1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
5 #include <asm/perf_event.h>
8 #include "../perf_event.h"
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE 24
13 #define BTS_BUFFER_SIZE (PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE (PAGE_SIZE << 4)
15 #define PEBS_FIXUP_SIZE PAGE_SIZE
18 * pebs_record_32 for p4 and core not supported
20 struct pebs_record_32 {
28 union intel_x86_pebs_dse
{
31 unsigned int ld_dse
:4;
32 unsigned int ld_stlb_miss
:1;
33 unsigned int ld_locked
:1;
34 unsigned int ld_reserved
:26;
37 unsigned int st_l1d_hit
:1;
38 unsigned int st_reserved1
:3;
39 unsigned int st_stlb_miss
:1;
40 unsigned int st_locked
:1;
41 unsigned int st_reserved2
:26;
47 * Map PEBS Load Latency Data Source encodings to generic
48 * memory data source information
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
54 /* Version for Sandy Bridge and later */
55 static u64 pebs_data_source
[] = {
56 P(OP
, LOAD
) | P(LVL
, MISS
) | P(LVL
, L3
) | P(SNOOP
, NA
),/* 0x00:ukn L3 */
57 OP_LH
| P(LVL
, L1
) | P(SNOOP
, NONE
), /* 0x01: L1 local */
58 OP_LH
| P(LVL
, LFB
) | P(SNOOP
, NONE
), /* 0x02: LFB hit */
59 OP_LH
| P(LVL
, L2
) | P(SNOOP
, NONE
), /* 0x03: L2 hit */
60 OP_LH
| P(LVL
, L3
) | P(SNOOP
, NONE
), /* 0x04: L3 hit */
61 OP_LH
| P(LVL
, L3
) | P(SNOOP
, MISS
), /* 0x05: L3 hit, snoop miss */
62 OP_LH
| P(LVL
, L3
) | P(SNOOP
, HIT
), /* 0x06: L3 hit, snoop hit */
63 OP_LH
| P(LVL
, L3
) | P(SNOOP
, HITM
), /* 0x07: L3 hit, snoop hitm */
64 OP_LH
| P(LVL
, REM_CCE1
) | P(SNOOP
, HIT
), /* 0x08: L3 miss snoop hit */
65 OP_LH
| P(LVL
, REM_CCE1
) | P(SNOOP
, HITM
), /* 0x09: L3 miss snoop hitm*/
66 OP_LH
| P(LVL
, LOC_RAM
) | P(SNOOP
, HIT
), /* 0x0a: L3 miss, shared */
67 OP_LH
| P(LVL
, REM_RAM1
) | P(SNOOP
, HIT
), /* 0x0b: L3 miss, shared */
68 OP_LH
| P(LVL
, LOC_RAM
) | SNOOP_NONE_MISS
,/* 0x0c: L3 miss, excl */
69 OP_LH
| P(LVL
, REM_RAM1
) | SNOOP_NONE_MISS
,/* 0x0d: L3 miss, excl */
70 OP_LH
| P(LVL
, IO
) | P(SNOOP
, NONE
), /* 0x0e: I/O */
71 OP_LH
| P(LVL
, UNC
) | P(SNOOP
, NONE
), /* 0x0f: uncached */
74 /* Patch up minor differences in the bits */
75 void __init
intel_pmu_pebs_data_source_nhm(void)
77 pebs_data_source
[0x05] = OP_LH
| P(LVL
, L3
) | P(SNOOP
, HIT
);
78 pebs_data_source
[0x06] = OP_LH
| P(LVL
, L3
) | P(SNOOP
, HITM
);
79 pebs_data_source
[0x07] = OP_LH
| P(LVL
, L3
) | P(SNOOP
, HITM
);
82 static u64
precise_store_data(u64 status
)
84 union intel_x86_pebs_dse dse
;
85 u64 val
= P(OP
, STORE
) | P(SNOOP
, NA
) | P(LVL
, L1
) | P(TLB
, L2
);
91 * 1 = stored missed 2nd level TLB
93 * so it either hit the walker or the OS
94 * otherwise hit 2nd level TLB
102 * bit 0: hit L1 data cache
103 * if not set, then all we know is that
112 * bit 5: Locked prefix
115 val
|= P(LOCK
, LOCKED
);
120 static u64
precise_datala_hsw(struct perf_event
*event
, u64 status
)
122 union perf_mem_data_src dse
;
124 dse
.val
= PERF_MEM_NA
;
126 if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_ST_HSW
)
127 dse
.mem_op
= PERF_MEM_OP_STORE
;
128 else if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_LD_HSW
)
129 dse
.mem_op
= PERF_MEM_OP_LOAD
;
132 * L1 info only valid for following events:
134 * MEM_UOPS_RETIRED.STLB_MISS_STORES
135 * MEM_UOPS_RETIRED.LOCK_STORES
136 * MEM_UOPS_RETIRED.SPLIT_STORES
137 * MEM_UOPS_RETIRED.ALL_STORES
139 if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_ST_HSW
) {
141 dse
.mem_lvl
= PERF_MEM_LVL_L1
| PERF_MEM_LVL_HIT
;
143 dse
.mem_lvl
= PERF_MEM_LVL_L1
| PERF_MEM_LVL_MISS
;
148 static u64
load_latency_data(u64 status
)
150 union intel_x86_pebs_dse dse
;
152 int model
= boot_cpu_data
.x86_model
;
153 int fam
= boot_cpu_data
.x86
;
158 * use the mapping table for bit 0-3
160 val
= pebs_data_source
[dse
.ld_dse
];
163 * Nehalem models do not support TLB, Lock infos
165 if (fam
== 0x6 && (model
== 26 || model
== 30
166 || model
== 31 || model
== 46)) {
167 val
|= P(TLB
, NA
) | P(LOCK
, NA
);
172 * 0 = did not miss 2nd level TLB
173 * 1 = missed 2nd level TLB
175 if (dse
.ld_stlb_miss
)
176 val
|= P(TLB
, MISS
) | P(TLB
, L2
);
178 val
|= P(TLB
, HIT
) | P(TLB
, L1
) | P(TLB
, L2
);
181 * bit 5: locked prefix
184 val
|= P(LOCK
, LOCKED
);
189 struct pebs_record_core
{
193 u64 r8
, r9
, r10
, r11
;
194 u64 r12
, r13
, r14
, r15
;
197 struct pebs_record_nhm
{
201 u64 r8
, r9
, r10
, r11
;
202 u64 r12
, r13
, r14
, r15
;
203 u64 status
, dla
, dse
, lat
;
207 * Same as pebs_record_nhm, with two additional fields.
209 struct pebs_record_hsw
{
213 u64 r8
, r9
, r10
, r11
;
214 u64 r12
, r13
, r14
, r15
;
215 u64 status
, dla
, dse
, lat
;
216 u64 real_ip
, tsx_tuning
;
219 union hsw_tsx_tuning
{
221 u32 cycles_last_block
: 32,
224 instruction_abort
: 1,
225 non_instruction_abort
: 1,
234 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
236 /* Same as HSW, plus TSC */
238 struct pebs_record_skl
{
242 u64 r8
, r9
, r10
, r11
;
243 u64 r12
, r13
, r14
, r15
;
244 u64 status
, dla
, dse
, lat
;
245 u64 real_ip
, tsx_tuning
;
249 void init_debug_store_on_cpu(int cpu
)
251 struct debug_store
*ds
= per_cpu(cpu_hw_events
, cpu
).ds
;
256 wrmsr_on_cpu(cpu
, MSR_IA32_DS_AREA
,
257 (u32
)((u64
)(unsigned long)ds
),
258 (u32
)((u64
)(unsigned long)ds
>> 32));
261 void fini_debug_store_on_cpu(int cpu
)
263 if (!per_cpu(cpu_hw_events
, cpu
).ds
)
266 wrmsr_on_cpu(cpu
, MSR_IA32_DS_AREA
, 0, 0);
269 static DEFINE_PER_CPU(void *, insn_buffer
);
271 static int alloc_pebs_buffer(int cpu
)
273 struct debug_store
*ds
= per_cpu(cpu_hw_events
, cpu
).ds
;
274 int node
= cpu_to_node(cpu
);
276 void *buffer
, *ibuffer
;
281 buffer
= kzalloc_node(x86_pmu
.pebs_buffer_size
, GFP_KERNEL
, node
);
282 if (unlikely(!buffer
))
286 * HSW+ already provides us the eventing ip; no need to allocate this
289 if (x86_pmu
.intel_cap
.pebs_format
< 2) {
290 ibuffer
= kzalloc_node(PEBS_FIXUP_SIZE
, GFP_KERNEL
, node
);
295 per_cpu(insn_buffer
, cpu
) = ibuffer
;
298 max
= x86_pmu
.pebs_buffer_size
/ x86_pmu
.pebs_record_size
;
300 ds
->pebs_buffer_base
= (u64
)(unsigned long)buffer
;
301 ds
->pebs_index
= ds
->pebs_buffer_base
;
302 ds
->pebs_absolute_maximum
= ds
->pebs_buffer_base
+
303 max
* x86_pmu
.pebs_record_size
;
308 static void release_pebs_buffer(int cpu
)
310 struct debug_store
*ds
= per_cpu(cpu_hw_events
, cpu
).ds
;
312 if (!ds
|| !x86_pmu
.pebs
)
315 kfree(per_cpu(insn_buffer
, cpu
));
316 per_cpu(insn_buffer
, cpu
) = NULL
;
318 kfree((void *)(unsigned long)ds
->pebs_buffer_base
);
319 ds
->pebs_buffer_base
= 0;
322 static int alloc_bts_buffer(int cpu
)
324 struct debug_store
*ds
= per_cpu(cpu_hw_events
, cpu
).ds
;
325 int node
= cpu_to_node(cpu
);
332 buffer
= kzalloc_node(BTS_BUFFER_SIZE
, GFP_KERNEL
| __GFP_NOWARN
, node
);
333 if (unlikely(!buffer
)) {
334 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__
);
338 max
= BTS_BUFFER_SIZE
/ BTS_RECORD_SIZE
;
341 ds
->bts_buffer_base
= (u64
)(unsigned long)buffer
;
342 ds
->bts_index
= ds
->bts_buffer_base
;
343 ds
->bts_absolute_maximum
= ds
->bts_buffer_base
+
344 max
* BTS_RECORD_SIZE
;
345 ds
->bts_interrupt_threshold
= ds
->bts_absolute_maximum
-
346 thresh
* BTS_RECORD_SIZE
;
351 static void release_bts_buffer(int cpu
)
353 struct debug_store
*ds
= per_cpu(cpu_hw_events
, cpu
).ds
;
355 if (!ds
|| !x86_pmu
.bts
)
358 kfree((void *)(unsigned long)ds
->bts_buffer_base
);
359 ds
->bts_buffer_base
= 0;
362 static int alloc_ds_buffer(int cpu
)
364 int node
= cpu_to_node(cpu
);
365 struct debug_store
*ds
;
367 ds
= kzalloc_node(sizeof(*ds
), GFP_KERNEL
, node
);
371 per_cpu(cpu_hw_events
, cpu
).ds
= ds
;
376 static void release_ds_buffer(int cpu
)
378 struct debug_store
*ds
= per_cpu(cpu_hw_events
, cpu
).ds
;
383 per_cpu(cpu_hw_events
, cpu
).ds
= NULL
;
387 void release_ds_buffers(void)
391 if (!x86_pmu
.bts
&& !x86_pmu
.pebs
)
395 for_each_online_cpu(cpu
)
396 fini_debug_store_on_cpu(cpu
);
398 for_each_possible_cpu(cpu
) {
399 release_pebs_buffer(cpu
);
400 release_bts_buffer(cpu
);
401 release_ds_buffer(cpu
);
406 void reserve_ds_buffers(void)
408 int bts_err
= 0, pebs_err
= 0;
411 x86_pmu
.bts_active
= 0;
412 x86_pmu
.pebs_active
= 0;
414 if (!x86_pmu
.bts
&& !x86_pmu
.pebs
)
425 for_each_possible_cpu(cpu
) {
426 if (alloc_ds_buffer(cpu
)) {
431 if (!bts_err
&& alloc_bts_buffer(cpu
))
434 if (!pebs_err
&& alloc_pebs_buffer(cpu
))
437 if (bts_err
&& pebs_err
)
442 for_each_possible_cpu(cpu
)
443 release_bts_buffer(cpu
);
447 for_each_possible_cpu(cpu
)
448 release_pebs_buffer(cpu
);
451 if (bts_err
&& pebs_err
) {
452 for_each_possible_cpu(cpu
)
453 release_ds_buffer(cpu
);
455 if (x86_pmu
.bts
&& !bts_err
)
456 x86_pmu
.bts_active
= 1;
458 if (x86_pmu
.pebs
&& !pebs_err
)
459 x86_pmu
.pebs_active
= 1;
461 for_each_online_cpu(cpu
)
462 init_debug_store_on_cpu(cpu
);
472 struct event_constraint bts_constraint
=
473 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS
, 0);
475 void intel_pmu_enable_bts(u64 config
)
477 unsigned long debugctlmsr
;
479 debugctlmsr
= get_debugctlmsr();
481 debugctlmsr
|= DEBUGCTLMSR_TR
;
482 debugctlmsr
|= DEBUGCTLMSR_BTS
;
483 if (config
& ARCH_PERFMON_EVENTSEL_INT
)
484 debugctlmsr
|= DEBUGCTLMSR_BTINT
;
486 if (!(config
& ARCH_PERFMON_EVENTSEL_OS
))
487 debugctlmsr
|= DEBUGCTLMSR_BTS_OFF_OS
;
489 if (!(config
& ARCH_PERFMON_EVENTSEL_USR
))
490 debugctlmsr
|= DEBUGCTLMSR_BTS_OFF_USR
;
492 update_debugctlmsr(debugctlmsr
);
495 void intel_pmu_disable_bts(void)
497 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
498 unsigned long debugctlmsr
;
503 debugctlmsr
= get_debugctlmsr();
506 ~(DEBUGCTLMSR_TR
| DEBUGCTLMSR_BTS
| DEBUGCTLMSR_BTINT
|
507 DEBUGCTLMSR_BTS_OFF_OS
| DEBUGCTLMSR_BTS_OFF_USR
);
509 update_debugctlmsr(debugctlmsr
);
512 int intel_pmu_drain_bts_buffer(void)
514 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
515 struct debug_store
*ds
= cpuc
->ds
;
521 struct perf_event
*event
= cpuc
->events
[INTEL_PMC_IDX_FIXED_BTS
];
522 struct bts_record
*at
, *base
, *top
;
523 struct perf_output_handle handle
;
524 struct perf_event_header header
;
525 struct perf_sample_data data
;
526 unsigned long skip
= 0;
532 if (!x86_pmu
.bts_active
)
535 base
= (struct bts_record
*)(unsigned long)ds
->bts_buffer_base
;
536 top
= (struct bts_record
*)(unsigned long)ds
->bts_index
;
541 memset(®s
, 0, sizeof(regs
));
543 ds
->bts_index
= ds
->bts_buffer_base
;
545 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
548 * BTS leaks kernel addresses in branches across the cpl boundary,
549 * such as traps or system calls, so unless the user is asking for
550 * kernel tracing (and right now it's not possible), we'd need to
551 * filter them out. But first we need to count how many of those we
552 * have in the current batch. This is an extra O(n) pass, however,
553 * it's much faster than the other one especially considering that
554 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
555 * alloc_bts_buffer()).
557 for (at
= base
; at
< top
; at
++) {
559 * Note that right now *this* BTS code only works if
560 * attr::exclude_kernel is set, but let's keep this extra
561 * check here in case that changes.
563 if (event
->attr
.exclude_kernel
&&
564 (kernel_ip(at
->from
) || kernel_ip(at
->to
)))
569 * Prepare a generic sample, i.e. fill in the invariant fields.
570 * We will overwrite the from and to address before we output
574 perf_prepare_sample(&header
, &data
, event
, ®s
);
576 if (perf_output_begin(&handle
, event
, header
.size
*
577 (top
- base
- skip
)))
580 for (at
= base
; at
< top
; at
++) {
581 /* Filter out any records that contain kernel addresses. */
582 if (event
->attr
.exclude_kernel
&&
583 (kernel_ip(at
->from
) || kernel_ip(at
->to
)))
589 perf_output_sample(&handle
, &header
, &data
, event
);
592 perf_output_end(&handle
);
594 /* There's new data available. */
595 event
->hw
.interrupts
++;
596 event
->pending_kill
= POLL_IN
;
602 static inline void intel_pmu_drain_pebs_buffer(void)
606 x86_pmu
.drain_pebs(®s
);
612 struct event_constraint intel_core2_pebs_event_constraints
[] = {
613 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
614 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
615 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
616 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
617 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
618 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
619 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
623 struct event_constraint intel_atom_pebs_event_constraints
[] = {
624 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
625 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
626 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
627 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
628 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
629 /* Allow all events as PEBS with no flags */
630 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
634 struct event_constraint intel_slm_pebs_event_constraints
[] = {
635 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
636 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
637 /* Allow all events as PEBS with no flags */
638 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
642 struct event_constraint intel_glm_pebs_event_constraints
[] = {
643 /* Allow all events as PEBS with no flags */
644 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
648 struct event_constraint intel_glp_pebs_event_constraints
[] = {
649 /* Allow all events as PEBS with no flags */
650 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
654 struct event_constraint intel_nehalem_pebs_event_constraints
[] = {
655 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
656 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
657 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
658 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
659 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
660 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
661 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
662 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
663 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
664 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
665 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
666 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
667 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
671 struct event_constraint intel_westmere_pebs_event_constraints
[] = {
672 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
673 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
674 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
675 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
676 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
677 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
678 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
679 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
680 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
681 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
682 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
683 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
684 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
688 struct event_constraint intel_snb_pebs_event_constraints
[] = {
689 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
690 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
691 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
692 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
693 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
694 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
695 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
696 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
697 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
698 /* Allow all events as PEBS with no flags */
699 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
703 struct event_constraint intel_ivb_pebs_event_constraints
[] = {
704 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
705 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
706 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
707 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
708 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
709 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
710 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
711 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
712 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
713 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
714 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
715 /* Allow all events as PEBS with no flags */
716 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
720 struct event_constraint intel_hsw_pebs_event_constraints
[] = {
721 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
722 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
723 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
724 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
725 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
726 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
727 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
728 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
729 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
730 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
731 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
732 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
733 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
734 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
735 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
736 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
737 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
738 /* Allow all events as PEBS with no flags */
739 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
743 struct event_constraint intel_bdw_pebs_event_constraints
[] = {
744 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
745 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
746 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
747 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
748 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
749 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
750 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
751 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
752 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
753 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
754 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
755 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
756 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
757 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
758 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
759 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
760 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
761 /* Allow all events as PEBS with no flags */
762 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
767 struct event_constraint intel_skl_pebs_event_constraints
[] = {
768 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
769 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
770 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
771 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
772 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
773 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
774 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
775 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
776 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
777 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
778 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
779 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
780 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
781 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
782 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
783 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
784 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
785 /* Allow all events as PEBS with no flags */
786 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
790 struct event_constraint
*intel_pebs_constraints(struct perf_event
*event
)
792 struct event_constraint
*c
;
794 if (!event
->attr
.precise_ip
)
797 if (x86_pmu
.pebs_constraints
) {
798 for_each_event_constraint(c
, x86_pmu
.pebs_constraints
) {
799 if ((event
->hw
.config
& c
->cmask
) == c
->code
) {
800 event
->hw
.flags
|= c
->flags
;
806 return &emptyconstraint
;
810 * We need the sched_task callback even for per-cpu events when we use
811 * the large interrupt threshold, such that we can provide PID and TID
814 static inline bool pebs_needs_sched_cb(struct cpu_hw_events
*cpuc
)
816 return cpuc
->n_pebs
&& (cpuc
->n_pebs
== cpuc
->n_large_pebs
);
819 void intel_pmu_pebs_sched_task(struct perf_event_context
*ctx
, bool sched_in
)
821 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
823 if (!sched_in
&& pebs_needs_sched_cb(cpuc
))
824 intel_pmu_drain_pebs_buffer();
827 static inline void pebs_update_threshold(struct cpu_hw_events
*cpuc
)
829 struct debug_store
*ds
= cpuc
->ds
;
832 if (cpuc
->n_pebs
== cpuc
->n_large_pebs
) {
833 threshold
= ds
->pebs_absolute_maximum
-
834 x86_pmu
.max_pebs_events
* x86_pmu
.pebs_record_size
;
836 threshold
= ds
->pebs_buffer_base
+ x86_pmu
.pebs_record_size
;
839 ds
->pebs_interrupt_threshold
= threshold
;
843 pebs_update_state(bool needed_cb
, struct cpu_hw_events
*cpuc
, struct pmu
*pmu
)
846 * Make sure we get updated with the first PEBS
847 * event. It will trigger also during removal, but
848 * that does not hurt:
850 bool update
= cpuc
->n_pebs
== 1;
852 if (needed_cb
!= pebs_needs_sched_cb(cpuc
)) {
854 perf_sched_cb_inc(pmu
);
856 perf_sched_cb_dec(pmu
);
862 pebs_update_threshold(cpuc
);
865 void intel_pmu_pebs_add(struct perf_event
*event
)
867 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
868 struct hw_perf_event
*hwc
= &event
->hw
;
869 bool needed_cb
= pebs_needs_sched_cb(cpuc
);
872 if (hwc
->flags
& PERF_X86_EVENT_FREERUNNING
)
873 cpuc
->n_large_pebs
++;
875 pebs_update_state(needed_cb
, cpuc
, event
->ctx
->pmu
);
878 void intel_pmu_pebs_enable(struct perf_event
*event
)
880 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
881 struct hw_perf_event
*hwc
= &event
->hw
;
882 struct debug_store
*ds
= cpuc
->ds
;
884 hwc
->config
&= ~ARCH_PERFMON_EVENTSEL_INT
;
886 cpuc
->pebs_enabled
|= 1ULL << hwc
->idx
;
888 if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_LDLAT
)
889 cpuc
->pebs_enabled
|= 1ULL << (hwc
->idx
+ 32);
890 else if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_ST
)
891 cpuc
->pebs_enabled
|= 1ULL << 63;
894 * Use auto-reload if possible to save a MSR write in the PMI.
895 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
897 if (hwc
->flags
& PERF_X86_EVENT_AUTO_RELOAD
) {
898 ds
->pebs_event_reset
[hwc
->idx
] =
899 (u64
)(-hwc
->sample_period
) & x86_pmu
.cntval_mask
;
901 ds
->pebs_event_reset
[hwc
->idx
] = 0;
905 void intel_pmu_pebs_del(struct perf_event
*event
)
907 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
908 struct hw_perf_event
*hwc
= &event
->hw
;
909 bool needed_cb
= pebs_needs_sched_cb(cpuc
);
912 if (hwc
->flags
& PERF_X86_EVENT_FREERUNNING
)
913 cpuc
->n_large_pebs
--;
915 pebs_update_state(needed_cb
, cpuc
, event
->ctx
->pmu
);
918 void intel_pmu_pebs_disable(struct perf_event
*event
)
920 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
921 struct hw_perf_event
*hwc
= &event
->hw
;
923 if (cpuc
->n_pebs
== cpuc
->n_large_pebs
)
924 intel_pmu_drain_pebs_buffer();
926 cpuc
->pebs_enabled
&= ~(1ULL << hwc
->idx
);
928 if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_LDLAT
)
929 cpuc
->pebs_enabled
&= ~(1ULL << (hwc
->idx
+ 32));
930 else if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_ST
)
931 cpuc
->pebs_enabled
&= ~(1ULL << 63);
934 wrmsrl(MSR_IA32_PEBS_ENABLE
, cpuc
->pebs_enabled
);
936 hwc
->config
|= ARCH_PERFMON_EVENTSEL_INT
;
939 void intel_pmu_pebs_enable_all(void)
941 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
943 if (cpuc
->pebs_enabled
)
944 wrmsrl(MSR_IA32_PEBS_ENABLE
, cpuc
->pebs_enabled
);
947 void intel_pmu_pebs_disable_all(void)
949 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
951 if (cpuc
->pebs_enabled
)
952 wrmsrl(MSR_IA32_PEBS_ENABLE
, 0);
955 static int intel_pmu_pebs_fixup_ip(struct pt_regs
*regs
)
957 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
958 unsigned long from
= cpuc
->lbr_entries
[0].from
;
959 unsigned long old_to
, to
= cpuc
->lbr_entries
[0].to
;
960 unsigned long ip
= regs
->ip
;
966 * We don't need to fixup if the PEBS assist is fault like
968 if (!x86_pmu
.intel_cap
.pebs_trap
)
972 * No LBR entry, no basic block, no rewinding
974 if (!cpuc
->lbr_stack
.nr
|| !from
|| !to
)
978 * Basic blocks should never cross user/kernel boundaries
980 if (kernel_ip(ip
) != kernel_ip(to
))
984 * unsigned math, either ip is before the start (impossible) or
985 * the basic block is larger than 1 page (sanity)
987 if ((ip
- to
) > PEBS_FIXUP_SIZE
)
991 * We sampled a branch insn, rewind using the LBR stack
994 set_linear_ip(regs
, from
);
999 if (!kernel_ip(ip
)) {
1001 u8
*buf
= this_cpu_read(insn_buffer
);
1003 /* 'size' must fit our buffer, see above */
1004 bytes
= copy_from_user_nmi(buf
, (void __user
*)to
, size
);
1018 #ifdef CONFIG_X86_64
1019 is_64bit
= kernel_ip(to
) || !test_thread_flag(TIF_IA32
);
1021 insn_init(&insn
, kaddr
, size
, is_64bit
);
1022 insn_get_length(&insn
);
1024 * Make sure there was not a problem decoding the
1025 * instruction and getting the length. This is
1026 * doubly important because we have an infinite
1027 * loop if insn.length=0.
1033 kaddr
+= insn
.length
;
1034 size
-= insn
.length
;
1038 set_linear_ip(regs
, old_to
);
1043 * Even though we decoded the basic block, the instruction stream
1044 * never matched the given IP, either the TO or the IP got corrupted.
1049 static inline u64
intel_hsw_weight(struct pebs_record_skl
*pebs
)
1051 if (pebs
->tsx_tuning
) {
1052 union hsw_tsx_tuning tsx
= { .value
= pebs
->tsx_tuning
};
1053 return tsx
.cycles_last_block
;
1058 static inline u64
intel_hsw_transaction(struct pebs_record_skl
*pebs
)
1060 u64 txn
= (pebs
->tsx_tuning
& PEBS_HSW_TSX_FLAGS
) >> 32;
1062 /* For RTM XABORTs also log the abort code from AX */
1063 if ((txn
& PERF_TXN_TRANSACTION
) && (pebs
->ax
& 1))
1064 txn
|= ((pebs
->ax
>> 24) & 0xff) << PERF_TXN_ABORT_SHIFT
;
1068 static void setup_pebs_sample_data(struct perf_event
*event
,
1069 struct pt_regs
*iregs
, void *__pebs
,
1070 struct perf_sample_data
*data
,
1071 struct pt_regs
*regs
)
1073 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1074 (PERF_X86_EVENT_PEBS_ST_HSW | \
1075 PERF_X86_EVENT_PEBS_LD_HSW | \
1076 PERF_X86_EVENT_PEBS_NA_HSW)
1078 * We cast to the biggest pebs_record but are careful not to
1079 * unconditionally access the 'extra' entries.
1081 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1082 struct pebs_record_skl
*pebs
= __pebs
;
1085 int fl
= event
->hw
.flags
;
1090 sample_type
= event
->attr
.sample_type
;
1091 dsrc
= sample_type
& PERF_SAMPLE_DATA_SRC
;
1093 fll
= fl
& PERF_X86_EVENT_PEBS_LDLAT
;
1094 fst
= fl
& (PERF_X86_EVENT_PEBS_ST
| PERF_X86_EVENT_PEBS_HSW_PREC
);
1096 perf_sample_data_init(data
, 0, event
->hw
.last_period
);
1098 data
->period
= event
->hw
.last_period
;
1101 * Use latency for weight (only avail with PEBS-LL)
1103 if (fll
&& (sample_type
& PERF_SAMPLE_WEIGHT
))
1104 data
->weight
= pebs
->lat
;
1107 * data.data_src encodes the data source
1110 u64 val
= PERF_MEM_NA
;
1112 val
= load_latency_data(pebs
->dse
);
1113 else if (fst
&& (fl
& PERF_X86_EVENT_PEBS_HSW_PREC
))
1114 val
= precise_datala_hsw(event
, pebs
->dse
);
1116 val
= precise_store_data(pebs
->dse
);
1117 data
->data_src
.val
= val
;
1121 * We use the interrupt regs as a base because the PEBS record does not
1122 * contain a full regs set, specifically it seems to lack segment
1123 * descriptors, which get used by things like user_mode().
1125 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1127 * We must however always use BP,SP from iregs for the unwinder to stay
1128 * sane; the record BP,SP can point into thin air when the record is
1129 * from a previous PMI context or an (I)RET happend between the record
1133 regs
->flags
= pebs
->flags
;
1134 set_linear_ip(regs
, pebs
->ip
);
1136 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
1137 regs
->ax
= pebs
->ax
;
1138 regs
->bx
= pebs
->bx
;
1139 regs
->cx
= pebs
->cx
;
1140 regs
->dx
= pebs
->dx
;
1141 regs
->si
= pebs
->si
;
1142 regs
->di
= pebs
->di
;
1145 * Per the above; only set BP,SP if we don't need callchains.
1147 * XXX: does this make sense?
1149 if (!(sample_type
& PERF_SAMPLE_CALLCHAIN
)) {
1150 regs
->bp
= pebs
->bp
;
1151 regs
->sp
= pebs
->sp
;
1155 * Preserve PERF_EFLAGS_VM from set_linear_ip().
1157 regs
->flags
= pebs
->flags
| (regs
->flags
& PERF_EFLAGS_VM
);
1158 #ifndef CONFIG_X86_32
1159 regs
->r8
= pebs
->r8
;
1160 regs
->r9
= pebs
->r9
;
1161 regs
->r10
= pebs
->r10
;
1162 regs
->r11
= pebs
->r11
;
1163 regs
->r12
= pebs
->r12
;
1164 regs
->r13
= pebs
->r13
;
1165 regs
->r14
= pebs
->r14
;
1166 regs
->r15
= pebs
->r15
;
1170 if (event
->attr
.precise_ip
> 1 && x86_pmu
.intel_cap
.pebs_format
>= 2) {
1171 regs
->ip
= pebs
->real_ip
;
1172 regs
->flags
|= PERF_EFLAGS_EXACT
;
1173 } else if (event
->attr
.precise_ip
> 1 && intel_pmu_pebs_fixup_ip(regs
))
1174 regs
->flags
|= PERF_EFLAGS_EXACT
;
1176 regs
->flags
&= ~PERF_EFLAGS_EXACT
;
1178 if ((sample_type
& PERF_SAMPLE_ADDR
) &&
1179 x86_pmu
.intel_cap
.pebs_format
>= 1)
1180 data
->addr
= pebs
->dla
;
1182 if (x86_pmu
.intel_cap
.pebs_format
>= 2) {
1183 /* Only set the TSX weight when no memory weight. */
1184 if ((sample_type
& PERF_SAMPLE_WEIGHT
) && !fll
)
1185 data
->weight
= intel_hsw_weight(pebs
);
1187 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1188 data
->txn
= intel_hsw_transaction(pebs
);
1192 * v3 supplies an accurate time stamp, so we use that
1193 * for the time stamp.
1195 * We can only do this for the default trace clock.
1197 if (x86_pmu
.intel_cap
.pebs_format
>= 3 &&
1198 event
->attr
.use_clockid
== 0)
1199 data
->time
= native_sched_clock_from_tsc(pebs
->tsc
);
1201 if (has_branch_stack(event
))
1202 data
->br_stack
= &cpuc
->lbr_stack
;
1205 static inline void *
1206 get_next_pebs_record_by_bit(void *base
, void *top
, int bit
)
1208 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1213 * fmt0 does not have a status bitfield (does not use
1214 * perf_record_nhm format)
1216 if (x86_pmu
.intel_cap
.pebs_format
< 1)
1222 for (at
= base
; at
< top
; at
+= x86_pmu
.pebs_record_size
) {
1223 struct pebs_record_nhm
*p
= at
;
1225 if (test_bit(bit
, (unsigned long *)&p
->status
)) {
1226 /* PEBS v3 has accurate status bits */
1227 if (x86_pmu
.intel_cap
.pebs_format
>= 3)
1230 if (p
->status
== (1 << bit
))
1233 /* clear non-PEBS bit and re-check */
1234 pebs_status
= p
->status
& cpuc
->pebs_enabled
;
1235 pebs_status
&= PEBS_COUNTER_MASK
;
1236 if (pebs_status
== (1 << bit
))
1243 static void __intel_pmu_pebs_event(struct perf_event
*event
,
1244 struct pt_regs
*iregs
,
1245 void *base
, void *top
,
1248 struct perf_sample_data data
;
1249 struct pt_regs regs
;
1250 void *at
= get_next_pebs_record_by_bit(base
, top
, bit
);
1252 if (!intel_pmu_save_and_restart(event
) &&
1253 !(event
->hw
.flags
& PERF_X86_EVENT_AUTO_RELOAD
))
1257 setup_pebs_sample_data(event
, iregs
, at
, &data
, ®s
);
1258 perf_event_output(event
, &data
, ®s
);
1259 at
+= x86_pmu
.pebs_record_size
;
1260 at
= get_next_pebs_record_by_bit(at
, top
, bit
);
1264 setup_pebs_sample_data(event
, iregs
, at
, &data
, ®s
);
1267 * All but the last records are processed.
1268 * The last one is left to be able to call the overflow handler.
1270 if (perf_event_overflow(event
, &data
, ®s
)) {
1271 x86_pmu_stop(event
, 0);
1277 static void intel_pmu_drain_pebs_core(struct pt_regs
*iregs
)
1279 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1280 struct debug_store
*ds
= cpuc
->ds
;
1281 struct perf_event
*event
= cpuc
->events
[0]; /* PMC0 only */
1282 struct pebs_record_core
*at
, *top
;
1285 if (!x86_pmu
.pebs_active
)
1288 at
= (struct pebs_record_core
*)(unsigned long)ds
->pebs_buffer_base
;
1289 top
= (struct pebs_record_core
*)(unsigned long)ds
->pebs_index
;
1292 * Whatever else happens, drain the thing
1294 ds
->pebs_index
= ds
->pebs_buffer_base
;
1296 if (!test_bit(0, cpuc
->active_mask
))
1299 WARN_ON_ONCE(!event
);
1301 if (!event
->attr
.precise_ip
)
1308 __intel_pmu_pebs_event(event
, iregs
, at
, top
, 0, n
);
1311 static void intel_pmu_drain_pebs_nhm(struct pt_regs
*iregs
)
1313 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1314 struct debug_store
*ds
= cpuc
->ds
;
1315 struct perf_event
*event
;
1316 void *base
, *at
, *top
;
1317 short counts
[MAX_PEBS_EVENTS
] = {};
1318 short error
[MAX_PEBS_EVENTS
] = {};
1321 if (!x86_pmu
.pebs_active
)
1324 base
= (struct pebs_record_nhm
*)(unsigned long)ds
->pebs_buffer_base
;
1325 top
= (struct pebs_record_nhm
*)(unsigned long)ds
->pebs_index
;
1327 ds
->pebs_index
= ds
->pebs_buffer_base
;
1329 if (unlikely(base
>= top
))
1332 for (at
= base
; at
< top
; at
+= x86_pmu
.pebs_record_size
) {
1333 struct pebs_record_nhm
*p
= at
;
1336 pebs_status
= p
->status
& cpuc
->pebs_enabled
;
1337 pebs_status
&= (1ULL << x86_pmu
.max_pebs_events
) - 1;
1339 /* PEBS v3 has more accurate status bits */
1340 if (x86_pmu
.intel_cap
.pebs_format
>= 3) {
1341 for_each_set_bit(bit
, (unsigned long *)&pebs_status
,
1342 x86_pmu
.max_pebs_events
)
1349 * On some CPUs the PEBS status can be zero when PEBS is
1350 * racing with clearing of GLOBAL_STATUS.
1352 * Normally we would drop that record, but in the
1353 * case when there is only a single active PEBS event
1354 * we can assume it's for that event.
1356 if (!pebs_status
&& cpuc
->pebs_enabled
&&
1357 !(cpuc
->pebs_enabled
& (cpuc
->pebs_enabled
-1)))
1358 pebs_status
= cpuc
->pebs_enabled
;
1360 bit
= find_first_bit((unsigned long *)&pebs_status
,
1361 x86_pmu
.max_pebs_events
);
1362 if (bit
>= x86_pmu
.max_pebs_events
)
1366 * The PEBS hardware does not deal well with the situation
1367 * when events happen near to each other and multiple bits
1368 * are set. But it should happen rarely.
1370 * If these events include one PEBS and multiple non-PEBS
1371 * events, it doesn't impact PEBS record. The record will
1372 * be handled normally. (slow path)
1374 * If these events include two or more PEBS events, the
1375 * records for the events can be collapsed into a single
1376 * one, and it's not possible to reconstruct all events
1377 * that caused the PEBS record. It's called collision.
1378 * If collision happened, the record will be dropped.
1380 if (p
->status
!= (1ULL << bit
)) {
1381 for_each_set_bit(i
, (unsigned long *)&pebs_status
,
1382 x86_pmu
.max_pebs_events
)
1390 for (bit
= 0; bit
< x86_pmu
.max_pebs_events
; bit
++) {
1391 if ((counts
[bit
] == 0) && (error
[bit
] == 0))
1394 event
= cpuc
->events
[bit
];
1395 if (WARN_ON_ONCE(!event
))
1398 if (WARN_ON_ONCE(!event
->attr
.precise_ip
))
1401 /* log dropped samples number */
1403 perf_log_lost_samples(event
, error
[bit
]);
1405 if (perf_event_account_interrupt(event
))
1406 x86_pmu_stop(event
, 0);
1410 __intel_pmu_pebs_event(event
, iregs
, base
,
1411 top
, bit
, counts
[bit
]);
1417 * BTS, PEBS probe and setup
1420 void __init
intel_ds_init(void)
1423 * No support for 32bit formats
1425 if (!boot_cpu_has(X86_FEATURE_DTES64
))
1428 x86_pmu
.bts
= boot_cpu_has(X86_FEATURE_BTS
);
1429 x86_pmu
.pebs
= boot_cpu_has(X86_FEATURE_PEBS
);
1430 x86_pmu
.pebs_buffer_size
= PEBS_BUFFER_SIZE
;
1432 char pebs_type
= x86_pmu
.intel_cap
.pebs_trap
? '+' : '-';
1433 int format
= x86_pmu
.intel_cap
.pebs_format
;
1437 pr_cont("PEBS fmt0%c, ", pebs_type
);
1438 x86_pmu
.pebs_record_size
= sizeof(struct pebs_record_core
);
1440 * Using >PAGE_SIZE buffers makes the WRMSR to
1441 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
1442 * mysteriously hang on Core2.
1444 * As a workaround, we don't do this.
1446 x86_pmu
.pebs_buffer_size
= PAGE_SIZE
;
1447 x86_pmu
.drain_pebs
= intel_pmu_drain_pebs_core
;
1451 pr_cont("PEBS fmt1%c, ", pebs_type
);
1452 x86_pmu
.pebs_record_size
= sizeof(struct pebs_record_nhm
);
1453 x86_pmu
.drain_pebs
= intel_pmu_drain_pebs_nhm
;
1457 pr_cont("PEBS fmt2%c, ", pebs_type
);
1458 x86_pmu
.pebs_record_size
= sizeof(struct pebs_record_hsw
);
1459 x86_pmu
.drain_pebs
= intel_pmu_drain_pebs_nhm
;
1463 pr_cont("PEBS fmt3%c, ", pebs_type
);
1464 x86_pmu
.pebs_record_size
=
1465 sizeof(struct pebs_record_skl
);
1466 x86_pmu
.drain_pebs
= intel_pmu_drain_pebs_nhm
;
1467 x86_pmu
.free_running_flags
|= PERF_SAMPLE_TIME
;
1471 pr_cont("no PEBS fmt%d%c, ", format
, pebs_type
);
1477 void perf_restore_debug_store(void)
1479 struct debug_store
*ds
= __this_cpu_read(cpu_hw_events
.ds
);
1481 if (!x86_pmu
.bts
&& !x86_pmu
.pebs
)
1484 wrmsrl(MSR_IA32_DS_AREA
, (unsigned long)ds
);