Linux 4.13.16
[linux/fpc-iii.git] / arch / powerpc / kernel / traps.c
blobbfcfd9ef09f20a3980f544373616e6ceba3de88c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
15 * This file handles the architecture-dependent parts of hardware exceptions
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/extable.h>
30 #include <linux/module.h> /* print_modules */
31 #include <linux/prctl.h>
32 #include <linux/delay.h>
33 #include <linux/kprobes.h>
34 #include <linux/kexec.h>
35 #include <linux/backlight.h>
36 #include <linux/bug.h>
37 #include <linux/kdebug.h>
38 #include <linux/ratelimit.h>
39 #include <linux/context_tracking.h>
41 #include <asm/emulated_ops.h>
42 #include <asm/pgtable.h>
43 #include <linux/uaccess.h>
44 #include <asm/debugfs.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/rtas.h>
48 #include <asm/pmc.h>
49 #include <asm/reg.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65 #include <asm/asm-prototypes.h>
66 #include <asm/hmi.h>
67 #include <sysdev/fsl_pci.h>
68 #include <asm/kprobes.h>
70 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
71 int (*__debugger)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
79 EXPORT_SYMBOL(__debugger);
80 EXPORT_SYMBOL(__debugger_ipi);
81 EXPORT_SYMBOL(__debugger_bpt);
82 EXPORT_SYMBOL(__debugger_sstep);
83 EXPORT_SYMBOL(__debugger_iabr_match);
84 EXPORT_SYMBOL(__debugger_break_match);
85 EXPORT_SYMBOL(__debugger_fault_handler);
86 #endif
88 /* Transactional Memory trap debug */
89 #ifdef TM_DEBUG_SW
90 #define TM_DEBUG(x...) printk(KERN_INFO x)
91 #else
92 #define TM_DEBUG(x...) do { } while(0)
93 #endif
96 * Trap & Exception support
99 #ifdef CONFIG_PMAC_BACKLIGHT
100 static void pmac_backlight_unblank(void)
102 mutex_lock(&pmac_backlight_mutex);
103 if (pmac_backlight) {
104 struct backlight_properties *props;
106 props = &pmac_backlight->props;
107 props->brightness = props->max_brightness;
108 props->power = FB_BLANK_UNBLANK;
109 backlight_update_status(pmac_backlight);
111 mutex_unlock(&pmac_backlight_mutex);
113 #else
114 static inline void pmac_backlight_unblank(void) { }
115 #endif
117 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
118 static int die_owner = -1;
119 static unsigned int die_nest_count;
120 static int die_counter;
122 static unsigned long oops_begin(struct pt_regs *regs)
124 int cpu;
125 unsigned long flags;
127 oops_enter();
129 /* racy, but better than risking deadlock. */
130 raw_local_irq_save(flags);
131 cpu = smp_processor_id();
132 if (!arch_spin_trylock(&die_lock)) {
133 if (cpu == die_owner)
134 /* nested oops. should stop eventually */;
135 else
136 arch_spin_lock(&die_lock);
138 die_nest_count++;
139 die_owner = cpu;
140 console_verbose();
141 bust_spinlocks(1);
142 if (machine_is(powermac))
143 pmac_backlight_unblank();
144 return flags;
146 NOKPROBE_SYMBOL(oops_begin);
148 static void oops_end(unsigned long flags, struct pt_regs *regs,
149 int signr)
151 bust_spinlocks(0);
152 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
153 die_nest_count--;
154 oops_exit();
155 printk("\n");
156 if (!die_nest_count) {
157 /* Nest count reaches zero, release the lock. */
158 die_owner = -1;
159 arch_spin_unlock(&die_lock);
161 raw_local_irq_restore(flags);
163 crash_fadump(regs, "die oops");
166 * A system reset (0x100) is a request to dump, so we always send
167 * it through the crashdump code.
169 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
170 crash_kexec(regs);
173 * We aren't the primary crash CPU. We need to send it
174 * to a holding pattern to avoid it ending up in the panic
175 * code.
177 crash_kexec_secondary(regs);
180 if (!signr)
181 return;
184 * While our oops output is serialised by a spinlock, output
185 * from panic() called below can race and corrupt it. If we
186 * know we are going to panic, delay for 1 second so we have a
187 * chance to get clean backtraces from all CPUs that are oopsing.
189 if (in_interrupt() || panic_on_oops || !current->pid ||
190 is_global_init(current)) {
191 mdelay(MSEC_PER_SEC);
194 if (in_interrupt())
195 panic("Fatal exception in interrupt");
196 if (panic_on_oops)
197 panic("Fatal exception");
198 do_exit(signr);
200 NOKPROBE_SYMBOL(oops_end);
202 static int __die(const char *str, struct pt_regs *regs, long err)
204 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
205 #ifdef CONFIG_PREEMPT
206 printk("PREEMPT ");
207 #endif
208 #ifdef CONFIG_SMP
209 printk("SMP NR_CPUS=%d ", NR_CPUS);
210 #endif
211 if (debug_pagealloc_enabled())
212 printk("DEBUG_PAGEALLOC ");
213 #ifdef CONFIG_NUMA
214 printk("NUMA ");
215 #endif
216 printk("%s\n", ppc_md.name ? ppc_md.name : "");
218 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
219 return 1;
221 print_modules();
222 show_regs(regs);
224 return 0;
226 NOKPROBE_SYMBOL(__die);
228 void die(const char *str, struct pt_regs *regs, long err)
230 unsigned long flags;
232 if (debugger(regs))
233 return;
235 flags = oops_begin(regs);
236 if (__die(str, regs, err))
237 err = 0;
238 oops_end(flags, regs, err);
240 NOKPROBE_SYMBOL(die);
242 void user_single_step_siginfo(struct task_struct *tsk,
243 struct pt_regs *regs, siginfo_t *info)
245 memset(info, 0, sizeof(*info));
246 info->si_signo = SIGTRAP;
247 info->si_code = TRAP_TRACE;
248 info->si_addr = (void __user *)regs->nip;
251 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
253 siginfo_t info;
254 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
255 "at %08lx nip %08lx lr %08lx code %x\n";
256 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
257 "at %016lx nip %016lx lr %016lx code %x\n";
259 if (!user_mode(regs)) {
260 die("Exception in kernel mode", regs, signr);
261 return;
264 if (show_unhandled_signals && unhandled_signal(current, signr)) {
265 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
266 current->comm, current->pid, signr,
267 addr, regs->nip, regs->link, code);
270 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
271 local_irq_enable();
273 current->thread.trap_nr = code;
274 memset(&info, 0, sizeof(info));
275 info.si_signo = signr;
276 info.si_code = code;
277 info.si_addr = (void __user *) addr;
278 force_sig_info(signr, &info, current);
281 void system_reset_exception(struct pt_regs *regs)
284 * Avoid crashes in case of nested NMI exceptions. Recoverability
285 * is determined by RI and in_nmi
287 bool nested = in_nmi();
288 if (!nested)
289 nmi_enter();
291 /* See if any machine dependent calls */
292 if (ppc_md.system_reset_exception) {
293 if (ppc_md.system_reset_exception(regs))
294 goto out;
297 die("System Reset", regs, SIGABRT);
299 out:
300 #ifdef CONFIG_PPC_BOOK3S_64
301 BUG_ON(get_paca()->in_nmi == 0);
302 if (get_paca()->in_nmi > 1)
303 panic("Unrecoverable nested System Reset");
304 #endif
305 /* Must die if the interrupt is not recoverable */
306 if (!(regs->msr & MSR_RI))
307 panic("Unrecoverable System Reset");
309 if (!nested)
310 nmi_exit();
312 /* What should we do here? We could issue a shutdown or hard reset. */
315 #ifdef CONFIG_PPC64
317 * This function is called in real mode. Strictly no printk's please.
319 * regs->nip and regs->msr contains srr0 and ssr1.
321 long machine_check_early(struct pt_regs *regs)
323 long handled = 0;
325 __this_cpu_inc(irq_stat.mce_exceptions);
327 if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
328 handled = cur_cpu_spec->machine_check_early(regs);
329 return handled;
332 long hmi_exception_realmode(struct pt_regs *regs)
334 __this_cpu_inc(irq_stat.hmi_exceptions);
336 wait_for_subcore_guest_exit();
338 if (ppc_md.hmi_exception_early)
339 ppc_md.hmi_exception_early(regs);
341 wait_for_tb_resync();
343 return 0;
346 #endif
349 * I/O accesses can cause machine checks on powermacs.
350 * Check if the NIP corresponds to the address of a sync
351 * instruction for which there is an entry in the exception
352 * table.
353 * Note that the 601 only takes a machine check on TEA
354 * (transfer error ack) signal assertion, and does not
355 * set any of the top 16 bits of SRR1.
356 * -- paulus.
358 static inline int check_io_access(struct pt_regs *regs)
360 #ifdef CONFIG_PPC32
361 unsigned long msr = regs->msr;
362 const struct exception_table_entry *entry;
363 unsigned int *nip = (unsigned int *)regs->nip;
365 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
366 && (entry = search_exception_tables(regs->nip)) != NULL) {
368 * Check that it's a sync instruction, or somewhere
369 * in the twi; isync; nop sequence that inb/inw/inl uses.
370 * As the address is in the exception table
371 * we should be able to read the instr there.
372 * For the debug message, we look at the preceding
373 * load or store.
375 if (*nip == PPC_INST_NOP)
376 nip -= 2;
377 else if (*nip == PPC_INST_ISYNC)
378 --nip;
379 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
380 unsigned int rb;
382 --nip;
383 rb = (*nip >> 11) & 0x1f;
384 printk(KERN_DEBUG "%s bad port %lx at %p\n",
385 (*nip & 0x100)? "OUT to": "IN from",
386 regs->gpr[rb] - _IO_BASE, nip);
387 regs->msr |= MSR_RI;
388 regs->nip = extable_fixup(entry);
389 return 1;
392 #endif /* CONFIG_PPC32 */
393 return 0;
396 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
397 /* On 4xx, the reason for the machine check or program exception
398 is in the ESR. */
399 #define get_reason(regs) ((regs)->dsisr)
400 #ifndef CONFIG_FSL_BOOKE
401 #define get_mc_reason(regs) ((regs)->dsisr)
402 #else
403 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
404 #endif
405 #define REASON_FP ESR_FP
406 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
407 #define REASON_PRIVILEGED ESR_PPR
408 #define REASON_TRAP ESR_PTR
410 /* single-step stuff */
411 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
412 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
414 #else
415 /* On non-4xx, the reason for the machine check or program
416 exception is in the MSR. */
417 #define get_reason(regs) ((regs)->msr)
418 #define get_mc_reason(regs) ((regs)->msr)
419 #define REASON_TM 0x200000
420 #define REASON_FP 0x100000
421 #define REASON_ILLEGAL 0x80000
422 #define REASON_PRIVILEGED 0x40000
423 #define REASON_TRAP 0x20000
425 #define single_stepping(regs) ((regs)->msr & MSR_SE)
426 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
427 #endif
429 #if defined(CONFIG_4xx)
430 int machine_check_4xx(struct pt_regs *regs)
432 unsigned long reason = get_mc_reason(regs);
434 if (reason & ESR_IMCP) {
435 printk("Instruction");
436 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
437 } else
438 printk("Data");
439 printk(" machine check in kernel mode.\n");
441 return 0;
444 int machine_check_440A(struct pt_regs *regs)
446 unsigned long reason = get_mc_reason(regs);
448 printk("Machine check in kernel mode.\n");
449 if (reason & ESR_IMCP){
450 printk("Instruction Synchronous Machine Check exception\n");
451 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
453 else {
454 u32 mcsr = mfspr(SPRN_MCSR);
455 if (mcsr & MCSR_IB)
456 printk("Instruction Read PLB Error\n");
457 if (mcsr & MCSR_DRB)
458 printk("Data Read PLB Error\n");
459 if (mcsr & MCSR_DWB)
460 printk("Data Write PLB Error\n");
461 if (mcsr & MCSR_TLBP)
462 printk("TLB Parity Error\n");
463 if (mcsr & MCSR_ICP){
464 flush_instruction_cache();
465 printk("I-Cache Parity Error\n");
467 if (mcsr & MCSR_DCSP)
468 printk("D-Cache Search Parity Error\n");
469 if (mcsr & MCSR_DCFP)
470 printk("D-Cache Flush Parity Error\n");
471 if (mcsr & MCSR_IMPE)
472 printk("Machine Check exception is imprecise\n");
474 /* Clear MCSR */
475 mtspr(SPRN_MCSR, mcsr);
477 return 0;
480 int machine_check_47x(struct pt_regs *regs)
482 unsigned long reason = get_mc_reason(regs);
483 u32 mcsr;
485 printk(KERN_ERR "Machine check in kernel mode.\n");
486 if (reason & ESR_IMCP) {
487 printk(KERN_ERR
488 "Instruction Synchronous Machine Check exception\n");
489 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
490 return 0;
492 mcsr = mfspr(SPRN_MCSR);
493 if (mcsr & MCSR_IB)
494 printk(KERN_ERR "Instruction Read PLB Error\n");
495 if (mcsr & MCSR_DRB)
496 printk(KERN_ERR "Data Read PLB Error\n");
497 if (mcsr & MCSR_DWB)
498 printk(KERN_ERR "Data Write PLB Error\n");
499 if (mcsr & MCSR_TLBP)
500 printk(KERN_ERR "TLB Parity Error\n");
501 if (mcsr & MCSR_ICP) {
502 flush_instruction_cache();
503 printk(KERN_ERR "I-Cache Parity Error\n");
505 if (mcsr & MCSR_DCSP)
506 printk(KERN_ERR "D-Cache Search Parity Error\n");
507 if (mcsr & PPC47x_MCSR_GPR)
508 printk(KERN_ERR "GPR Parity Error\n");
509 if (mcsr & PPC47x_MCSR_FPR)
510 printk(KERN_ERR "FPR Parity Error\n");
511 if (mcsr & PPC47x_MCSR_IPR)
512 printk(KERN_ERR "Machine Check exception is imprecise\n");
514 /* Clear MCSR */
515 mtspr(SPRN_MCSR, mcsr);
517 return 0;
519 #elif defined(CONFIG_E500)
520 int machine_check_e500mc(struct pt_regs *regs)
522 unsigned long mcsr = mfspr(SPRN_MCSR);
523 unsigned long reason = mcsr;
524 int recoverable = 1;
526 if (reason & MCSR_LD) {
527 recoverable = fsl_rio_mcheck_exception(regs);
528 if (recoverable == 1)
529 goto silent_out;
532 printk("Machine check in kernel mode.\n");
533 printk("Caused by (from MCSR=%lx): ", reason);
535 if (reason & MCSR_MCP)
536 printk("Machine Check Signal\n");
538 if (reason & MCSR_ICPERR) {
539 printk("Instruction Cache Parity Error\n");
542 * This is recoverable by invalidating the i-cache.
544 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
545 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
549 * This will generally be accompanied by an instruction
550 * fetch error report -- only treat MCSR_IF as fatal
551 * if it wasn't due to an L1 parity error.
553 reason &= ~MCSR_IF;
556 if (reason & MCSR_DCPERR_MC) {
557 printk("Data Cache Parity Error\n");
560 * In write shadow mode we auto-recover from the error, but it
561 * may still get logged and cause a machine check. We should
562 * only treat the non-write shadow case as non-recoverable.
564 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
565 recoverable = 0;
568 if (reason & MCSR_L2MMU_MHIT) {
569 printk("Hit on multiple TLB entries\n");
570 recoverable = 0;
573 if (reason & MCSR_NMI)
574 printk("Non-maskable interrupt\n");
576 if (reason & MCSR_IF) {
577 printk("Instruction Fetch Error Report\n");
578 recoverable = 0;
581 if (reason & MCSR_LD) {
582 printk("Load Error Report\n");
583 recoverable = 0;
586 if (reason & MCSR_ST) {
587 printk("Store Error Report\n");
588 recoverable = 0;
591 if (reason & MCSR_LDG) {
592 printk("Guarded Load Error Report\n");
593 recoverable = 0;
596 if (reason & MCSR_TLBSYNC)
597 printk("Simultaneous tlbsync operations\n");
599 if (reason & MCSR_BSL2_ERR) {
600 printk("Level 2 Cache Error\n");
601 recoverable = 0;
604 if (reason & MCSR_MAV) {
605 u64 addr;
607 addr = mfspr(SPRN_MCAR);
608 addr |= (u64)mfspr(SPRN_MCARU) << 32;
610 printk("Machine Check %s Address: %#llx\n",
611 reason & MCSR_MEA ? "Effective" : "Physical", addr);
614 silent_out:
615 mtspr(SPRN_MCSR, mcsr);
616 return mfspr(SPRN_MCSR) == 0 && recoverable;
619 int machine_check_e500(struct pt_regs *regs)
621 unsigned long reason = get_mc_reason(regs);
623 if (reason & MCSR_BUS_RBERR) {
624 if (fsl_rio_mcheck_exception(regs))
625 return 1;
626 if (fsl_pci_mcheck_exception(regs))
627 return 1;
630 printk("Machine check in kernel mode.\n");
631 printk("Caused by (from MCSR=%lx): ", reason);
633 if (reason & MCSR_MCP)
634 printk("Machine Check Signal\n");
635 if (reason & MCSR_ICPERR)
636 printk("Instruction Cache Parity Error\n");
637 if (reason & MCSR_DCP_PERR)
638 printk("Data Cache Push Parity Error\n");
639 if (reason & MCSR_DCPERR)
640 printk("Data Cache Parity Error\n");
641 if (reason & MCSR_BUS_IAERR)
642 printk("Bus - Instruction Address Error\n");
643 if (reason & MCSR_BUS_RAERR)
644 printk("Bus - Read Address Error\n");
645 if (reason & MCSR_BUS_WAERR)
646 printk("Bus - Write Address Error\n");
647 if (reason & MCSR_BUS_IBERR)
648 printk("Bus - Instruction Data Error\n");
649 if (reason & MCSR_BUS_RBERR)
650 printk("Bus - Read Data Bus Error\n");
651 if (reason & MCSR_BUS_WBERR)
652 printk("Bus - Write Data Bus Error\n");
653 if (reason & MCSR_BUS_IPERR)
654 printk("Bus - Instruction Parity Error\n");
655 if (reason & MCSR_BUS_RPERR)
656 printk("Bus - Read Parity Error\n");
658 return 0;
661 int machine_check_generic(struct pt_regs *regs)
663 return 0;
665 #elif defined(CONFIG_E200)
666 int machine_check_e200(struct pt_regs *regs)
668 unsigned long reason = get_mc_reason(regs);
670 printk("Machine check in kernel mode.\n");
671 printk("Caused by (from MCSR=%lx): ", reason);
673 if (reason & MCSR_MCP)
674 printk("Machine Check Signal\n");
675 if (reason & MCSR_CP_PERR)
676 printk("Cache Push Parity Error\n");
677 if (reason & MCSR_CPERR)
678 printk("Cache Parity Error\n");
679 if (reason & MCSR_EXCP_ERR)
680 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
681 if (reason & MCSR_BUS_IRERR)
682 printk("Bus - Read Bus Error on instruction fetch\n");
683 if (reason & MCSR_BUS_DRERR)
684 printk("Bus - Read Bus Error on data load\n");
685 if (reason & MCSR_BUS_WRERR)
686 printk("Bus - Write Bus Error on buffered store or cache line push\n");
688 return 0;
690 #elif defined(CONFIG_PPC_8xx)
691 int machine_check_8xx(struct pt_regs *regs)
693 unsigned long reason = get_mc_reason(regs);
695 pr_err("Machine check in kernel mode.\n");
696 pr_err("Caused by (from SRR1=%lx): ", reason);
697 if (reason & 0x40000000)
698 pr_err("Fetch error at address %lx\n", regs->nip);
699 else
700 pr_err("Data access error at address %lx\n", regs->dar);
702 #ifdef CONFIG_PCI
703 /* the qspan pci read routines can cause machine checks -- Cort
705 * yuck !!! that totally needs to go away ! There are better ways
706 * to deal with that than having a wart in the mcheck handler.
707 * -- BenH
709 bad_page_fault(regs, regs->dar, SIGBUS);
710 return 1;
711 #else
712 return 0;
713 #endif
715 #else
716 int machine_check_generic(struct pt_regs *regs)
718 unsigned long reason = get_mc_reason(regs);
720 printk("Machine check in kernel mode.\n");
721 printk("Caused by (from SRR1=%lx): ", reason);
722 switch (reason & 0x601F0000) {
723 case 0x80000:
724 printk("Machine check signal\n");
725 break;
726 case 0: /* for 601 */
727 case 0x40000:
728 case 0x140000: /* 7450 MSS error and TEA */
729 printk("Transfer error ack signal\n");
730 break;
731 case 0x20000:
732 printk("Data parity error signal\n");
733 break;
734 case 0x10000:
735 printk("Address parity error signal\n");
736 break;
737 case 0x20000000:
738 printk("L1 Data Cache error\n");
739 break;
740 case 0x40000000:
741 printk("L1 Instruction Cache error\n");
742 break;
743 case 0x00100000:
744 printk("L2 data cache parity error\n");
745 break;
746 default:
747 printk("Unknown values in msr\n");
749 return 0;
751 #endif /* everything else */
753 void machine_check_exception(struct pt_regs *regs)
755 enum ctx_state prev_state = exception_enter();
756 int recover = 0;
758 __this_cpu_inc(irq_stat.mce_exceptions);
760 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
762 /* See if any machine dependent calls. In theory, we would want
763 * to call the CPU first, and call the ppc_md. one if the CPU
764 * one returns a positive number. However there is existing code
765 * that assumes the board gets a first chance, so let's keep it
766 * that way for now and fix things later. --BenH.
768 if (ppc_md.machine_check_exception)
769 recover = ppc_md.machine_check_exception(regs);
770 else if (cur_cpu_spec->machine_check)
771 recover = cur_cpu_spec->machine_check(regs);
773 if (recover > 0)
774 goto bail;
776 if (debugger_fault_handler(regs))
777 goto bail;
779 if (check_io_access(regs))
780 goto bail;
782 die("Machine check", regs, SIGBUS);
784 /* Must die if the interrupt is not recoverable */
785 if (!(regs->msr & MSR_RI))
786 panic("Unrecoverable Machine check");
788 bail:
789 exception_exit(prev_state);
792 void SMIException(struct pt_regs *regs)
794 die("System Management Interrupt", regs, SIGABRT);
797 void handle_hmi_exception(struct pt_regs *regs)
799 struct pt_regs *old_regs;
801 old_regs = set_irq_regs(regs);
802 irq_enter();
804 if (ppc_md.handle_hmi_exception)
805 ppc_md.handle_hmi_exception(regs);
807 irq_exit();
808 set_irq_regs(old_regs);
811 void unknown_exception(struct pt_regs *regs)
813 enum ctx_state prev_state = exception_enter();
815 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
816 regs->nip, regs->msr, regs->trap);
818 _exception(SIGTRAP, regs, 0, 0);
820 exception_exit(prev_state);
823 void instruction_breakpoint_exception(struct pt_regs *regs)
825 enum ctx_state prev_state = exception_enter();
827 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
828 5, SIGTRAP) == NOTIFY_STOP)
829 goto bail;
830 if (debugger_iabr_match(regs))
831 goto bail;
832 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
834 bail:
835 exception_exit(prev_state);
838 void RunModeException(struct pt_regs *regs)
840 _exception(SIGTRAP, regs, 0, 0);
843 void single_step_exception(struct pt_regs *regs)
845 enum ctx_state prev_state = exception_enter();
847 clear_single_step(regs);
849 if (kprobe_post_handler(regs))
850 return;
852 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
853 5, SIGTRAP) == NOTIFY_STOP)
854 goto bail;
855 if (debugger_sstep(regs))
856 goto bail;
858 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
860 bail:
861 exception_exit(prev_state);
863 NOKPROBE_SYMBOL(single_step_exception);
866 * After we have successfully emulated an instruction, we have to
867 * check if the instruction was being single-stepped, and if so,
868 * pretend we got a single-step exception. This was pointed out
869 * by Kumar Gala. -- paulus
871 static void emulate_single_step(struct pt_regs *regs)
873 if (single_stepping(regs))
874 single_step_exception(regs);
877 static inline int __parse_fpscr(unsigned long fpscr)
879 int ret = 0;
881 /* Invalid operation */
882 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
883 ret = FPE_FLTINV;
885 /* Overflow */
886 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
887 ret = FPE_FLTOVF;
889 /* Underflow */
890 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
891 ret = FPE_FLTUND;
893 /* Divide by zero */
894 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
895 ret = FPE_FLTDIV;
897 /* Inexact result */
898 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
899 ret = FPE_FLTRES;
901 return ret;
904 static void parse_fpe(struct pt_regs *regs)
906 int code = 0;
908 flush_fp_to_thread(current);
910 code = __parse_fpscr(current->thread.fp_state.fpscr);
912 _exception(SIGFPE, regs, code, regs->nip);
916 * Illegal instruction emulation support. Originally written to
917 * provide the PVR to user applications using the mfspr rd, PVR.
918 * Return non-zero if we can't emulate, or -EFAULT if the associated
919 * memory access caused an access fault. Return zero on success.
921 * There are a couple of ways to do this, either "decode" the instruction
922 * or directly match lots of bits. In this case, matching lots of
923 * bits is faster and easier.
926 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
928 u8 rT = (instword >> 21) & 0x1f;
929 u8 rA = (instword >> 16) & 0x1f;
930 u8 NB_RB = (instword >> 11) & 0x1f;
931 u32 num_bytes;
932 unsigned long EA;
933 int pos = 0;
935 /* Early out if we are an invalid form of lswx */
936 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
937 if ((rT == rA) || (rT == NB_RB))
938 return -EINVAL;
940 EA = (rA == 0) ? 0 : regs->gpr[rA];
942 switch (instword & PPC_INST_STRING_MASK) {
943 case PPC_INST_LSWX:
944 case PPC_INST_STSWX:
945 EA += NB_RB;
946 num_bytes = regs->xer & 0x7f;
947 break;
948 case PPC_INST_LSWI:
949 case PPC_INST_STSWI:
950 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
951 break;
952 default:
953 return -EINVAL;
956 while (num_bytes != 0)
958 u8 val;
959 u32 shift = 8 * (3 - (pos & 0x3));
961 /* if process is 32-bit, clear upper 32 bits of EA */
962 if ((regs->msr & MSR_64BIT) == 0)
963 EA &= 0xFFFFFFFF;
965 switch ((instword & PPC_INST_STRING_MASK)) {
966 case PPC_INST_LSWX:
967 case PPC_INST_LSWI:
968 if (get_user(val, (u8 __user *)EA))
969 return -EFAULT;
970 /* first time updating this reg,
971 * zero it out */
972 if (pos == 0)
973 regs->gpr[rT] = 0;
974 regs->gpr[rT] |= val << shift;
975 break;
976 case PPC_INST_STSWI:
977 case PPC_INST_STSWX:
978 val = regs->gpr[rT] >> shift;
979 if (put_user(val, (u8 __user *)EA))
980 return -EFAULT;
981 break;
983 /* move EA to next address */
984 EA += 1;
985 num_bytes--;
987 /* manage our position within the register */
988 if (++pos == 4) {
989 pos = 0;
990 if (++rT == 32)
991 rT = 0;
995 return 0;
998 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1000 u32 ra,rs;
1001 unsigned long tmp;
1003 ra = (instword >> 16) & 0x1f;
1004 rs = (instword >> 21) & 0x1f;
1006 tmp = regs->gpr[rs];
1007 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1008 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1009 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1010 regs->gpr[ra] = tmp;
1012 return 0;
1015 static int emulate_isel(struct pt_regs *regs, u32 instword)
1017 u8 rT = (instword >> 21) & 0x1f;
1018 u8 rA = (instword >> 16) & 0x1f;
1019 u8 rB = (instword >> 11) & 0x1f;
1020 u8 BC = (instword >> 6) & 0x1f;
1021 u8 bit;
1022 unsigned long tmp;
1024 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1025 bit = (regs->ccr >> (31 - BC)) & 0x1;
1027 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1029 return 0;
1032 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1033 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1035 /* If we're emulating a load/store in an active transaction, we cannot
1036 * emulate it as the kernel operates in transaction suspended context.
1037 * We need to abort the transaction. This creates a persistent TM
1038 * abort so tell the user what caused it with a new code.
1040 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1041 tm_enable();
1042 tm_abort(cause);
1043 return true;
1045 return false;
1047 #else
1048 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1050 return false;
1052 #endif
1054 static int emulate_instruction(struct pt_regs *regs)
1056 u32 instword;
1057 u32 rd;
1059 if (!user_mode(regs))
1060 return -EINVAL;
1061 CHECK_FULL_REGS(regs);
1063 if (get_user(instword, (u32 __user *)(regs->nip)))
1064 return -EFAULT;
1066 /* Emulate the mfspr rD, PVR. */
1067 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1068 PPC_WARN_EMULATED(mfpvr, regs);
1069 rd = (instword >> 21) & 0x1f;
1070 regs->gpr[rd] = mfspr(SPRN_PVR);
1071 return 0;
1074 /* Emulating the dcba insn is just a no-op. */
1075 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1076 PPC_WARN_EMULATED(dcba, regs);
1077 return 0;
1080 /* Emulate the mcrxr insn. */
1081 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1082 int shift = (instword >> 21) & 0x1c;
1083 unsigned long msk = 0xf0000000UL >> shift;
1085 PPC_WARN_EMULATED(mcrxr, regs);
1086 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1087 regs->xer &= ~0xf0000000UL;
1088 return 0;
1091 /* Emulate load/store string insn. */
1092 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1093 if (tm_abort_check(regs,
1094 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1095 return -EINVAL;
1096 PPC_WARN_EMULATED(string, regs);
1097 return emulate_string_inst(regs, instword);
1100 /* Emulate the popcntb (Population Count Bytes) instruction. */
1101 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1102 PPC_WARN_EMULATED(popcntb, regs);
1103 return emulate_popcntb_inst(regs, instword);
1106 /* Emulate isel (Integer Select) instruction */
1107 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1108 PPC_WARN_EMULATED(isel, regs);
1109 return emulate_isel(regs, instword);
1112 /* Emulate sync instruction variants */
1113 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1114 PPC_WARN_EMULATED(sync, regs);
1115 asm volatile("sync");
1116 return 0;
1119 #ifdef CONFIG_PPC64
1120 /* Emulate the mfspr rD, DSCR. */
1121 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1122 PPC_INST_MFSPR_DSCR_USER) ||
1123 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1124 PPC_INST_MFSPR_DSCR)) &&
1125 cpu_has_feature(CPU_FTR_DSCR)) {
1126 PPC_WARN_EMULATED(mfdscr, regs);
1127 rd = (instword >> 21) & 0x1f;
1128 regs->gpr[rd] = mfspr(SPRN_DSCR);
1129 return 0;
1131 /* Emulate the mtspr DSCR, rD. */
1132 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1133 PPC_INST_MTSPR_DSCR_USER) ||
1134 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1135 PPC_INST_MTSPR_DSCR)) &&
1136 cpu_has_feature(CPU_FTR_DSCR)) {
1137 PPC_WARN_EMULATED(mtdscr, regs);
1138 rd = (instword >> 21) & 0x1f;
1139 current->thread.dscr = regs->gpr[rd];
1140 current->thread.dscr_inherit = 1;
1141 mtspr(SPRN_DSCR, current->thread.dscr);
1142 return 0;
1144 #endif
1146 return -EINVAL;
1149 int is_valid_bugaddr(unsigned long addr)
1151 return is_kernel_addr(addr);
1154 #ifdef CONFIG_MATH_EMULATION
1155 static int emulate_math(struct pt_regs *regs)
1157 int ret;
1158 extern int do_mathemu(struct pt_regs *regs);
1160 ret = do_mathemu(regs);
1161 if (ret >= 0)
1162 PPC_WARN_EMULATED(math, regs);
1164 switch (ret) {
1165 case 0:
1166 emulate_single_step(regs);
1167 return 0;
1168 case 1: {
1169 int code = 0;
1170 code = __parse_fpscr(current->thread.fp_state.fpscr);
1171 _exception(SIGFPE, regs, code, regs->nip);
1172 return 0;
1174 case -EFAULT:
1175 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1176 return 0;
1179 return -1;
1181 #else
1182 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1183 #endif
1185 void program_check_exception(struct pt_regs *regs)
1187 enum ctx_state prev_state = exception_enter();
1188 unsigned int reason = get_reason(regs);
1190 /* We can now get here via a FP Unavailable exception if the core
1191 * has no FPU, in that case the reason flags will be 0 */
1193 if (reason & REASON_FP) {
1194 /* IEEE FP exception */
1195 parse_fpe(regs);
1196 goto bail;
1198 if (reason & REASON_TRAP) {
1199 unsigned long bugaddr;
1200 /* Debugger is first in line to stop recursive faults in
1201 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1202 if (debugger_bpt(regs))
1203 goto bail;
1205 if (kprobe_handler(regs))
1206 goto bail;
1208 /* trap exception */
1209 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1210 == NOTIFY_STOP)
1211 goto bail;
1213 bugaddr = regs->nip;
1215 * Fixup bugaddr for BUG_ON() in real mode
1217 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1218 bugaddr += PAGE_OFFSET;
1220 if (!(regs->msr & MSR_PR) && /* not user-mode */
1221 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1222 regs->nip += 4;
1223 goto bail;
1225 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1226 goto bail;
1228 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1229 if (reason & REASON_TM) {
1230 /* This is a TM "Bad Thing Exception" program check.
1231 * This occurs when:
1232 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1233 * transition in TM states.
1234 * - A trechkpt is attempted when transactional.
1235 * - A treclaim is attempted when non transactional.
1236 * - A tend is illegally attempted.
1237 * - writing a TM SPR when transactional.
1239 if (!user_mode(regs) &&
1240 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1241 regs->nip += 4;
1242 goto bail;
1244 /* If usermode caused this, it's done something illegal and
1245 * gets a SIGILL slap on the wrist. We call it an illegal
1246 * operand to distinguish from the instruction just being bad
1247 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1248 * illegal /placement/ of a valid instruction.
1250 if (user_mode(regs)) {
1251 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1252 goto bail;
1253 } else {
1254 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1255 "at %lx (msr 0x%x)\n", regs->nip, reason);
1256 die("Unrecoverable exception", regs, SIGABRT);
1259 #endif
1262 * If we took the program check in the kernel skip down to sending a
1263 * SIGILL. The subsequent cases all relate to emulating instructions
1264 * which we should only do for userspace. We also do not want to enable
1265 * interrupts for kernel faults because that might lead to further
1266 * faults, and loose the context of the original exception.
1268 if (!user_mode(regs))
1269 goto sigill;
1271 /* We restore the interrupt state now */
1272 if (!arch_irq_disabled_regs(regs))
1273 local_irq_enable();
1275 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1276 * but there seems to be a hardware bug on the 405GP (RevD)
1277 * that means ESR is sometimes set incorrectly - either to
1278 * ESR_DST (!?) or 0. In the process of chasing this with the
1279 * hardware people - not sure if it can happen on any illegal
1280 * instruction or only on FP instructions, whether there is a
1281 * pattern to occurrences etc. -dgibson 31/Mar/2003
1283 if (!emulate_math(regs))
1284 goto bail;
1286 /* Try to emulate it if we should. */
1287 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1288 switch (emulate_instruction(regs)) {
1289 case 0:
1290 regs->nip += 4;
1291 emulate_single_step(regs);
1292 goto bail;
1293 case -EFAULT:
1294 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1295 goto bail;
1299 sigill:
1300 if (reason & REASON_PRIVILEGED)
1301 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1302 else
1303 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1305 bail:
1306 exception_exit(prev_state);
1308 NOKPROBE_SYMBOL(program_check_exception);
1311 * This occurs when running in hypervisor mode on POWER6 or later
1312 * and an illegal instruction is encountered.
1314 void emulation_assist_interrupt(struct pt_regs *regs)
1316 regs->msr |= REASON_ILLEGAL;
1317 program_check_exception(regs);
1319 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1321 void alignment_exception(struct pt_regs *regs)
1323 enum ctx_state prev_state = exception_enter();
1324 int sig, code, fixed = 0;
1326 /* We restore the interrupt state now */
1327 if (!arch_irq_disabled_regs(regs))
1328 local_irq_enable();
1330 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1331 goto bail;
1333 /* we don't implement logging of alignment exceptions */
1334 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1335 fixed = fix_alignment(regs);
1337 if (fixed == 1) {
1338 regs->nip += 4; /* skip over emulated instruction */
1339 emulate_single_step(regs);
1340 goto bail;
1343 /* Operand address was bad */
1344 if (fixed == -EFAULT) {
1345 sig = SIGSEGV;
1346 code = SEGV_ACCERR;
1347 } else {
1348 sig = SIGBUS;
1349 code = BUS_ADRALN;
1351 if (user_mode(regs))
1352 _exception(sig, regs, code, regs->dar);
1353 else
1354 bad_page_fault(regs, regs->dar, sig);
1356 bail:
1357 exception_exit(prev_state);
1360 void slb_miss_bad_addr(struct pt_regs *regs)
1362 enum ctx_state prev_state = exception_enter();
1364 if (user_mode(regs))
1365 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1366 else
1367 bad_page_fault(regs, regs->dar, SIGSEGV);
1369 exception_exit(prev_state);
1372 void StackOverflow(struct pt_regs *regs)
1374 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1375 current, regs->gpr[1]);
1376 debugger(regs);
1377 show_regs(regs);
1378 panic("kernel stack overflow");
1381 void nonrecoverable_exception(struct pt_regs *regs)
1383 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1384 regs->nip, regs->msr);
1385 debugger(regs);
1386 die("nonrecoverable exception", regs, SIGKILL);
1389 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1391 enum ctx_state prev_state = exception_enter();
1393 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1394 "%lx at %lx\n", regs->trap, regs->nip);
1395 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1397 exception_exit(prev_state);
1400 void altivec_unavailable_exception(struct pt_regs *regs)
1402 enum ctx_state prev_state = exception_enter();
1404 if (user_mode(regs)) {
1405 /* A user program has executed an altivec instruction,
1406 but this kernel doesn't support altivec. */
1407 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1408 goto bail;
1411 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1412 "%lx at %lx\n", regs->trap, regs->nip);
1413 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1415 bail:
1416 exception_exit(prev_state);
1419 void vsx_unavailable_exception(struct pt_regs *regs)
1421 if (user_mode(regs)) {
1422 /* A user program has executed an vsx instruction,
1423 but this kernel doesn't support vsx. */
1424 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1425 return;
1428 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1429 "%lx at %lx\n", regs->trap, regs->nip);
1430 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1433 #ifdef CONFIG_PPC64
1434 static void tm_unavailable(struct pt_regs *regs)
1436 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1437 if (user_mode(regs)) {
1438 current->thread.load_tm++;
1439 regs->msr |= MSR_TM;
1440 tm_enable();
1441 tm_restore_sprs(&current->thread);
1442 return;
1444 #endif
1445 pr_emerg("Unrecoverable TM Unavailable Exception "
1446 "%lx at %lx\n", regs->trap, regs->nip);
1447 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1450 void facility_unavailable_exception(struct pt_regs *regs)
1452 static char *facility_strings[] = {
1453 [FSCR_FP_LG] = "FPU",
1454 [FSCR_VECVSX_LG] = "VMX/VSX",
1455 [FSCR_DSCR_LG] = "DSCR",
1456 [FSCR_PM_LG] = "PMU SPRs",
1457 [FSCR_BHRB_LG] = "BHRB",
1458 [FSCR_TM_LG] = "TM",
1459 [FSCR_EBB_LG] = "EBB",
1460 [FSCR_TAR_LG] = "TAR",
1461 [FSCR_MSGP_LG] = "MSGP",
1462 [FSCR_SCV_LG] = "SCV",
1464 char *facility = "unknown";
1465 u64 value;
1466 u32 instword, rd;
1467 u8 status;
1468 bool hv;
1470 hv = (regs->trap == 0xf80);
1471 if (hv)
1472 value = mfspr(SPRN_HFSCR);
1473 else
1474 value = mfspr(SPRN_FSCR);
1476 status = value >> 56;
1477 if (status == FSCR_DSCR_LG) {
1479 * User is accessing the DSCR register using the problem
1480 * state only SPR number (0x03) either through a mfspr or
1481 * a mtspr instruction. If it is a write attempt through
1482 * a mtspr, then we set the inherit bit. This also allows
1483 * the user to write or read the register directly in the
1484 * future by setting via the FSCR DSCR bit. But in case it
1485 * is a read DSCR attempt through a mfspr instruction, we
1486 * just emulate the instruction instead. This code path will
1487 * always emulate all the mfspr instructions till the user
1488 * has attempted at least one mtspr instruction. This way it
1489 * preserves the same behaviour when the user is accessing
1490 * the DSCR through privilege level only SPR number (0x11)
1491 * which is emulated through illegal instruction exception.
1492 * We always leave HFSCR DSCR set.
1494 if (get_user(instword, (u32 __user *)(regs->nip))) {
1495 pr_err("Failed to fetch the user instruction\n");
1496 return;
1499 /* Write into DSCR (mtspr 0x03, RS) */
1500 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1501 == PPC_INST_MTSPR_DSCR_USER) {
1502 rd = (instword >> 21) & 0x1f;
1503 current->thread.dscr = regs->gpr[rd];
1504 current->thread.dscr_inherit = 1;
1505 current->thread.fscr |= FSCR_DSCR;
1506 mtspr(SPRN_FSCR, current->thread.fscr);
1509 /* Read from DSCR (mfspr RT, 0x03) */
1510 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1511 == PPC_INST_MFSPR_DSCR_USER) {
1512 if (emulate_instruction(regs)) {
1513 pr_err("DSCR based mfspr emulation failed\n");
1514 return;
1516 regs->nip += 4;
1517 emulate_single_step(regs);
1519 return;
1522 if (status == FSCR_TM_LG) {
1524 * If we're here then the hardware is TM aware because it
1525 * generated an exception with FSRM_TM set.
1527 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1528 * told us not to do TM, or the kernel is not built with TM
1529 * support.
1531 * If both of those things are true, then userspace can spam the
1532 * console by triggering the printk() below just by continually
1533 * doing tbegin (or any TM instruction). So in that case just
1534 * send the process a SIGILL immediately.
1536 if (!cpu_has_feature(CPU_FTR_TM))
1537 goto out;
1539 tm_unavailable(regs);
1540 return;
1543 if ((hv || status >= 2) &&
1544 (status < ARRAY_SIZE(facility_strings)) &&
1545 facility_strings[status])
1546 facility = facility_strings[status];
1548 /* We restore the interrupt state now */
1549 if (!arch_irq_disabled_regs(regs))
1550 local_irq_enable();
1552 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1553 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1555 out:
1556 if (user_mode(regs)) {
1557 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1558 return;
1561 die("Unexpected facility unavailable exception", regs, SIGABRT);
1563 #endif
1565 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1567 void fp_unavailable_tm(struct pt_regs *regs)
1569 /* Note: This does not handle any kind of FP laziness. */
1571 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1572 regs->nip, regs->msr);
1574 /* We can only have got here if the task started using FP after
1575 * beginning the transaction. So, the transactional regs are just a
1576 * copy of the checkpointed ones. But, we still need to recheckpoint
1577 * as we're enabling FP for the process; it will return, abort the
1578 * transaction, and probably retry but now with FP enabled. So the
1579 * checkpointed FP registers need to be loaded.
1581 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1582 /* Reclaim didn't save out any FPRs to transact_fprs. */
1584 /* Enable FP for the task: */
1585 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1587 /* This loads and recheckpoints the FP registers from
1588 * thread.fpr[]. They will remain in registers after the
1589 * checkpoint so we don't need to reload them after.
1590 * If VMX is in use, the VRs now hold checkpointed values,
1591 * so we don't want to load the VRs from the thread_struct.
1593 tm_recheckpoint(&current->thread, MSR_FP);
1595 /* If VMX is in use, get the transactional values back */
1596 if (regs->msr & MSR_VEC) {
1597 msr_check_and_set(MSR_VEC);
1598 load_vr_state(&current->thread.vr_state);
1599 /* At this point all the VSX state is loaded, so enable it */
1600 regs->msr |= MSR_VSX;
1604 void altivec_unavailable_tm(struct pt_regs *regs)
1606 /* See the comments in fp_unavailable_tm(). This function operates
1607 * the same way.
1610 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1611 "MSR=%lx\n",
1612 regs->nip, regs->msr);
1613 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1614 regs->msr |= MSR_VEC;
1615 tm_recheckpoint(&current->thread, MSR_VEC);
1616 current->thread.used_vr = 1;
1618 if (regs->msr & MSR_FP) {
1619 msr_check_and_set(MSR_FP);
1620 load_fp_state(&current->thread.fp_state);
1621 regs->msr |= MSR_VSX;
1625 void vsx_unavailable_tm(struct pt_regs *regs)
1627 unsigned long orig_msr = regs->msr;
1629 /* See the comments in fp_unavailable_tm(). This works similarly,
1630 * though we're loading both FP and VEC registers in here.
1632 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1633 * regs. Either way, set MSR_VSX.
1636 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1637 "MSR=%lx\n",
1638 regs->nip, regs->msr);
1640 current->thread.used_vsr = 1;
1642 /* If FP and VMX are already loaded, we have all the state we need */
1643 if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1644 regs->msr |= MSR_VSX;
1645 return;
1648 /* This reclaims FP and/or VR regs if they're already enabled */
1649 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1651 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1652 MSR_VSX;
1654 /* This loads & recheckpoints FP and VRs; but we have
1655 * to be sure not to overwrite previously-valid state.
1657 tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1659 msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC));
1661 if (orig_msr & MSR_FP)
1662 load_fp_state(&current->thread.fp_state);
1663 if (orig_msr & MSR_VEC)
1664 load_vr_state(&current->thread.vr_state);
1666 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1668 void performance_monitor_exception(struct pt_regs *regs)
1670 __this_cpu_inc(irq_stat.pmu_irqs);
1672 perf_irq(regs);
1675 #ifdef CONFIG_8xx
1676 void SoftwareEmulation(struct pt_regs *regs)
1678 CHECK_FULL_REGS(regs);
1680 if (!user_mode(regs)) {
1681 debugger(regs);
1682 die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1683 regs, SIGFPE);
1686 if (!emulate_math(regs))
1687 return;
1689 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1691 #endif /* CONFIG_8xx */
1693 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1694 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1696 int changed = 0;
1698 * Determine the cause of the debug event, clear the
1699 * event flags and send a trap to the handler. Torez
1701 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1702 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1703 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1704 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1705 #endif
1706 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1708 changed |= 0x01;
1709 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1710 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1711 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1713 changed |= 0x01;
1714 } else if (debug_status & DBSR_IAC1) {
1715 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1716 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1717 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1719 changed |= 0x01;
1720 } else if (debug_status & DBSR_IAC2) {
1721 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1722 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1724 changed |= 0x01;
1725 } else if (debug_status & DBSR_IAC3) {
1726 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1727 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1728 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1730 changed |= 0x01;
1731 } else if (debug_status & DBSR_IAC4) {
1732 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1733 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1735 changed |= 0x01;
1738 * At the point this routine was called, the MSR(DE) was turned off.
1739 * Check all other debug flags and see if that bit needs to be turned
1740 * back on or not.
1742 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1743 current->thread.debug.dbcr1))
1744 regs->msr |= MSR_DE;
1745 else
1746 /* Make sure the IDM flag is off */
1747 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1749 if (changed & 0x01)
1750 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1753 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1755 current->thread.debug.dbsr = debug_status;
1757 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1758 * on server, it stops on the target of the branch. In order to simulate
1759 * the server behaviour, we thus restart right away with a single step
1760 * instead of stopping here when hitting a BT
1762 if (debug_status & DBSR_BT) {
1763 regs->msr &= ~MSR_DE;
1765 /* Disable BT */
1766 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1767 /* Clear the BT event */
1768 mtspr(SPRN_DBSR, DBSR_BT);
1770 /* Do the single step trick only when coming from userspace */
1771 if (user_mode(regs)) {
1772 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1773 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1774 regs->msr |= MSR_DE;
1775 return;
1778 if (kprobe_post_handler(regs))
1779 return;
1781 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1782 5, SIGTRAP) == NOTIFY_STOP) {
1783 return;
1785 if (debugger_sstep(regs))
1786 return;
1787 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1788 regs->msr &= ~MSR_DE;
1790 /* Disable instruction completion */
1791 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1792 /* Clear the instruction completion event */
1793 mtspr(SPRN_DBSR, DBSR_IC);
1795 if (kprobe_post_handler(regs))
1796 return;
1798 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1799 5, SIGTRAP) == NOTIFY_STOP) {
1800 return;
1803 if (debugger_sstep(regs))
1804 return;
1806 if (user_mode(regs)) {
1807 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1808 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1809 current->thread.debug.dbcr1))
1810 regs->msr |= MSR_DE;
1811 else
1812 /* Make sure the IDM bit is off */
1813 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1816 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1817 } else
1818 handle_debug(regs, debug_status);
1820 NOKPROBE_SYMBOL(DebugException);
1821 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1823 #if !defined(CONFIG_TAU_INT)
1824 void TAUException(struct pt_regs *regs)
1826 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1827 regs->nip, regs->msr, regs->trap, print_tainted());
1829 #endif /* CONFIG_INT_TAU */
1831 #ifdef CONFIG_ALTIVEC
1832 void altivec_assist_exception(struct pt_regs *regs)
1834 int err;
1836 if (!user_mode(regs)) {
1837 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1838 " at %lx\n", regs->nip);
1839 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1842 flush_altivec_to_thread(current);
1844 PPC_WARN_EMULATED(altivec, regs);
1845 err = emulate_altivec(regs);
1846 if (err == 0) {
1847 regs->nip += 4; /* skip emulated instruction */
1848 emulate_single_step(regs);
1849 return;
1852 if (err == -EFAULT) {
1853 /* got an error reading the instruction */
1854 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1855 } else {
1856 /* didn't recognize the instruction */
1857 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1858 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1859 "in %s at %lx\n", current->comm, regs->nip);
1860 current->thread.vr_state.vscr.u[3] |= 0x10000;
1863 #endif /* CONFIG_ALTIVEC */
1865 #ifdef CONFIG_FSL_BOOKE
1866 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1867 unsigned long error_code)
1869 /* We treat cache locking instructions from the user
1870 * as priv ops, in the future we could try to do
1871 * something smarter
1873 if (error_code & (ESR_DLK|ESR_ILK))
1874 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1875 return;
1877 #endif /* CONFIG_FSL_BOOKE */
1879 #ifdef CONFIG_SPE
1880 void SPEFloatingPointException(struct pt_regs *regs)
1882 extern int do_spe_mathemu(struct pt_regs *regs);
1883 unsigned long spefscr;
1884 int fpexc_mode;
1885 int code = 0;
1886 int err;
1888 flush_spe_to_thread(current);
1890 spefscr = current->thread.spefscr;
1891 fpexc_mode = current->thread.fpexc_mode;
1893 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1894 code = FPE_FLTOVF;
1896 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1897 code = FPE_FLTUND;
1899 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1900 code = FPE_FLTDIV;
1901 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1902 code = FPE_FLTINV;
1904 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1905 code = FPE_FLTRES;
1907 err = do_spe_mathemu(regs);
1908 if (err == 0) {
1909 regs->nip += 4; /* skip emulated instruction */
1910 emulate_single_step(regs);
1911 return;
1914 if (err == -EFAULT) {
1915 /* got an error reading the instruction */
1916 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1917 } else if (err == -EINVAL) {
1918 /* didn't recognize the instruction */
1919 printk(KERN_ERR "unrecognized spe instruction "
1920 "in %s at %lx\n", current->comm, regs->nip);
1921 } else {
1922 _exception(SIGFPE, regs, code, regs->nip);
1925 return;
1928 void SPEFloatingPointRoundException(struct pt_regs *regs)
1930 extern int speround_handler(struct pt_regs *regs);
1931 int err;
1933 preempt_disable();
1934 if (regs->msr & MSR_SPE)
1935 giveup_spe(current);
1936 preempt_enable();
1938 regs->nip -= 4;
1939 err = speround_handler(regs);
1940 if (err == 0) {
1941 regs->nip += 4; /* skip emulated instruction */
1942 emulate_single_step(regs);
1943 return;
1946 if (err == -EFAULT) {
1947 /* got an error reading the instruction */
1948 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1949 } else if (err == -EINVAL) {
1950 /* didn't recognize the instruction */
1951 printk(KERN_ERR "unrecognized spe instruction "
1952 "in %s at %lx\n", current->comm, regs->nip);
1953 } else {
1954 _exception(SIGFPE, regs, 0, regs->nip);
1955 return;
1958 #endif
1961 * We enter here if we get an unrecoverable exception, that is, one
1962 * that happened at a point where the RI (recoverable interrupt) bit
1963 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1964 * we therefore lost state by taking this exception.
1966 void unrecoverable_exception(struct pt_regs *regs)
1968 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1969 regs->trap, regs->nip);
1970 die("Unrecoverable exception", regs, SIGABRT);
1972 NOKPROBE_SYMBOL(unrecoverable_exception);
1974 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1976 * Default handler for a Watchdog exception,
1977 * spins until a reboot occurs
1979 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1981 /* Generic WatchdogHandler, implement your own */
1982 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1983 return;
1986 void WatchdogException(struct pt_regs *regs)
1988 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1989 WatchdogHandler(regs);
1991 #endif
1994 * We enter here if we discover during exception entry that we are
1995 * running in supervisor mode with a userspace value in the stack pointer.
1997 void kernel_bad_stack(struct pt_regs *regs)
1999 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2000 regs->gpr[1], regs->nip);
2001 die("Bad kernel stack pointer", regs, SIGABRT);
2003 NOKPROBE_SYMBOL(kernel_bad_stack);
2005 void __init trap_init(void)
2010 #ifdef CONFIG_PPC_EMULATED_STATS
2012 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2014 struct ppc_emulated ppc_emulated = {
2015 #ifdef CONFIG_ALTIVEC
2016 WARN_EMULATED_SETUP(altivec),
2017 #endif
2018 WARN_EMULATED_SETUP(dcba),
2019 WARN_EMULATED_SETUP(dcbz),
2020 WARN_EMULATED_SETUP(fp_pair),
2021 WARN_EMULATED_SETUP(isel),
2022 WARN_EMULATED_SETUP(mcrxr),
2023 WARN_EMULATED_SETUP(mfpvr),
2024 WARN_EMULATED_SETUP(multiple),
2025 WARN_EMULATED_SETUP(popcntb),
2026 WARN_EMULATED_SETUP(spe),
2027 WARN_EMULATED_SETUP(string),
2028 WARN_EMULATED_SETUP(sync),
2029 WARN_EMULATED_SETUP(unaligned),
2030 #ifdef CONFIG_MATH_EMULATION
2031 WARN_EMULATED_SETUP(math),
2032 #endif
2033 #ifdef CONFIG_VSX
2034 WARN_EMULATED_SETUP(vsx),
2035 #endif
2036 #ifdef CONFIG_PPC64
2037 WARN_EMULATED_SETUP(mfdscr),
2038 WARN_EMULATED_SETUP(mtdscr),
2039 WARN_EMULATED_SETUP(lq_stq),
2040 #endif
2043 u32 ppc_warn_emulated;
2045 void ppc_warn_emulated_print(const char *type)
2047 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2048 type);
2051 static int __init ppc_warn_emulated_init(void)
2053 struct dentry *dir, *d;
2054 unsigned int i;
2055 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2057 if (!powerpc_debugfs_root)
2058 return -ENODEV;
2060 dir = debugfs_create_dir("emulated_instructions",
2061 powerpc_debugfs_root);
2062 if (!dir)
2063 return -ENOMEM;
2065 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
2066 &ppc_warn_emulated);
2067 if (!d)
2068 goto fail;
2070 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2071 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
2072 (u32 *)&entries[i].val.counter);
2073 if (!d)
2074 goto fail;
2077 return 0;
2079 fail:
2080 debugfs_remove_recursive(dir);
2081 return -ENOMEM;
2084 device_initcall(ppc_warn_emulated_init);
2086 #endif /* CONFIG_PPC_EMULATED_STATS */