Linux 4.13.16
[linux/fpc-iii.git] / arch / x86 / kvm / mtrr.c
blob0149ac59c273c15921bbe2a8cff7d9427e6a0976
1 /*
2 * vMTRR implementation
4 * Copyright (C) 2006 Qumranet, Inc.
5 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6 * Copyright(C) 2015 Intel Corporation.
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 * Marcelo Tosatti <mtosatti@redhat.com>
12 * Paolo Bonzini <pbonzini@redhat.com>
13 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
19 #include <linux/kvm_host.h>
20 #include <asm/mtrr.h>
22 #include "cpuid.h"
23 #include "mmu.h"
25 #define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
26 #define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
27 #define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
29 static bool msr_mtrr_valid(unsigned msr)
31 switch (msr) {
32 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
33 case MSR_MTRRfix64K_00000:
34 case MSR_MTRRfix16K_80000:
35 case MSR_MTRRfix16K_A0000:
36 case MSR_MTRRfix4K_C0000:
37 case MSR_MTRRfix4K_C8000:
38 case MSR_MTRRfix4K_D0000:
39 case MSR_MTRRfix4K_D8000:
40 case MSR_MTRRfix4K_E0000:
41 case MSR_MTRRfix4K_E8000:
42 case MSR_MTRRfix4K_F0000:
43 case MSR_MTRRfix4K_F8000:
44 case MSR_MTRRdefType:
45 case MSR_IA32_CR_PAT:
46 return true;
48 return false;
51 static bool valid_pat_type(unsigned t)
53 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
56 static bool valid_mtrr_type(unsigned t)
58 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
61 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
63 int i;
64 u64 mask;
66 if (!msr_mtrr_valid(msr))
67 return false;
69 if (msr == MSR_IA32_CR_PAT) {
70 for (i = 0; i < 8; i++)
71 if (!valid_pat_type((data >> (i * 8)) & 0xff))
72 return false;
73 return true;
74 } else if (msr == MSR_MTRRdefType) {
75 if (data & ~0xcff)
76 return false;
77 return valid_mtrr_type(data & 0xff);
78 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
79 for (i = 0; i < 8 ; i++)
80 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
81 return false;
82 return true;
85 /* variable MTRRs */
86 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
88 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
89 if ((msr & 1) == 0) {
90 /* MTRR base */
91 if (!valid_mtrr_type(data & 0xff))
92 return false;
93 mask |= 0xf00;
94 } else
95 /* MTRR mask */
96 mask |= 0x7ff;
97 if (data & mask) {
98 kvm_inject_gp(vcpu, 0);
99 return false;
102 return true;
104 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
106 static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
108 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
111 static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
113 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
116 static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
118 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
121 static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
124 * Intel SDM 11.11.2.2: all MTRRs are disabled when
125 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
126 * memory type is applied to all of physical memory.
128 * However, virtual machines can be run with CPUID such that
129 * there are no MTRRs. In that case, the firmware will never
130 * enable MTRRs and it is obviously undesirable to run the
131 * guest entirely with UC memory and we use WB.
133 if (guest_cpuid_has_mtrr(vcpu))
134 return MTRR_TYPE_UNCACHABLE;
135 else
136 return MTRR_TYPE_WRBACK;
140 * Three terms are used in the following code:
141 * - segment, it indicates the address segments covered by fixed MTRRs.
142 * - unit, it corresponds to the MSR entry in the segment.
143 * - range, a range is covered in one memory cache type.
145 struct fixed_mtrr_segment {
146 u64 start;
147 u64 end;
149 int range_shift;
151 /* the start position in kvm_mtrr.fixed_ranges[]. */
152 int range_start;
155 static struct fixed_mtrr_segment fixed_seg_table[] = {
156 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
158 .start = 0x0,
159 .end = 0x80000,
160 .range_shift = 16, /* 64K */
161 .range_start = 0,
165 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
166 * 16K fixed mtrr.
169 .start = 0x80000,
170 .end = 0xc0000,
171 .range_shift = 14, /* 16K */
172 .range_start = 8,
176 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
177 * 4K fixed mtrr.
180 .start = 0xc0000,
181 .end = 0x100000,
182 .range_shift = 12, /* 12K */
183 .range_start = 24,
188 * The size of unit is covered in one MSR, one MSR entry contains
189 * 8 ranges so that unit size is always 8 * 2^range_shift.
191 static u64 fixed_mtrr_seg_unit_size(int seg)
193 return 8 << fixed_seg_table[seg].range_shift;
196 static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
198 switch (msr) {
199 case MSR_MTRRfix64K_00000:
200 *seg = 0;
201 *unit = 0;
202 break;
203 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
204 *seg = 1;
205 *unit = msr - MSR_MTRRfix16K_80000;
206 break;
207 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
208 *seg = 2;
209 *unit = msr - MSR_MTRRfix4K_C0000;
210 break;
211 default:
212 return false;
215 return true;
218 static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
220 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
221 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
223 *start = mtrr_seg->start + unit * unit_size;
224 *end = *start + unit_size;
225 WARN_ON(*end > mtrr_seg->end);
228 static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
230 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
232 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
233 > mtrr_seg->end);
235 /* each unit has 8 ranges. */
236 return mtrr_seg->range_start + 8 * unit;
239 static int fixed_mtrr_seg_end_range_index(int seg)
241 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
242 int n;
244 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
245 return mtrr_seg->range_start + n - 1;
248 static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
250 int seg, unit;
252 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
253 return false;
255 fixed_mtrr_seg_unit_range(seg, unit, start, end);
256 return true;
259 static int fixed_msr_to_range_index(u32 msr)
261 int seg, unit;
263 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
264 return -1;
266 return fixed_mtrr_seg_unit_range_index(seg, unit);
269 static int fixed_mtrr_addr_to_seg(u64 addr)
271 struct fixed_mtrr_segment *mtrr_seg;
272 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
274 for (seg = 0; seg < seg_num; seg++) {
275 mtrr_seg = &fixed_seg_table[seg];
276 if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
277 return seg;
280 return -1;
283 static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
285 struct fixed_mtrr_segment *mtrr_seg;
286 int index;
288 mtrr_seg = &fixed_seg_table[seg];
289 index = mtrr_seg->range_start;
290 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
291 return index;
294 static u64 fixed_mtrr_range_end_addr(int seg, int index)
296 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
297 int pos = index - mtrr_seg->range_start;
299 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
302 static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
304 u64 mask;
306 *start = range->base & PAGE_MASK;
308 mask = range->mask & PAGE_MASK;
310 /* This cannot overflow because writing to the reserved bits of
311 * variable MTRRs causes a #GP.
313 *end = (*start | ~mask) + 1;
316 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
318 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
319 gfn_t start, end;
320 int index;
322 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
323 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
324 return;
326 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
327 return;
329 /* fixed MTRRs. */
330 if (fixed_msr_to_range(msr, &start, &end)) {
331 if (!fixed_mtrr_is_enabled(mtrr_state))
332 return;
333 } else if (msr == MSR_MTRRdefType) {
334 start = 0x0;
335 end = ~0ULL;
336 } else {
337 /* variable range MTRRs. */
338 index = (msr - 0x200) / 2;
339 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
342 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
345 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
347 return (range->mask & (1 << 11)) != 0;
350 static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
352 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
353 struct kvm_mtrr_range *tmp, *cur;
354 int index, is_mtrr_mask;
356 index = (msr - 0x200) / 2;
357 is_mtrr_mask = msr - 0x200 - 2 * index;
358 cur = &mtrr_state->var_ranges[index];
360 /* remove the entry if it's in the list. */
361 if (var_mtrr_range_is_valid(cur))
362 list_del(&mtrr_state->var_ranges[index].node);
364 /* Extend the mask with all 1 bits to the left, since those
365 * bits must implicitly be 0. The bits are then cleared
366 * when reading them.
368 if (!is_mtrr_mask)
369 cur->base = data;
370 else
371 cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
373 /* add it to the list if it's enabled. */
374 if (var_mtrr_range_is_valid(cur)) {
375 list_for_each_entry(tmp, &mtrr_state->head, node)
376 if (cur->base >= tmp->base)
377 break;
378 list_add_tail(&cur->node, &tmp->node);
382 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
384 int index;
386 if (!kvm_mtrr_valid(vcpu, msr, data))
387 return 1;
389 index = fixed_msr_to_range_index(msr);
390 if (index >= 0)
391 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
392 else if (msr == MSR_MTRRdefType)
393 vcpu->arch.mtrr_state.deftype = data;
394 else if (msr == MSR_IA32_CR_PAT)
395 vcpu->arch.pat = data;
396 else
397 set_var_mtrr_msr(vcpu, msr, data);
399 update_mtrr(vcpu, msr);
400 return 0;
403 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
405 int index;
407 /* MSR_MTRRcap is a readonly MSR. */
408 if (msr == MSR_MTRRcap) {
410 * SMRR = 0
411 * WC = 1
412 * FIX = 1
413 * VCNT = KVM_NR_VAR_MTRR
415 *pdata = 0x500 | KVM_NR_VAR_MTRR;
416 return 0;
419 if (!msr_mtrr_valid(msr))
420 return 1;
422 index = fixed_msr_to_range_index(msr);
423 if (index >= 0)
424 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
425 else if (msr == MSR_MTRRdefType)
426 *pdata = vcpu->arch.mtrr_state.deftype;
427 else if (msr == MSR_IA32_CR_PAT)
428 *pdata = vcpu->arch.pat;
429 else { /* Variable MTRRs */
430 int is_mtrr_mask;
432 index = (msr - 0x200) / 2;
433 is_mtrr_mask = msr - 0x200 - 2 * index;
434 if (!is_mtrr_mask)
435 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
436 else
437 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
439 *pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
442 return 0;
445 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
447 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
450 struct mtrr_iter {
451 /* input fields. */
452 struct kvm_mtrr *mtrr_state;
453 u64 start;
454 u64 end;
456 /* output fields. */
457 int mem_type;
458 /* mtrr is completely disabled? */
459 bool mtrr_disabled;
460 /* [start, end) is not fully covered in MTRRs? */
461 bool partial_map;
463 /* private fields. */
464 union {
465 /* used for fixed MTRRs. */
466 struct {
467 int index;
468 int seg;
471 /* used for var MTRRs. */
472 struct {
473 struct kvm_mtrr_range *range;
474 /* max address has been covered in var MTRRs. */
475 u64 start_max;
479 bool fixed;
482 static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
484 int seg, index;
486 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
487 return false;
489 seg = fixed_mtrr_addr_to_seg(iter->start);
490 if (seg < 0)
491 return false;
493 iter->fixed = true;
494 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
495 iter->index = index;
496 iter->seg = seg;
497 return true;
500 static bool match_var_range(struct mtrr_iter *iter,
501 struct kvm_mtrr_range *range)
503 u64 start, end;
505 var_mtrr_range(range, &start, &end);
506 if (!(start >= iter->end || end <= iter->start)) {
507 iter->range = range;
510 * the function is called when we do kvm_mtrr.head walking.
511 * Range has the minimum base address which interleaves
512 * [looker->start_max, looker->end).
514 iter->partial_map |= iter->start_max < start;
516 /* update the max address has been covered. */
517 iter->start_max = max(iter->start_max, end);
518 return true;
521 return false;
524 static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
526 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
528 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
529 if (match_var_range(iter, iter->range))
530 return;
532 iter->range = NULL;
533 iter->partial_map |= iter->start_max < iter->end;
536 static void mtrr_lookup_var_start(struct mtrr_iter *iter)
538 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
540 iter->fixed = false;
541 iter->start_max = iter->start;
542 iter->range = NULL;
543 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
545 __mtrr_lookup_var_next(iter);
548 static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
550 /* terminate the lookup. */
551 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
552 iter->fixed = false;
553 iter->range = NULL;
554 return;
557 iter->index++;
559 /* have looked up for all fixed MTRRs. */
560 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
561 return mtrr_lookup_var_start(iter);
563 /* switch to next segment. */
564 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
565 iter->seg++;
568 static void mtrr_lookup_var_next(struct mtrr_iter *iter)
570 __mtrr_lookup_var_next(iter);
573 static void mtrr_lookup_start(struct mtrr_iter *iter)
575 if (!mtrr_is_enabled(iter->mtrr_state)) {
576 iter->mtrr_disabled = true;
577 return;
580 if (!mtrr_lookup_fixed_start(iter))
581 mtrr_lookup_var_start(iter);
584 static void mtrr_lookup_init(struct mtrr_iter *iter,
585 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
587 iter->mtrr_state = mtrr_state;
588 iter->start = start;
589 iter->end = end;
590 iter->mtrr_disabled = false;
591 iter->partial_map = false;
592 iter->fixed = false;
593 iter->range = NULL;
595 mtrr_lookup_start(iter);
598 static bool mtrr_lookup_okay(struct mtrr_iter *iter)
600 if (iter->fixed) {
601 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
602 return true;
605 if (iter->range) {
606 iter->mem_type = iter->range->base & 0xff;
607 return true;
610 return false;
613 static void mtrr_lookup_next(struct mtrr_iter *iter)
615 if (iter->fixed)
616 mtrr_lookup_fixed_next(iter);
617 else
618 mtrr_lookup_var_next(iter);
621 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
622 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
623 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
625 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
627 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
628 struct mtrr_iter iter;
629 u64 start, end;
630 int type = -1;
631 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
632 | (1 << MTRR_TYPE_WRTHROUGH);
634 start = gfn_to_gpa(gfn);
635 end = start + PAGE_SIZE;
637 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
638 int curr_type = iter.mem_type;
641 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
642 * Precedences.
645 if (type == -1) {
646 type = curr_type;
647 continue;
651 * If two or more variable memory ranges match and the
652 * memory types are identical, then that memory type is
653 * used.
655 if (type == curr_type)
656 continue;
659 * If two or more variable memory ranges match and one of
660 * the memory types is UC, the UC memory type used.
662 if (curr_type == MTRR_TYPE_UNCACHABLE)
663 return MTRR_TYPE_UNCACHABLE;
666 * If two or more variable memory ranges match and the
667 * memory types are WT and WB, the WT memory type is used.
669 if (((1 << type) & wt_wb_mask) &&
670 ((1 << curr_type) & wt_wb_mask)) {
671 type = MTRR_TYPE_WRTHROUGH;
672 continue;
676 * For overlaps not defined by the above rules, processor
677 * behavior is undefined.
680 /* We use WB for this undefined behavior. :( */
681 return MTRR_TYPE_WRBACK;
684 if (iter.mtrr_disabled)
685 return mtrr_disabled_type(vcpu);
687 /* not contained in any MTRRs. */
688 if (type == -1)
689 return mtrr_default_type(mtrr_state);
692 * We just check one page, partially covered by MTRRs is
693 * impossible.
695 WARN_ON(iter.partial_map);
697 return type;
699 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
701 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
702 int page_num)
704 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
705 struct mtrr_iter iter;
706 u64 start, end;
707 int type = -1;
709 start = gfn_to_gpa(gfn);
710 end = gfn_to_gpa(gfn + page_num);
711 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
712 if (type == -1) {
713 type = iter.mem_type;
714 continue;
717 if (type != iter.mem_type)
718 return false;
721 if (iter.mtrr_disabled)
722 return true;
724 if (!iter.partial_map)
725 return true;
727 if (type == -1)
728 return true;
730 return type == mtrr_default_type(mtrr_state);