Linux 4.13.16
[linux/fpc-iii.git] / arch / s390 / pci / pci_dma.c
blob0d300ee00f4e95b987884bbeb0fa1fce1bee7b59
1 /*
2 * Copyright IBM Corp. 2012
4 * Author(s):
5 * Jan Glauber <jang@linux.vnet.ibm.com>
6 */
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/export.h>
11 #include <linux/iommu-helper.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/vmalloc.h>
14 #include <linux/pci.h>
15 #include <asm/pci_dma.h>
17 #define S390_MAPPING_ERROR (~(dma_addr_t) 0x0)
19 static struct kmem_cache *dma_region_table_cache;
20 static struct kmem_cache *dma_page_table_cache;
21 static int s390_iommu_strict;
23 static int zpci_refresh_global(struct zpci_dev *zdev)
25 return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma,
26 zdev->iommu_pages * PAGE_SIZE);
29 unsigned long *dma_alloc_cpu_table(void)
31 unsigned long *table, *entry;
33 table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC);
34 if (!table)
35 return NULL;
37 for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
38 *entry = ZPCI_TABLE_INVALID;
39 return table;
42 static void dma_free_cpu_table(void *table)
44 kmem_cache_free(dma_region_table_cache, table);
47 static unsigned long *dma_alloc_page_table(void)
49 unsigned long *table, *entry;
51 table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC);
52 if (!table)
53 return NULL;
55 for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
56 *entry = ZPCI_PTE_INVALID;
57 return table;
60 static void dma_free_page_table(void *table)
62 kmem_cache_free(dma_page_table_cache, table);
65 static unsigned long *dma_get_seg_table_origin(unsigned long *entry)
67 unsigned long *sto;
69 if (reg_entry_isvalid(*entry))
70 sto = get_rt_sto(*entry);
71 else {
72 sto = dma_alloc_cpu_table();
73 if (!sto)
74 return NULL;
76 set_rt_sto(entry, sto);
77 validate_rt_entry(entry);
78 entry_clr_protected(entry);
80 return sto;
83 static unsigned long *dma_get_page_table_origin(unsigned long *entry)
85 unsigned long *pto;
87 if (reg_entry_isvalid(*entry))
88 pto = get_st_pto(*entry);
89 else {
90 pto = dma_alloc_page_table();
91 if (!pto)
92 return NULL;
93 set_st_pto(entry, pto);
94 validate_st_entry(entry);
95 entry_clr_protected(entry);
97 return pto;
100 unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr)
102 unsigned long *sto, *pto;
103 unsigned int rtx, sx, px;
105 rtx = calc_rtx(dma_addr);
106 sto = dma_get_seg_table_origin(&rto[rtx]);
107 if (!sto)
108 return NULL;
110 sx = calc_sx(dma_addr);
111 pto = dma_get_page_table_origin(&sto[sx]);
112 if (!pto)
113 return NULL;
115 px = calc_px(dma_addr);
116 return &pto[px];
119 void dma_update_cpu_trans(unsigned long *entry, void *page_addr, int flags)
121 if (flags & ZPCI_PTE_INVALID) {
122 invalidate_pt_entry(entry);
123 } else {
124 set_pt_pfaa(entry, page_addr);
125 validate_pt_entry(entry);
128 if (flags & ZPCI_TABLE_PROTECTED)
129 entry_set_protected(entry);
130 else
131 entry_clr_protected(entry);
134 static int __dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
135 dma_addr_t dma_addr, size_t size, int flags)
137 unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
138 u8 *page_addr = (u8 *) (pa & PAGE_MASK);
139 unsigned long irq_flags;
140 unsigned long *entry;
141 int i, rc = 0;
143 if (!nr_pages)
144 return -EINVAL;
146 spin_lock_irqsave(&zdev->dma_table_lock, irq_flags);
147 if (!zdev->dma_table) {
148 rc = -EINVAL;
149 goto out_unlock;
152 for (i = 0; i < nr_pages; i++) {
153 entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
154 if (!entry) {
155 rc = -ENOMEM;
156 goto undo_cpu_trans;
158 dma_update_cpu_trans(entry, page_addr, flags);
159 page_addr += PAGE_SIZE;
160 dma_addr += PAGE_SIZE;
163 undo_cpu_trans:
164 if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) {
165 flags = ZPCI_PTE_INVALID;
166 while (i-- > 0) {
167 page_addr -= PAGE_SIZE;
168 dma_addr -= PAGE_SIZE;
169 entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
170 if (!entry)
171 break;
172 dma_update_cpu_trans(entry, page_addr, flags);
175 out_unlock:
176 spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags);
177 return rc;
180 static int __dma_purge_tlb(struct zpci_dev *zdev, dma_addr_t dma_addr,
181 size_t size, int flags)
184 * With zdev->tlb_refresh == 0, rpcit is not required to establish new
185 * translations when previously invalid translation-table entries are
186 * validated. With lazy unmap, rpcit is skipped for previously valid
187 * entries, but a global rpcit is then required before any address can
188 * be re-used, i.e. after each iommu bitmap wrap-around.
190 if ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID) {
191 if (!zdev->tlb_refresh)
192 return 0;
193 } else {
194 if (!s390_iommu_strict)
195 return 0;
198 return zpci_refresh_trans((u64) zdev->fh << 32, dma_addr,
199 PAGE_ALIGN(size));
202 static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
203 dma_addr_t dma_addr, size_t size, int flags)
205 int rc;
207 rc = __dma_update_trans(zdev, pa, dma_addr, size, flags);
208 if (rc)
209 return rc;
211 rc = __dma_purge_tlb(zdev, dma_addr, size, flags);
212 if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID))
213 __dma_update_trans(zdev, pa, dma_addr, size, ZPCI_PTE_INVALID);
215 return rc;
218 void dma_free_seg_table(unsigned long entry)
220 unsigned long *sto = get_rt_sto(entry);
221 int sx;
223 for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
224 if (reg_entry_isvalid(sto[sx]))
225 dma_free_page_table(get_st_pto(sto[sx]));
227 dma_free_cpu_table(sto);
230 void dma_cleanup_tables(unsigned long *table)
232 int rtx;
234 if (!table)
235 return;
237 for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
238 if (reg_entry_isvalid(table[rtx]))
239 dma_free_seg_table(table[rtx]);
241 dma_free_cpu_table(table);
244 static unsigned long __dma_alloc_iommu(struct device *dev,
245 unsigned long start, int size)
247 struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
248 unsigned long boundary_size;
250 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
251 PAGE_SIZE) >> PAGE_SHIFT;
252 return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages,
253 start, size, zdev->start_dma >> PAGE_SHIFT,
254 boundary_size, 0);
257 static dma_addr_t dma_alloc_address(struct device *dev, int size)
259 struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
260 unsigned long offset, flags;
262 spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
263 offset = __dma_alloc_iommu(dev, zdev->next_bit, size);
264 if (offset == -1) {
265 if (!s390_iommu_strict) {
266 /* global flush before DMA addresses are reused */
267 if (zpci_refresh_global(zdev))
268 goto out_error;
270 bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap,
271 zdev->lazy_bitmap, zdev->iommu_pages);
272 bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages);
274 /* wrap-around */
275 offset = __dma_alloc_iommu(dev, 0, size);
276 if (offset == -1)
277 goto out_error;
279 zdev->next_bit = offset + size;
280 spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
282 return zdev->start_dma + offset * PAGE_SIZE;
284 out_error:
285 spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
286 return S390_MAPPING_ERROR;
289 static void dma_free_address(struct device *dev, dma_addr_t dma_addr, int size)
291 struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
292 unsigned long flags, offset;
294 offset = (dma_addr - zdev->start_dma) >> PAGE_SHIFT;
296 spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
297 if (!zdev->iommu_bitmap)
298 goto out;
300 if (s390_iommu_strict)
301 bitmap_clear(zdev->iommu_bitmap, offset, size);
302 else
303 bitmap_set(zdev->lazy_bitmap, offset, size);
305 out:
306 spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
309 static inline void zpci_err_dma(unsigned long rc, unsigned long addr)
311 struct {
312 unsigned long rc;
313 unsigned long addr;
314 } __packed data = {rc, addr};
316 zpci_err_hex(&data, sizeof(data));
319 static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page,
320 unsigned long offset, size_t size,
321 enum dma_data_direction direction,
322 unsigned long attrs)
324 struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
325 unsigned long pa = page_to_phys(page) + offset;
326 int flags = ZPCI_PTE_VALID;
327 unsigned long nr_pages;
328 dma_addr_t dma_addr;
329 int ret;
331 /* This rounds up number of pages based on size and offset */
332 nr_pages = iommu_num_pages(pa, size, PAGE_SIZE);
333 dma_addr = dma_alloc_address(dev, nr_pages);
334 if (dma_addr == S390_MAPPING_ERROR) {
335 ret = -ENOSPC;
336 goto out_err;
339 /* Use rounded up size */
340 size = nr_pages * PAGE_SIZE;
342 if (direction == DMA_NONE || direction == DMA_TO_DEVICE)
343 flags |= ZPCI_TABLE_PROTECTED;
345 ret = dma_update_trans(zdev, pa, dma_addr, size, flags);
346 if (ret)
347 goto out_free;
349 atomic64_add(nr_pages, &zdev->mapped_pages);
350 return dma_addr + (offset & ~PAGE_MASK);
352 out_free:
353 dma_free_address(dev, dma_addr, nr_pages);
354 out_err:
355 zpci_err("map error:\n");
356 zpci_err_dma(ret, pa);
357 return S390_MAPPING_ERROR;
360 static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr,
361 size_t size, enum dma_data_direction direction,
362 unsigned long attrs)
364 struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
365 int npages, ret;
367 npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
368 dma_addr = dma_addr & PAGE_MASK;
369 ret = dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE,
370 ZPCI_PTE_INVALID);
371 if (ret) {
372 zpci_err("unmap error:\n");
373 zpci_err_dma(ret, dma_addr);
374 return;
377 atomic64_add(npages, &zdev->unmapped_pages);
378 dma_free_address(dev, dma_addr, npages);
381 static void *s390_dma_alloc(struct device *dev, size_t size,
382 dma_addr_t *dma_handle, gfp_t flag,
383 unsigned long attrs)
385 struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
386 struct page *page;
387 unsigned long pa;
388 dma_addr_t map;
390 size = PAGE_ALIGN(size);
391 page = alloc_pages(flag, get_order(size));
392 if (!page)
393 return NULL;
395 pa = page_to_phys(page);
396 map = s390_dma_map_pages(dev, page, 0, size, DMA_BIDIRECTIONAL, 0);
397 if (dma_mapping_error(dev, map)) {
398 free_pages(pa, get_order(size));
399 return NULL;
402 atomic64_add(size / PAGE_SIZE, &zdev->allocated_pages);
403 if (dma_handle)
404 *dma_handle = map;
405 return (void *) pa;
408 static void s390_dma_free(struct device *dev, size_t size,
409 void *pa, dma_addr_t dma_handle,
410 unsigned long attrs)
412 struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
414 size = PAGE_ALIGN(size);
415 atomic64_sub(size / PAGE_SIZE, &zdev->allocated_pages);
416 s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, 0);
417 free_pages((unsigned long) pa, get_order(size));
420 /* Map a segment into a contiguous dma address area */
421 static int __s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
422 size_t size, dma_addr_t *handle,
423 enum dma_data_direction dir)
425 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
426 struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
427 dma_addr_t dma_addr_base, dma_addr;
428 int flags = ZPCI_PTE_VALID;
429 struct scatterlist *s;
430 unsigned long pa = 0;
431 int ret;
433 dma_addr_base = dma_alloc_address(dev, nr_pages);
434 if (dma_addr_base == S390_MAPPING_ERROR)
435 return -ENOMEM;
437 dma_addr = dma_addr_base;
438 if (dir == DMA_NONE || dir == DMA_TO_DEVICE)
439 flags |= ZPCI_TABLE_PROTECTED;
441 for (s = sg; dma_addr < dma_addr_base + size; s = sg_next(s)) {
442 pa = page_to_phys(sg_page(s));
443 ret = __dma_update_trans(zdev, pa, dma_addr,
444 s->offset + s->length, flags);
445 if (ret)
446 goto unmap;
448 dma_addr += s->offset + s->length;
450 ret = __dma_purge_tlb(zdev, dma_addr_base, size, flags);
451 if (ret)
452 goto unmap;
454 *handle = dma_addr_base;
455 atomic64_add(nr_pages, &zdev->mapped_pages);
457 return ret;
459 unmap:
460 dma_update_trans(zdev, 0, dma_addr_base, dma_addr - dma_addr_base,
461 ZPCI_PTE_INVALID);
462 dma_free_address(dev, dma_addr_base, nr_pages);
463 zpci_err("map error:\n");
464 zpci_err_dma(ret, pa);
465 return ret;
468 static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
469 int nr_elements, enum dma_data_direction dir,
470 unsigned long attrs)
472 struct scatterlist *s = sg, *start = sg, *dma = sg;
473 unsigned int max = dma_get_max_seg_size(dev);
474 unsigned int size = s->offset + s->length;
475 unsigned int offset = s->offset;
476 int count = 0, i;
478 for (i = 1; i < nr_elements; i++) {
479 s = sg_next(s);
481 s->dma_address = S390_MAPPING_ERROR;
482 s->dma_length = 0;
484 if (s->offset || (size & ~PAGE_MASK) ||
485 size + s->length > max) {
486 if (__s390_dma_map_sg(dev, start, size,
487 &dma->dma_address, dir))
488 goto unmap;
490 dma->dma_address += offset;
491 dma->dma_length = size - offset;
493 size = offset = s->offset;
494 start = s;
495 dma = sg_next(dma);
496 count++;
498 size += s->length;
500 if (__s390_dma_map_sg(dev, start, size, &dma->dma_address, dir))
501 goto unmap;
503 dma->dma_address += offset;
504 dma->dma_length = size - offset;
506 return count + 1;
507 unmap:
508 for_each_sg(sg, s, count, i)
509 s390_dma_unmap_pages(dev, sg_dma_address(s), sg_dma_len(s),
510 dir, attrs);
512 return 0;
515 static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
516 int nr_elements, enum dma_data_direction dir,
517 unsigned long attrs)
519 struct scatterlist *s;
520 int i;
522 for_each_sg(sg, s, nr_elements, i) {
523 if (s->dma_length)
524 s390_dma_unmap_pages(dev, s->dma_address, s->dma_length,
525 dir, attrs);
526 s->dma_address = 0;
527 s->dma_length = 0;
531 static int s390_mapping_error(struct device *dev, dma_addr_t dma_addr)
533 return dma_addr == S390_MAPPING_ERROR;
536 int zpci_dma_init_device(struct zpci_dev *zdev)
538 int rc;
541 * At this point, if the device is part of an IOMMU domain, this would
542 * be a strong hint towards a bug in the IOMMU API (common) code and/or
543 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
545 WARN_ON(zdev->s390_domain);
547 spin_lock_init(&zdev->iommu_bitmap_lock);
548 spin_lock_init(&zdev->dma_table_lock);
550 zdev->dma_table = dma_alloc_cpu_table();
551 if (!zdev->dma_table) {
552 rc = -ENOMEM;
553 goto out;
557 * Restrict the iommu bitmap size to the minimum of the following:
558 * - main memory size
559 * - 3-level pagetable address limit minus start_dma offset
560 * - DMA address range allowed by the hardware (clp query pci fn)
562 * Also set zdev->end_dma to the actual end address of the usable
563 * range, instead of the theoretical maximum as reported by hardware.
565 zdev->start_dma = PAGE_ALIGN(zdev->start_dma);
566 zdev->iommu_size = min3((u64) high_memory,
567 ZPCI_TABLE_SIZE_RT - zdev->start_dma,
568 zdev->end_dma - zdev->start_dma + 1);
569 zdev->end_dma = zdev->start_dma + zdev->iommu_size - 1;
570 zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT;
571 zdev->iommu_bitmap = vzalloc(zdev->iommu_pages / 8);
572 if (!zdev->iommu_bitmap) {
573 rc = -ENOMEM;
574 goto free_dma_table;
576 if (!s390_iommu_strict) {
577 zdev->lazy_bitmap = vzalloc(zdev->iommu_pages / 8);
578 if (!zdev->lazy_bitmap) {
579 rc = -ENOMEM;
580 goto free_bitmap;
584 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
585 (u64) zdev->dma_table);
586 if (rc)
587 goto free_bitmap;
589 return 0;
590 free_bitmap:
591 vfree(zdev->iommu_bitmap);
592 zdev->iommu_bitmap = NULL;
593 vfree(zdev->lazy_bitmap);
594 zdev->lazy_bitmap = NULL;
595 free_dma_table:
596 dma_free_cpu_table(zdev->dma_table);
597 zdev->dma_table = NULL;
598 out:
599 return rc;
602 void zpci_dma_exit_device(struct zpci_dev *zdev)
605 * At this point, if the device is part of an IOMMU domain, this would
606 * be a strong hint towards a bug in the IOMMU API (common) code and/or
607 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
609 WARN_ON(zdev->s390_domain);
611 if (zpci_unregister_ioat(zdev, 0))
612 return;
614 dma_cleanup_tables(zdev->dma_table);
615 zdev->dma_table = NULL;
616 vfree(zdev->iommu_bitmap);
617 zdev->iommu_bitmap = NULL;
618 vfree(zdev->lazy_bitmap);
619 zdev->lazy_bitmap = NULL;
621 zdev->next_bit = 0;
624 static int __init dma_alloc_cpu_table_caches(void)
626 dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
627 ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN,
628 0, NULL);
629 if (!dma_region_table_cache)
630 return -ENOMEM;
632 dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
633 ZPCI_PT_SIZE, ZPCI_PT_ALIGN,
634 0, NULL);
635 if (!dma_page_table_cache) {
636 kmem_cache_destroy(dma_region_table_cache);
637 return -ENOMEM;
639 return 0;
642 int __init zpci_dma_init(void)
644 return dma_alloc_cpu_table_caches();
647 void zpci_dma_exit(void)
649 kmem_cache_destroy(dma_page_table_cache);
650 kmem_cache_destroy(dma_region_table_cache);
653 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
655 static int __init dma_debug_do_init(void)
657 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
658 return 0;
660 fs_initcall(dma_debug_do_init);
662 const struct dma_map_ops s390_pci_dma_ops = {
663 .alloc = s390_dma_alloc,
664 .free = s390_dma_free,
665 .map_sg = s390_dma_map_sg,
666 .unmap_sg = s390_dma_unmap_sg,
667 .map_page = s390_dma_map_pages,
668 .unmap_page = s390_dma_unmap_pages,
669 .mapping_error = s390_mapping_error,
670 /* if we support direct DMA this must be conditional */
671 .is_phys = 0,
672 /* dma_supported is unconditionally true without a callback */
674 EXPORT_SYMBOL_GPL(s390_pci_dma_ops);
676 static int __init s390_iommu_setup(char *str)
678 if (!strncmp(str, "strict", 6))
679 s390_iommu_strict = 1;
680 return 0;
683 __setup("s390_iommu=", s390_iommu_setup);