Linux 4.13.16
[linux/fpc-iii.git] / arch / sparc / kernel / process_64.c
blobb96104da5bd6116b119872eaa79e013636aa328c
1 /* arch/sparc64/kernel/process.c
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
8 /*
9 * This file handles the architecture-dependent parts of process handling..
12 #include <stdarg.h>
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/fs.h>
23 #include <linux/smp.h>
24 #include <linux/stddef.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/user.h>
28 #include <linux/delay.h>
29 #include <linux/compat.h>
30 #include <linux/tick.h>
31 #include <linux/init.h>
32 #include <linux/cpu.h>
33 #include <linux/perf_event.h>
34 #include <linux/elfcore.h>
35 #include <linux/sysrq.h>
36 #include <linux/nmi.h>
37 #include <linux/context_tracking.h>
39 #include <linux/uaccess.h>
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/pgtable.h>
43 #include <asm/processor.h>
44 #include <asm/pstate.h>
45 #include <asm/elf.h>
46 #include <asm/fpumacro.h>
47 #include <asm/head.h>
48 #include <asm/cpudata.h>
49 #include <asm/mmu_context.h>
50 #include <asm/unistd.h>
51 #include <asm/hypervisor.h>
52 #include <asm/syscalls.h>
53 #include <asm/irq_regs.h>
54 #include <asm/smp.h>
55 #include <asm/pcr.h>
57 #include "kstack.h"
59 /* Idle loop support on sparc64. */
60 void arch_cpu_idle(void)
62 if (tlb_type != hypervisor) {
63 touch_nmi_watchdog();
64 local_irq_enable();
65 } else {
66 unsigned long pstate;
68 local_irq_enable();
70 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
71 * the cpu sleep hypervisor call.
73 __asm__ __volatile__(
74 "rdpr %%pstate, %0\n\t"
75 "andn %0, %1, %0\n\t"
76 "wrpr %0, %%g0, %%pstate"
77 : "=&r" (pstate)
78 : "i" (PSTATE_IE));
80 if (!need_resched() && !cpu_is_offline(smp_processor_id()))
81 sun4v_cpu_yield();
83 /* Re-enable interrupts. */
84 __asm__ __volatile__(
85 "rdpr %%pstate, %0\n\t"
86 "or %0, %1, %0\n\t"
87 "wrpr %0, %%g0, %%pstate"
88 : "=&r" (pstate)
89 : "i" (PSTATE_IE));
93 #ifdef CONFIG_HOTPLUG_CPU
94 void arch_cpu_idle_dead(void)
96 sched_preempt_enable_no_resched();
97 cpu_play_dead();
99 #endif
101 #ifdef CONFIG_COMPAT
102 static void show_regwindow32(struct pt_regs *regs)
104 struct reg_window32 __user *rw;
105 struct reg_window32 r_w;
106 mm_segment_t old_fs;
108 __asm__ __volatile__ ("flushw");
109 rw = compat_ptr((unsigned int)regs->u_regs[14]);
110 old_fs = get_fs();
111 set_fs (USER_DS);
112 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
113 set_fs (old_fs);
114 return;
117 set_fs (old_fs);
118 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
119 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
120 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
121 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
122 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
123 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
124 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
125 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
127 #else
128 #define show_regwindow32(regs) do { } while (0)
129 #endif
131 static void show_regwindow(struct pt_regs *regs)
133 struct reg_window __user *rw;
134 struct reg_window *rwk;
135 struct reg_window r_w;
136 mm_segment_t old_fs;
138 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
139 __asm__ __volatile__ ("flushw");
140 rw = (struct reg_window __user *)
141 (regs->u_regs[14] + STACK_BIAS);
142 rwk = (struct reg_window *)
143 (regs->u_regs[14] + STACK_BIAS);
144 if (!(regs->tstate & TSTATE_PRIV)) {
145 old_fs = get_fs();
146 set_fs (USER_DS);
147 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
148 set_fs (old_fs);
149 return;
151 rwk = &r_w;
152 set_fs (old_fs);
154 } else {
155 show_regwindow32(regs);
156 return;
158 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
159 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
160 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
161 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
162 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
163 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
164 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
165 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
166 if (regs->tstate & TSTATE_PRIV)
167 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
170 void show_regs(struct pt_regs *regs)
172 show_regs_print_info(KERN_DEFAULT);
174 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
175 regs->tpc, regs->tnpc, regs->y, print_tainted());
176 printk("TPC: <%pS>\n", (void *) regs->tpc);
177 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
178 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
179 regs->u_regs[3]);
180 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
181 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
182 regs->u_regs[7]);
183 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
184 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
185 regs->u_regs[11]);
186 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
187 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
188 regs->u_regs[15]);
189 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
190 show_regwindow(regs);
191 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
194 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
195 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
197 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
198 int this_cpu)
200 struct global_reg_snapshot *rp;
202 flushw_all();
204 rp = &global_cpu_snapshot[this_cpu].reg;
206 rp->tstate = regs->tstate;
207 rp->tpc = regs->tpc;
208 rp->tnpc = regs->tnpc;
209 rp->o7 = regs->u_regs[UREG_I7];
211 if (regs->tstate & TSTATE_PRIV) {
212 struct reg_window *rw;
214 rw = (struct reg_window *)
215 (regs->u_regs[UREG_FP] + STACK_BIAS);
216 if (kstack_valid(tp, (unsigned long) rw)) {
217 rp->i7 = rw->ins[7];
218 rw = (struct reg_window *)
219 (rw->ins[6] + STACK_BIAS);
220 if (kstack_valid(tp, (unsigned long) rw))
221 rp->rpc = rw->ins[7];
223 } else {
224 rp->i7 = 0;
225 rp->rpc = 0;
227 rp->thread = tp;
230 /* In order to avoid hangs we do not try to synchronize with the
231 * global register dump client cpus. The last store they make is to
232 * the thread pointer, so do a short poll waiting for that to become
233 * non-NULL.
235 static void __global_reg_poll(struct global_reg_snapshot *gp)
237 int limit = 0;
239 while (!gp->thread && ++limit < 100) {
240 barrier();
241 udelay(1);
245 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
247 struct thread_info *tp = current_thread_info();
248 struct pt_regs *regs = get_irq_regs();
249 unsigned long flags;
250 int this_cpu, cpu;
252 if (!regs)
253 regs = tp->kregs;
255 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
257 this_cpu = raw_smp_processor_id();
259 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
261 if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
262 __global_reg_self(tp, regs, this_cpu);
264 smp_fetch_global_regs();
266 for_each_cpu(cpu, mask) {
267 struct global_reg_snapshot *gp;
269 if (exclude_self && cpu == this_cpu)
270 continue;
272 gp = &global_cpu_snapshot[cpu].reg;
274 __global_reg_poll(gp);
276 tp = gp->thread;
277 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
278 (cpu == this_cpu ? '*' : ' '), cpu,
279 gp->tstate, gp->tpc, gp->tnpc,
280 ((tp && tp->task) ? tp->task->comm : "NULL"),
281 ((tp && tp->task) ? tp->task->pid : -1));
283 if (gp->tstate & TSTATE_PRIV) {
284 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
285 (void *) gp->tpc,
286 (void *) gp->o7,
287 (void *) gp->i7,
288 (void *) gp->rpc);
289 } else {
290 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
291 gp->tpc, gp->o7, gp->i7, gp->rpc);
294 touch_nmi_watchdog();
297 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
299 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
302 #ifdef CONFIG_MAGIC_SYSRQ
304 static void sysrq_handle_globreg(int key)
306 trigger_all_cpu_backtrace();
309 static struct sysrq_key_op sparc_globalreg_op = {
310 .handler = sysrq_handle_globreg,
311 .help_msg = "global-regs(y)",
312 .action_msg = "Show Global CPU Regs",
315 static void __global_pmu_self(int this_cpu)
317 struct global_pmu_snapshot *pp;
318 int i, num;
320 if (!pcr_ops)
321 return;
323 pp = &global_cpu_snapshot[this_cpu].pmu;
325 num = 1;
326 if (tlb_type == hypervisor &&
327 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
328 num = 4;
330 for (i = 0; i < num; i++) {
331 pp->pcr[i] = pcr_ops->read_pcr(i);
332 pp->pic[i] = pcr_ops->read_pic(i);
336 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
338 int limit = 0;
340 while (!pp->pcr[0] && ++limit < 100) {
341 barrier();
342 udelay(1);
346 static void pmu_snapshot_all_cpus(void)
348 unsigned long flags;
349 int this_cpu, cpu;
351 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
353 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
355 this_cpu = raw_smp_processor_id();
357 __global_pmu_self(this_cpu);
359 smp_fetch_global_pmu();
361 for_each_online_cpu(cpu) {
362 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
364 __global_pmu_poll(pp);
366 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
367 (cpu == this_cpu ? '*' : ' '), cpu,
368 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
369 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
371 touch_nmi_watchdog();
374 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
376 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
379 static void sysrq_handle_globpmu(int key)
381 pmu_snapshot_all_cpus();
384 static struct sysrq_key_op sparc_globalpmu_op = {
385 .handler = sysrq_handle_globpmu,
386 .help_msg = "global-pmu(x)",
387 .action_msg = "Show Global PMU Regs",
390 static int __init sparc_sysrq_init(void)
392 int ret = register_sysrq_key('y', &sparc_globalreg_op);
394 if (!ret)
395 ret = register_sysrq_key('x', &sparc_globalpmu_op);
396 return ret;
399 core_initcall(sparc_sysrq_init);
401 #endif
403 /* Free current thread data structures etc.. */
404 void exit_thread(struct task_struct *tsk)
406 struct thread_info *t = task_thread_info(tsk);
408 if (t->utraps) {
409 if (t->utraps[0] < 2)
410 kfree (t->utraps);
411 else
412 t->utraps[0]--;
416 void flush_thread(void)
418 struct thread_info *t = current_thread_info();
419 struct mm_struct *mm;
421 mm = t->task->mm;
422 if (mm)
423 tsb_context_switch(mm);
425 set_thread_wsaved(0);
427 /* Clear FPU register state. */
428 t->fpsaved[0] = 0;
431 /* It's a bit more tricky when 64-bit tasks are involved... */
432 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
434 bool stack_64bit = test_thread_64bit_stack(psp);
435 unsigned long fp, distance, rval;
437 if (stack_64bit) {
438 csp += STACK_BIAS;
439 psp += STACK_BIAS;
440 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
441 fp += STACK_BIAS;
442 if (test_thread_flag(TIF_32BIT))
443 fp &= 0xffffffff;
444 } else
445 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
447 /* Now align the stack as this is mandatory in the Sparc ABI
448 * due to how register windows work. This hides the
449 * restriction from thread libraries etc.
451 csp &= ~15UL;
453 distance = fp - psp;
454 rval = (csp - distance);
455 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
456 rval = 0;
457 else if (!stack_64bit) {
458 if (put_user(((u32)csp),
459 &(((struct reg_window32 __user *)rval)->ins[6])))
460 rval = 0;
461 } else {
462 if (put_user(((u64)csp - STACK_BIAS),
463 &(((struct reg_window __user *)rval)->ins[6])))
464 rval = 0;
465 else
466 rval = rval - STACK_BIAS;
469 return rval;
472 /* Standard stuff. */
473 static inline void shift_window_buffer(int first_win, int last_win,
474 struct thread_info *t)
476 int i;
478 for (i = first_win; i < last_win; i++) {
479 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
480 memcpy(&t->reg_window[i], &t->reg_window[i+1],
481 sizeof(struct reg_window));
485 void synchronize_user_stack(void)
487 struct thread_info *t = current_thread_info();
488 unsigned long window;
490 flush_user_windows();
491 if ((window = get_thread_wsaved()) != 0) {
492 window -= 1;
493 do {
494 struct reg_window *rwin = &t->reg_window[window];
495 int winsize = sizeof(struct reg_window);
496 unsigned long sp;
498 sp = t->rwbuf_stkptrs[window];
500 if (test_thread_64bit_stack(sp))
501 sp += STACK_BIAS;
502 else
503 winsize = sizeof(struct reg_window32);
505 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
506 shift_window_buffer(window, get_thread_wsaved() - 1, t);
507 set_thread_wsaved(get_thread_wsaved() - 1);
509 } while (window--);
513 static void stack_unaligned(unsigned long sp)
515 siginfo_t info;
517 info.si_signo = SIGBUS;
518 info.si_errno = 0;
519 info.si_code = BUS_ADRALN;
520 info.si_addr = (void __user *) sp;
521 info.si_trapno = 0;
522 force_sig_info(SIGBUS, &info, current);
525 void fault_in_user_windows(void)
527 struct thread_info *t = current_thread_info();
528 unsigned long window;
530 flush_user_windows();
531 window = get_thread_wsaved();
533 if (likely(window != 0)) {
534 window -= 1;
535 do {
536 struct reg_window *rwin = &t->reg_window[window];
537 int winsize = sizeof(struct reg_window);
538 unsigned long sp;
540 sp = t->rwbuf_stkptrs[window];
542 if (test_thread_64bit_stack(sp))
543 sp += STACK_BIAS;
544 else
545 winsize = sizeof(struct reg_window32);
547 if (unlikely(sp & 0x7UL))
548 stack_unaligned(sp);
550 if (unlikely(copy_to_user((char __user *)sp,
551 rwin, winsize)))
552 goto barf;
553 } while (window--);
555 set_thread_wsaved(0);
556 return;
558 barf:
559 set_thread_wsaved(window + 1);
560 user_exit();
561 do_exit(SIGILL);
564 asmlinkage long sparc_do_fork(unsigned long clone_flags,
565 unsigned long stack_start,
566 struct pt_regs *regs,
567 unsigned long stack_size)
569 int __user *parent_tid_ptr, *child_tid_ptr;
570 unsigned long orig_i1 = regs->u_regs[UREG_I1];
571 long ret;
573 #ifdef CONFIG_COMPAT
574 if (test_thread_flag(TIF_32BIT)) {
575 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
576 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
577 } else
578 #endif
580 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
581 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
584 ret = do_fork(clone_flags, stack_start, stack_size,
585 parent_tid_ptr, child_tid_ptr);
587 /* If we get an error and potentially restart the system
588 * call, we're screwed because copy_thread() clobbered
589 * the parent's %o1. So detect that case and restore it
590 * here.
592 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
593 regs->u_regs[UREG_I1] = orig_i1;
595 return ret;
598 /* Copy a Sparc thread. The fork() return value conventions
599 * under SunOS are nothing short of bletcherous:
600 * Parent --> %o0 == childs pid, %o1 == 0
601 * Child --> %o0 == parents pid, %o1 == 1
603 int copy_thread(unsigned long clone_flags, unsigned long sp,
604 unsigned long arg, struct task_struct *p)
606 struct thread_info *t = task_thread_info(p);
607 struct pt_regs *regs = current_pt_regs();
608 struct sparc_stackf *parent_sf;
609 unsigned long child_stack_sz;
610 char *child_trap_frame;
612 /* Calculate offset to stack_frame & pt_regs */
613 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
614 child_trap_frame = (task_stack_page(p) +
615 (THREAD_SIZE - child_stack_sz));
617 t->new_child = 1;
618 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
619 t->kregs = (struct pt_regs *) (child_trap_frame +
620 sizeof(struct sparc_stackf));
621 t->fpsaved[0] = 0;
623 if (unlikely(p->flags & PF_KTHREAD)) {
624 memset(child_trap_frame, 0, child_stack_sz);
625 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
626 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
627 t->current_ds = ASI_P;
628 t->kregs->u_regs[UREG_G1] = sp; /* function */
629 t->kregs->u_regs[UREG_G2] = arg;
630 return 0;
633 parent_sf = ((struct sparc_stackf *) regs) - 1;
634 memcpy(child_trap_frame, parent_sf, child_stack_sz);
635 if (t->flags & _TIF_32BIT) {
636 sp &= 0x00000000ffffffffUL;
637 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
639 t->kregs->u_regs[UREG_FP] = sp;
640 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
641 (regs->tstate + 1) & TSTATE_CWP;
642 t->current_ds = ASI_AIUS;
643 if (sp != regs->u_regs[UREG_FP]) {
644 unsigned long csp;
646 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
647 if (!csp)
648 return -EFAULT;
649 t->kregs->u_regs[UREG_FP] = csp;
651 if (t->utraps)
652 t->utraps[0]++;
654 /* Set the return value for the child. */
655 t->kregs->u_regs[UREG_I0] = current->pid;
656 t->kregs->u_regs[UREG_I1] = 1;
658 /* Set the second return value for the parent. */
659 regs->u_regs[UREG_I1] = 0;
661 if (clone_flags & CLONE_SETTLS)
662 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
664 return 0;
667 typedef struct {
668 union {
669 unsigned int pr_regs[32];
670 unsigned long pr_dregs[16];
671 } pr_fr;
672 unsigned int __unused;
673 unsigned int pr_fsr;
674 unsigned char pr_qcnt;
675 unsigned char pr_q_entrysize;
676 unsigned char pr_en;
677 unsigned int pr_q[64];
678 } elf_fpregset_t32;
681 * fill in the fpu structure for a core dump.
683 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
685 unsigned long *kfpregs = current_thread_info()->fpregs;
686 unsigned long fprs = current_thread_info()->fpsaved[0];
688 if (test_thread_flag(TIF_32BIT)) {
689 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
691 if (fprs & FPRS_DL)
692 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
693 sizeof(unsigned int) * 32);
694 else
695 memset(&fpregs32->pr_fr.pr_regs[0], 0,
696 sizeof(unsigned int) * 32);
697 fpregs32->pr_qcnt = 0;
698 fpregs32->pr_q_entrysize = 8;
699 memset(&fpregs32->pr_q[0], 0,
700 (sizeof(unsigned int) * 64));
701 if (fprs & FPRS_FEF) {
702 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
703 fpregs32->pr_en = 1;
704 } else {
705 fpregs32->pr_fsr = 0;
706 fpregs32->pr_en = 0;
708 } else {
709 if(fprs & FPRS_DL)
710 memcpy(&fpregs->pr_regs[0], kfpregs,
711 sizeof(unsigned int) * 32);
712 else
713 memset(&fpregs->pr_regs[0], 0,
714 sizeof(unsigned int) * 32);
715 if(fprs & FPRS_DU)
716 memcpy(&fpregs->pr_regs[16], kfpregs+16,
717 sizeof(unsigned int) * 32);
718 else
719 memset(&fpregs->pr_regs[16], 0,
720 sizeof(unsigned int) * 32);
721 if(fprs & FPRS_FEF) {
722 fpregs->pr_fsr = current_thread_info()->xfsr[0];
723 fpregs->pr_gsr = current_thread_info()->gsr[0];
724 } else {
725 fpregs->pr_fsr = fpregs->pr_gsr = 0;
727 fpregs->pr_fprs = fprs;
729 return 1;
731 EXPORT_SYMBOL(dump_fpu);
733 unsigned long get_wchan(struct task_struct *task)
735 unsigned long pc, fp, bias = 0;
736 struct thread_info *tp;
737 struct reg_window *rw;
738 unsigned long ret = 0;
739 int count = 0;
741 if (!task || task == current ||
742 task->state == TASK_RUNNING)
743 goto out;
745 tp = task_thread_info(task);
746 bias = STACK_BIAS;
747 fp = task_thread_info(task)->ksp + bias;
749 do {
750 if (!kstack_valid(tp, fp))
751 break;
752 rw = (struct reg_window *) fp;
753 pc = rw->ins[7];
754 if (!in_sched_functions(pc)) {
755 ret = pc;
756 goto out;
758 fp = rw->ins[6] + bias;
759 } while (++count < 16);
761 out:
762 return ret;