Linux 4.13.16
[linux/fpc-iii.git] / arch / s390 / numa / mode_emu.c
blobcfd08384f0abfe287c5a5fcf9762e638a7decb19
1 /*
2 * NUMA support for s390
4 * NUMA emulation (aka fake NUMA) distributes the available memory to nodes
5 * without using real topology information about the physical memory of the
6 * machine.
8 * It distributes the available CPUs to nodes while respecting the original
9 * machine topology information. This is done by trying to avoid to separate
10 * CPUs which reside on the same book or even on the same MC.
12 * Because the current Linux scheduler code requires a stable cpu to node
13 * mapping, cores are pinned to nodes when the first CPU thread is set online.
15 * Copyright IBM Corp. 2015
18 #define KMSG_COMPONENT "numa_emu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 #include <linux/kernel.h>
22 #include <linux/cpumask.h>
23 #include <linux/memblock.h>
24 #include <linux/bootmem.h>
25 #include <linux/node.h>
26 #include <linux/memory.h>
27 #include <linux/slab.h>
28 #include <asm/smp.h>
29 #include <asm/topology.h>
30 #include "numa_mode.h"
31 #include "toptree.h"
33 /* Distances between the different system components */
34 #define DIST_EMPTY 0
35 #define DIST_CORE 1
36 #define DIST_MC 2
37 #define DIST_BOOK 3
38 #define DIST_DRAWER 4
39 #define DIST_MAX 5
41 /* Node distance reported to common code */
42 #define EMU_NODE_DIST 10
44 /* Node ID for free (not yet pinned) cores */
45 #define NODE_ID_FREE -1
47 /* Different levels of toptree */
48 enum toptree_level {CORE, MC, BOOK, DRAWER, NODE, TOPOLOGY};
50 /* The two toptree IDs */
51 enum {TOPTREE_ID_PHYS, TOPTREE_ID_NUMA};
53 /* Number of NUMA nodes */
54 static int emu_nodes = 1;
55 /* NUMA stripe size */
56 static unsigned long emu_size;
59 * Node to core pinning information updates are protected by
60 * "sched_domains_mutex".
62 static struct {
63 s32 to_node_id[CONFIG_NR_CPUS]; /* Pinned core to node mapping */
64 int total; /* Total number of pinned cores */
65 int per_node_target; /* Cores per node without extra cores */
66 int per_node[MAX_NUMNODES]; /* Number of cores pinned to node */
67 } *emu_cores;
70 * Pin a core to a node
72 static void pin_core_to_node(int core_id, int node_id)
74 if (emu_cores->to_node_id[core_id] == NODE_ID_FREE) {
75 emu_cores->per_node[node_id]++;
76 emu_cores->to_node_id[core_id] = node_id;
77 emu_cores->total++;
78 } else {
79 WARN_ON(emu_cores->to_node_id[core_id] != node_id);
84 * Number of pinned cores of a node
86 static int cores_pinned(struct toptree *node)
88 return emu_cores->per_node[node->id];
92 * ID of the node where the core is pinned (or NODE_ID_FREE)
94 static int core_pinned_to_node_id(struct toptree *core)
96 return emu_cores->to_node_id[core->id];
100 * Number of cores in the tree that are not yet pinned
102 static int cores_free(struct toptree *tree)
104 struct toptree *core;
105 int count = 0;
107 toptree_for_each(core, tree, CORE) {
108 if (core_pinned_to_node_id(core) == NODE_ID_FREE)
109 count++;
111 return count;
115 * Return node of core
117 static struct toptree *core_node(struct toptree *core)
119 return core->parent->parent->parent->parent;
123 * Return drawer of core
125 static struct toptree *core_drawer(struct toptree *core)
127 return core->parent->parent->parent;
131 * Return book of core
133 static struct toptree *core_book(struct toptree *core)
135 return core->parent->parent;
139 * Return mc of core
141 static struct toptree *core_mc(struct toptree *core)
143 return core->parent;
147 * Distance between two cores
149 static int dist_core_to_core(struct toptree *core1, struct toptree *core2)
151 if (core_drawer(core1)->id != core_drawer(core2)->id)
152 return DIST_DRAWER;
153 if (core_book(core1)->id != core_book(core2)->id)
154 return DIST_BOOK;
155 if (core_mc(core1)->id != core_mc(core2)->id)
156 return DIST_MC;
157 /* Same core or sibling on same MC */
158 return DIST_CORE;
162 * Distance of a node to a core
164 static int dist_node_to_core(struct toptree *node, struct toptree *core)
166 struct toptree *core_node;
167 int dist_min = DIST_MAX;
169 toptree_for_each(core_node, node, CORE)
170 dist_min = min(dist_min, dist_core_to_core(core_node, core));
171 return dist_min == DIST_MAX ? DIST_EMPTY : dist_min;
175 * Unify will delete empty nodes, therefore recreate nodes.
177 static void toptree_unify_tree(struct toptree *tree)
179 int nid;
181 toptree_unify(tree);
182 for (nid = 0; nid < emu_nodes; nid++)
183 toptree_get_child(tree, nid);
187 * Find the best/nearest node for a given core and ensure that no node
188 * gets more than "emu_cores->per_node_target + extra" cores.
190 static struct toptree *node_for_core(struct toptree *numa, struct toptree *core,
191 int extra)
193 struct toptree *node, *node_best = NULL;
194 int dist_cur, dist_best, cores_target;
196 cores_target = emu_cores->per_node_target + extra;
197 dist_best = DIST_MAX;
198 node_best = NULL;
199 toptree_for_each(node, numa, NODE) {
200 /* Already pinned cores must use their nodes */
201 if (core_pinned_to_node_id(core) == node->id) {
202 node_best = node;
203 break;
205 /* Skip nodes that already have enough cores */
206 if (cores_pinned(node) >= cores_target)
207 continue;
208 dist_cur = dist_node_to_core(node, core);
209 if (dist_cur < dist_best) {
210 dist_best = dist_cur;
211 node_best = node;
214 return node_best;
218 * Find the best node for each core with respect to "extra" core count
220 static void toptree_to_numa_single(struct toptree *numa, struct toptree *phys,
221 int extra)
223 struct toptree *node, *core, *tmp;
225 toptree_for_each_safe(core, tmp, phys, CORE) {
226 node = node_for_core(numa, core, extra);
227 if (!node)
228 return;
229 toptree_move(core, node);
230 pin_core_to_node(core->id, node->id);
235 * Move structures of given level to specified NUMA node
237 static void move_level_to_numa_node(struct toptree *node, struct toptree *phys,
238 enum toptree_level level, bool perfect)
240 int cores_free, cores_target = emu_cores->per_node_target;
241 struct toptree *cur, *tmp;
243 toptree_for_each_safe(cur, tmp, phys, level) {
244 cores_free = cores_target - toptree_count(node, CORE);
245 if (perfect) {
246 if (cores_free == toptree_count(cur, CORE))
247 toptree_move(cur, node);
248 } else {
249 if (cores_free >= toptree_count(cur, CORE))
250 toptree_move(cur, node);
256 * Move structures of a given level to NUMA nodes. If "perfect" is specified
257 * move only perfectly fitting structures. Otherwise move also smaller
258 * than needed structures.
260 static void move_level_to_numa(struct toptree *numa, struct toptree *phys,
261 enum toptree_level level, bool perfect)
263 struct toptree *node;
265 toptree_for_each(node, numa, NODE)
266 move_level_to_numa_node(node, phys, level, perfect);
270 * For the first run try to move the big structures
272 static void toptree_to_numa_first(struct toptree *numa, struct toptree *phys)
274 struct toptree *core;
276 /* Always try to move perfectly fitting structures first */
277 move_level_to_numa(numa, phys, DRAWER, true);
278 move_level_to_numa(numa, phys, DRAWER, false);
279 move_level_to_numa(numa, phys, BOOK, true);
280 move_level_to_numa(numa, phys, BOOK, false);
281 move_level_to_numa(numa, phys, MC, true);
282 move_level_to_numa(numa, phys, MC, false);
283 /* Now pin all the moved cores */
284 toptree_for_each(core, numa, CORE)
285 pin_core_to_node(core->id, core_node(core)->id);
289 * Allocate new topology and create required nodes
291 static struct toptree *toptree_new(int id, int nodes)
293 struct toptree *tree;
294 int nid;
296 tree = toptree_alloc(TOPOLOGY, id);
297 if (!tree)
298 goto fail;
299 for (nid = 0; nid < nodes; nid++) {
300 if (!toptree_get_child(tree, nid))
301 goto fail;
303 return tree;
304 fail:
305 panic("NUMA emulation could not allocate topology");
309 * Allocate and initialize core to node mapping
311 static void __ref create_core_to_node_map(void)
313 int i;
315 emu_cores = memblock_virt_alloc(sizeof(*emu_cores), 8);
316 for (i = 0; i < ARRAY_SIZE(emu_cores->to_node_id); i++)
317 emu_cores->to_node_id[i] = NODE_ID_FREE;
321 * Move cores from physical topology into NUMA target topology
322 * and try to keep as much of the physical topology as possible.
324 static struct toptree *toptree_to_numa(struct toptree *phys)
326 static int first = 1;
327 struct toptree *numa;
328 int cores_total;
330 cores_total = emu_cores->total + cores_free(phys);
331 emu_cores->per_node_target = cores_total / emu_nodes;
332 numa = toptree_new(TOPTREE_ID_NUMA, emu_nodes);
333 if (first) {
334 toptree_to_numa_first(numa, phys);
335 first = 0;
337 toptree_to_numa_single(numa, phys, 0);
338 toptree_to_numa_single(numa, phys, 1);
339 toptree_unify_tree(numa);
341 WARN_ON(cpumask_weight(&phys->mask));
342 return numa;
346 * Create a toptree out of the physical topology that we got from the hypervisor
348 static struct toptree *toptree_from_topology(void)
350 struct toptree *phys, *node, *drawer, *book, *mc, *core;
351 struct cpu_topology_s390 *top;
352 int cpu;
354 phys = toptree_new(TOPTREE_ID_PHYS, 1);
356 for_each_cpu(cpu, &cpus_with_topology) {
357 top = &cpu_topology[cpu];
358 node = toptree_get_child(phys, 0);
359 drawer = toptree_get_child(node, top->drawer_id);
360 book = toptree_get_child(drawer, top->book_id);
361 mc = toptree_get_child(book, top->socket_id);
362 core = toptree_get_child(mc, smp_get_base_cpu(cpu));
363 if (!drawer || !book || !mc || !core)
364 panic("NUMA emulation could not allocate memory");
365 cpumask_set_cpu(cpu, &core->mask);
366 toptree_update_mask(mc);
368 return phys;
372 * Add toptree core to topology and create correct CPU masks
374 static void topology_add_core(struct toptree *core)
376 struct cpu_topology_s390 *top;
377 int cpu;
379 for_each_cpu(cpu, &core->mask) {
380 top = &cpu_topology[cpu];
381 cpumask_copy(&top->thread_mask, &core->mask);
382 cpumask_copy(&top->core_mask, &core_mc(core)->mask);
383 cpumask_copy(&top->book_mask, &core_book(core)->mask);
384 cpumask_copy(&top->drawer_mask, &core_drawer(core)->mask);
385 cpumask_set_cpu(cpu, &node_to_cpumask_map[core_node(core)->id]);
386 top->node_id = core_node(core)->id;
391 * Apply toptree to topology and create CPU masks
393 static void toptree_to_topology(struct toptree *numa)
395 struct toptree *core;
396 int i;
398 /* Clear all node masks */
399 for (i = 0; i < MAX_NUMNODES; i++)
400 cpumask_clear(&node_to_cpumask_map[i]);
402 /* Rebuild all masks */
403 toptree_for_each(core, numa, CORE)
404 topology_add_core(core);
408 * Show the node to core mapping
410 static void print_node_to_core_map(void)
412 int nid, cid;
414 if (!numa_debug_enabled)
415 return;
416 printk(KERN_DEBUG "NUMA node to core mapping\n");
417 for (nid = 0; nid < emu_nodes; nid++) {
418 printk(KERN_DEBUG " node %3d: ", nid);
419 for (cid = 0; cid < ARRAY_SIZE(emu_cores->to_node_id); cid++) {
420 if (emu_cores->to_node_id[cid] == nid)
421 printk(KERN_CONT "%d ", cid);
423 printk(KERN_CONT "\n");
427 static void pin_all_possible_cpus(void)
429 int core_id, node_id, cpu;
430 static int initialized;
432 if (initialized)
433 return;
434 print_node_to_core_map();
435 node_id = 0;
436 for_each_possible_cpu(cpu) {
437 core_id = smp_get_base_cpu(cpu);
438 if (emu_cores->to_node_id[core_id] != NODE_ID_FREE)
439 continue;
440 pin_core_to_node(core_id, node_id);
441 cpu_topology[cpu].node_id = node_id;
442 node_id = (node_id + 1) % emu_nodes;
444 print_node_to_core_map();
445 initialized = 1;
449 * Transfer physical topology into a NUMA topology and modify CPU masks
450 * according to the NUMA topology.
452 * Must be called with "sched_domains_mutex" lock held.
454 static void emu_update_cpu_topology(void)
456 struct toptree *phys, *numa;
458 if (emu_cores == NULL)
459 create_core_to_node_map();
460 phys = toptree_from_topology();
461 numa = toptree_to_numa(phys);
462 toptree_free(phys);
463 toptree_to_topology(numa);
464 toptree_free(numa);
465 pin_all_possible_cpus();
469 * If emu_size is not set, use CONFIG_EMU_SIZE. Then round to minimum
470 * alignment (needed for memory hotplug).
472 static unsigned long emu_setup_size_adjust(unsigned long size)
474 unsigned long size_new;
476 size = size ? : CONFIG_EMU_SIZE;
477 size_new = roundup(size, memory_block_size_bytes());
478 if (size_new == size)
479 return size;
480 pr_warn("Increasing memory stripe size from %ld MB to %ld MB\n",
481 size >> 20, size_new >> 20);
482 return size_new;
486 * If we have not enough memory for the specified nodes, reduce the node count.
488 static int emu_setup_nodes_adjust(int nodes)
490 int nodes_max;
492 nodes_max = memblock.memory.total_size / emu_size;
493 nodes_max = max(nodes_max, 1);
494 if (nodes_max >= nodes)
495 return nodes;
496 pr_warn("Not enough memory for %d nodes, reducing node count\n", nodes);
497 return nodes_max;
501 * Early emu setup
503 static void emu_setup(void)
505 int nid;
507 emu_size = emu_setup_size_adjust(emu_size);
508 emu_nodes = emu_setup_nodes_adjust(emu_nodes);
509 for (nid = 0; nid < emu_nodes; nid++)
510 node_set(nid, node_possible_map);
511 pr_info("Creating %d nodes with memory stripe size %ld MB\n",
512 emu_nodes, emu_size >> 20);
516 * Return node id for given page number
518 static int emu_pfn_to_nid(unsigned long pfn)
520 return (pfn / (emu_size >> PAGE_SHIFT)) % emu_nodes;
524 * Return stripe size
526 static unsigned long emu_align(void)
528 return emu_size;
532 * Return distance between two nodes
534 static int emu_distance(int node1, int node2)
536 return (node1 != node2) * EMU_NODE_DIST;
540 * Define callbacks for generic s390 NUMA infrastructure
542 const struct numa_mode numa_mode_emu = {
543 .name = "emu",
544 .setup = emu_setup,
545 .update_cpu_topology = emu_update_cpu_topology,
546 .__pfn_to_nid = emu_pfn_to_nid,
547 .align = emu_align,
548 .distance = emu_distance,
552 * Kernel parameter: emu_nodes=<n>
554 static int __init early_parse_emu_nodes(char *p)
556 int count;
558 if (kstrtoint(p, 0, &count) != 0 || count <= 0)
559 return 0;
560 if (count <= 0)
561 return 0;
562 emu_nodes = min(count, MAX_NUMNODES);
563 return 0;
565 early_param("emu_nodes", early_parse_emu_nodes);
568 * Kernel parameter: emu_size=[<n>[k|M|G|T]]
570 static int __init early_parse_emu_size(char *p)
572 emu_size = memparse(p, NULL);
573 return 0;
575 early_param("emu_size", early_parse_emu_size);