Linux 4.13.16
[linux/fpc-iii.git] / arch / x86 / events / intel / ds.c
bloba322fed5f8edcab18401e2745438c362f80e0851
1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
5 #include <asm/perf_event.h>
6 #include <asm/insn.h>
8 #include "../perf_event.h"
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE 24
13 #define BTS_BUFFER_SIZE (PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE (PAGE_SIZE << 4)
15 #define PEBS_FIXUP_SIZE PAGE_SIZE
18 * pebs_record_32 for p4 and core not supported
20 struct pebs_record_32 {
21 u32 flags, ip;
22 u32 ax, bc, cx, dx;
23 u32 si, di, bp, sp;
28 union intel_x86_pebs_dse {
29 u64 val;
30 struct {
31 unsigned int ld_dse:4;
32 unsigned int ld_stlb_miss:1;
33 unsigned int ld_locked:1;
34 unsigned int ld_reserved:26;
36 struct {
37 unsigned int st_l1d_hit:1;
38 unsigned int st_reserved1:3;
39 unsigned int st_stlb_miss:1;
40 unsigned int st_locked:1;
41 unsigned int st_reserved2:26;
47 * Map PEBS Load Latency Data Source encodings to generic
48 * memory data source information
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
54 /* Version for Sandy Bridge and later */
55 static u64 pebs_data_source[] = {
56 P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
57 OP_LH | P(LVL, L1) | P(SNOOP, NONE), /* 0x01: L1 local */
58 OP_LH | P(LVL, LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
59 OP_LH | P(LVL, L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
60 OP_LH | P(LVL, L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
61 OP_LH | P(LVL, L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
62 OP_LH | P(LVL, L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
63 OP_LH | P(LVL, L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
64 OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
65 OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
66 OP_LH | P(LVL, LOC_RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
67 OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
68 OP_LH | P(LVL, LOC_RAM) | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
69 OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
70 OP_LH | P(LVL, IO) | P(SNOOP, NONE), /* 0x0e: I/O */
71 OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
74 /* Patch up minor differences in the bits */
75 void __init intel_pmu_pebs_data_source_nhm(void)
77 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | P(SNOOP, HIT);
78 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | P(SNOOP, HITM);
79 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | P(SNOOP, HITM);
82 static u64 precise_store_data(u64 status)
84 union intel_x86_pebs_dse dse;
85 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
87 dse.val = status;
90 * bit 4: TLB access
91 * 1 = stored missed 2nd level TLB
93 * so it either hit the walker or the OS
94 * otherwise hit 2nd level TLB
96 if (dse.st_stlb_miss)
97 val |= P(TLB, MISS);
98 else
99 val |= P(TLB, HIT);
102 * bit 0: hit L1 data cache
103 * if not set, then all we know is that
104 * it missed L1D
106 if (dse.st_l1d_hit)
107 val |= P(LVL, HIT);
108 else
109 val |= P(LVL, MISS);
112 * bit 5: Locked prefix
114 if (dse.st_locked)
115 val |= P(LOCK, LOCKED);
117 return val;
120 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
122 union perf_mem_data_src dse;
124 dse.val = PERF_MEM_NA;
126 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
127 dse.mem_op = PERF_MEM_OP_STORE;
128 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
129 dse.mem_op = PERF_MEM_OP_LOAD;
132 * L1 info only valid for following events:
134 * MEM_UOPS_RETIRED.STLB_MISS_STORES
135 * MEM_UOPS_RETIRED.LOCK_STORES
136 * MEM_UOPS_RETIRED.SPLIT_STORES
137 * MEM_UOPS_RETIRED.ALL_STORES
139 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
140 if (status & 1)
141 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
142 else
143 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
145 return dse.val;
148 static u64 load_latency_data(u64 status)
150 union intel_x86_pebs_dse dse;
151 u64 val;
152 int model = boot_cpu_data.x86_model;
153 int fam = boot_cpu_data.x86;
155 dse.val = status;
158 * use the mapping table for bit 0-3
160 val = pebs_data_source[dse.ld_dse];
163 * Nehalem models do not support TLB, Lock infos
165 if (fam == 0x6 && (model == 26 || model == 30
166 || model == 31 || model == 46)) {
167 val |= P(TLB, NA) | P(LOCK, NA);
168 return val;
171 * bit 4: TLB access
172 * 0 = did not miss 2nd level TLB
173 * 1 = missed 2nd level TLB
175 if (dse.ld_stlb_miss)
176 val |= P(TLB, MISS) | P(TLB, L2);
177 else
178 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
181 * bit 5: locked prefix
183 if (dse.ld_locked)
184 val |= P(LOCK, LOCKED);
186 return val;
189 struct pebs_record_core {
190 u64 flags, ip;
191 u64 ax, bx, cx, dx;
192 u64 si, di, bp, sp;
193 u64 r8, r9, r10, r11;
194 u64 r12, r13, r14, r15;
197 struct pebs_record_nhm {
198 u64 flags, ip;
199 u64 ax, bx, cx, dx;
200 u64 si, di, bp, sp;
201 u64 r8, r9, r10, r11;
202 u64 r12, r13, r14, r15;
203 u64 status, dla, dse, lat;
207 * Same as pebs_record_nhm, with two additional fields.
209 struct pebs_record_hsw {
210 u64 flags, ip;
211 u64 ax, bx, cx, dx;
212 u64 si, di, bp, sp;
213 u64 r8, r9, r10, r11;
214 u64 r12, r13, r14, r15;
215 u64 status, dla, dse, lat;
216 u64 real_ip, tsx_tuning;
219 union hsw_tsx_tuning {
220 struct {
221 u32 cycles_last_block : 32,
222 hle_abort : 1,
223 rtm_abort : 1,
224 instruction_abort : 1,
225 non_instruction_abort : 1,
226 retry : 1,
227 data_conflict : 1,
228 capacity_writes : 1,
229 capacity_reads : 1;
231 u64 value;
234 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
236 /* Same as HSW, plus TSC */
238 struct pebs_record_skl {
239 u64 flags, ip;
240 u64 ax, bx, cx, dx;
241 u64 si, di, bp, sp;
242 u64 r8, r9, r10, r11;
243 u64 r12, r13, r14, r15;
244 u64 status, dla, dse, lat;
245 u64 real_ip, tsx_tuning;
246 u64 tsc;
249 void init_debug_store_on_cpu(int cpu)
251 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
253 if (!ds)
254 return;
256 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
257 (u32)((u64)(unsigned long)ds),
258 (u32)((u64)(unsigned long)ds >> 32));
261 void fini_debug_store_on_cpu(int cpu)
263 if (!per_cpu(cpu_hw_events, cpu).ds)
264 return;
266 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
269 static DEFINE_PER_CPU(void *, insn_buffer);
271 static int alloc_pebs_buffer(int cpu)
273 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
274 int node = cpu_to_node(cpu);
275 int max;
276 void *buffer, *ibuffer;
278 if (!x86_pmu.pebs)
279 return 0;
281 buffer = kzalloc_node(x86_pmu.pebs_buffer_size, GFP_KERNEL, node);
282 if (unlikely(!buffer))
283 return -ENOMEM;
286 * HSW+ already provides us the eventing ip; no need to allocate this
287 * buffer then.
289 if (x86_pmu.intel_cap.pebs_format < 2) {
290 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
291 if (!ibuffer) {
292 kfree(buffer);
293 return -ENOMEM;
295 per_cpu(insn_buffer, cpu) = ibuffer;
298 max = x86_pmu.pebs_buffer_size / x86_pmu.pebs_record_size;
300 ds->pebs_buffer_base = (u64)(unsigned long)buffer;
301 ds->pebs_index = ds->pebs_buffer_base;
302 ds->pebs_absolute_maximum = ds->pebs_buffer_base +
303 max * x86_pmu.pebs_record_size;
305 return 0;
308 static void release_pebs_buffer(int cpu)
310 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
312 if (!ds || !x86_pmu.pebs)
313 return;
315 kfree(per_cpu(insn_buffer, cpu));
316 per_cpu(insn_buffer, cpu) = NULL;
318 kfree((void *)(unsigned long)ds->pebs_buffer_base);
319 ds->pebs_buffer_base = 0;
322 static int alloc_bts_buffer(int cpu)
324 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
325 int node = cpu_to_node(cpu);
326 int max, thresh;
327 void *buffer;
329 if (!x86_pmu.bts)
330 return 0;
332 buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
333 if (unlikely(!buffer)) {
334 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
335 return -ENOMEM;
338 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
339 thresh = max / 16;
341 ds->bts_buffer_base = (u64)(unsigned long)buffer;
342 ds->bts_index = ds->bts_buffer_base;
343 ds->bts_absolute_maximum = ds->bts_buffer_base +
344 max * BTS_RECORD_SIZE;
345 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
346 thresh * BTS_RECORD_SIZE;
348 return 0;
351 static void release_bts_buffer(int cpu)
353 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
355 if (!ds || !x86_pmu.bts)
356 return;
358 kfree((void *)(unsigned long)ds->bts_buffer_base);
359 ds->bts_buffer_base = 0;
362 static int alloc_ds_buffer(int cpu)
364 int node = cpu_to_node(cpu);
365 struct debug_store *ds;
367 ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
368 if (unlikely(!ds))
369 return -ENOMEM;
371 per_cpu(cpu_hw_events, cpu).ds = ds;
373 return 0;
376 static void release_ds_buffer(int cpu)
378 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
380 if (!ds)
381 return;
383 per_cpu(cpu_hw_events, cpu).ds = NULL;
384 kfree(ds);
387 void release_ds_buffers(void)
389 int cpu;
391 if (!x86_pmu.bts && !x86_pmu.pebs)
392 return;
394 get_online_cpus();
395 for_each_online_cpu(cpu)
396 fini_debug_store_on_cpu(cpu);
398 for_each_possible_cpu(cpu) {
399 release_pebs_buffer(cpu);
400 release_bts_buffer(cpu);
401 release_ds_buffer(cpu);
403 put_online_cpus();
406 void reserve_ds_buffers(void)
408 int bts_err = 0, pebs_err = 0;
409 int cpu;
411 x86_pmu.bts_active = 0;
412 x86_pmu.pebs_active = 0;
414 if (!x86_pmu.bts && !x86_pmu.pebs)
415 return;
417 if (!x86_pmu.bts)
418 bts_err = 1;
420 if (!x86_pmu.pebs)
421 pebs_err = 1;
423 get_online_cpus();
425 for_each_possible_cpu(cpu) {
426 if (alloc_ds_buffer(cpu)) {
427 bts_err = 1;
428 pebs_err = 1;
431 if (!bts_err && alloc_bts_buffer(cpu))
432 bts_err = 1;
434 if (!pebs_err && alloc_pebs_buffer(cpu))
435 pebs_err = 1;
437 if (bts_err && pebs_err)
438 break;
441 if (bts_err) {
442 for_each_possible_cpu(cpu)
443 release_bts_buffer(cpu);
446 if (pebs_err) {
447 for_each_possible_cpu(cpu)
448 release_pebs_buffer(cpu);
451 if (bts_err && pebs_err) {
452 for_each_possible_cpu(cpu)
453 release_ds_buffer(cpu);
454 } else {
455 if (x86_pmu.bts && !bts_err)
456 x86_pmu.bts_active = 1;
458 if (x86_pmu.pebs && !pebs_err)
459 x86_pmu.pebs_active = 1;
461 for_each_online_cpu(cpu)
462 init_debug_store_on_cpu(cpu);
465 put_online_cpus();
469 * BTS
472 struct event_constraint bts_constraint =
473 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
475 void intel_pmu_enable_bts(u64 config)
477 unsigned long debugctlmsr;
479 debugctlmsr = get_debugctlmsr();
481 debugctlmsr |= DEBUGCTLMSR_TR;
482 debugctlmsr |= DEBUGCTLMSR_BTS;
483 if (config & ARCH_PERFMON_EVENTSEL_INT)
484 debugctlmsr |= DEBUGCTLMSR_BTINT;
486 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
487 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
489 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
490 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
492 update_debugctlmsr(debugctlmsr);
495 void intel_pmu_disable_bts(void)
497 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
498 unsigned long debugctlmsr;
500 if (!cpuc->ds)
501 return;
503 debugctlmsr = get_debugctlmsr();
505 debugctlmsr &=
506 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
507 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
509 update_debugctlmsr(debugctlmsr);
512 int intel_pmu_drain_bts_buffer(void)
514 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
515 struct debug_store *ds = cpuc->ds;
516 struct bts_record {
517 u64 from;
518 u64 to;
519 u64 flags;
521 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
522 struct bts_record *at, *base, *top;
523 struct perf_output_handle handle;
524 struct perf_event_header header;
525 struct perf_sample_data data;
526 unsigned long skip = 0;
527 struct pt_regs regs;
529 if (!event)
530 return 0;
532 if (!x86_pmu.bts_active)
533 return 0;
535 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
536 top = (struct bts_record *)(unsigned long)ds->bts_index;
538 if (top <= base)
539 return 0;
541 memset(&regs, 0, sizeof(regs));
543 ds->bts_index = ds->bts_buffer_base;
545 perf_sample_data_init(&data, 0, event->hw.last_period);
548 * BTS leaks kernel addresses in branches across the cpl boundary,
549 * such as traps or system calls, so unless the user is asking for
550 * kernel tracing (and right now it's not possible), we'd need to
551 * filter them out. But first we need to count how many of those we
552 * have in the current batch. This is an extra O(n) pass, however,
553 * it's much faster than the other one especially considering that
554 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
555 * alloc_bts_buffer()).
557 for (at = base; at < top; at++) {
559 * Note that right now *this* BTS code only works if
560 * attr::exclude_kernel is set, but let's keep this extra
561 * check here in case that changes.
563 if (event->attr.exclude_kernel &&
564 (kernel_ip(at->from) || kernel_ip(at->to)))
565 skip++;
569 * Prepare a generic sample, i.e. fill in the invariant fields.
570 * We will overwrite the from and to address before we output
571 * the sample.
573 rcu_read_lock();
574 perf_prepare_sample(&header, &data, event, &regs);
576 if (perf_output_begin(&handle, event, header.size *
577 (top - base - skip)))
578 goto unlock;
580 for (at = base; at < top; at++) {
581 /* Filter out any records that contain kernel addresses. */
582 if (event->attr.exclude_kernel &&
583 (kernel_ip(at->from) || kernel_ip(at->to)))
584 continue;
586 data.ip = at->from;
587 data.addr = at->to;
589 perf_output_sample(&handle, &header, &data, event);
592 perf_output_end(&handle);
594 /* There's new data available. */
595 event->hw.interrupts++;
596 event->pending_kill = POLL_IN;
597 unlock:
598 rcu_read_unlock();
599 return 1;
602 static inline void intel_pmu_drain_pebs_buffer(void)
604 struct pt_regs regs;
606 x86_pmu.drain_pebs(&regs);
610 * PEBS
612 struct event_constraint intel_core2_pebs_event_constraints[] = {
613 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
614 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
615 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
616 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
617 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
618 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
619 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
620 EVENT_CONSTRAINT_END
623 struct event_constraint intel_atom_pebs_event_constraints[] = {
624 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
625 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
626 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
627 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
628 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
629 /* Allow all events as PEBS with no flags */
630 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
631 EVENT_CONSTRAINT_END
634 struct event_constraint intel_slm_pebs_event_constraints[] = {
635 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
636 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
637 /* Allow all events as PEBS with no flags */
638 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
639 EVENT_CONSTRAINT_END
642 struct event_constraint intel_glm_pebs_event_constraints[] = {
643 /* Allow all events as PEBS with no flags */
644 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
645 EVENT_CONSTRAINT_END
648 struct event_constraint intel_glp_pebs_event_constraints[] = {
649 /* Allow all events as PEBS with no flags */
650 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
651 EVENT_CONSTRAINT_END
654 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
655 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
656 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
657 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
658 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
659 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
660 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
661 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
662 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
663 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
664 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
665 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
666 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
667 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
668 EVENT_CONSTRAINT_END
671 struct event_constraint intel_westmere_pebs_event_constraints[] = {
672 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
673 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
674 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
675 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
676 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
677 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
678 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
679 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
680 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
681 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
682 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
683 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
684 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
685 EVENT_CONSTRAINT_END
688 struct event_constraint intel_snb_pebs_event_constraints[] = {
689 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
690 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
691 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
692 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
693 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
694 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
695 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
696 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
697 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
698 /* Allow all events as PEBS with no flags */
699 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
700 EVENT_CONSTRAINT_END
703 struct event_constraint intel_ivb_pebs_event_constraints[] = {
704 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
705 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
706 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
707 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
708 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
709 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
710 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
711 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
712 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
713 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
714 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
715 /* Allow all events as PEBS with no flags */
716 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
717 EVENT_CONSTRAINT_END
720 struct event_constraint intel_hsw_pebs_event_constraints[] = {
721 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
722 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
723 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
724 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
725 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
726 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
727 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
728 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
729 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
730 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
731 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
732 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
733 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
734 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
735 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
736 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
737 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
738 /* Allow all events as PEBS with no flags */
739 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
740 EVENT_CONSTRAINT_END
743 struct event_constraint intel_bdw_pebs_event_constraints[] = {
744 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
745 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
746 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
747 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
748 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
749 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
750 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
751 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
752 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
753 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
754 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
755 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
756 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
757 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
758 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
759 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
760 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
761 /* Allow all events as PEBS with no flags */
762 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
763 EVENT_CONSTRAINT_END
767 struct event_constraint intel_skl_pebs_event_constraints[] = {
768 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
769 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
770 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
771 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
772 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
773 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
774 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
775 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
776 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
777 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
778 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
779 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
780 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
781 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
782 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
783 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
784 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
785 /* Allow all events as PEBS with no flags */
786 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
787 EVENT_CONSTRAINT_END
790 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
792 struct event_constraint *c;
794 if (!event->attr.precise_ip)
795 return NULL;
797 if (x86_pmu.pebs_constraints) {
798 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
799 if ((event->hw.config & c->cmask) == c->code) {
800 event->hw.flags |= c->flags;
801 return c;
806 return &emptyconstraint;
810 * We need the sched_task callback even for per-cpu events when we use
811 * the large interrupt threshold, such that we can provide PID and TID
812 * to PEBS samples.
814 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
816 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
819 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
821 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
823 if (!sched_in && pebs_needs_sched_cb(cpuc))
824 intel_pmu_drain_pebs_buffer();
827 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
829 struct debug_store *ds = cpuc->ds;
830 u64 threshold;
832 if (cpuc->n_pebs == cpuc->n_large_pebs) {
833 threshold = ds->pebs_absolute_maximum -
834 x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
835 } else {
836 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
839 ds->pebs_interrupt_threshold = threshold;
842 static void
843 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, struct pmu *pmu)
846 * Make sure we get updated with the first PEBS
847 * event. It will trigger also during removal, but
848 * that does not hurt:
850 bool update = cpuc->n_pebs == 1;
852 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
853 if (!needed_cb)
854 perf_sched_cb_inc(pmu);
855 else
856 perf_sched_cb_dec(pmu);
858 update = true;
861 if (update)
862 pebs_update_threshold(cpuc);
865 void intel_pmu_pebs_add(struct perf_event *event)
867 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
868 struct hw_perf_event *hwc = &event->hw;
869 bool needed_cb = pebs_needs_sched_cb(cpuc);
871 cpuc->n_pebs++;
872 if (hwc->flags & PERF_X86_EVENT_FREERUNNING)
873 cpuc->n_large_pebs++;
875 pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
878 void intel_pmu_pebs_enable(struct perf_event *event)
880 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
881 struct hw_perf_event *hwc = &event->hw;
882 struct debug_store *ds = cpuc->ds;
884 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
886 cpuc->pebs_enabled |= 1ULL << hwc->idx;
888 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
889 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
890 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
891 cpuc->pebs_enabled |= 1ULL << 63;
894 * Use auto-reload if possible to save a MSR write in the PMI.
895 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
897 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
898 ds->pebs_event_reset[hwc->idx] =
899 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
900 } else {
901 ds->pebs_event_reset[hwc->idx] = 0;
905 void intel_pmu_pebs_del(struct perf_event *event)
907 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
908 struct hw_perf_event *hwc = &event->hw;
909 bool needed_cb = pebs_needs_sched_cb(cpuc);
911 cpuc->n_pebs--;
912 if (hwc->flags & PERF_X86_EVENT_FREERUNNING)
913 cpuc->n_large_pebs--;
915 pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
918 void intel_pmu_pebs_disable(struct perf_event *event)
920 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
921 struct hw_perf_event *hwc = &event->hw;
923 if (cpuc->n_pebs == cpuc->n_large_pebs)
924 intel_pmu_drain_pebs_buffer();
926 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
928 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
929 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
930 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
931 cpuc->pebs_enabled &= ~(1ULL << 63);
933 if (cpuc->enabled)
934 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
936 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
939 void intel_pmu_pebs_enable_all(void)
941 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
943 if (cpuc->pebs_enabled)
944 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
947 void intel_pmu_pebs_disable_all(void)
949 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
951 if (cpuc->pebs_enabled)
952 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
955 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
957 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
958 unsigned long from = cpuc->lbr_entries[0].from;
959 unsigned long old_to, to = cpuc->lbr_entries[0].to;
960 unsigned long ip = regs->ip;
961 int is_64bit = 0;
962 void *kaddr;
963 int size;
966 * We don't need to fixup if the PEBS assist is fault like
968 if (!x86_pmu.intel_cap.pebs_trap)
969 return 1;
972 * No LBR entry, no basic block, no rewinding
974 if (!cpuc->lbr_stack.nr || !from || !to)
975 return 0;
978 * Basic blocks should never cross user/kernel boundaries
980 if (kernel_ip(ip) != kernel_ip(to))
981 return 0;
984 * unsigned math, either ip is before the start (impossible) or
985 * the basic block is larger than 1 page (sanity)
987 if ((ip - to) > PEBS_FIXUP_SIZE)
988 return 0;
991 * We sampled a branch insn, rewind using the LBR stack
993 if (ip == to) {
994 set_linear_ip(regs, from);
995 return 1;
998 size = ip - to;
999 if (!kernel_ip(ip)) {
1000 int bytes;
1001 u8 *buf = this_cpu_read(insn_buffer);
1003 /* 'size' must fit our buffer, see above */
1004 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1005 if (bytes != 0)
1006 return 0;
1008 kaddr = buf;
1009 } else {
1010 kaddr = (void *)to;
1013 do {
1014 struct insn insn;
1016 old_to = to;
1018 #ifdef CONFIG_X86_64
1019 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
1020 #endif
1021 insn_init(&insn, kaddr, size, is_64bit);
1022 insn_get_length(&insn);
1024 * Make sure there was not a problem decoding the
1025 * instruction and getting the length. This is
1026 * doubly important because we have an infinite
1027 * loop if insn.length=0.
1029 if (!insn.length)
1030 break;
1032 to += insn.length;
1033 kaddr += insn.length;
1034 size -= insn.length;
1035 } while (to < ip);
1037 if (to == ip) {
1038 set_linear_ip(regs, old_to);
1039 return 1;
1043 * Even though we decoded the basic block, the instruction stream
1044 * never matched the given IP, either the TO or the IP got corrupted.
1046 return 0;
1049 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
1051 if (pebs->tsx_tuning) {
1052 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
1053 return tsx.cycles_last_block;
1055 return 0;
1058 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
1060 u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1062 /* For RTM XABORTs also log the abort code from AX */
1063 if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
1064 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1065 return txn;
1068 static void setup_pebs_sample_data(struct perf_event *event,
1069 struct pt_regs *iregs, void *__pebs,
1070 struct perf_sample_data *data,
1071 struct pt_regs *regs)
1073 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1074 (PERF_X86_EVENT_PEBS_ST_HSW | \
1075 PERF_X86_EVENT_PEBS_LD_HSW | \
1076 PERF_X86_EVENT_PEBS_NA_HSW)
1078 * We cast to the biggest pebs_record but are careful not to
1079 * unconditionally access the 'extra' entries.
1081 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1082 struct pebs_record_skl *pebs = __pebs;
1083 u64 sample_type;
1084 int fll, fst, dsrc;
1085 int fl = event->hw.flags;
1087 if (pebs == NULL)
1088 return;
1090 sample_type = event->attr.sample_type;
1091 dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
1093 fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
1094 fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1096 perf_sample_data_init(data, 0, event->hw.last_period);
1098 data->period = event->hw.last_period;
1101 * Use latency for weight (only avail with PEBS-LL)
1103 if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1104 data->weight = pebs->lat;
1107 * data.data_src encodes the data source
1109 if (dsrc) {
1110 u64 val = PERF_MEM_NA;
1111 if (fll)
1112 val = load_latency_data(pebs->dse);
1113 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1114 val = precise_datala_hsw(event, pebs->dse);
1115 else if (fst)
1116 val = precise_store_data(pebs->dse);
1117 data->data_src.val = val;
1121 * We use the interrupt regs as a base because the PEBS record does not
1122 * contain a full regs set, specifically it seems to lack segment
1123 * descriptors, which get used by things like user_mode().
1125 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1127 * We must however always use BP,SP from iregs for the unwinder to stay
1128 * sane; the record BP,SP can point into thin air when the record is
1129 * from a previous PMI context or an (I)RET happend between the record
1130 * and PMI.
1132 *regs = *iregs;
1133 regs->flags = pebs->flags;
1134 set_linear_ip(regs, pebs->ip);
1136 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1137 regs->ax = pebs->ax;
1138 regs->bx = pebs->bx;
1139 regs->cx = pebs->cx;
1140 regs->dx = pebs->dx;
1141 regs->si = pebs->si;
1142 regs->di = pebs->di;
1145 * Per the above; only set BP,SP if we don't need callchains.
1147 * XXX: does this make sense?
1149 if (!(sample_type & PERF_SAMPLE_CALLCHAIN)) {
1150 regs->bp = pebs->bp;
1151 regs->sp = pebs->sp;
1155 * Preserve PERF_EFLAGS_VM from set_linear_ip().
1157 regs->flags = pebs->flags | (regs->flags & PERF_EFLAGS_VM);
1158 #ifndef CONFIG_X86_32
1159 regs->r8 = pebs->r8;
1160 regs->r9 = pebs->r9;
1161 regs->r10 = pebs->r10;
1162 regs->r11 = pebs->r11;
1163 regs->r12 = pebs->r12;
1164 regs->r13 = pebs->r13;
1165 regs->r14 = pebs->r14;
1166 regs->r15 = pebs->r15;
1167 #endif
1170 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1171 regs->ip = pebs->real_ip;
1172 regs->flags |= PERF_EFLAGS_EXACT;
1173 } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
1174 regs->flags |= PERF_EFLAGS_EXACT;
1175 else
1176 regs->flags &= ~PERF_EFLAGS_EXACT;
1178 if ((sample_type & PERF_SAMPLE_ADDR) &&
1179 x86_pmu.intel_cap.pebs_format >= 1)
1180 data->addr = pebs->dla;
1182 if (x86_pmu.intel_cap.pebs_format >= 2) {
1183 /* Only set the TSX weight when no memory weight. */
1184 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1185 data->weight = intel_hsw_weight(pebs);
1187 if (sample_type & PERF_SAMPLE_TRANSACTION)
1188 data->txn = intel_hsw_transaction(pebs);
1192 * v3 supplies an accurate time stamp, so we use that
1193 * for the time stamp.
1195 * We can only do this for the default trace clock.
1197 if (x86_pmu.intel_cap.pebs_format >= 3 &&
1198 event->attr.use_clockid == 0)
1199 data->time = native_sched_clock_from_tsc(pebs->tsc);
1201 if (has_branch_stack(event))
1202 data->br_stack = &cpuc->lbr_stack;
1205 static inline void *
1206 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1208 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1209 void *at;
1210 u64 pebs_status;
1213 * fmt0 does not have a status bitfield (does not use
1214 * perf_record_nhm format)
1216 if (x86_pmu.intel_cap.pebs_format < 1)
1217 return base;
1219 if (base == NULL)
1220 return NULL;
1222 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1223 struct pebs_record_nhm *p = at;
1225 if (test_bit(bit, (unsigned long *)&p->status)) {
1226 /* PEBS v3 has accurate status bits */
1227 if (x86_pmu.intel_cap.pebs_format >= 3)
1228 return at;
1230 if (p->status == (1 << bit))
1231 return at;
1233 /* clear non-PEBS bit and re-check */
1234 pebs_status = p->status & cpuc->pebs_enabled;
1235 pebs_status &= PEBS_COUNTER_MASK;
1236 if (pebs_status == (1 << bit))
1237 return at;
1240 return NULL;
1243 static void __intel_pmu_pebs_event(struct perf_event *event,
1244 struct pt_regs *iregs,
1245 void *base, void *top,
1246 int bit, int count)
1248 struct perf_sample_data data;
1249 struct pt_regs regs;
1250 void *at = get_next_pebs_record_by_bit(base, top, bit);
1252 if (!intel_pmu_save_and_restart(event) &&
1253 !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1254 return;
1256 while (count > 1) {
1257 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1258 perf_event_output(event, &data, &regs);
1259 at += x86_pmu.pebs_record_size;
1260 at = get_next_pebs_record_by_bit(at, top, bit);
1261 count--;
1264 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1267 * All but the last records are processed.
1268 * The last one is left to be able to call the overflow handler.
1270 if (perf_event_overflow(event, &data, &regs)) {
1271 x86_pmu_stop(event, 0);
1272 return;
1277 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1279 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1280 struct debug_store *ds = cpuc->ds;
1281 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1282 struct pebs_record_core *at, *top;
1283 int n;
1285 if (!x86_pmu.pebs_active)
1286 return;
1288 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1289 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1292 * Whatever else happens, drain the thing
1294 ds->pebs_index = ds->pebs_buffer_base;
1296 if (!test_bit(0, cpuc->active_mask))
1297 return;
1299 WARN_ON_ONCE(!event);
1301 if (!event->attr.precise_ip)
1302 return;
1304 n = top - at;
1305 if (n <= 0)
1306 return;
1308 __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1311 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1313 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1314 struct debug_store *ds = cpuc->ds;
1315 struct perf_event *event;
1316 void *base, *at, *top;
1317 short counts[MAX_PEBS_EVENTS] = {};
1318 short error[MAX_PEBS_EVENTS] = {};
1319 int bit, i;
1321 if (!x86_pmu.pebs_active)
1322 return;
1324 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1325 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1327 ds->pebs_index = ds->pebs_buffer_base;
1329 if (unlikely(base >= top))
1330 return;
1332 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1333 struct pebs_record_nhm *p = at;
1334 u64 pebs_status;
1336 pebs_status = p->status & cpuc->pebs_enabled;
1337 pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;
1339 /* PEBS v3 has more accurate status bits */
1340 if (x86_pmu.intel_cap.pebs_format >= 3) {
1341 for_each_set_bit(bit, (unsigned long *)&pebs_status,
1342 x86_pmu.max_pebs_events)
1343 counts[bit]++;
1345 continue;
1349 * On some CPUs the PEBS status can be zero when PEBS is
1350 * racing with clearing of GLOBAL_STATUS.
1352 * Normally we would drop that record, but in the
1353 * case when there is only a single active PEBS event
1354 * we can assume it's for that event.
1356 if (!pebs_status && cpuc->pebs_enabled &&
1357 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1358 pebs_status = cpuc->pebs_enabled;
1360 bit = find_first_bit((unsigned long *)&pebs_status,
1361 x86_pmu.max_pebs_events);
1362 if (bit >= x86_pmu.max_pebs_events)
1363 continue;
1366 * The PEBS hardware does not deal well with the situation
1367 * when events happen near to each other and multiple bits
1368 * are set. But it should happen rarely.
1370 * If these events include one PEBS and multiple non-PEBS
1371 * events, it doesn't impact PEBS record. The record will
1372 * be handled normally. (slow path)
1374 * If these events include two or more PEBS events, the
1375 * records for the events can be collapsed into a single
1376 * one, and it's not possible to reconstruct all events
1377 * that caused the PEBS record. It's called collision.
1378 * If collision happened, the record will be dropped.
1380 if (p->status != (1ULL << bit)) {
1381 for_each_set_bit(i, (unsigned long *)&pebs_status,
1382 x86_pmu.max_pebs_events)
1383 error[i]++;
1384 continue;
1387 counts[bit]++;
1390 for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1391 if ((counts[bit] == 0) && (error[bit] == 0))
1392 continue;
1394 event = cpuc->events[bit];
1395 if (WARN_ON_ONCE(!event))
1396 continue;
1398 if (WARN_ON_ONCE(!event->attr.precise_ip))
1399 continue;
1401 /* log dropped samples number */
1402 if (error[bit]) {
1403 perf_log_lost_samples(event, error[bit]);
1405 if (perf_event_account_interrupt(event))
1406 x86_pmu_stop(event, 0);
1409 if (counts[bit]) {
1410 __intel_pmu_pebs_event(event, iregs, base,
1411 top, bit, counts[bit]);
1417 * BTS, PEBS probe and setup
1420 void __init intel_ds_init(void)
1423 * No support for 32bit formats
1425 if (!boot_cpu_has(X86_FEATURE_DTES64))
1426 return;
1428 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
1429 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1430 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1431 if (x86_pmu.pebs) {
1432 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
1433 int format = x86_pmu.intel_cap.pebs_format;
1435 switch (format) {
1436 case 0:
1437 pr_cont("PEBS fmt0%c, ", pebs_type);
1438 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1440 * Using >PAGE_SIZE buffers makes the WRMSR to
1441 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
1442 * mysteriously hang on Core2.
1444 * As a workaround, we don't do this.
1446 x86_pmu.pebs_buffer_size = PAGE_SIZE;
1447 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1448 break;
1450 case 1:
1451 pr_cont("PEBS fmt1%c, ", pebs_type);
1452 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1453 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1454 break;
1456 case 2:
1457 pr_cont("PEBS fmt2%c, ", pebs_type);
1458 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1459 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1460 break;
1462 case 3:
1463 pr_cont("PEBS fmt3%c, ", pebs_type);
1464 x86_pmu.pebs_record_size =
1465 sizeof(struct pebs_record_skl);
1466 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1467 x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1468 break;
1470 default:
1471 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
1472 x86_pmu.pebs = 0;
1477 void perf_restore_debug_store(void)
1479 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1481 if (!x86_pmu.bts && !x86_pmu.pebs)
1482 return;
1484 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);