Linux 4.13.16
[linux/fpc-iii.git] / arch / um / os-Linux / signal.c
bloba86d7cc2c2d82fa7d0e5c13d1f3188efcd660fba
1 /*
2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4 * Copyright (C) 2004 PathScale, Inc
5 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Licensed under the GPL
7 */
9 #include <stdlib.h>
10 #include <stdarg.h>
11 #include <errno.h>
12 #include <signal.h>
13 #include <strings.h>
14 #include <as-layout.h>
15 #include <kern_util.h>
16 #include <os.h>
17 #include <sysdep/mcontext.h>
18 #include <um_malloc.h>
20 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
21 [SIGTRAP] = relay_signal,
22 [SIGFPE] = relay_signal,
23 [SIGILL] = relay_signal,
24 [SIGWINCH] = winch,
25 [SIGBUS] = bus_handler,
26 [SIGSEGV] = segv_handler,
27 [SIGIO] = sigio_handler,
28 [SIGALRM] = timer_handler
31 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
33 struct uml_pt_regs *r;
34 int save_errno = errno;
36 r = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
37 if (!r)
38 panic("out of memory");
40 r->is_user = 0;
41 if (sig == SIGSEGV) {
42 /* For segfaults, we want the data from the sigcontext. */
43 get_regs_from_mc(r, mc);
44 GET_FAULTINFO_FROM_MC(r->faultinfo, mc);
47 /* enable signals if sig isn't IRQ signal */
48 if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGALRM))
49 unblock_signals();
51 (*sig_info[sig])(sig, si, r);
53 errno = save_errno;
55 free(r);
59 * These are the asynchronous signals. SIGPROF is excluded because we want to
60 * be able to profile all of UML, not just the non-critical sections. If
61 * profiling is not thread-safe, then that is not my problem. We can disable
62 * profiling when SMP is enabled in that case.
64 #define SIGIO_BIT 0
65 #define SIGIO_MASK (1 << SIGIO_BIT)
67 #define SIGALRM_BIT 1
68 #define SIGALRM_MASK (1 << SIGALRM_BIT)
70 static int signals_enabled;
71 static unsigned int signals_pending;
72 static unsigned int signals_active = 0;
74 void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
76 int enabled;
78 enabled = signals_enabled;
79 if (!enabled && (sig == SIGIO)) {
80 signals_pending |= SIGIO_MASK;
81 return;
84 block_signals();
86 sig_handler_common(sig, si, mc);
88 set_signals(enabled);
91 static void timer_real_alarm_handler(mcontext_t *mc)
93 struct uml_pt_regs *regs;
95 regs = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
96 if (!regs)
97 panic("out of memory");
99 if (mc != NULL)
100 get_regs_from_mc(regs, mc);
101 timer_handler(SIGALRM, NULL, regs);
103 free(regs);
106 void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
108 int enabled;
110 enabled = signals_enabled;
111 if (!signals_enabled) {
112 signals_pending |= SIGALRM_MASK;
113 return;
116 block_signals();
118 signals_active |= SIGALRM_MASK;
120 timer_real_alarm_handler(mc);
122 signals_active &= ~SIGALRM_MASK;
124 set_signals(enabled);
127 void deliver_alarm(void) {
128 timer_alarm_handler(SIGALRM, NULL, NULL);
131 void timer_set_signal_handler(void)
133 set_handler(SIGALRM);
136 void set_sigstack(void *sig_stack, int size)
138 stack_t stack = {
139 .ss_flags = 0,
140 .ss_sp = sig_stack,
141 .ss_size = size - sizeof(void *)
144 if (sigaltstack(&stack, NULL) != 0)
145 panic("enabling signal stack failed, errno = %d\n", errno);
148 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
149 [SIGSEGV] = sig_handler,
150 [SIGBUS] = sig_handler,
151 [SIGILL] = sig_handler,
152 [SIGFPE] = sig_handler,
153 [SIGTRAP] = sig_handler,
155 [SIGIO] = sig_handler,
156 [SIGWINCH] = sig_handler,
157 [SIGALRM] = timer_alarm_handler
160 static void hard_handler(int sig, siginfo_t *si, void *p)
162 struct ucontext *uc = p;
163 mcontext_t *mc = &uc->uc_mcontext;
164 unsigned long pending = 1UL << sig;
166 do {
167 int nested, bail;
170 * pending comes back with one bit set for each
171 * interrupt that arrived while setting up the stack,
172 * plus a bit for this interrupt, plus the zero bit is
173 * set if this is a nested interrupt.
174 * If bail is true, then we interrupted another
175 * handler setting up the stack. In this case, we
176 * have to return, and the upper handler will deal
177 * with this interrupt.
179 bail = to_irq_stack(&pending);
180 if (bail)
181 return;
183 nested = pending & 1;
184 pending &= ~1;
186 while ((sig = ffs(pending)) != 0){
187 sig--;
188 pending &= ~(1 << sig);
189 (*handlers[sig])(sig, (struct siginfo *)si, mc);
193 * Again, pending comes back with a mask of signals
194 * that arrived while tearing down the stack. If this
195 * is non-zero, we just go back, set up the stack
196 * again, and handle the new interrupts.
198 if (!nested)
199 pending = from_irq_stack(nested);
200 } while (pending);
203 void set_handler(int sig)
205 struct sigaction action;
206 int flags = SA_SIGINFO | SA_ONSTACK;
207 sigset_t sig_mask;
209 action.sa_sigaction = hard_handler;
211 /* block irq ones */
212 sigemptyset(&action.sa_mask);
213 sigaddset(&action.sa_mask, SIGIO);
214 sigaddset(&action.sa_mask, SIGWINCH);
215 sigaddset(&action.sa_mask, SIGALRM);
217 if (sig == SIGSEGV)
218 flags |= SA_NODEFER;
220 if (sigismember(&action.sa_mask, sig))
221 flags |= SA_RESTART; /* if it's an irq signal */
223 action.sa_flags = flags;
224 action.sa_restorer = NULL;
225 if (sigaction(sig, &action, NULL) < 0)
226 panic("sigaction failed - errno = %d\n", errno);
228 sigemptyset(&sig_mask);
229 sigaddset(&sig_mask, sig);
230 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
231 panic("sigprocmask failed - errno = %d\n", errno);
234 int change_sig(int signal, int on)
236 sigset_t sigset;
238 sigemptyset(&sigset);
239 sigaddset(&sigset, signal);
240 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
241 return -errno;
243 return 0;
246 void block_signals(void)
248 signals_enabled = 0;
250 * This must return with signals disabled, so this barrier
251 * ensures that writes are flushed out before the return.
252 * This might matter if gcc figures out how to inline this and
253 * decides to shuffle this code into the caller.
255 barrier();
258 void unblock_signals(void)
260 int save_pending;
262 if (signals_enabled == 1)
263 return;
266 * We loop because the IRQ handler returns with interrupts off. So,
267 * interrupts may have arrived and we need to re-enable them and
268 * recheck signals_pending.
270 while (1) {
272 * Save and reset save_pending after enabling signals. This
273 * way, signals_pending won't be changed while we're reading it.
275 signals_enabled = 1;
278 * Setting signals_enabled and reading signals_pending must
279 * happen in this order.
281 barrier();
283 save_pending = signals_pending;
284 if (save_pending == 0)
285 return;
287 signals_pending = 0;
290 * We have pending interrupts, so disable signals, as the
291 * handlers expect them off when they are called. They will
292 * be enabled again above.
295 signals_enabled = 0;
298 * Deal with SIGIO first because the alarm handler might
299 * schedule, leaving the pending SIGIO stranded until we come
300 * back here.
302 * SIGIO's handler doesn't use siginfo or mcontext,
303 * so they can be NULL.
305 if (save_pending & SIGIO_MASK)
306 sig_handler_common(SIGIO, NULL, NULL);
308 /* Do not reenter the handler */
310 if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
311 timer_real_alarm_handler(NULL);
313 /* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
315 if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
316 return;
321 int get_signals(void)
323 return signals_enabled;
326 int set_signals(int enable)
328 int ret;
329 if (signals_enabled == enable)
330 return enable;
332 ret = signals_enabled;
333 if (enable)
334 unblock_signals();
335 else block_signals();
337 return ret;
340 int os_is_signal_stack(void)
342 stack_t ss;
343 sigaltstack(NULL, &ss);
345 return ss.ss_flags & SS_ONSTACK;