2 * Kernel-based Virtual Machine driver for Linux
3 * cpuid support routines
5 * derived from arch/x86/kvm/x86.c
7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8 * Copyright IBM Corporation, 2008
10 * This work is licensed under the terms of the GNU GPL, version 2. See
11 * the COPYING file in the top-level directory.
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <linux/sched/stat.h>
21 #include <asm/processor.h>
23 #include <asm/fpu/xstate.h>
30 static u32
xstate_required_size(u64 xstate_bv
, bool compacted
)
33 u32 ret
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
35 xstate_bv
&= XFEATURE_MASK_EXTEND
;
37 if (xstate_bv
& 0x1) {
38 u32 eax
, ebx
, ecx
, edx
, offset
;
39 cpuid_count(0xD, feature_bit
, &eax
, &ebx
, &ecx
, &edx
);
40 offset
= compacted
? ret
: ebx
;
41 ret
= max(ret
, offset
+ eax
);
51 bool kvm_mpx_supported(void)
53 return ((host_xcr0
& (XFEATURE_MASK_BNDREGS
| XFEATURE_MASK_BNDCSR
))
54 && kvm_x86_ops
->mpx_supported());
56 EXPORT_SYMBOL_GPL(kvm_mpx_supported
);
58 u64
kvm_supported_xcr0(void)
60 u64 xcr0
= KVM_SUPPORTED_XCR0
& host_xcr0
;
62 if (!kvm_mpx_supported())
63 xcr0
&= ~(XFEATURE_MASK_BNDREGS
| XFEATURE_MASK_BNDCSR
);
68 #define F(x) bit(X86_FEATURE_##x)
70 /* These are scattered features in cpufeatures.h. */
71 #define KVM_CPUID_BIT_AVX512_4VNNIW 2
72 #define KVM_CPUID_BIT_AVX512_4FMAPS 3
73 #define KF(x) bit(KVM_CPUID_BIT_##x)
75 int kvm_update_cpuid(struct kvm_vcpu
*vcpu
)
77 struct kvm_cpuid_entry2
*best
;
78 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
80 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
84 /* Update OSXSAVE bit */
85 if (boot_cpu_has(X86_FEATURE_XSAVE
) && best
->function
== 0x1) {
86 best
->ecx
&= ~F(OSXSAVE
);
87 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
))
88 best
->ecx
|= F(OSXSAVE
);
91 best
->edx
&= ~F(APIC
);
92 if (vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_ENABLE
)
96 if (best
->ecx
& F(TSC_DEADLINE_TIMER
))
97 apic
->lapic_timer
.timer_mode_mask
= 3 << 17;
99 apic
->lapic_timer
.timer_mode_mask
= 1 << 17;
102 best
= kvm_find_cpuid_entry(vcpu
, 7, 0);
104 /* Update OSPKE bit */
105 if (boot_cpu_has(X86_FEATURE_PKU
) && best
->function
== 0x7) {
106 best
->ecx
&= ~F(OSPKE
);
107 if (kvm_read_cr4_bits(vcpu
, X86_CR4_PKE
))
108 best
->ecx
|= F(OSPKE
);
112 best
= kvm_find_cpuid_entry(vcpu
, 0xD, 0);
114 vcpu
->arch
.guest_supported_xcr0
= 0;
115 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
117 vcpu
->arch
.guest_supported_xcr0
=
118 (best
->eax
| ((u64
)best
->edx
<< 32)) &
119 kvm_supported_xcr0();
120 vcpu
->arch
.guest_xstate_size
= best
->ebx
=
121 xstate_required_size(vcpu
->arch
.xcr0
, false);
124 best
= kvm_find_cpuid_entry(vcpu
, 0xD, 1);
125 if (best
&& (best
->eax
& (F(XSAVES
) | F(XSAVEC
))))
126 best
->ebx
= xstate_required_size(vcpu
->arch
.xcr0
, true);
129 * The existing code assumes virtual address is 48-bit in the canonical
130 * address checks; exit if it is ever changed.
132 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
133 if (best
&& ((best
->eax
& 0xff00) >> 8) != 48 &&
134 ((best
->eax
& 0xff00) >> 8) != 0)
137 /* Update physical-address width */
138 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
140 kvm_pmu_refresh(vcpu
);
144 static int is_efer_nx(void)
146 unsigned long long efer
= 0;
148 rdmsrl_safe(MSR_EFER
, &efer
);
149 return efer
& EFER_NX
;
152 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
155 struct kvm_cpuid_entry2
*e
, *entry
;
158 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
159 e
= &vcpu
->arch
.cpuid_entries
[i
];
160 if (e
->function
== 0x80000001) {
165 if (entry
&& (entry
->edx
& F(NX
)) && !is_efer_nx()) {
166 entry
->edx
&= ~F(NX
);
167 printk(KERN_INFO
"kvm: guest NX capability removed\n");
171 int cpuid_query_maxphyaddr(struct kvm_vcpu
*vcpu
)
173 struct kvm_cpuid_entry2
*best
;
175 best
= kvm_find_cpuid_entry(vcpu
, 0x80000000, 0);
176 if (!best
|| best
->eax
< 0x80000008)
178 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
180 return best
->eax
& 0xff;
184 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr
);
186 /* when an old userspace process fills a new kernel module */
187 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
188 struct kvm_cpuid
*cpuid
,
189 struct kvm_cpuid_entry __user
*entries
)
192 struct kvm_cpuid_entry
*cpuid_entries
= NULL
;
195 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
199 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) *
204 if (copy_from_user(cpuid_entries
, entries
,
205 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
208 for (i
= 0; i
< cpuid
->nent
; i
++) {
209 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
210 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
211 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
212 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
213 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
214 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
215 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
216 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
217 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
218 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
220 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
221 cpuid_fix_nx_cap(vcpu
);
222 kvm_apic_set_version(vcpu
);
223 kvm_x86_ops
->cpuid_update(vcpu
);
224 r
= kvm_update_cpuid(vcpu
);
227 vfree(cpuid_entries
);
231 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
232 struct kvm_cpuid2
*cpuid
,
233 struct kvm_cpuid_entry2 __user
*entries
)
238 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
241 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
242 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
244 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
245 kvm_apic_set_version(vcpu
);
246 kvm_x86_ops
->cpuid_update(vcpu
);
247 r
= kvm_update_cpuid(vcpu
);
252 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
253 struct kvm_cpuid2
*cpuid
,
254 struct kvm_cpuid_entry2 __user
*entries
)
259 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
262 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
263 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
268 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
272 static void cpuid_mask(u32
*word
, int wordnum
)
274 *word
&= boot_cpu_data
.x86_capability
[wordnum
];
277 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
280 entry
->function
= function
;
281 entry
->index
= index
;
282 cpuid_count(entry
->function
, entry
->index
,
283 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
287 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2
*entry
,
288 u32 func
, u32 index
, int *nent
, int maxnent
)
292 entry
->eax
= 1; /* only one leaf currently */
296 entry
->ecx
= F(MOVBE
);
303 entry
->function
= func
;
304 entry
->index
= index
;
309 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
310 u32 index
, int *nent
, int maxnent
)
313 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
315 unsigned f_gbpages
= (kvm_x86_ops
->get_lpage_level() == PT_PDPE_LEVEL
)
317 unsigned f_lm
= F(LM
);
319 unsigned f_gbpages
= 0;
322 unsigned f_rdtscp
= kvm_x86_ops
->rdtscp_supported() ? F(RDTSCP
) : 0;
323 unsigned f_invpcid
= kvm_x86_ops
->invpcid_supported() ? F(INVPCID
) : 0;
324 unsigned f_mpx
= kvm_mpx_supported() ? F(MPX
) : 0;
325 unsigned f_xsaves
= kvm_x86_ops
->xsaves_supported() ? F(XSAVES
) : 0;
328 const u32 kvm_cpuid_1_edx_x86_features
=
329 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
330 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
331 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
332 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
333 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLUSH
) |
334 0 /* Reserved, DS, ACPI */ | F(MMX
) |
335 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
336 0 /* HTT, TM, Reserved, PBE */;
337 /* cpuid 0x80000001.edx */
338 const u32 kvm_cpuid_8000_0001_edx_x86_features
=
339 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
340 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
341 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
342 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
343 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
344 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
345 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| f_rdtscp
|
346 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
348 const u32 kvm_cpuid_1_ecx_x86_features
=
349 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
350 * but *not* advertised to guests via CPUID ! */
351 F(XMM3
) | F(PCLMULQDQ
) | 0 /* DTES64, MONITOR */ |
352 0 /* DS-CPL, VMX, SMX, EST */ |
353 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
354 F(FMA
) | F(CX16
) | 0 /* xTPR Update, PDCM */ |
355 F(PCID
) | 0 /* Reserved, DCA */ | F(XMM4_1
) |
356 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
357 0 /* Reserved*/ | F(AES
) | F(XSAVE
) | 0 /* OSXSAVE */ | F(AVX
) |
359 /* cpuid 0x80000001.ecx */
360 const u32 kvm_cpuid_8000_0001_ecx_x86_features
=
361 F(LAHF_LM
) | F(CMP_LEGACY
) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
362 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
363 F(3DNOWPREFETCH
) | F(OSVW
) | 0 /* IBS */ | F(XOP
) |
364 0 /* SKINIT, WDT, LWP */ | F(FMA4
) | F(TBM
);
366 /* cpuid 0xC0000001.edx */
367 const u32 kvm_cpuid_C000_0001_edx_x86_features
=
368 F(XSTORE
) | F(XSTORE_EN
) | F(XCRYPT
) | F(XCRYPT_EN
) |
369 F(ACE2
) | F(ACE2_EN
) | F(PHE
) | F(PHE_EN
) |
373 const u32 kvm_cpuid_7_0_ebx_x86_features
=
374 F(FSGSBASE
) | F(BMI1
) | F(HLE
) | F(AVX2
) | F(SMEP
) |
375 F(BMI2
) | F(ERMS
) | f_invpcid
| F(RTM
) | f_mpx
| F(RDSEED
) |
376 F(ADX
) | F(SMAP
) | F(AVX512IFMA
) | F(AVX512F
) | F(AVX512PF
) |
377 F(AVX512ER
) | F(AVX512CD
) | F(CLFLUSHOPT
) | F(CLWB
) | F(AVX512DQ
) |
378 F(SHA_NI
) | F(AVX512BW
) | F(AVX512VL
);
380 /* cpuid 0xD.1.eax */
381 const u32 kvm_cpuid_D_1_eax_x86_features
=
382 F(XSAVEOPT
) | F(XSAVEC
) | F(XGETBV1
) | f_xsaves
;
385 const u32 kvm_cpuid_7_0_ecx_x86_features
=
386 F(AVX512VBMI
) | F(PKU
) | 0 /*OSPKE*/ | F(AVX512_VPOPCNTDQ
);
389 const u32 kvm_cpuid_7_0_edx_x86_features
=
390 KF(AVX512_4VNNIW
) | KF(AVX512_4FMAPS
);
392 /* all calls to cpuid_count() should be made on the same cpu */
397 if (*nent
>= maxnent
)
400 do_cpuid_1_ent(entry
, function
, index
);
405 entry
->eax
= min(entry
->eax
, (u32
)0xd);
408 entry
->edx
&= kvm_cpuid_1_edx_x86_features
;
409 cpuid_mask(&entry
->edx
, CPUID_1_EDX
);
410 entry
->ecx
&= kvm_cpuid_1_ecx_x86_features
;
411 cpuid_mask(&entry
->ecx
, CPUID_1_ECX
);
412 /* we support x2apic emulation even if host does not support
413 * it since we emulate x2apic in software */
414 entry
->ecx
|= F(X2APIC
);
416 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
417 * may return different values. This forces us to get_cpu() before
418 * issuing the first command, and also to emulate this annoying behavior
419 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
421 int t
, times
= entry
->eax
& 0xff;
423 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
424 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
425 for (t
= 1; t
< times
; ++t
) {
426 if (*nent
>= maxnent
)
429 do_cpuid_1_ent(&entry
[t
], function
, 0);
430 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
435 /* function 4 has additional index. */
439 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
440 /* read more entries until cache_type is zero */
442 if (*nent
>= maxnent
)
445 cache_type
= entry
[i
- 1].eax
& 0x1f;
448 do_cpuid_1_ent(&entry
[i
], function
, i
);
450 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
455 case 6: /* Thermal management */
456 entry
->eax
= 0x4; /* allow ARAT */
462 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
463 /* Mask ebx against host capability word 9 */
465 entry
->ebx
&= kvm_cpuid_7_0_ebx_x86_features
;
466 cpuid_mask(&entry
->ebx
, CPUID_7_0_EBX
);
467 // TSC_ADJUST is emulated
468 entry
->ebx
|= F(TSC_ADJUST
);
469 entry
->ecx
&= kvm_cpuid_7_0_ecx_x86_features
;
470 cpuid_mask(&entry
->ecx
, CPUID_7_ECX
);
471 /* PKU is not yet implemented for shadow paging. */
472 if (!tdp_enabled
|| !boot_cpu_has(X86_FEATURE_OSPKE
))
473 entry
->ecx
&= ~F(PKU
);
474 entry
->edx
&= kvm_cpuid_7_0_edx_x86_features
;
475 entry
->edx
&= get_scattered_cpuid_leaf(7, 0, CPUID_EDX
);
486 case 0xa: { /* Architectural Performance Monitoring */
487 struct x86_pmu_capability cap
;
488 union cpuid10_eax eax
;
489 union cpuid10_edx edx
;
491 perf_get_x86_pmu_capability(&cap
);
494 * Only support guest architectural pmu on a host
495 * with architectural pmu.
498 memset(&cap
, 0, sizeof(cap
));
500 eax
.split
.version_id
= min(cap
.version
, 2);
501 eax
.split
.num_counters
= cap
.num_counters_gp
;
502 eax
.split
.bit_width
= cap
.bit_width_gp
;
503 eax
.split
.mask_length
= cap
.events_mask_len
;
505 edx
.split
.num_counters_fixed
= cap
.num_counters_fixed
;
506 edx
.split
.bit_width_fixed
= cap
.bit_width_fixed
;
507 edx
.split
.reserved
= 0;
509 entry
->eax
= eax
.full
;
510 entry
->ebx
= cap
.events_mask
;
512 entry
->edx
= edx
.full
;
515 /* function 0xb has additional index. */
519 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
520 /* read more entries until level_type is zero */
522 if (*nent
>= maxnent
)
525 level_type
= entry
[i
- 1].ecx
& 0xff00;
528 do_cpuid_1_ent(&entry
[i
], function
, i
);
530 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
537 u64 supported
= kvm_supported_xcr0();
539 entry
->eax
&= supported
;
540 entry
->ebx
= xstate_required_size(supported
, false);
541 entry
->ecx
= entry
->ebx
;
542 entry
->edx
&= supported
>> 32;
543 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
547 for (idx
= 1, i
= 1; idx
< 64; ++idx
) {
548 u64 mask
= ((u64
)1 << idx
);
549 if (*nent
>= maxnent
)
552 do_cpuid_1_ent(&entry
[i
], function
, idx
);
554 entry
[i
].eax
&= kvm_cpuid_D_1_eax_x86_features
;
555 cpuid_mask(&entry
[i
].eax
, CPUID_D_1_EAX
);
557 if (entry
[i
].eax
& (F(XSAVES
)|F(XSAVEC
)))
559 xstate_required_size(supported
,
562 if (entry
[i
].eax
== 0 || !(supported
& mask
))
564 if (WARN_ON_ONCE(entry
[i
].ecx
& 1))
570 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
576 case KVM_CPUID_SIGNATURE
: {
577 static const char signature
[12] = "KVMKVMKVM\0\0";
578 const u32
*sigptr
= (const u32
*)signature
;
579 entry
->eax
= KVM_CPUID_FEATURES
;
580 entry
->ebx
= sigptr
[0];
581 entry
->ecx
= sigptr
[1];
582 entry
->edx
= sigptr
[2];
585 case KVM_CPUID_FEATURES
:
586 entry
->eax
= (1 << KVM_FEATURE_CLOCKSOURCE
) |
587 (1 << KVM_FEATURE_NOP_IO_DELAY
) |
588 (1 << KVM_FEATURE_CLOCKSOURCE2
) |
589 (1 << KVM_FEATURE_ASYNC_PF
) |
590 (1 << KVM_FEATURE_PV_EOI
) |
591 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT
) |
592 (1 << KVM_FEATURE_PV_UNHALT
);
595 entry
->eax
|= (1 << KVM_FEATURE_STEAL_TIME
);
602 entry
->eax
= min(entry
->eax
, 0x8000001a);
605 entry
->edx
&= kvm_cpuid_8000_0001_edx_x86_features
;
606 cpuid_mask(&entry
->edx
, CPUID_8000_0001_EDX
);
607 entry
->ecx
&= kvm_cpuid_8000_0001_ecx_x86_features
;
608 cpuid_mask(&entry
->ecx
, CPUID_8000_0001_ECX
);
610 case 0x80000007: /* Advanced power management */
611 /* invariant TSC is CPUID.80000007H:EDX[8] */
612 entry
->edx
&= (1 << 8);
613 /* mask against host */
614 entry
->edx
&= boot_cpu_data
.x86_power
;
615 entry
->eax
= entry
->ebx
= entry
->ecx
= 0;
618 unsigned g_phys_as
= (entry
->eax
>> 16) & 0xff;
619 unsigned virt_as
= max((entry
->eax
>> 8) & 0xff, 48U);
620 unsigned phys_as
= entry
->eax
& 0xff;
624 entry
->eax
= g_phys_as
| (virt_as
<< 8);
625 entry
->ebx
= entry
->edx
= 0;
629 entry
->ecx
= entry
->edx
= 0;
635 /*Add support for Centaur's CPUID instruction*/
637 /*Just support up to 0xC0000004 now*/
638 entry
->eax
= min(entry
->eax
, 0xC0000004);
641 entry
->edx
&= kvm_cpuid_C000_0001_edx_x86_features
;
642 cpuid_mask(&entry
->edx
, CPUID_C000_0001_EDX
);
644 case 3: /* Processor serial number */
645 case 5: /* MONITOR/MWAIT */
650 entry
->eax
= entry
->ebx
= entry
->ecx
= entry
->edx
= 0;
654 kvm_x86_ops
->set_supported_cpuid(function
, entry
);
664 static int do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 func
,
665 u32 idx
, int *nent
, int maxnent
, unsigned int type
)
667 if (type
== KVM_GET_EMULATED_CPUID
)
668 return __do_cpuid_ent_emulated(entry
, func
, idx
, nent
, maxnent
);
670 return __do_cpuid_ent(entry
, func
, idx
, nent
, maxnent
);
675 struct kvm_cpuid_param
{
679 bool (*qualifier
)(const struct kvm_cpuid_param
*param
);
682 static bool is_centaur_cpu(const struct kvm_cpuid_param
*param
)
684 return boot_cpu_data
.x86_vendor
== X86_VENDOR_CENTAUR
;
687 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user
*entries
,
688 __u32 num_entries
, unsigned int ioctl_type
)
693 if (ioctl_type
!= KVM_GET_EMULATED_CPUID
)
697 * We want to make sure that ->padding is being passed clean from
698 * userspace in case we want to use it for something in the future.
700 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
701 * have to give ourselves satisfied only with the emulated side. /me
704 for (i
= 0; i
< num_entries
; i
++) {
705 if (copy_from_user(pad
, entries
[i
].padding
, sizeof(pad
)))
708 if (pad
[0] || pad
[1] || pad
[2])
714 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2
*cpuid
,
715 struct kvm_cpuid_entry2 __user
*entries
,
718 struct kvm_cpuid_entry2
*cpuid_entries
;
719 int limit
, nent
= 0, r
= -E2BIG
, i
;
721 static const struct kvm_cpuid_param param
[] = {
722 { .func
= 0, .has_leaf_count
= true },
723 { .func
= 0x80000000, .has_leaf_count
= true },
724 { .func
= 0xC0000000, .qualifier
= is_centaur_cpu
, .has_leaf_count
= true },
725 { .func
= KVM_CPUID_SIGNATURE
},
726 { .func
= KVM_CPUID_FEATURES
},
731 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
732 cpuid
->nent
= KVM_MAX_CPUID_ENTRIES
;
734 if (sanity_check_entries(entries
, cpuid
->nent
, type
))
738 cpuid_entries
= vzalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
743 for (i
= 0; i
< ARRAY_SIZE(param
); i
++) {
744 const struct kvm_cpuid_param
*ent
= ¶m
[i
];
746 if (ent
->qualifier
&& !ent
->qualifier(ent
))
749 r
= do_cpuid_ent(&cpuid_entries
[nent
], ent
->func
, ent
->idx
,
750 &nent
, cpuid
->nent
, type
);
755 if (!ent
->has_leaf_count
)
758 limit
= cpuid_entries
[nent
- 1].eax
;
759 for (func
= ent
->func
+ 1; func
<= limit
&& nent
< cpuid
->nent
&& r
== 0; ++func
)
760 r
= do_cpuid_ent(&cpuid_entries
[nent
], func
, ent
->idx
,
761 &nent
, cpuid
->nent
, type
);
768 if (copy_to_user(entries
, cpuid_entries
,
769 nent
* sizeof(struct kvm_cpuid_entry2
)))
775 vfree(cpuid_entries
);
780 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
782 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
783 struct kvm_cpuid_entry2
*ej
;
785 int nent
= vcpu
->arch
.cpuid_nent
;
787 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
788 /* when no next entry is found, the current entry[i] is reselected */
791 ej
= &vcpu
->arch
.cpuid_entries
[j
];
792 } while (ej
->function
!= e
->function
);
794 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
799 /* find an entry with matching function, matching index (if needed), and that
800 * should be read next (if it's stateful) */
801 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
802 u32 function
, u32 index
)
804 if (e
->function
!= function
)
806 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
808 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
809 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
814 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
815 u32 function
, u32 index
)
818 struct kvm_cpuid_entry2
*best
= NULL
;
820 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
821 struct kvm_cpuid_entry2
*e
;
823 e
= &vcpu
->arch
.cpuid_entries
[i
];
824 if (is_matching_cpuid_entry(e
, function
, index
)) {
825 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
826 move_to_next_stateful_cpuid_entry(vcpu
, i
);
833 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry
);
836 * If no match is found, check whether we exceed the vCPU's limit
837 * and return the content of the highest valid _standard_ leaf instead.
838 * This is to satisfy the CPUID specification.
840 static struct kvm_cpuid_entry2
* check_cpuid_limit(struct kvm_vcpu
*vcpu
,
841 u32 function
, u32 index
)
843 struct kvm_cpuid_entry2
*maxlevel
;
845 maxlevel
= kvm_find_cpuid_entry(vcpu
, function
& 0x80000000, 0);
846 if (!maxlevel
|| maxlevel
->eax
>= function
)
848 if (function
& 0x80000000) {
849 maxlevel
= kvm_find_cpuid_entry(vcpu
, 0, 0);
853 return kvm_find_cpuid_entry(vcpu
, maxlevel
->eax
, index
);
856 void kvm_cpuid(struct kvm_vcpu
*vcpu
, u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
858 u32 function
= *eax
, index
= *ecx
;
859 struct kvm_cpuid_entry2
*best
;
861 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
864 best
= check_cpuid_limit(vcpu
, function
, index
);
872 *eax
= *ebx
= *ecx
= *edx
= 0;
873 trace_kvm_cpuid(function
, *eax
, *ebx
, *ecx
, *edx
);
875 EXPORT_SYMBOL_GPL(kvm_cpuid
);
877 int kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
879 u32 eax
, ebx
, ecx
, edx
;
881 if (cpuid_fault_enabled(vcpu
) && !kvm_require_cpl(vcpu
, 0))
884 eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
885 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
886 kvm_cpuid(vcpu
, &eax
, &ebx
, &ecx
, &edx
);
887 kvm_register_write(vcpu
, VCPU_REGS_RAX
, eax
);
888 kvm_register_write(vcpu
, VCPU_REGS_RBX
, ebx
);
889 kvm_register_write(vcpu
, VCPU_REGS_RCX
, ecx
);
890 kvm_register_write(vcpu
, VCPU_REGS_RDX
, edx
);
891 return kvm_skip_emulated_instruction(vcpu
);
893 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);