
922 err |= __put_user(s->si_pid, &d->si_pid);
923 err |= __put_user(s->si_uid, &d->si_uid);
924 err |= __put_user(s->si_utime, &d->si_utime);
925 err |= __put_user(s->si_stime, &d->si_stime);
926 err |= __put_user(s->si_status, &d->si_status);
927 break;
928 case __SI_FAULT >> 16:
929 err |= __put_user((unsigned int)(unsigned long)s->si_addr,
930 &d->si_addr);
931 break;
932 case __SI_POLL >> 16:
933 err |= __put_user(s->si_band, &d->si_band);
934 err |= __put_user(s->si_fd, &d->si_fd);
935 break;
936 case __SI_TIMER >> 16:
937 err |= __put_user(s->si_tid, &d->si_tid);
938 err |= __put_user(s->si_overrun, &d->si_overrun);
939 err |= __put_user(s->si_int, &d->si_int);
940 break;
941 case __SI_SYS >> 16:
942 err |= __put_user(ptr_to_compat(s->si_call_addr), &d->si_call_addr);
943 err |= __put_user(s->si_syscall, &d->si_syscall);
944 err |= __put_user(s->si_arch, &d->si_arch);
945 break;
946 case __SI_RT >> 16: /* This is not generated by the kernel as of now. */
947 case __SI_MESGQ >> 16:
948 err |= __put_user(s->si_int, &d->si_int);
949 /* fallthrough */
950 case __SI_KILL >> 16:
951 default:
952 err |= __put_user(s->si_pid, &d->si_pid);
953 err |= __put_user(s->si_uid, &d->si_uid);
954 break;
956 return err;
959 #define copy_siginfo_to_user copy_siginfo_to_user32
961 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
963 if (copy_from_user(to, from, 3*sizeof(int)) ||
964 copy_from_user(to->_sifields._pad,
965 from->_sifields._pad, SI_PAD_SIZE32))
966 return -EFAULT;
968 return 0;
970 #endif /* CONFIG_PPC64 */
973 * Set up a signal frame for a "real-time" signal handler
974 * (one which gets siginfo).
976 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
977 struct task_struct *tsk)
979 struct rt_sigframe __user *rt_sf;
980 struct mcontext __user *frame;
981 struct mcontext __user *tm_frame = NULL;
982 void __user *addr;
983 unsigned long newsp = 0;
984 int sigret;
985 unsigned long tramp;
986 struct pt_regs *regs = tsk->thread.regs;
988 BUG_ON(tsk != current);
990 /* Set up Signal Frame */
991 /* Put a Real Time Context onto stack */
992 rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1);
993 addr = rt_sf;
994 if (unlikely(rt_sf == NULL))
995 goto badframe;
997 /* Put the siginfo & fill in most of the ucontext */
998 if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
999 || __put_user(0, &rt_sf->uc.uc_flags)
1000 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
1001 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1002 &rt_sf->uc.uc_regs)
1003 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1004 goto badframe;
1006 /* Save user registers on the stack */
1007 frame = &rt_sf->uc.uc_mcontext;
1008 addr = frame;
1009 if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) {
1010 sigret = 0;
1011 tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp;
1012 } else {
1013 sigret = __NR_rt_sigreturn;
1014 tramp = (unsigned long) frame->tramp;
1017 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1018 tm_frame = &rt_sf->uc_transact.uc_mcontext;
1019 if (MSR_TM_ACTIVE(regs->msr)) {
1020 if (__put_user((unsigned long)&rt_sf->uc_transact,
1021 &rt_sf->uc.uc_link) ||
1022 __put_user((unsigned long)tm_frame,
1023 &rt_sf->uc_transact.uc_regs))
1024 goto badframe;
1025 if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1026 goto badframe;
1028 else
1029 #endif
1031 if (__put_user(0, &rt_sf->uc.uc_link))
1032 goto badframe;
1033 if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1034 goto badframe;
1036 regs->link = tramp;
1038 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */
1040 /* create a stack frame for the caller of the handler */
1041 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1042 addr = (void __user *)regs->gpr[1];
1043 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1044 goto badframe;
1046 /* Fill registers for signal handler */
1047 regs->gpr[1] = newsp;
1048 regs->gpr[3] = ksig->sig;
1049 regs->gpr[4] = (unsigned long) &rt_sf->info;
1050 regs->gpr[5] = (unsigned long) &rt_sf->uc;
1051 regs->gpr[6] = (unsigned long) rt_sf;
1052 regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
1053 /* enter the signal handler in native-endian mode */
1054 regs->msr &= ~MSR_LE;
1055 regs->msr |= (MSR_KERNEL & MSR_LE);
1056 return 0;
1058 badframe:
1059 if (show_unhandled_signals)
1060 printk_ratelimited(KERN_INFO
1061 "%s[%d]: bad frame in handle_rt_signal32: "
1062 "%p nip %08lx lr %08lx\n",
1063 tsk->comm, tsk->pid,
1064 addr, regs->nip, regs->link);
1066 return 1;
1069 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1071 sigset_t set;
1072 struct mcontext __user *mcp;
1074 if (get_sigset_t(&set, &ucp->uc_sigmask))
1075 return -EFAULT;
1076 #ifdef CONFIG_PPC64
1078 u32 cmcp;
1080 if (__get_user(cmcp, &ucp->uc_regs))
1081 return -EFAULT;
1082 mcp = (struct mcontext __user *)(u64)cmcp;
1083 /* no need to check access_ok(mcp), since mcp < 4GB */
1085 #else
1086 if (__get_user(mcp, &ucp->uc_regs))
1087 return -EFAULT;
1088 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1089 return -EFAULT;
1090 #endif
1091 set_current_blocked(&set);
1092 if (restore_user_regs(regs, mcp, sig))
1093 return -EFAULT;
1095 return 0;
1098 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1099 static int do_setcontext_tm(struct ucontext __user *ucp,
1100 struct ucontext __user *tm_ucp,
1101 struct pt_regs *regs)
1103 sigset_t set;
1104 struct mcontext __user *mcp;
1105 struct mcontext __user *tm_mcp;
1106 u32 cmcp;
1107 u32 tm_cmcp;
1109 if (get_sigset_t(&set, &ucp->uc_sigmask))
1110 return -EFAULT;
1112 if (__get_user(cmcp, &ucp->uc_regs) ||
1113 __get_user(tm_cmcp, &tm_ucp->uc_regs))
1114 return -EFAULT;
1115 mcp = (struct mcontext __user *)(u64)cmcp;
1116 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1117 /* no need to check access_ok(mcp), since mcp < 4GB */
1119 set_current_blocked(&set);
1120 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1121 return -EFAULT;
1123 return 0;
1125 #endif
1127 long sys_swapcontext(struct ucontext __user *old_ctx,
1128 struct ucontext __user *new_ctx,
1129 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1131 unsigned char tmp;
1132 int ctx_has_vsx_region = 0;
1134 #ifdef CONFIG_PPC64
1135 unsigned long new_msr = 0;
1137 if (new_ctx) {
1138 struct mcontext __user *mcp;
1139 u32 cmcp;
1142 * Get pointer to the real mcontext. No need for
1143 * access_ok since we are dealing with compat
1144 * pointers.
1146 if (__get_user(cmcp, &new_ctx->uc_regs))
1147 return -EFAULT;
1148 mcp = (struct mcontext __user *)(u64)cmcp;
1149 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1150 return -EFAULT;
1153 * Check that the context is not smaller than the original
1154 * size (with VMX but without VSX)
1156 if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1157 return -EINVAL;
1159 * If the new context state sets the MSR VSX bits but
1160 * it doesn't provide VSX state.
1162 if ((ctx_size < sizeof(struct ucontext)) &&
1163 (new_msr & MSR_VSX))
1164 return -EINVAL;
1165 /* Does the context have enough room to store VSX data? */
1166 if (ctx_size >= sizeof(struct ucontext))
1167 ctx_has_vsx_region = 1;
1168 #else
1169 /* Context size is for future use. Right now, we only make sure
1170 * we are passed something we understand
1172 if (ctx_size < sizeof(struct ucontext))
1173 return -EINVAL;
1174 #endif
1175 if (old_ctx != NULL) {
1176 struct mcontext __user *mctx;
1179 * old_ctx might not be 16-byte aligned, in which
1180 * case old_ctx->uc_mcontext won't be either.
1181 * Because we have the old_ctx->uc_pad2 field
1182 * before old_ctx->uc_mcontext, we need to round down
1183 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1185 mctx = (struct mcontext __user *)
1186 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1187 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1188 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1189 || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1190 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1191 return -EFAULT;
1193 if (new_ctx == NULL)
1194 return 0;
1195 if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1196 || __get_user(tmp, (u8 __user *) new_ctx)
1197 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1198 return -EFAULT;
1201 * If we get a fault copying the context into the kernel's
1202 * image of the user's registers, we can't just return -EFAULT
1203 * because the user's registers will be corrupted. For instance
1204 * the NIP value may have been updated but not some of the
1205 * other registers. Given that we have done the access_ok
1206 * and successfully read the first and last bytes of the region
1207 * above, this should only happen in an out-of-memory situation
1208 * or if another thread unmaps the region containing the context.
1209 * We kill the task with a SIGSEGV in this situation.
1211 if (do_setcontext(new_ctx, regs, 0))
1212 do_exit(SIGSEGV);
1214 set_thread_flag(TIF_RESTOREALL);
1215 return 0;
1218 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1219 struct pt_regs *regs)
1221 struct rt_sigframe __user *rt_sf;
1222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1223 struct ucontext __user *uc_transact;
1224 unsigned long msr_hi;
1225 unsigned long tmp;
1226 int tm_restore = 0;
1227 #endif
1228 /* Always make any pending restarted system calls return -EINTR */
1229 current->restart_block.fn = do_no_restart_syscall;
1231 rt_sf = (struct rt_sigframe __user *)
1232 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1233 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1234 goto bad;
1236 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1238 * If there is a transactional state then throw it away.
1239 * The purpose of a sigreturn is to destroy all traces of the
1240 * signal frame, this includes any transactional state created
1241 * within in. We only check for suspended as we can never be
1242 * active in the kernel, we are active, there is nothing better to
1243 * do than go ahead and Bad Thing later.
1244 * The cause is not important as there will never be a
1245 * recheckpoint so it's not user visible.
1247 if (MSR_TM_SUSPENDED(mfmsr()))
1248 tm_reclaim_current(0);
1250 if (__get_user(tmp, &rt_sf->uc.uc_link))
1251 goto bad;
1252 uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1253 if (uc_transact) {
1254 u32 cmcp;
1255 struct mcontext __user *mcp;
1257 if (__get_user(cmcp, &uc_transact->uc_regs))
1258 return -EFAULT;
1259 mcp = (struct mcontext __user *)(u64)cmcp;
1260 /* The top 32 bits of the MSR are stashed in the transactional
1261 * ucontext. */
1262 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1263 goto bad;
1265 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1266 /* We only recheckpoint on return if we're
1267 * transaction.
1269 tm_restore = 1;
1270 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1271 goto bad;
1274 if (!tm_restore)
1275 /* Fall through, for non-TM restore */
1276 #endif
1277 if (do_setcontext(&rt_sf->uc, regs, 1))
1278 goto bad;
1281 * It's not clear whether or why it is desirable to save the
1282 * sigaltstack setting on signal delivery and restore it on
1283 * signal return. But other architectures do this and we have
1284 * always done it up until now so it is probably better not to
1285 * change it. -- paulus
1287 #ifdef CONFIG_PPC64
1288 if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1289 goto bad;
1290 #else
1291 if (restore_altstack(&rt_sf->uc.uc_stack))
1292 goto bad;
1293 #endif
1294 set_thread_flag(TIF_RESTOREALL);
1295 return 0;
1297 bad:
1298 if (show_unhandled_signals)
1299 printk_ratelimited(KERN_INFO
1300 "%s[%d]: bad frame in sys_rt_sigreturn: "
1301 "%p nip %08lx lr %08lx\n",
1302 current->comm, current->pid,
1303 rt_sf, regs->nip, regs->link);
1305 force_sig(SIGSEGV, current);
1306 return 0;
1309 #ifdef CONFIG_PPC32
1310 int sys_debug_setcontext(struct ucontext __user *ctx,
1311 int ndbg, struct sig_dbg_op __user *dbg,
1312 int r6, int r7, int r8,
1313 struct pt_regs *regs)
1315 struct sig_dbg_op op;
1316 int i;
1317 unsigned char tmp;
1318 unsigned long new_msr = regs->msr;
1319 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1320 unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1321 #endif
1323 for (i=0; i<ndbg; i++) {
1324 if (copy_from_user(&op, dbg + i, sizeof(op)))
1325 return -EFAULT;
1326 switch (op.dbg_type) {
1327 case SIG_DBG_SINGLE_STEPPING:
1328 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1329 if (op.dbg_value) {
1330 new_msr |= MSR_DE;
1331 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1332 } else {
1333 new_dbcr0 &= ~DBCR0_IC;
1334 if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1335 current->thread.debug.dbcr1)) {
1336 new_msr &= ~MSR_DE;
1337 new_dbcr0 &= ~DBCR0_IDM;
1340 #else
1341 if (op.dbg_value)
1342 new_msr |= MSR_SE;
1343 else
1344 new_msr &= ~MSR_SE;
1345 #endif
1346 break;
1347 case SIG_DBG_BRANCH_TRACING:
1348 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1349 return -EINVAL;
1350 #else
1351 if (op.dbg_value)
1352 new_msr |= MSR_BE;
1353 else
1354 new_msr &= ~MSR_BE;
1355 #endif
1356 break;
1358 default:
1359 return -EINVAL;
1363 /* We wait until here to actually install the values in the
1364 registers so if we fail in the above loop, it will not
1365 affect the contents of these registers. After this point,
1366 failure is a problem, anyway, and it's very unlikely unless
1367 the user is really doing something wrong. */
1368 regs->msr = new_msr;
1369 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1370 current->thread.debug.dbcr0 = new_dbcr0;
1371 #endif
1373 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1374 || __get_user(tmp, (u8 __user *) ctx)
1375 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1376 return -EFAULT;
1379 * If we get a fault copying the context into the kernel's
1380 * image of the user's registers, we can't just return -EFAULT
1381 * because the user's registers will be corrupted. For instance
1382 * the NIP value may have been updated but not some of the
1383 * other registers. Given that we have done the access_ok
1384 * and successfully read the first and last bytes of the region
1385 * above, this should only happen in an out-of-memory situation
1386 * or if another thread unmaps the region containing the context.
1387 * We kill the task with a SIGSEGV in this situation.
1389 if (do_setcontext(ctx, regs, 1)) {
1390 if (show_unhandled_signals)
1391 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1392 "sys_debug_setcontext: %p nip %08lx "
1393 "lr %08lx\n",
1394 current->comm, current->pid,
1395 ctx, regs->nip, regs->link);
1397 force_sig(SIGSEGV, current);
1398 goto out;
1402 * It's not clear whether or why it is desirable to save the
1403 * sigaltstack setting on signal delivery and restore it on
1404 * signal return. But other architectures do this and we have
1405 * always done it up until now so it is probably better not to
1406 * change it. -- paulus
1408 restore_altstack(&ctx->uc_stack);
1410 set_thread_flag(TIF_RESTOREALL);
1411 out:
1412 return 0;
1414 #endif
1417 * OK, we're invoking a handler
1419 int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
1420 struct task_struct *tsk)
1422 struct sigcontext __user *sc;
1423 struct sigframe __user *frame;
1424 struct mcontext __user *tm_mctx = NULL;
1425 unsigned long newsp = 0;
1426 int sigret;
1427 unsigned long tramp;
1428 struct pt_regs *regs = tsk->thread.regs;
1430 BUG_ON(tsk != current);
1432 /* Set up Signal Frame */
1433 frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1);
1434 if (unlikely(frame == NULL))
1435 goto badframe;
1436 sc = (struct sigcontext __user *) &frame->sctx;
1438 #if _NSIG != 64
1439 #error "Please adjust handle_signal()"
1440 #endif
1441 if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1442 || __put_user(oldset->sig[0], &sc->oldmask)
1443 #ifdef CONFIG_PPC64
1444 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1445 #else
1446 || __put_user(oldset->sig[1], &sc->_unused[3])
1447 #endif
1448 || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1449 || __put_user(ksig->sig, &sc->signal))
1450 goto badframe;
1452 if (vdso32_sigtramp && tsk->mm->context.vdso_base) {
1453 sigret = 0;
1454 tramp = tsk->mm->context.vdso_base + vdso32_sigtramp;
1455 } else {
1456 sigret = __NR_sigreturn;
1457 tramp = (unsigned long) frame->mctx.tramp;
1460 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1461 tm_mctx = &frame->mctx_transact;
1462 if (MSR_TM_ACTIVE(regs->msr)) {
1463 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1464 sigret))
1465 goto badframe;
1467 else
1468 #endif
1470 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1471 goto badframe;
1474 regs->link = tramp;
1476 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */
1478 /* create a stack frame for the caller of the handler */
1479 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1480 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1481 goto badframe;
1483 regs->gpr[1] = newsp;
1484 regs->gpr[3] = ksig->sig;
1485 regs->gpr[4] = (unsigned long) sc;
1486 regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1487 /* enter the signal handler in big-endian mode */
1488 regs->msr &= ~MSR_LE;
1489 return 0;
1491 badframe:
1492 if (show_unhandled_signals)
1493 printk_ratelimited(KERN_INFO
1494 "%s[%d]: bad frame in handle_signal32: "
1495 "%p nip %08lx lr %08lx\n",
1496 tsk->comm, tsk->pid,
1497 frame, regs->nip, regs->link);
1499 return 1;
1503 * Do a signal return; undo the signal stack.
1505 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1506 struct pt_regs *regs)
1508 struct sigframe __user *sf;
1509 struct sigcontext __user *sc;
1510 struct sigcontext sigctx;
1511 struct mcontext __user *sr;
1512 void __user *addr;
1513 sigset_t set;
1514 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1515 struct mcontext __user *mcp, *tm_mcp;
1516 unsigned long msr_hi;
1517 #endif
1519 /* Always make any pending restarted system calls return -EINTR */
1520 current->restart_block.fn = do_no_restart_syscall;
1522 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1523 sc = &sf->sctx;
1524 addr = sc;
1525 if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1526 goto badframe;
1528 #ifdef CONFIG_PPC64
1530 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1531 * unused part of the signal stackframe
1533 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1534 #else
1535 set.sig[0] = sigctx.oldmask;
1536 set.sig[1] = sigctx._unused[3];
1537 #endif
1538 set_current_blocked(&set);
1540 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1541 mcp = (struct mcontext __user *)&sf->mctx;
1542 tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1543 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1544 goto badframe;
1545 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1546 if (!cpu_has_feature(CPU_FTR_TM))
1547 goto badframe;
1548 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1549 goto badframe;
1550 } else
1551 #endif
1553 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1554 addr = sr;
1555 if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1556 || restore_user_regs(regs, sr, 1))
1557 goto badframe;
1560 set_thread_flag(TIF_RESTOREALL);
1561 return 0;
1563 badframe:
1564 if (show_unhandled_signals)
1565 printk_ratelimited(KERN_INFO
1566 "%s[%d]: bad frame in sys_sigreturn: "
1567 "%p nip %08lx lr %08lx\n",
1568 current->comm, current->pid,
1569 addr, regs->nip, regs->link);
1571 force_sig(SIGSEGV, current);
1572 return 0;