2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
44 #include <asm/virtext.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
64 static const struct x86_cpu_id vmx_cpu_id
[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX
),
68 MODULE_DEVICE_TABLE(x86cpu
, vmx_cpu_id
);
70 static bool __read_mostly enable_vpid
= 1;
71 module_param_named(vpid
, enable_vpid
, bool, 0444);
73 static bool __read_mostly flexpriority_enabled
= 1;
74 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
76 static bool __read_mostly enable_ept
= 1;
77 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
79 static bool __read_mostly enable_unrestricted_guest
= 1;
80 module_param_named(unrestricted_guest
,
81 enable_unrestricted_guest
, bool, S_IRUGO
);
83 static bool __read_mostly enable_ept_ad_bits
= 1;
84 module_param_named(eptad
, enable_ept_ad_bits
, bool, S_IRUGO
);
86 static bool __read_mostly emulate_invalid_guest_state
= true;
87 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
89 static bool __read_mostly fasteoi
= 1;
90 module_param(fasteoi
, bool, S_IRUGO
);
92 static bool __read_mostly enable_apicv
= 1;
93 module_param(enable_apicv
, bool, S_IRUGO
);
95 static bool __read_mostly enable_shadow_vmcs
= 1;
96 module_param_named(enable_shadow_vmcs
, enable_shadow_vmcs
, bool, S_IRUGO
);
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
102 static bool __read_mostly nested
= 0;
103 module_param(nested
, bool, S_IRUGO
);
105 static u64 __read_mostly host_xss
;
107 static bool __read_mostly enable_pml
= 1;
108 module_param_named(pml
, enable_pml
, bool, S_IRUGO
);
110 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
113 static int __read_mostly cpu_preemption_timer_multi
;
114 static bool __read_mostly enable_preemption_timer
= 1;
116 module_param_named(preemption_timer
, enable_preemption_timer
, bool, S_IRUGO
);
119 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
121 #define KVM_VM_CR0_ALWAYS_ON \
122 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
123 #define KVM_CR4_GUEST_OWNED_BITS \
124 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
125 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
127 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
130 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
132 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
135 * Hyper-V requires all of these, so mark them as supported even though
136 * they are just treated the same as all-context.
138 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
139 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
140 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
141 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146 * ple_gap: upper bound on the amount of time between two successive
147 * executions of PAUSE in a loop. Also indicate if ple enabled.
148 * According to test, this time is usually smaller than 128 cycles.
149 * ple_window: upper bound on the amount of time a guest is allowed to execute
150 * in a PAUSE loop. Tests indicate that most spinlocks are held for
151 * less than 2^12 cycles
152 * Time is measured based on a counter that runs at the same rate as the TSC,
153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
155 #define KVM_VMX_DEFAULT_PLE_GAP 128
156 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
160 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
162 static int ple_gap
= KVM_VMX_DEFAULT_PLE_GAP
;
163 module_param(ple_gap
, int, S_IRUGO
);
165 static int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
166 module_param(ple_window
, int, S_IRUGO
);
168 /* Default doubles per-vcpu window every exit. */
169 static int ple_window_grow
= KVM_VMX_DEFAULT_PLE_WINDOW_GROW
;
170 module_param(ple_window_grow
, int, S_IRUGO
);
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static int ple_window_shrink
= KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK
;
174 module_param(ple_window_shrink
, int, S_IRUGO
);
176 /* Default is to compute the maximum so we can never overflow. */
177 static int ple_window_actual_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
178 static int ple_window_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
179 module_param(ple_window_max
, int, S_IRUGO
);
181 extern const ulong vmx_return
;
183 #define NR_AUTOLOAD_MSRS 8
184 #define VMCS02_POOL_SIZE 1
193 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195 * loaded on this CPU (so we can clear them if the CPU goes down).
199 struct vmcs
*shadow_vmcs
;
202 bool nmi_known_unmasked
;
203 unsigned long vmcs_host_cr3
; /* May not match real cr3 */
204 unsigned long vmcs_host_cr4
; /* May not match real cr4 */
205 struct list_head loaded_vmcss_on_cpu_link
;
208 struct shared_msr_entry
{
215 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
216 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
217 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
218 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
219 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
220 * More than one of these structures may exist, if L1 runs multiple L2 guests.
221 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
222 * underlying hardware which will be used to run L2.
223 * This structure is packed to ensure that its layout is identical across
224 * machines (necessary for live migration).
225 * If there are changes in this struct, VMCS12_REVISION must be changed.
227 typedef u64 natural_width
;
228 struct __packed vmcs12
{
229 /* According to the Intel spec, a VMCS region must start with the
230 * following two fields. Then follow implementation-specific data.
235 u32 launch_state
; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
236 u32 padding
[7]; /* room for future expansion */
241 u64 vm_exit_msr_store_addr
;
242 u64 vm_exit_msr_load_addr
;
243 u64 vm_entry_msr_load_addr
;
245 u64 virtual_apic_page_addr
;
246 u64 apic_access_addr
;
247 u64 posted_intr_desc_addr
;
249 u64 eoi_exit_bitmap0
;
250 u64 eoi_exit_bitmap1
;
251 u64 eoi_exit_bitmap2
;
252 u64 eoi_exit_bitmap3
;
254 u64 guest_physical_address
;
255 u64 vmcs_link_pointer
;
257 u64 guest_ia32_debugctl
;
260 u64 guest_ia32_perf_global_ctrl
;
268 u64 host_ia32_perf_global_ctrl
;
269 u64 padding64
[8]; /* room for future expansion */
271 * To allow migration of L1 (complete with its L2 guests) between
272 * machines of different natural widths (32 or 64 bit), we cannot have
273 * unsigned long fields with no explict size. We use u64 (aliased
274 * natural_width) instead. Luckily, x86 is little-endian.
276 natural_width cr0_guest_host_mask
;
277 natural_width cr4_guest_host_mask
;
278 natural_width cr0_read_shadow
;
279 natural_width cr4_read_shadow
;
280 natural_width cr3_target_value0
;
281 natural_width cr3_target_value1
;
282 natural_width cr3_target_value2
;
283 natural_width cr3_target_value3
;
284 natural_width exit_qualification
;
285 natural_width guest_linear_address
;
286 natural_width guest_cr0
;
287 natural_width guest_cr3
;
288 natural_width guest_cr4
;
289 natural_width guest_es_base
;
290 natural_width guest_cs_base
;
291 natural_width guest_ss_base
;
292 natural_width guest_ds_base
;
293 natural_width guest_fs_base
;
294 natural_width guest_gs_base
;
295 natural_width guest_ldtr_base
;
296 natural_width guest_tr_base
;
297 natural_width guest_gdtr_base
;
298 natural_width guest_idtr_base
;
299 natural_width guest_dr7
;
300 natural_width guest_rsp
;
301 natural_width guest_rip
;
302 natural_width guest_rflags
;
303 natural_width guest_pending_dbg_exceptions
;
304 natural_width guest_sysenter_esp
;
305 natural_width guest_sysenter_eip
;
306 natural_width host_cr0
;
307 natural_width host_cr3
;
308 natural_width host_cr4
;
309 natural_width host_fs_base
;
310 natural_width host_gs_base
;
311 natural_width host_tr_base
;
312 natural_width host_gdtr_base
;
313 natural_width host_idtr_base
;
314 natural_width host_ia32_sysenter_esp
;
315 natural_width host_ia32_sysenter_eip
;
316 natural_width host_rsp
;
317 natural_width host_rip
;
318 natural_width paddingl
[8]; /* room for future expansion */
319 u32 pin_based_vm_exec_control
;
320 u32 cpu_based_vm_exec_control
;
321 u32 exception_bitmap
;
322 u32 page_fault_error_code_mask
;
323 u32 page_fault_error_code_match
;
324 u32 cr3_target_count
;
325 u32 vm_exit_controls
;
326 u32 vm_exit_msr_store_count
;
327 u32 vm_exit_msr_load_count
;
328 u32 vm_entry_controls
;
329 u32 vm_entry_msr_load_count
;
330 u32 vm_entry_intr_info_field
;
331 u32 vm_entry_exception_error_code
;
332 u32 vm_entry_instruction_len
;
334 u32 secondary_vm_exec_control
;
335 u32 vm_instruction_error
;
337 u32 vm_exit_intr_info
;
338 u32 vm_exit_intr_error_code
;
339 u32 idt_vectoring_info_field
;
340 u32 idt_vectoring_error_code
;
341 u32 vm_exit_instruction_len
;
342 u32 vmx_instruction_info
;
349 u32 guest_ldtr_limit
;
351 u32 guest_gdtr_limit
;
352 u32 guest_idtr_limit
;
353 u32 guest_es_ar_bytes
;
354 u32 guest_cs_ar_bytes
;
355 u32 guest_ss_ar_bytes
;
356 u32 guest_ds_ar_bytes
;
357 u32 guest_fs_ar_bytes
;
358 u32 guest_gs_ar_bytes
;
359 u32 guest_ldtr_ar_bytes
;
360 u32 guest_tr_ar_bytes
;
361 u32 guest_interruptibility_info
;
362 u32 guest_activity_state
;
363 u32 guest_sysenter_cs
;
364 u32 host_ia32_sysenter_cs
;
365 u32 vmx_preemption_timer_value
;
366 u32 padding32
[7]; /* room for future expansion */
367 u16 virtual_processor_id
;
369 u16 guest_es_selector
;
370 u16 guest_cs_selector
;
371 u16 guest_ss_selector
;
372 u16 guest_ds_selector
;
373 u16 guest_fs_selector
;
374 u16 guest_gs_selector
;
375 u16 guest_ldtr_selector
;
376 u16 guest_tr_selector
;
377 u16 guest_intr_status
;
379 u16 host_es_selector
;
380 u16 host_cs_selector
;
381 u16 host_ss_selector
;
382 u16 host_ds_selector
;
383 u16 host_fs_selector
;
384 u16 host_gs_selector
;
385 u16 host_tr_selector
;
389 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
390 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
391 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
393 #define VMCS12_REVISION 0x11e57ed0
396 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
397 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
398 * current implementation, 4K are reserved to avoid future complications.
400 #define VMCS12_SIZE 0x1000
402 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
404 struct list_head list
;
406 struct loaded_vmcs vmcs02
;
410 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
411 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
414 /* Has the level1 guest done vmxon? */
419 /* The guest-physical address of the current VMCS L1 keeps for L2 */
422 * Cache of the guest's VMCS, existing outside of guest memory.
423 * Loaded from guest memory during VMPTRLD. Flushed to guest
424 * memory during VMCLEAR and VMPTRLD.
426 struct vmcs12
*cached_vmcs12
;
428 * Indicates if the shadow vmcs must be updated with the
429 * data hold by vmcs12
431 bool sync_shadow_vmcs
;
433 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
434 struct list_head vmcs02_pool
;
436 bool change_vmcs01_virtual_x2apic_mode
;
437 /* L2 must run next, and mustn't decide to exit to L1. */
438 bool nested_run_pending
;
440 * Guest pages referred to in vmcs02 with host-physical pointers, so
441 * we must keep them pinned while L2 runs.
443 struct page
*apic_access_page
;
444 struct page
*virtual_apic_page
;
445 struct page
*pi_desc_page
;
446 struct pi_desc
*pi_desc
;
450 unsigned long *msr_bitmap
;
452 struct hrtimer preemption_timer
;
453 bool preemption_timer_expired
;
455 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
462 * We only store the "true" versions of the VMX capability MSRs. We
463 * generate the "non-true" versions by setting the must-be-1 bits
464 * according to the SDM.
466 u32 nested_vmx_procbased_ctls_low
;
467 u32 nested_vmx_procbased_ctls_high
;
468 u32 nested_vmx_secondary_ctls_low
;
469 u32 nested_vmx_secondary_ctls_high
;
470 u32 nested_vmx_pinbased_ctls_low
;
471 u32 nested_vmx_pinbased_ctls_high
;
472 u32 nested_vmx_exit_ctls_low
;
473 u32 nested_vmx_exit_ctls_high
;
474 u32 nested_vmx_entry_ctls_low
;
475 u32 nested_vmx_entry_ctls_high
;
476 u32 nested_vmx_misc_low
;
477 u32 nested_vmx_misc_high
;
478 u32 nested_vmx_ept_caps
;
479 u32 nested_vmx_vpid_caps
;
480 u64 nested_vmx_basic
;
481 u64 nested_vmx_cr0_fixed0
;
482 u64 nested_vmx_cr0_fixed1
;
483 u64 nested_vmx_cr4_fixed0
;
484 u64 nested_vmx_cr4_fixed1
;
485 u64 nested_vmx_vmcs_enum
;
488 #define POSTED_INTR_ON 0
489 #define POSTED_INTR_SN 1
491 /* Posted-Interrupt Descriptor */
493 u32 pir
[8]; /* Posted interrupt requested */
496 /* bit 256 - Outstanding Notification */
498 /* bit 257 - Suppress Notification */
500 /* bit 271:258 - Reserved */
502 /* bit 279:272 - Notification Vector */
504 /* bit 287:280 - Reserved */
506 /* bit 319:288 - Notification Destination */
514 static bool pi_test_and_set_on(struct pi_desc
*pi_desc
)
516 return test_and_set_bit(POSTED_INTR_ON
,
517 (unsigned long *)&pi_desc
->control
);
520 static bool pi_test_and_clear_on(struct pi_desc
*pi_desc
)
522 return test_and_clear_bit(POSTED_INTR_ON
,
523 (unsigned long *)&pi_desc
->control
);
526 static int pi_test_and_set_pir(int vector
, struct pi_desc
*pi_desc
)
528 return test_and_set_bit(vector
, (unsigned long *)pi_desc
->pir
);
531 static inline void pi_clear_sn(struct pi_desc
*pi_desc
)
533 return clear_bit(POSTED_INTR_SN
,
534 (unsigned long *)&pi_desc
->control
);
537 static inline void pi_set_sn(struct pi_desc
*pi_desc
)
539 return set_bit(POSTED_INTR_SN
,
540 (unsigned long *)&pi_desc
->control
);
543 static inline void pi_clear_on(struct pi_desc
*pi_desc
)
545 clear_bit(POSTED_INTR_ON
,
546 (unsigned long *)&pi_desc
->control
);
549 static inline int pi_test_on(struct pi_desc
*pi_desc
)
551 return test_bit(POSTED_INTR_ON
,
552 (unsigned long *)&pi_desc
->control
);
555 static inline int pi_test_sn(struct pi_desc
*pi_desc
)
557 return test_bit(POSTED_INTR_SN
,
558 (unsigned long *)&pi_desc
->control
);
562 struct kvm_vcpu vcpu
;
563 unsigned long host_rsp
;
566 u32 idt_vectoring_info
;
568 struct shared_msr_entry
*guest_msrs
;
571 unsigned long host_idt_base
;
573 u64 msr_host_kernel_gs_base
;
574 u64 msr_guest_kernel_gs_base
;
576 u32 vm_entry_controls_shadow
;
577 u32 vm_exit_controls_shadow
;
579 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
580 * non-nested (L1) guest, it always points to vmcs01. For a nested
581 * guest (L2), it points to a different VMCS.
583 struct loaded_vmcs vmcs01
;
584 struct loaded_vmcs
*loaded_vmcs
;
585 bool __launched
; /* temporary, used in vmx_vcpu_run */
586 struct msr_autoload
{
588 struct vmx_msr_entry guest
[NR_AUTOLOAD_MSRS
];
589 struct vmx_msr_entry host
[NR_AUTOLOAD_MSRS
];
593 u16 fs_sel
, gs_sel
, ldt_sel
;
597 int gs_ldt_reload_needed
;
598 int fs_reload_needed
;
599 u64 msr_host_bndcfgs
;
604 struct kvm_segment segs
[8];
607 u32 bitmask
; /* 4 bits per segment (1 bit per field) */
608 struct kvm_save_segment
{
616 bool emulation_required
;
620 /* Posted interrupt descriptor */
621 struct pi_desc pi_desc
;
623 /* Support for a guest hypervisor (nested VMX) */
624 struct nested_vmx nested
;
626 /* Dynamic PLE window. */
628 bool ple_window_dirty
;
630 /* Support for PML */
631 #define PML_ENTITY_NUM 512
634 /* apic deadline value in host tsc */
637 u64 current_tsc_ratio
;
642 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
643 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
644 * in msr_ia32_feature_control_valid_bits.
646 u64 msr_ia32_feature_control
;
647 u64 msr_ia32_feature_control_valid_bits
;
650 enum segment_cache_field
{
659 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
661 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
664 static struct pi_desc
*vcpu_to_pi_desc(struct kvm_vcpu
*vcpu
)
666 return &(to_vmx(vcpu
)->pi_desc
);
669 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
670 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
671 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
672 [number##_HIGH] = VMCS12_OFFSET(name)+4
675 static unsigned long shadow_read_only_fields
[] = {
677 * We do NOT shadow fields that are modified when L0
678 * traps and emulates any vmx instruction (e.g. VMPTRLD,
679 * VMXON...) executed by L1.
680 * For example, VM_INSTRUCTION_ERROR is read
681 * by L1 if a vmx instruction fails (part of the error path).
682 * Note the code assumes this logic. If for some reason
683 * we start shadowing these fields then we need to
684 * force a shadow sync when L0 emulates vmx instructions
685 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
686 * by nested_vmx_failValid)
690 VM_EXIT_INSTRUCTION_LEN
,
691 IDT_VECTORING_INFO_FIELD
,
692 IDT_VECTORING_ERROR_CODE
,
693 VM_EXIT_INTR_ERROR_CODE
,
695 GUEST_LINEAR_ADDRESS
,
696 GUEST_PHYSICAL_ADDRESS
698 static int max_shadow_read_only_fields
=
699 ARRAY_SIZE(shadow_read_only_fields
);
701 static unsigned long shadow_read_write_fields
[] = {
708 GUEST_INTERRUPTIBILITY_INFO
,
721 CPU_BASED_VM_EXEC_CONTROL
,
722 VM_ENTRY_EXCEPTION_ERROR_CODE
,
723 VM_ENTRY_INTR_INFO_FIELD
,
724 VM_ENTRY_INSTRUCTION_LEN
,
725 VM_ENTRY_EXCEPTION_ERROR_CODE
,
731 static int max_shadow_read_write_fields
=
732 ARRAY_SIZE(shadow_read_write_fields
);
734 static const unsigned short vmcs_field_to_offset_table
[] = {
735 FIELD(VIRTUAL_PROCESSOR_ID
, virtual_processor_id
),
736 FIELD(POSTED_INTR_NV
, posted_intr_nv
),
737 FIELD(GUEST_ES_SELECTOR
, guest_es_selector
),
738 FIELD(GUEST_CS_SELECTOR
, guest_cs_selector
),
739 FIELD(GUEST_SS_SELECTOR
, guest_ss_selector
),
740 FIELD(GUEST_DS_SELECTOR
, guest_ds_selector
),
741 FIELD(GUEST_FS_SELECTOR
, guest_fs_selector
),
742 FIELD(GUEST_GS_SELECTOR
, guest_gs_selector
),
743 FIELD(GUEST_LDTR_SELECTOR
, guest_ldtr_selector
),
744 FIELD(GUEST_TR_SELECTOR
, guest_tr_selector
),
745 FIELD(GUEST_INTR_STATUS
, guest_intr_status
),
746 FIELD(GUEST_PML_INDEX
, guest_pml_index
),
747 FIELD(HOST_ES_SELECTOR
, host_es_selector
),
748 FIELD(HOST_CS_SELECTOR
, host_cs_selector
),
749 FIELD(HOST_SS_SELECTOR
, host_ss_selector
),
750 FIELD(HOST_DS_SELECTOR
, host_ds_selector
),
751 FIELD(HOST_FS_SELECTOR
, host_fs_selector
),
752 FIELD(HOST_GS_SELECTOR
, host_gs_selector
),
753 FIELD(HOST_TR_SELECTOR
, host_tr_selector
),
754 FIELD64(IO_BITMAP_A
, io_bitmap_a
),
755 FIELD64(IO_BITMAP_B
, io_bitmap_b
),
756 FIELD64(MSR_BITMAP
, msr_bitmap
),
757 FIELD64(VM_EXIT_MSR_STORE_ADDR
, vm_exit_msr_store_addr
),
758 FIELD64(VM_EXIT_MSR_LOAD_ADDR
, vm_exit_msr_load_addr
),
759 FIELD64(VM_ENTRY_MSR_LOAD_ADDR
, vm_entry_msr_load_addr
),
760 FIELD64(TSC_OFFSET
, tsc_offset
),
761 FIELD64(VIRTUAL_APIC_PAGE_ADDR
, virtual_apic_page_addr
),
762 FIELD64(APIC_ACCESS_ADDR
, apic_access_addr
),
763 FIELD64(POSTED_INTR_DESC_ADDR
, posted_intr_desc_addr
),
764 FIELD64(EPT_POINTER
, ept_pointer
),
765 FIELD64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap0
),
766 FIELD64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap1
),
767 FIELD64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap2
),
768 FIELD64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap3
),
769 FIELD64(XSS_EXIT_BITMAP
, xss_exit_bitmap
),
770 FIELD64(GUEST_PHYSICAL_ADDRESS
, guest_physical_address
),
771 FIELD64(VMCS_LINK_POINTER
, vmcs_link_pointer
),
772 FIELD64(PML_ADDRESS
, pml_address
),
773 FIELD64(GUEST_IA32_DEBUGCTL
, guest_ia32_debugctl
),
774 FIELD64(GUEST_IA32_PAT
, guest_ia32_pat
),
775 FIELD64(GUEST_IA32_EFER
, guest_ia32_efer
),
776 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL
, guest_ia32_perf_global_ctrl
),
777 FIELD64(GUEST_PDPTR0
, guest_pdptr0
),
778 FIELD64(GUEST_PDPTR1
, guest_pdptr1
),
779 FIELD64(GUEST_PDPTR2
, guest_pdptr2
),
780 FIELD64(GUEST_PDPTR3
, guest_pdptr3
),
781 FIELD64(GUEST_BNDCFGS
, guest_bndcfgs
),
782 FIELD64(HOST_IA32_PAT
, host_ia32_pat
),
783 FIELD64(HOST_IA32_EFER
, host_ia32_efer
),
784 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL
, host_ia32_perf_global_ctrl
),
785 FIELD(PIN_BASED_VM_EXEC_CONTROL
, pin_based_vm_exec_control
),
786 FIELD(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
),
787 FIELD(EXCEPTION_BITMAP
, exception_bitmap
),
788 FIELD(PAGE_FAULT_ERROR_CODE_MASK
, page_fault_error_code_mask
),
789 FIELD(PAGE_FAULT_ERROR_CODE_MATCH
, page_fault_error_code_match
),
790 FIELD(CR3_TARGET_COUNT
, cr3_target_count
),
791 FIELD(VM_EXIT_CONTROLS
, vm_exit_controls
),
792 FIELD(VM_EXIT_MSR_STORE_COUNT
, vm_exit_msr_store_count
),
793 FIELD(VM_EXIT_MSR_LOAD_COUNT
, vm_exit_msr_load_count
),
794 FIELD(VM_ENTRY_CONTROLS
, vm_entry_controls
),
795 FIELD(VM_ENTRY_MSR_LOAD_COUNT
, vm_entry_msr_load_count
),
796 FIELD(VM_ENTRY_INTR_INFO_FIELD
, vm_entry_intr_info_field
),
797 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE
, vm_entry_exception_error_code
),
798 FIELD(VM_ENTRY_INSTRUCTION_LEN
, vm_entry_instruction_len
),
799 FIELD(TPR_THRESHOLD
, tpr_threshold
),
800 FIELD(SECONDARY_VM_EXEC_CONTROL
, secondary_vm_exec_control
),
801 FIELD(VM_INSTRUCTION_ERROR
, vm_instruction_error
),
802 FIELD(VM_EXIT_REASON
, vm_exit_reason
),
803 FIELD(VM_EXIT_INTR_INFO
, vm_exit_intr_info
),
804 FIELD(VM_EXIT_INTR_ERROR_CODE
, vm_exit_intr_error_code
),
805 FIELD(IDT_VECTORING_INFO_FIELD
, idt_vectoring_info_field
),
806 FIELD(IDT_VECTORING_ERROR_CODE
, idt_vectoring_error_code
),
807 FIELD(VM_EXIT_INSTRUCTION_LEN
, vm_exit_instruction_len
),
808 FIELD(VMX_INSTRUCTION_INFO
, vmx_instruction_info
),
809 FIELD(GUEST_ES_LIMIT
, guest_es_limit
),
810 FIELD(GUEST_CS_LIMIT
, guest_cs_limit
),
811 FIELD(GUEST_SS_LIMIT
, guest_ss_limit
),
812 FIELD(GUEST_DS_LIMIT
, guest_ds_limit
),
813 FIELD(GUEST_FS_LIMIT
, guest_fs_limit
),
814 FIELD(GUEST_GS_LIMIT
, guest_gs_limit
),
815 FIELD(GUEST_LDTR_LIMIT
, guest_ldtr_limit
),
816 FIELD(GUEST_TR_LIMIT
, guest_tr_limit
),
817 FIELD(GUEST_GDTR_LIMIT
, guest_gdtr_limit
),
818 FIELD(GUEST_IDTR_LIMIT
, guest_idtr_limit
),
819 FIELD(GUEST_ES_AR_BYTES
, guest_es_ar_bytes
),
820 FIELD(GUEST_CS_AR_BYTES
, guest_cs_ar_bytes
),
821 FIELD(GUEST_SS_AR_BYTES
, guest_ss_ar_bytes
),
822 FIELD(GUEST_DS_AR_BYTES
, guest_ds_ar_bytes
),
823 FIELD(GUEST_FS_AR_BYTES
, guest_fs_ar_bytes
),
824 FIELD(GUEST_GS_AR_BYTES
, guest_gs_ar_bytes
),
825 FIELD(GUEST_LDTR_AR_BYTES
, guest_ldtr_ar_bytes
),
826 FIELD(GUEST_TR_AR_BYTES
, guest_tr_ar_bytes
),
827 FIELD(GUEST_INTERRUPTIBILITY_INFO
, guest_interruptibility_info
),
828 FIELD(GUEST_ACTIVITY_STATE
, guest_activity_state
),
829 FIELD(GUEST_SYSENTER_CS
, guest_sysenter_cs
),
830 FIELD(HOST_IA32_SYSENTER_CS
, host_ia32_sysenter_cs
),
831 FIELD(VMX_PREEMPTION_TIMER_VALUE
, vmx_preemption_timer_value
),
832 FIELD(CR0_GUEST_HOST_MASK
, cr0_guest_host_mask
),
833 FIELD(CR4_GUEST_HOST_MASK
, cr4_guest_host_mask
),
834 FIELD(CR0_READ_SHADOW
, cr0_read_shadow
),
835 FIELD(CR4_READ_SHADOW
, cr4_read_shadow
),
836 FIELD(CR3_TARGET_VALUE0
, cr3_target_value0
),
837 FIELD(CR3_TARGET_VALUE1
, cr3_target_value1
),
838 FIELD(CR3_TARGET_VALUE2
, cr3_target_value2
),
839 FIELD(CR3_TARGET_VALUE3
, cr3_target_value3
),
840 FIELD(EXIT_QUALIFICATION
, exit_qualification
),
841 FIELD(GUEST_LINEAR_ADDRESS
, guest_linear_address
),
842 FIELD(GUEST_CR0
, guest_cr0
),
843 FIELD(GUEST_CR3
, guest_cr3
),
844 FIELD(GUEST_CR4
, guest_cr4
),
845 FIELD(GUEST_ES_BASE
, guest_es_base
),
846 FIELD(GUEST_CS_BASE
, guest_cs_base
),
847 FIELD(GUEST_SS_BASE
, guest_ss_base
),
848 FIELD(GUEST_DS_BASE
, guest_ds_base
),
849 FIELD(GUEST_FS_BASE
, guest_fs_base
),
850 FIELD(GUEST_GS_BASE
, guest_gs_base
),
851 FIELD(GUEST_LDTR_BASE
, guest_ldtr_base
),
852 FIELD(GUEST_TR_BASE
, guest_tr_base
),
853 FIELD(GUEST_GDTR_BASE
, guest_gdtr_base
),
854 FIELD(GUEST_IDTR_BASE
, guest_idtr_base
),
855 FIELD(GUEST_DR7
, guest_dr7
),
856 FIELD(GUEST_RSP
, guest_rsp
),
857 FIELD(GUEST_RIP
, guest_rip
),
858 FIELD(GUEST_RFLAGS
, guest_rflags
),
859 FIELD(GUEST_PENDING_DBG_EXCEPTIONS
, guest_pending_dbg_exceptions
),
860 FIELD(GUEST_SYSENTER_ESP
, guest_sysenter_esp
),
861 FIELD(GUEST_SYSENTER_EIP
, guest_sysenter_eip
),
862 FIELD(HOST_CR0
, host_cr0
),
863 FIELD(HOST_CR3
, host_cr3
),
864 FIELD(HOST_CR4
, host_cr4
),
865 FIELD(HOST_FS_BASE
, host_fs_base
),
866 FIELD(HOST_GS_BASE
, host_gs_base
),
867 FIELD(HOST_TR_BASE
, host_tr_base
),
868 FIELD(HOST_GDTR_BASE
, host_gdtr_base
),
869 FIELD(HOST_IDTR_BASE
, host_idtr_base
),
870 FIELD(HOST_IA32_SYSENTER_ESP
, host_ia32_sysenter_esp
),
871 FIELD(HOST_IA32_SYSENTER_EIP
, host_ia32_sysenter_eip
),
872 FIELD(HOST_RSP
, host_rsp
),
873 FIELD(HOST_RIP
, host_rip
),
876 static inline short vmcs_field_to_offset(unsigned long field
)
878 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table
) > SHRT_MAX
);
880 if (field
>= ARRAY_SIZE(vmcs_field_to_offset_table
) ||
881 vmcs_field_to_offset_table
[field
] == 0)
884 return vmcs_field_to_offset_table
[field
];
887 static inline struct vmcs12
*get_vmcs12(struct kvm_vcpu
*vcpu
)
889 return to_vmx(vcpu
)->nested
.cached_vmcs12
;
892 static struct page
*nested_get_page(struct kvm_vcpu
*vcpu
, gpa_t addr
)
894 struct page
*page
= kvm_vcpu_gfn_to_page(vcpu
, addr
>> PAGE_SHIFT
);
895 if (is_error_page(page
))
901 static void nested_release_page(struct page
*page
)
903 kvm_release_page_dirty(page
);
906 static void nested_release_page_clean(struct page
*page
)
908 kvm_release_page_clean(page
);
911 static bool nested_ept_ad_enabled(struct kvm_vcpu
*vcpu
);
912 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
);
913 static u64
construct_eptp(struct kvm_vcpu
*vcpu
, unsigned long root_hpa
);
914 static bool vmx_xsaves_supported(void);
915 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
);
916 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
917 struct kvm_segment
*var
, int seg
);
918 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
919 struct kvm_segment
*var
, int seg
);
920 static bool guest_state_valid(struct kvm_vcpu
*vcpu
);
921 static u32
vmx_segment_access_rights(struct kvm_segment
*var
);
922 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
);
923 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
);
924 static int alloc_identity_pagetable(struct kvm
*kvm
);
925 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
);
926 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
);
927 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12
*vmcs12
,
930 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
931 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
933 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
934 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
936 static DEFINE_PER_CPU(struct list_head
, loaded_vmcss_on_cpu
);
939 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
940 * can find which vCPU should be waken up.
942 static DEFINE_PER_CPU(struct list_head
, blocked_vcpu_on_cpu
);
943 static DEFINE_PER_CPU(spinlock_t
, blocked_vcpu_on_cpu_lock
);
948 VMX_MSR_BITMAP_LEGACY
,
949 VMX_MSR_BITMAP_LONGMODE
,
950 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV
,
951 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV
,
952 VMX_MSR_BITMAP_LEGACY_X2APIC
,
953 VMX_MSR_BITMAP_LONGMODE_X2APIC
,
959 static unsigned long *vmx_bitmap
[VMX_BITMAP_NR
];
961 #define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
962 #define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
963 #define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
964 #define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
965 #define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
966 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
967 #define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
968 #define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
969 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
970 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
972 static bool cpu_has_load_ia32_efer
;
973 static bool cpu_has_load_perf_global_ctrl
;
975 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
976 static DEFINE_SPINLOCK(vmx_vpid_lock
);
978 static struct vmcs_config
{
983 u32 pin_based_exec_ctrl
;
984 u32 cpu_based_exec_ctrl
;
985 u32 cpu_based_2nd_exec_ctrl
;
990 static struct vmx_capability
{
995 #define VMX_SEGMENT_FIELD(seg) \
996 [VCPU_SREG_##seg] = { \
997 .selector = GUEST_##seg##_SELECTOR, \
998 .base = GUEST_##seg##_BASE, \
999 .limit = GUEST_##seg##_LIMIT, \
1000 .ar_bytes = GUEST_##seg##_AR_BYTES, \
1003 static const struct kvm_vmx_segment_field
{
1008 } kvm_vmx_segment_fields
[] = {
1009 VMX_SEGMENT_FIELD(CS
),
1010 VMX_SEGMENT_FIELD(DS
),
1011 VMX_SEGMENT_FIELD(ES
),
1012 VMX_SEGMENT_FIELD(FS
),
1013 VMX_SEGMENT_FIELD(GS
),
1014 VMX_SEGMENT_FIELD(SS
),
1015 VMX_SEGMENT_FIELD(TR
),
1016 VMX_SEGMENT_FIELD(LDTR
),
1019 static u64 host_efer
;
1021 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
1024 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1025 * away by decrementing the array size.
1027 static const u32 vmx_msr_index
[] = {
1028 #ifdef CONFIG_X86_64
1029 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
1031 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
1034 static inline bool is_exception_n(u32 intr_info
, u8 vector
)
1036 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
1037 INTR_INFO_VALID_MASK
)) ==
1038 (INTR_TYPE_HARD_EXCEPTION
| vector
| INTR_INFO_VALID_MASK
);
1041 static inline bool is_debug(u32 intr_info
)
1043 return is_exception_n(intr_info
, DB_VECTOR
);
1046 static inline bool is_breakpoint(u32 intr_info
)
1048 return is_exception_n(intr_info
, BP_VECTOR
);
1051 static inline bool is_page_fault(u32 intr_info
)
1053 return is_exception_n(intr_info
, PF_VECTOR
);
1056 static inline bool is_no_device(u32 intr_info
)
1058 return is_exception_n(intr_info
, NM_VECTOR
);
1061 static inline bool is_invalid_opcode(u32 intr_info
)
1063 return is_exception_n(intr_info
, UD_VECTOR
);
1066 static inline bool is_external_interrupt(u32 intr_info
)
1068 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1069 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
1072 static inline bool is_machine_check(u32 intr_info
)
1074 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
1075 INTR_INFO_VALID_MASK
)) ==
1076 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
1079 static inline bool cpu_has_vmx_msr_bitmap(void)
1081 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
1084 static inline bool cpu_has_vmx_tpr_shadow(void)
1086 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
1089 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu
*vcpu
)
1091 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu
);
1094 static inline bool cpu_has_secondary_exec_ctrls(void)
1096 return vmcs_config
.cpu_based_exec_ctrl
&
1097 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1100 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1102 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1103 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
1106 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1108 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1109 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
1112 static inline bool cpu_has_vmx_apic_register_virt(void)
1114 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1115 SECONDARY_EXEC_APIC_REGISTER_VIRT
;
1118 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1120 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1121 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
;
1125 * Comment's format: document - errata name - stepping - processor name.
1127 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1129 static u32 vmx_preemption_cpu_tfms
[] = {
1130 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1132 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1133 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1134 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1136 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1138 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1139 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1141 * 320767.pdf - AAP86 - B1 -
1142 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1145 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1147 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1149 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1151 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1152 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1153 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1157 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1159 u32 eax
= cpuid_eax(0x00000001), i
;
1161 /* Clear the reserved bits */
1162 eax
&= ~(0x3U
<< 14 | 0xfU
<< 28);
1163 for (i
= 0; i
< ARRAY_SIZE(vmx_preemption_cpu_tfms
); i
++)
1164 if (eax
== vmx_preemption_cpu_tfms
[i
])
1170 static inline bool cpu_has_vmx_preemption_timer(void)
1172 return vmcs_config
.pin_based_exec_ctrl
&
1173 PIN_BASED_VMX_PREEMPTION_TIMER
;
1176 static inline bool cpu_has_vmx_posted_intr(void)
1178 return IS_ENABLED(CONFIG_X86_LOCAL_APIC
) &&
1179 vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
;
1182 static inline bool cpu_has_vmx_apicv(void)
1184 return cpu_has_vmx_apic_register_virt() &&
1185 cpu_has_vmx_virtual_intr_delivery() &&
1186 cpu_has_vmx_posted_intr();
1189 static inline bool cpu_has_vmx_flexpriority(void)
1191 return cpu_has_vmx_tpr_shadow() &&
1192 cpu_has_vmx_virtualize_apic_accesses();
1195 static inline bool cpu_has_vmx_ept_execute_only(void)
1197 return vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
;
1200 static inline bool cpu_has_vmx_ept_2m_page(void)
1202 return vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
;
1205 static inline bool cpu_has_vmx_ept_1g_page(void)
1207 return vmx_capability
.ept
& VMX_EPT_1GB_PAGE_BIT
;
1210 static inline bool cpu_has_vmx_ept_4levels(void)
1212 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_4_BIT
;
1215 static inline bool cpu_has_vmx_ept_ad_bits(void)
1217 return vmx_capability
.ept
& VMX_EPT_AD_BIT
;
1220 static inline bool cpu_has_vmx_invept_context(void)
1222 return vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
;
1225 static inline bool cpu_has_vmx_invept_global(void)
1227 return vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
;
1230 static inline bool cpu_has_vmx_invvpid_single(void)
1232 return vmx_capability
.vpid
& VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
;
1235 static inline bool cpu_has_vmx_invvpid_global(void)
1237 return vmx_capability
.vpid
& VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
1240 static inline bool cpu_has_vmx_invvpid(void)
1242 return vmx_capability
.vpid
& VMX_VPID_INVVPID_BIT
;
1245 static inline bool cpu_has_vmx_ept(void)
1247 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1248 SECONDARY_EXEC_ENABLE_EPT
;
1251 static inline bool cpu_has_vmx_unrestricted_guest(void)
1253 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1254 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
1257 static inline bool cpu_has_vmx_ple(void)
1259 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1260 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
1263 static inline bool cpu_has_vmx_basic_inout(void)
1265 return (((u64
)vmcs_config
.basic_cap
<< 32) & VMX_BASIC_INOUT
);
1268 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu
*vcpu
)
1270 return flexpriority_enabled
&& lapic_in_kernel(vcpu
);
1273 static inline bool cpu_has_vmx_vpid(void)
1275 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1276 SECONDARY_EXEC_ENABLE_VPID
;
1279 static inline bool cpu_has_vmx_rdtscp(void)
1281 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1282 SECONDARY_EXEC_RDTSCP
;
1285 static inline bool cpu_has_vmx_invpcid(void)
1287 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1288 SECONDARY_EXEC_ENABLE_INVPCID
;
1291 static inline bool cpu_has_vmx_wbinvd_exit(void)
1293 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1294 SECONDARY_EXEC_WBINVD_EXITING
;
1297 static inline bool cpu_has_vmx_shadow_vmcs(void)
1300 rdmsrl(MSR_IA32_VMX_MISC
, vmx_msr
);
1301 /* check if the cpu supports writing r/o exit information fields */
1302 if (!(vmx_msr
& MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS
))
1305 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1306 SECONDARY_EXEC_SHADOW_VMCS
;
1309 static inline bool cpu_has_vmx_pml(void)
1311 return vmcs_config
.cpu_based_2nd_exec_ctrl
& SECONDARY_EXEC_ENABLE_PML
;
1314 static inline bool cpu_has_vmx_tsc_scaling(void)
1316 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1317 SECONDARY_EXEC_TSC_SCALING
;
1320 static inline bool report_flexpriority(void)
1322 return flexpriority_enabled
;
1325 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu
*vcpu
)
1327 return vmx_misc_cr3_count(to_vmx(vcpu
)->nested
.nested_vmx_misc_low
);
1330 static inline bool nested_cpu_has(struct vmcs12
*vmcs12
, u32 bit
)
1332 return vmcs12
->cpu_based_vm_exec_control
& bit
;
1335 static inline bool nested_cpu_has2(struct vmcs12
*vmcs12
, u32 bit
)
1337 return (vmcs12
->cpu_based_vm_exec_control
&
1338 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
1339 (vmcs12
->secondary_vm_exec_control
& bit
);
1342 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12
*vmcs12
)
1344 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_VIRTUAL_NMIS
;
1347 static inline bool nested_cpu_has_preemption_timer(struct vmcs12
*vmcs12
)
1349 return vmcs12
->pin_based_vm_exec_control
&
1350 PIN_BASED_VMX_PREEMPTION_TIMER
;
1353 static inline int nested_cpu_has_ept(struct vmcs12
*vmcs12
)
1355 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_EPT
);
1358 static inline bool nested_cpu_has_xsaves(struct vmcs12
*vmcs12
)
1360 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
) &&
1361 vmx_xsaves_supported();
1364 static inline bool nested_cpu_has_pml(struct vmcs12
*vmcs12
)
1366 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_PML
);
1369 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12
*vmcs12
)
1371 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
);
1374 static inline bool nested_cpu_has_vpid(struct vmcs12
*vmcs12
)
1376 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_VPID
);
1379 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12
*vmcs12
)
1381 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_APIC_REGISTER_VIRT
);
1384 static inline bool nested_cpu_has_vid(struct vmcs12
*vmcs12
)
1386 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
1389 static inline bool nested_cpu_has_posted_intr(struct vmcs12
*vmcs12
)
1391 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_POSTED_INTR
;
1394 static inline bool is_nmi(u32 intr_info
)
1396 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1397 == (INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
);
1400 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
1402 unsigned long exit_qualification
);
1403 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
1404 struct vmcs12
*vmcs12
,
1405 u32 reason
, unsigned long qualification
);
1407 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
1411 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
1412 if (vmx_msr_index
[vmx
->guest_msrs
[i
].index
] == msr
)
1417 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
1423 } operand
= { vpid
, 0, gva
};
1425 asm volatile (__ex(ASM_VMX_INVVPID
)
1426 /* CF==1 or ZF==1 --> rc = -1 */
1427 "; ja 1f ; ud2 ; 1:"
1428 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
1431 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
1435 } operand
= {eptp
, gpa
};
1437 asm volatile (__ex(ASM_VMX_INVEPT
)
1438 /* CF==1 or ZF==1 --> rc = -1 */
1439 "; ja 1f ; ud2 ; 1:\n"
1440 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
1443 static struct shared_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
1447 i
= __find_msr_index(vmx
, msr
);
1449 return &vmx
->guest_msrs
[i
];
1453 static void vmcs_clear(struct vmcs
*vmcs
)
1455 u64 phys_addr
= __pa(vmcs
);
1458 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
1459 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1462 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
1466 static inline void loaded_vmcs_init(struct loaded_vmcs
*loaded_vmcs
)
1468 vmcs_clear(loaded_vmcs
->vmcs
);
1469 if (loaded_vmcs
->shadow_vmcs
&& loaded_vmcs
->launched
)
1470 vmcs_clear(loaded_vmcs
->shadow_vmcs
);
1471 loaded_vmcs
->cpu
= -1;
1472 loaded_vmcs
->launched
= 0;
1475 static void vmcs_load(struct vmcs
*vmcs
)
1477 u64 phys_addr
= __pa(vmcs
);
1480 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
1481 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1484 printk(KERN_ERR
"kvm: vmptrld %p/%llx failed\n",
1488 #ifdef CONFIG_KEXEC_CORE
1490 * This bitmap is used to indicate whether the vmclear
1491 * operation is enabled on all cpus. All disabled by
1494 static cpumask_t crash_vmclear_enabled_bitmap
= CPU_MASK_NONE
;
1496 static inline void crash_enable_local_vmclear(int cpu
)
1498 cpumask_set_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1501 static inline void crash_disable_local_vmclear(int cpu
)
1503 cpumask_clear_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1506 static inline int crash_local_vmclear_enabled(int cpu
)
1508 return cpumask_test_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1511 static void crash_vmclear_local_loaded_vmcss(void)
1513 int cpu
= raw_smp_processor_id();
1514 struct loaded_vmcs
*v
;
1516 if (!crash_local_vmclear_enabled(cpu
))
1519 list_for_each_entry(v
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
1520 loaded_vmcss_on_cpu_link
)
1521 vmcs_clear(v
->vmcs
);
1524 static inline void crash_enable_local_vmclear(int cpu
) { }
1525 static inline void crash_disable_local_vmclear(int cpu
) { }
1526 #endif /* CONFIG_KEXEC_CORE */
1528 static void __loaded_vmcs_clear(void *arg
)
1530 struct loaded_vmcs
*loaded_vmcs
= arg
;
1531 int cpu
= raw_smp_processor_id();
1533 if (loaded_vmcs
->cpu
!= cpu
)
1534 return; /* vcpu migration can race with cpu offline */
1535 if (per_cpu(current_vmcs
, cpu
) == loaded_vmcs
->vmcs
)
1536 per_cpu(current_vmcs
, cpu
) = NULL
;
1537 crash_disable_local_vmclear(cpu
);
1538 list_del(&loaded_vmcs
->loaded_vmcss_on_cpu_link
);
1541 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1542 * is before setting loaded_vmcs->vcpu to -1 which is done in
1543 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1544 * then adds the vmcs into percpu list before it is deleted.
1548 loaded_vmcs_init(loaded_vmcs
);
1549 crash_enable_local_vmclear(cpu
);
1552 static void loaded_vmcs_clear(struct loaded_vmcs
*loaded_vmcs
)
1554 int cpu
= loaded_vmcs
->cpu
;
1557 smp_call_function_single(cpu
,
1558 __loaded_vmcs_clear
, loaded_vmcs
, 1);
1561 static inline void vpid_sync_vcpu_single(int vpid
)
1566 if (cpu_has_vmx_invvpid_single())
1567 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vpid
, 0);
1570 static inline void vpid_sync_vcpu_global(void)
1572 if (cpu_has_vmx_invvpid_global())
1573 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT
, 0, 0);
1576 static inline void vpid_sync_context(int vpid
)
1578 if (cpu_has_vmx_invvpid_single())
1579 vpid_sync_vcpu_single(vpid
);
1581 vpid_sync_vcpu_global();
1584 static inline void ept_sync_global(void)
1586 if (cpu_has_vmx_invept_global())
1587 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
1590 static inline void ept_sync_context(u64 eptp
)
1593 if (cpu_has_vmx_invept_context())
1594 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
1600 static __always_inline
void vmcs_check16(unsigned long field
)
1602 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2000,
1603 "16-bit accessor invalid for 64-bit field");
1604 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
1605 "16-bit accessor invalid for 64-bit high field");
1606 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
1607 "16-bit accessor invalid for 32-bit high field");
1608 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
1609 "16-bit accessor invalid for natural width field");
1612 static __always_inline
void vmcs_check32(unsigned long field
)
1614 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
1615 "32-bit accessor invalid for 16-bit field");
1616 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
1617 "32-bit accessor invalid for natural width field");
1620 static __always_inline
void vmcs_check64(unsigned long field
)
1622 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
1623 "64-bit accessor invalid for 16-bit field");
1624 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
1625 "64-bit accessor invalid for 64-bit high field");
1626 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
1627 "64-bit accessor invalid for 32-bit field");
1628 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
1629 "64-bit accessor invalid for natural width field");
1632 static __always_inline
void vmcs_checkl(unsigned long field
)
1634 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
1635 "Natural width accessor invalid for 16-bit field");
1636 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2000,
1637 "Natural width accessor invalid for 64-bit field");
1638 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
1639 "Natural width accessor invalid for 64-bit high field");
1640 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
1641 "Natural width accessor invalid for 32-bit field");
1644 static __always_inline
unsigned long __vmcs_readl(unsigned long field
)
1646 unsigned long value
;
1648 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX
, "%0")
1649 : "=a"(value
) : "d"(field
) : "cc");
1653 static __always_inline u16
vmcs_read16(unsigned long field
)
1655 vmcs_check16(field
);
1656 return __vmcs_readl(field
);
1659 static __always_inline u32
vmcs_read32(unsigned long field
)
1661 vmcs_check32(field
);
1662 return __vmcs_readl(field
);
1665 static __always_inline u64
vmcs_read64(unsigned long field
)
1667 vmcs_check64(field
);
1668 #ifdef CONFIG_X86_64
1669 return __vmcs_readl(field
);
1671 return __vmcs_readl(field
) | ((u64
)__vmcs_readl(field
+1) << 32);
1675 static __always_inline
unsigned long vmcs_readl(unsigned long field
)
1678 return __vmcs_readl(field
);
1681 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
1683 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
1684 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
1688 static __always_inline
void __vmcs_writel(unsigned long field
, unsigned long value
)
1692 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
1693 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
1694 if (unlikely(error
))
1695 vmwrite_error(field
, value
);
1698 static __always_inline
void vmcs_write16(unsigned long field
, u16 value
)
1700 vmcs_check16(field
);
1701 __vmcs_writel(field
, value
);
1704 static __always_inline
void vmcs_write32(unsigned long field
, u32 value
)
1706 vmcs_check32(field
);
1707 __vmcs_writel(field
, value
);
1710 static __always_inline
void vmcs_write64(unsigned long field
, u64 value
)
1712 vmcs_check64(field
);
1713 __vmcs_writel(field
, value
);
1714 #ifndef CONFIG_X86_64
1716 __vmcs_writel(field
+1, value
>> 32);
1720 static __always_inline
void vmcs_writel(unsigned long field
, unsigned long value
)
1723 __vmcs_writel(field
, value
);
1726 static __always_inline
void vmcs_clear_bits(unsigned long field
, u32 mask
)
1728 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x2000,
1729 "vmcs_clear_bits does not support 64-bit fields");
1730 __vmcs_writel(field
, __vmcs_readl(field
) & ~mask
);
1733 static __always_inline
void vmcs_set_bits(unsigned long field
, u32 mask
)
1735 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x2000,
1736 "vmcs_set_bits does not support 64-bit fields");
1737 __vmcs_writel(field
, __vmcs_readl(field
) | mask
);
1740 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx
*vmx
)
1742 vmx
->vm_entry_controls_shadow
= vmcs_read32(VM_ENTRY_CONTROLS
);
1745 static inline void vm_entry_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1747 vmcs_write32(VM_ENTRY_CONTROLS
, val
);
1748 vmx
->vm_entry_controls_shadow
= val
;
1751 static inline void vm_entry_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1753 if (vmx
->vm_entry_controls_shadow
!= val
)
1754 vm_entry_controls_init(vmx
, val
);
1757 static inline u32
vm_entry_controls_get(struct vcpu_vmx
*vmx
)
1759 return vmx
->vm_entry_controls_shadow
;
1763 static inline void vm_entry_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1765 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) | val
);
1768 static inline void vm_entry_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1770 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) & ~val
);
1773 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx
*vmx
)
1775 vmx
->vm_exit_controls_shadow
= vmcs_read32(VM_EXIT_CONTROLS
);
1778 static inline void vm_exit_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1780 vmcs_write32(VM_EXIT_CONTROLS
, val
);
1781 vmx
->vm_exit_controls_shadow
= val
;
1784 static inline void vm_exit_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1786 if (vmx
->vm_exit_controls_shadow
!= val
)
1787 vm_exit_controls_init(vmx
, val
);
1790 static inline u32
vm_exit_controls_get(struct vcpu_vmx
*vmx
)
1792 return vmx
->vm_exit_controls_shadow
;
1796 static inline void vm_exit_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1798 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) | val
);
1801 static inline void vm_exit_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1803 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) & ~val
);
1806 static void vmx_segment_cache_clear(struct vcpu_vmx
*vmx
)
1808 vmx
->segment_cache
.bitmask
= 0;
1811 static bool vmx_segment_cache_test_set(struct vcpu_vmx
*vmx
, unsigned seg
,
1815 u32 mask
= 1 << (seg
* SEG_FIELD_NR
+ field
);
1817 if (!(vmx
->vcpu
.arch
.regs_avail
& (1 << VCPU_EXREG_SEGMENTS
))) {
1818 vmx
->vcpu
.arch
.regs_avail
|= (1 << VCPU_EXREG_SEGMENTS
);
1819 vmx
->segment_cache
.bitmask
= 0;
1821 ret
= vmx
->segment_cache
.bitmask
& mask
;
1822 vmx
->segment_cache
.bitmask
|= mask
;
1826 static u16
vmx_read_guest_seg_selector(struct vcpu_vmx
*vmx
, unsigned seg
)
1828 u16
*p
= &vmx
->segment_cache
.seg
[seg
].selector
;
1830 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_SEL
))
1831 *p
= vmcs_read16(kvm_vmx_segment_fields
[seg
].selector
);
1835 static ulong
vmx_read_guest_seg_base(struct vcpu_vmx
*vmx
, unsigned seg
)
1837 ulong
*p
= &vmx
->segment_cache
.seg
[seg
].base
;
1839 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_BASE
))
1840 *p
= vmcs_readl(kvm_vmx_segment_fields
[seg
].base
);
1844 static u32
vmx_read_guest_seg_limit(struct vcpu_vmx
*vmx
, unsigned seg
)
1846 u32
*p
= &vmx
->segment_cache
.seg
[seg
].limit
;
1848 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_LIMIT
))
1849 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].limit
);
1853 static u32
vmx_read_guest_seg_ar(struct vcpu_vmx
*vmx
, unsigned seg
)
1855 u32
*p
= &vmx
->segment_cache
.seg
[seg
].ar
;
1857 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_AR
))
1858 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].ar_bytes
);
1862 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
1866 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
1867 (1u << DB_VECTOR
) | (1u << AC_VECTOR
);
1868 if ((vcpu
->guest_debug
&
1869 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
1870 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
1871 eb
|= 1u << BP_VECTOR
;
1872 if (to_vmx(vcpu
)->rmode
.vm86_active
)
1875 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
1877 /* When we are running a nested L2 guest and L1 specified for it a
1878 * certain exception bitmap, we must trap the same exceptions and pass
1879 * them to L1. When running L2, we will only handle the exceptions
1880 * specified above if L1 did not want them.
1882 if (is_guest_mode(vcpu
))
1883 eb
|= get_vmcs12(vcpu
)->exception_bitmap
;
1885 vmcs_write32(EXCEPTION_BITMAP
, eb
);
1888 static void clear_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1889 unsigned long entry
, unsigned long exit
)
1891 vm_entry_controls_clearbit(vmx
, entry
);
1892 vm_exit_controls_clearbit(vmx
, exit
);
1895 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
1898 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1902 if (cpu_has_load_ia32_efer
) {
1903 clear_atomic_switch_msr_special(vmx
,
1904 VM_ENTRY_LOAD_IA32_EFER
,
1905 VM_EXIT_LOAD_IA32_EFER
);
1909 case MSR_CORE_PERF_GLOBAL_CTRL
:
1910 if (cpu_has_load_perf_global_ctrl
) {
1911 clear_atomic_switch_msr_special(vmx
,
1912 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1913 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
1919 for (i
= 0; i
< m
->nr
; ++i
)
1920 if (m
->guest
[i
].index
== msr
)
1926 m
->guest
[i
] = m
->guest
[m
->nr
];
1927 m
->host
[i
] = m
->host
[m
->nr
];
1928 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1929 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1932 static void add_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1933 unsigned long entry
, unsigned long exit
,
1934 unsigned long guest_val_vmcs
, unsigned long host_val_vmcs
,
1935 u64 guest_val
, u64 host_val
)
1937 vmcs_write64(guest_val_vmcs
, guest_val
);
1938 vmcs_write64(host_val_vmcs
, host_val
);
1939 vm_entry_controls_setbit(vmx
, entry
);
1940 vm_exit_controls_setbit(vmx
, exit
);
1943 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
1944 u64 guest_val
, u64 host_val
)
1947 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1951 if (cpu_has_load_ia32_efer
) {
1952 add_atomic_switch_msr_special(vmx
,
1953 VM_ENTRY_LOAD_IA32_EFER
,
1954 VM_EXIT_LOAD_IA32_EFER
,
1957 guest_val
, host_val
);
1961 case MSR_CORE_PERF_GLOBAL_CTRL
:
1962 if (cpu_has_load_perf_global_ctrl
) {
1963 add_atomic_switch_msr_special(vmx
,
1964 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1965 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
,
1966 GUEST_IA32_PERF_GLOBAL_CTRL
,
1967 HOST_IA32_PERF_GLOBAL_CTRL
,
1968 guest_val
, host_val
);
1972 case MSR_IA32_PEBS_ENABLE
:
1973 /* PEBS needs a quiescent period after being disabled (to write
1974 * a record). Disabling PEBS through VMX MSR swapping doesn't
1975 * provide that period, so a CPU could write host's record into
1978 wrmsrl(MSR_IA32_PEBS_ENABLE
, 0);
1981 for (i
= 0; i
< m
->nr
; ++i
)
1982 if (m
->guest
[i
].index
== msr
)
1985 if (i
== NR_AUTOLOAD_MSRS
) {
1986 printk_once(KERN_WARNING
"Not enough msr switch entries. "
1987 "Can't add msr %x\n", msr
);
1989 } else if (i
== m
->nr
) {
1991 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1992 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1995 m
->guest
[i
].index
= msr
;
1996 m
->guest
[i
].value
= guest_val
;
1997 m
->host
[i
].index
= msr
;
1998 m
->host
[i
].value
= host_val
;
2001 static bool update_transition_efer(struct vcpu_vmx
*vmx
, int efer_offset
)
2003 u64 guest_efer
= vmx
->vcpu
.arch
.efer
;
2004 u64 ignore_bits
= 0;
2008 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2009 * host CPUID is more efficient than testing guest CPUID
2010 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2012 if (boot_cpu_has(X86_FEATURE_SMEP
))
2013 guest_efer
|= EFER_NX
;
2014 else if (!(guest_efer
& EFER_NX
))
2015 ignore_bits
|= EFER_NX
;
2019 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2021 ignore_bits
|= EFER_SCE
;
2022 #ifdef CONFIG_X86_64
2023 ignore_bits
|= EFER_LMA
| EFER_LME
;
2024 /* SCE is meaningful only in long mode on Intel */
2025 if (guest_efer
& EFER_LMA
)
2026 ignore_bits
&= ~(u64
)EFER_SCE
;
2029 clear_atomic_switch_msr(vmx
, MSR_EFER
);
2032 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2033 * On CPUs that support "load IA32_EFER", always switch EFER
2034 * atomically, since it's faster than switching it manually.
2036 if (cpu_has_load_ia32_efer
||
2037 (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ host_efer
) & EFER_NX
))) {
2038 if (!(guest_efer
& EFER_LMA
))
2039 guest_efer
&= ~EFER_LME
;
2040 if (guest_efer
!= host_efer
)
2041 add_atomic_switch_msr(vmx
, MSR_EFER
,
2042 guest_efer
, host_efer
);
2045 guest_efer
&= ~ignore_bits
;
2046 guest_efer
|= host_efer
& ignore_bits
;
2048 vmx
->guest_msrs
[efer_offset
].data
= guest_efer
;
2049 vmx
->guest_msrs
[efer_offset
].mask
= ~ignore_bits
;
2055 #ifdef CONFIG_X86_32
2057 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2058 * VMCS rather than the segment table. KVM uses this helper to figure
2059 * out the current bases to poke them into the VMCS before entry.
2061 static unsigned long segment_base(u16 selector
)
2063 struct desc_struct
*table
;
2066 if (!(selector
& ~SEGMENT_RPL_MASK
))
2069 table
= get_current_gdt_ro();
2071 if ((selector
& SEGMENT_TI_MASK
) == SEGMENT_LDT
) {
2072 u16 ldt_selector
= kvm_read_ldt();
2074 if (!(ldt_selector
& ~SEGMENT_RPL_MASK
))
2077 table
= (struct desc_struct
*)segment_base(ldt_selector
);
2079 v
= get_desc_base(&table
[selector
>> 3]);
2084 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
2086 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2089 if (vmx
->host_state
.loaded
)
2092 vmx
->host_state
.loaded
= 1;
2094 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2095 * allow segment selectors with cpl > 0 or ti == 1.
2097 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
2098 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
2099 savesegment(fs
, vmx
->host_state
.fs_sel
);
2100 if (!(vmx
->host_state
.fs_sel
& 7)) {
2101 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
2102 vmx
->host_state
.fs_reload_needed
= 0;
2104 vmcs_write16(HOST_FS_SELECTOR
, 0);
2105 vmx
->host_state
.fs_reload_needed
= 1;
2107 savesegment(gs
, vmx
->host_state
.gs_sel
);
2108 if (!(vmx
->host_state
.gs_sel
& 7))
2109 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
2111 vmcs_write16(HOST_GS_SELECTOR
, 0);
2112 vmx
->host_state
.gs_ldt_reload_needed
= 1;
2115 #ifdef CONFIG_X86_64
2116 savesegment(ds
, vmx
->host_state
.ds_sel
);
2117 savesegment(es
, vmx
->host_state
.es_sel
);
2120 #ifdef CONFIG_X86_64
2121 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
2122 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
2124 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
2125 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
2128 #ifdef CONFIG_X86_64
2129 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
2130 if (is_long_mode(&vmx
->vcpu
))
2131 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
2133 if (boot_cpu_has(X86_FEATURE_MPX
))
2134 rdmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
2135 for (i
= 0; i
< vmx
->save_nmsrs
; ++i
)
2136 kvm_set_shared_msr(vmx
->guest_msrs
[i
].index
,
2137 vmx
->guest_msrs
[i
].data
,
2138 vmx
->guest_msrs
[i
].mask
);
2141 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
2143 if (!vmx
->host_state
.loaded
)
2146 ++vmx
->vcpu
.stat
.host_state_reload
;
2147 vmx
->host_state
.loaded
= 0;
2148 #ifdef CONFIG_X86_64
2149 if (is_long_mode(&vmx
->vcpu
))
2150 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
2152 if (vmx
->host_state
.gs_ldt_reload_needed
) {
2153 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
2154 #ifdef CONFIG_X86_64
2155 load_gs_index(vmx
->host_state
.gs_sel
);
2157 loadsegment(gs
, vmx
->host_state
.gs_sel
);
2160 if (vmx
->host_state
.fs_reload_needed
)
2161 loadsegment(fs
, vmx
->host_state
.fs_sel
);
2162 #ifdef CONFIG_X86_64
2163 if (unlikely(vmx
->host_state
.ds_sel
| vmx
->host_state
.es_sel
)) {
2164 loadsegment(ds
, vmx
->host_state
.ds_sel
);
2165 loadsegment(es
, vmx
->host_state
.es_sel
);
2168 invalidate_tss_limit();
2169 #ifdef CONFIG_X86_64
2170 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
2172 if (vmx
->host_state
.msr_host_bndcfgs
)
2173 wrmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
2174 load_fixmap_gdt(raw_smp_processor_id());
2177 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
2180 __vmx_load_host_state(vmx
);
2184 static void vmx_vcpu_pi_load(struct kvm_vcpu
*vcpu
, int cpu
)
2186 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
2187 struct pi_desc old
, new;
2191 * In case of hot-plug or hot-unplug, we may have to undo
2192 * vmx_vcpu_pi_put even if there is no assigned device. And we
2193 * always keep PI.NDST up to date for simplicity: it makes the
2194 * code easier, and CPU migration is not a fast path.
2196 if (!pi_test_sn(pi_desc
) && vcpu
->cpu
== cpu
)
2200 * First handle the simple case where no cmpxchg is necessary; just
2201 * allow posting non-urgent interrupts.
2203 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2204 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2205 * expects the VCPU to be on the blocked_vcpu_list that matches
2208 if (pi_desc
->nv
== POSTED_INTR_WAKEUP_VECTOR
||
2210 pi_clear_sn(pi_desc
);
2214 /* The full case. */
2216 old
.control
= new.control
= pi_desc
->control
;
2218 dest
= cpu_physical_id(cpu
);
2220 if (x2apic_enabled())
2223 new.ndst
= (dest
<< 8) & 0xFF00;
2226 } while (cmpxchg64(&pi_desc
->control
, old
.control
,
2227 new.control
) != old
.control
);
2230 static void decache_tsc_multiplier(struct vcpu_vmx
*vmx
)
2232 vmx
->current_tsc_ratio
= vmx
->vcpu
.arch
.tsc_scaling_ratio
;
2233 vmcs_write64(TSC_MULTIPLIER
, vmx
->current_tsc_ratio
);
2237 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2238 * vcpu mutex is already taken.
2240 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2242 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2243 bool already_loaded
= vmx
->loaded_vmcs
->cpu
== cpu
;
2245 if (!already_loaded
) {
2246 loaded_vmcs_clear(vmx
->loaded_vmcs
);
2247 local_irq_disable();
2248 crash_disable_local_vmclear(cpu
);
2251 * Read loaded_vmcs->cpu should be before fetching
2252 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2253 * See the comments in __loaded_vmcs_clear().
2257 list_add(&vmx
->loaded_vmcs
->loaded_vmcss_on_cpu_link
,
2258 &per_cpu(loaded_vmcss_on_cpu
, cpu
));
2259 crash_enable_local_vmclear(cpu
);
2263 if (per_cpu(current_vmcs
, cpu
) != vmx
->loaded_vmcs
->vmcs
) {
2264 per_cpu(current_vmcs
, cpu
) = vmx
->loaded_vmcs
->vmcs
;
2265 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
2268 if (!already_loaded
) {
2269 void *gdt
= get_current_gdt_ro();
2270 unsigned long sysenter_esp
;
2272 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
2275 * Linux uses per-cpu TSS and GDT, so set these when switching
2276 * processors. See 22.2.4.
2278 vmcs_writel(HOST_TR_BASE
,
2279 (unsigned long)this_cpu_ptr(&cpu_tss
));
2280 vmcs_writel(HOST_GDTR_BASE
, (unsigned long)gdt
); /* 22.2.4 */
2283 * VM exits change the host TR limit to 0x67 after a VM
2284 * exit. This is okay, since 0x67 covers everything except
2285 * the IO bitmap and have have code to handle the IO bitmap
2286 * being lost after a VM exit.
2288 BUILD_BUG_ON(IO_BITMAP_OFFSET
- 1 != 0x67);
2290 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
2291 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
2293 vmx
->loaded_vmcs
->cpu
= cpu
;
2296 /* Setup TSC multiplier */
2297 if (kvm_has_tsc_control
&&
2298 vmx
->current_tsc_ratio
!= vcpu
->arch
.tsc_scaling_ratio
)
2299 decache_tsc_multiplier(vmx
);
2301 vmx_vcpu_pi_load(vcpu
, cpu
);
2302 vmx
->host_pkru
= read_pkru();
2305 static void vmx_vcpu_pi_put(struct kvm_vcpu
*vcpu
)
2307 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
2309 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
2310 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
2311 !kvm_vcpu_apicv_active(vcpu
))
2314 /* Set SN when the vCPU is preempted */
2315 if (vcpu
->preempted
)
2319 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
2321 vmx_vcpu_pi_put(vcpu
);
2323 __vmx_load_host_state(to_vmx(vcpu
));
2326 static bool emulation_required(struct kvm_vcpu
*vcpu
)
2328 return emulate_invalid_guest_state
&& !guest_state_valid(vcpu
);
2331 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
);
2334 * Return the cr0 value that a nested guest would read. This is a combination
2335 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2336 * its hypervisor (cr0_read_shadow).
2338 static inline unsigned long nested_read_cr0(struct vmcs12
*fields
)
2340 return (fields
->guest_cr0
& ~fields
->cr0_guest_host_mask
) |
2341 (fields
->cr0_read_shadow
& fields
->cr0_guest_host_mask
);
2343 static inline unsigned long nested_read_cr4(struct vmcs12
*fields
)
2345 return (fields
->guest_cr4
& ~fields
->cr4_guest_host_mask
) |
2346 (fields
->cr4_read_shadow
& fields
->cr4_guest_host_mask
);
2349 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
2351 unsigned long rflags
, save_rflags
;
2353 if (!test_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
2354 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
2355 rflags
= vmcs_readl(GUEST_RFLAGS
);
2356 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
2357 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
2358 save_rflags
= to_vmx(vcpu
)->rmode
.save_rflags
;
2359 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
2361 to_vmx(vcpu
)->rflags
= rflags
;
2363 return to_vmx(vcpu
)->rflags
;
2366 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
2368 unsigned long old_rflags
= vmx_get_rflags(vcpu
);
2370 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
2371 to_vmx(vcpu
)->rflags
= rflags
;
2372 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
2373 to_vmx(vcpu
)->rmode
.save_rflags
= rflags
;
2374 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
2376 vmcs_writel(GUEST_RFLAGS
, rflags
);
2378 if ((old_rflags
^ to_vmx(vcpu
)->rflags
) & X86_EFLAGS_VM
)
2379 to_vmx(vcpu
)->emulation_required
= emulation_required(vcpu
);
2382 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
2384 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2387 if (interruptibility
& GUEST_INTR_STATE_STI
)
2388 ret
|= KVM_X86_SHADOW_INT_STI
;
2389 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
2390 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
2395 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
2397 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2398 u32 interruptibility
= interruptibility_old
;
2400 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
2402 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
2403 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
2404 else if (mask
& KVM_X86_SHADOW_INT_STI
)
2405 interruptibility
|= GUEST_INTR_STATE_STI
;
2407 if ((interruptibility
!= interruptibility_old
))
2408 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
2411 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
2415 rip
= kvm_rip_read(vcpu
);
2416 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
2417 kvm_rip_write(vcpu
, rip
);
2419 /* skipping an emulated instruction also counts */
2420 vmx_set_interrupt_shadow(vcpu
, 0);
2423 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu
*vcpu
,
2424 unsigned long exit_qual
)
2426 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
2427 unsigned int nr
= vcpu
->arch
.exception
.nr
;
2428 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
2430 if (vcpu
->arch
.exception
.has_error_code
) {
2431 vmcs12
->vm_exit_intr_error_code
= vcpu
->arch
.exception
.error_code
;
2432 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
2435 if (kvm_exception_is_soft(nr
))
2436 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
2438 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
2440 if (!(vmcs12
->idt_vectoring_info_field
& VECTORING_INFO_VALID_MASK
) &&
2441 vmx_get_nmi_mask(vcpu
))
2442 intr_info
|= INTR_INFO_UNBLOCK_NMI
;
2444 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
, intr_info
, exit_qual
);
2448 * KVM wants to inject page-faults which it got to the guest. This function
2449 * checks whether in a nested guest, we need to inject them to L1 or L2.
2451 static int nested_vmx_check_exception(struct kvm_vcpu
*vcpu
)
2453 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
2454 unsigned int nr
= vcpu
->arch
.exception
.nr
;
2456 if (nr
== PF_VECTOR
) {
2457 if (vcpu
->arch
.exception
.nested_apf
) {
2458 nested_vmx_inject_exception_vmexit(vcpu
,
2459 vcpu
->arch
.apf
.nested_apf_token
);
2463 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2464 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2465 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2466 * can be written only when inject_pending_event runs. This should be
2467 * conditional on a new capability---if the capability is disabled,
2468 * kvm_multiple_exception would write the ancillary information to
2469 * CR2 or DR6, for backwards ABI-compatibility.
2471 if (nested_vmx_is_page_fault_vmexit(vmcs12
,
2472 vcpu
->arch
.exception
.error_code
)) {
2473 nested_vmx_inject_exception_vmexit(vcpu
, vcpu
->arch
.cr2
);
2477 unsigned long exit_qual
= 0;
2478 if (nr
== DB_VECTOR
)
2479 exit_qual
= vcpu
->arch
.dr6
;
2481 if (vmcs12
->exception_bitmap
& (1u << nr
)) {
2482 nested_vmx_inject_exception_vmexit(vcpu
, exit_qual
);
2490 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
)
2492 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2493 unsigned nr
= vcpu
->arch
.exception
.nr
;
2494 bool has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2495 bool reinject
= vcpu
->arch
.exception
.reinject
;
2496 u32 error_code
= vcpu
->arch
.exception
.error_code
;
2497 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
2499 if (!reinject
&& is_guest_mode(vcpu
) &&
2500 nested_vmx_check_exception(vcpu
))
2503 if (has_error_code
) {
2504 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
2505 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
2508 if (vmx
->rmode
.vm86_active
) {
2510 if (kvm_exception_is_soft(nr
))
2511 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
2512 if (kvm_inject_realmode_interrupt(vcpu
, nr
, inc_eip
) != EMULATE_DONE
)
2513 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2517 if (kvm_exception_is_soft(nr
)) {
2518 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2519 vmx
->vcpu
.arch
.event_exit_inst_len
);
2520 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
2522 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
2524 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
2527 static bool vmx_rdtscp_supported(void)
2529 return cpu_has_vmx_rdtscp();
2532 static bool vmx_invpcid_supported(void)
2534 return cpu_has_vmx_invpcid() && enable_ept
;
2538 * Swap MSR entry in host/guest MSR entry array.
2540 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
2542 struct shared_msr_entry tmp
;
2544 tmp
= vmx
->guest_msrs
[to
];
2545 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
2546 vmx
->guest_msrs
[from
] = tmp
;
2549 static void vmx_set_msr_bitmap(struct kvm_vcpu
*vcpu
)
2551 unsigned long *msr_bitmap
;
2553 if (is_guest_mode(vcpu
))
2554 msr_bitmap
= to_vmx(vcpu
)->nested
.msr_bitmap
;
2555 else if (cpu_has_secondary_exec_ctrls() &&
2556 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL
) &
2557 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
)) {
2558 if (enable_apicv
&& kvm_vcpu_apicv_active(vcpu
)) {
2559 if (is_long_mode(vcpu
))
2560 msr_bitmap
= vmx_msr_bitmap_longmode_x2apic_apicv
;
2562 msr_bitmap
= vmx_msr_bitmap_legacy_x2apic_apicv
;
2564 if (is_long_mode(vcpu
))
2565 msr_bitmap
= vmx_msr_bitmap_longmode_x2apic
;
2567 msr_bitmap
= vmx_msr_bitmap_legacy_x2apic
;
2570 if (is_long_mode(vcpu
))
2571 msr_bitmap
= vmx_msr_bitmap_longmode
;
2573 msr_bitmap
= vmx_msr_bitmap_legacy
;
2576 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
2580 * Set up the vmcs to automatically save and restore system
2581 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2582 * mode, as fiddling with msrs is very expensive.
2584 static void setup_msrs(struct vcpu_vmx
*vmx
)
2586 int save_nmsrs
, index
;
2589 #ifdef CONFIG_X86_64
2590 if (is_long_mode(&vmx
->vcpu
)) {
2591 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
2593 move_msr_up(vmx
, index
, save_nmsrs
++);
2594 index
= __find_msr_index(vmx
, MSR_LSTAR
);
2596 move_msr_up(vmx
, index
, save_nmsrs
++);
2597 index
= __find_msr_index(vmx
, MSR_CSTAR
);
2599 move_msr_up(vmx
, index
, save_nmsrs
++);
2600 index
= __find_msr_index(vmx
, MSR_TSC_AUX
);
2601 if (index
>= 0 && guest_cpuid_has_rdtscp(&vmx
->vcpu
))
2602 move_msr_up(vmx
, index
, save_nmsrs
++);
2604 * MSR_STAR is only needed on long mode guests, and only
2605 * if efer.sce is enabled.
2607 index
= __find_msr_index(vmx
, MSR_STAR
);
2608 if ((index
>= 0) && (vmx
->vcpu
.arch
.efer
& EFER_SCE
))
2609 move_msr_up(vmx
, index
, save_nmsrs
++);
2612 index
= __find_msr_index(vmx
, MSR_EFER
);
2613 if (index
>= 0 && update_transition_efer(vmx
, index
))
2614 move_msr_up(vmx
, index
, save_nmsrs
++);
2616 vmx
->save_nmsrs
= save_nmsrs
;
2618 if (cpu_has_vmx_msr_bitmap())
2619 vmx_set_msr_bitmap(&vmx
->vcpu
);
2623 * reads and returns guest's timestamp counter "register"
2624 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2625 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2627 static u64
guest_read_tsc(struct kvm_vcpu
*vcpu
)
2629 u64 host_tsc
, tsc_offset
;
2632 tsc_offset
= vmcs_read64(TSC_OFFSET
);
2633 return kvm_scale_tsc(vcpu
, host_tsc
) + tsc_offset
;
2637 * writes 'offset' into guest's timestamp counter offset register
2639 static void vmx_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
2641 if (is_guest_mode(vcpu
)) {
2643 * We're here if L1 chose not to trap WRMSR to TSC. According
2644 * to the spec, this should set L1's TSC; The offset that L1
2645 * set for L2 remains unchanged, and still needs to be added
2646 * to the newly set TSC to get L2's TSC.
2648 struct vmcs12
*vmcs12
;
2649 /* recalculate vmcs02.TSC_OFFSET: */
2650 vmcs12
= get_vmcs12(vcpu
);
2651 vmcs_write64(TSC_OFFSET
, offset
+
2652 (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETING
) ?
2653 vmcs12
->tsc_offset
: 0));
2655 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
2656 vmcs_read64(TSC_OFFSET
), offset
);
2657 vmcs_write64(TSC_OFFSET
, offset
);
2661 static bool guest_cpuid_has_vmx(struct kvm_vcpu
*vcpu
)
2663 struct kvm_cpuid_entry2
*best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
2664 return best
&& (best
->ecx
& (1 << (X86_FEATURE_VMX
& 31)));
2668 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2669 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2670 * all guests if the "nested" module option is off, and can also be disabled
2671 * for a single guest by disabling its VMX cpuid bit.
2673 static inline bool nested_vmx_allowed(struct kvm_vcpu
*vcpu
)
2675 return nested
&& guest_cpuid_has_vmx(vcpu
);
2679 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2680 * returned for the various VMX controls MSRs when nested VMX is enabled.
2681 * The same values should also be used to verify that vmcs12 control fields are
2682 * valid during nested entry from L1 to L2.
2683 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2684 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2685 * bit in the high half is on if the corresponding bit in the control field
2686 * may be on. See also vmx_control_verify().
2688 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx
*vmx
)
2691 * Note that as a general rule, the high half of the MSRs (bits in
2692 * the control fields which may be 1) should be initialized by the
2693 * intersection of the underlying hardware's MSR (i.e., features which
2694 * can be supported) and the list of features we want to expose -
2695 * because they are known to be properly supported in our code.
2696 * Also, usually, the low half of the MSRs (bits which must be 1) can
2697 * be set to 0, meaning that L1 may turn off any of these bits. The
2698 * reason is that if one of these bits is necessary, it will appear
2699 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2700 * fields of vmcs01 and vmcs02, will turn these bits off - and
2701 * nested_vmx_exit_reflected() will not pass related exits to L1.
2702 * These rules have exceptions below.
2705 /* pin-based controls */
2706 rdmsr(MSR_IA32_VMX_PINBASED_CTLS
,
2707 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
2708 vmx
->nested
.nested_vmx_pinbased_ctls_high
);
2709 vmx
->nested
.nested_vmx_pinbased_ctls_low
|=
2710 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2711 vmx
->nested
.nested_vmx_pinbased_ctls_high
&=
2712 PIN_BASED_EXT_INTR_MASK
|
2713 PIN_BASED_NMI_EXITING
|
2714 PIN_BASED_VIRTUAL_NMIS
;
2715 vmx
->nested
.nested_vmx_pinbased_ctls_high
|=
2716 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2717 PIN_BASED_VMX_PREEMPTION_TIMER
;
2718 if (kvm_vcpu_apicv_active(&vmx
->vcpu
))
2719 vmx
->nested
.nested_vmx_pinbased_ctls_high
|=
2720 PIN_BASED_POSTED_INTR
;
2723 rdmsr(MSR_IA32_VMX_EXIT_CTLS
,
2724 vmx
->nested
.nested_vmx_exit_ctls_low
,
2725 vmx
->nested
.nested_vmx_exit_ctls_high
);
2726 vmx
->nested
.nested_vmx_exit_ctls_low
=
2727 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
2729 vmx
->nested
.nested_vmx_exit_ctls_high
&=
2730 #ifdef CONFIG_X86_64
2731 VM_EXIT_HOST_ADDR_SPACE_SIZE
|
2733 VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_SAVE_IA32_PAT
;
2734 vmx
->nested
.nested_vmx_exit_ctls_high
|=
2735 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
|
2736 VM_EXIT_LOAD_IA32_EFER
| VM_EXIT_SAVE_IA32_EFER
|
2737 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
| VM_EXIT_ACK_INTR_ON_EXIT
;
2739 if (kvm_mpx_supported())
2740 vmx
->nested
.nested_vmx_exit_ctls_high
|= VM_EXIT_CLEAR_BNDCFGS
;
2742 /* We support free control of debug control saving. */
2743 vmx
->nested
.nested_vmx_exit_ctls_low
&= ~VM_EXIT_SAVE_DEBUG_CONTROLS
;
2745 /* entry controls */
2746 rdmsr(MSR_IA32_VMX_ENTRY_CTLS
,
2747 vmx
->nested
.nested_vmx_entry_ctls_low
,
2748 vmx
->nested
.nested_vmx_entry_ctls_high
);
2749 vmx
->nested
.nested_vmx_entry_ctls_low
=
2750 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
2751 vmx
->nested
.nested_vmx_entry_ctls_high
&=
2752 #ifdef CONFIG_X86_64
2753 VM_ENTRY_IA32E_MODE
|
2755 VM_ENTRY_LOAD_IA32_PAT
;
2756 vmx
->nested
.nested_vmx_entry_ctls_high
|=
2757 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
| VM_ENTRY_LOAD_IA32_EFER
);
2758 if (kvm_mpx_supported())
2759 vmx
->nested
.nested_vmx_entry_ctls_high
|= VM_ENTRY_LOAD_BNDCFGS
;
2761 /* We support free control of debug control loading. */
2762 vmx
->nested
.nested_vmx_entry_ctls_low
&= ~VM_ENTRY_LOAD_DEBUG_CONTROLS
;
2764 /* cpu-based controls */
2765 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS
,
2766 vmx
->nested
.nested_vmx_procbased_ctls_low
,
2767 vmx
->nested
.nested_vmx_procbased_ctls_high
);
2768 vmx
->nested
.nested_vmx_procbased_ctls_low
=
2769 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2770 vmx
->nested
.nested_vmx_procbased_ctls_high
&=
2771 CPU_BASED_VIRTUAL_INTR_PENDING
|
2772 CPU_BASED_VIRTUAL_NMI_PENDING
| CPU_BASED_USE_TSC_OFFSETING
|
2773 CPU_BASED_HLT_EXITING
| CPU_BASED_INVLPG_EXITING
|
2774 CPU_BASED_MWAIT_EXITING
| CPU_BASED_CR3_LOAD_EXITING
|
2775 CPU_BASED_CR3_STORE_EXITING
|
2776 #ifdef CONFIG_X86_64
2777 CPU_BASED_CR8_LOAD_EXITING
| CPU_BASED_CR8_STORE_EXITING
|
2779 CPU_BASED_MOV_DR_EXITING
| CPU_BASED_UNCOND_IO_EXITING
|
2780 CPU_BASED_USE_IO_BITMAPS
| CPU_BASED_MONITOR_TRAP_FLAG
|
2781 CPU_BASED_MONITOR_EXITING
| CPU_BASED_RDPMC_EXITING
|
2782 CPU_BASED_RDTSC_EXITING
| CPU_BASED_PAUSE_EXITING
|
2783 CPU_BASED_TPR_SHADOW
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2785 * We can allow some features even when not supported by the
2786 * hardware. For example, L1 can specify an MSR bitmap - and we
2787 * can use it to avoid exits to L1 - even when L0 runs L2
2788 * without MSR bitmaps.
2790 vmx
->nested
.nested_vmx_procbased_ctls_high
|=
2791 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2792 CPU_BASED_USE_MSR_BITMAPS
;
2794 /* We support free control of CR3 access interception. */
2795 vmx
->nested
.nested_vmx_procbased_ctls_low
&=
2796 ~(CPU_BASED_CR3_LOAD_EXITING
| CPU_BASED_CR3_STORE_EXITING
);
2798 /* secondary cpu-based controls */
2799 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2
,
2800 vmx
->nested
.nested_vmx_secondary_ctls_low
,
2801 vmx
->nested
.nested_vmx_secondary_ctls_high
);
2802 vmx
->nested
.nested_vmx_secondary_ctls_low
= 0;
2803 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
2804 SECONDARY_EXEC_RDRAND
| SECONDARY_EXEC_RDSEED
|
2805 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2806 SECONDARY_EXEC_RDTSCP
|
2807 SECONDARY_EXEC_DESC
|
2808 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
2809 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
2810 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
2811 SECONDARY_EXEC_WBINVD_EXITING
|
2812 SECONDARY_EXEC_XSAVES
;
2815 /* nested EPT: emulate EPT also to L1 */
2816 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2817 SECONDARY_EXEC_ENABLE_EPT
;
2818 vmx
->nested
.nested_vmx_ept_caps
= VMX_EPT_PAGE_WALK_4_BIT
|
2819 VMX_EPTP_WB_BIT
| VMX_EPT_INVEPT_BIT
;
2820 if (cpu_has_vmx_ept_execute_only())
2821 vmx
->nested
.nested_vmx_ept_caps
|=
2822 VMX_EPT_EXECUTE_ONLY_BIT
;
2823 vmx
->nested
.nested_vmx_ept_caps
&= vmx_capability
.ept
;
2824 vmx
->nested
.nested_vmx_ept_caps
|= VMX_EPT_EXTENT_GLOBAL_BIT
|
2825 VMX_EPT_EXTENT_CONTEXT_BIT
| VMX_EPT_2MB_PAGE_BIT
|
2826 VMX_EPT_1GB_PAGE_BIT
;
2827 if (enable_ept_ad_bits
) {
2828 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2829 SECONDARY_EXEC_ENABLE_PML
;
2830 vmx
->nested
.nested_vmx_ept_caps
|= VMX_EPT_AD_BIT
;
2833 vmx
->nested
.nested_vmx_ept_caps
= 0;
2836 * Old versions of KVM use the single-context version without
2837 * checking for support, so declare that it is supported even
2838 * though it is treated as global context. The alternative is
2839 * not failing the single-context invvpid, and it is worse.
2842 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2843 SECONDARY_EXEC_ENABLE_VPID
;
2844 vmx
->nested
.nested_vmx_vpid_caps
= VMX_VPID_INVVPID_BIT
|
2845 VMX_VPID_EXTENT_SUPPORTED_MASK
;
2847 vmx
->nested
.nested_vmx_vpid_caps
= 0;
2849 if (enable_unrestricted_guest
)
2850 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2851 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
2853 /* miscellaneous data */
2854 rdmsr(MSR_IA32_VMX_MISC
,
2855 vmx
->nested
.nested_vmx_misc_low
,
2856 vmx
->nested
.nested_vmx_misc_high
);
2857 vmx
->nested
.nested_vmx_misc_low
&= VMX_MISC_SAVE_EFER_LMA
;
2858 vmx
->nested
.nested_vmx_misc_low
|=
2859 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
|
2860 VMX_MISC_ACTIVITY_HLT
;
2861 vmx
->nested
.nested_vmx_misc_high
= 0;
2864 * This MSR reports some information about VMX support. We
2865 * should return information about the VMX we emulate for the
2866 * guest, and the VMCS structure we give it - not about the
2867 * VMX support of the underlying hardware.
2869 vmx
->nested
.nested_vmx_basic
=
2871 VMX_BASIC_TRUE_CTLS
|
2872 ((u64
)VMCS12_SIZE
<< VMX_BASIC_VMCS_SIZE_SHIFT
) |
2873 (VMX_BASIC_MEM_TYPE_WB
<< VMX_BASIC_MEM_TYPE_SHIFT
);
2875 if (cpu_has_vmx_basic_inout())
2876 vmx
->nested
.nested_vmx_basic
|= VMX_BASIC_INOUT
;
2879 * These MSRs specify bits which the guest must keep fixed on
2880 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2881 * We picked the standard core2 setting.
2883 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2884 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2885 vmx
->nested
.nested_vmx_cr0_fixed0
= VMXON_CR0_ALWAYSON
;
2886 vmx
->nested
.nested_vmx_cr4_fixed0
= VMXON_CR4_ALWAYSON
;
2888 /* These MSRs specify bits which the guest must keep fixed off. */
2889 rdmsrl(MSR_IA32_VMX_CR0_FIXED1
, vmx
->nested
.nested_vmx_cr0_fixed1
);
2890 rdmsrl(MSR_IA32_VMX_CR4_FIXED1
, vmx
->nested
.nested_vmx_cr4_fixed1
);
2892 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2893 vmx
->nested
.nested_vmx_vmcs_enum
= 0x2e;
2897 * if fixed0[i] == 1: val[i] must be 1
2898 * if fixed1[i] == 0: val[i] must be 0
2900 static inline bool fixed_bits_valid(u64 val
, u64 fixed0
, u64 fixed1
)
2902 return ((val
& fixed1
) | fixed0
) == val
;
2905 static inline bool vmx_control_verify(u32 control
, u32 low
, u32 high
)
2907 return fixed_bits_valid(control
, low
, high
);
2910 static inline u64
vmx_control_msr(u32 low
, u32 high
)
2912 return low
| ((u64
)high
<< 32);
2915 static bool is_bitwise_subset(u64 superset
, u64 subset
, u64 mask
)
2920 return (superset
| subset
) == superset
;
2923 static int vmx_restore_vmx_basic(struct vcpu_vmx
*vmx
, u64 data
)
2925 const u64 feature_and_reserved
=
2926 /* feature (except bit 48; see below) */
2927 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2929 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2930 u64 vmx_basic
= vmx
->nested
.nested_vmx_basic
;
2932 if (!is_bitwise_subset(vmx_basic
, data
, feature_and_reserved
))
2936 * KVM does not emulate a version of VMX that constrains physical
2937 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2939 if (data
& BIT_ULL(48))
2942 if (vmx_basic_vmcs_revision_id(vmx_basic
) !=
2943 vmx_basic_vmcs_revision_id(data
))
2946 if (vmx_basic_vmcs_size(vmx_basic
) > vmx_basic_vmcs_size(data
))
2949 vmx
->nested
.nested_vmx_basic
= data
;
2954 vmx_restore_control_msr(struct vcpu_vmx
*vmx
, u32 msr_index
, u64 data
)
2959 switch (msr_index
) {
2960 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
2961 lowp
= &vmx
->nested
.nested_vmx_pinbased_ctls_low
;
2962 highp
= &vmx
->nested
.nested_vmx_pinbased_ctls_high
;
2964 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
2965 lowp
= &vmx
->nested
.nested_vmx_procbased_ctls_low
;
2966 highp
= &vmx
->nested
.nested_vmx_procbased_ctls_high
;
2968 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
2969 lowp
= &vmx
->nested
.nested_vmx_exit_ctls_low
;
2970 highp
= &vmx
->nested
.nested_vmx_exit_ctls_high
;
2972 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
2973 lowp
= &vmx
->nested
.nested_vmx_entry_ctls_low
;
2974 highp
= &vmx
->nested
.nested_vmx_entry_ctls_high
;
2976 case MSR_IA32_VMX_PROCBASED_CTLS2
:
2977 lowp
= &vmx
->nested
.nested_vmx_secondary_ctls_low
;
2978 highp
= &vmx
->nested
.nested_vmx_secondary_ctls_high
;
2984 supported
= vmx_control_msr(*lowp
, *highp
);
2986 /* Check must-be-1 bits are still 1. */
2987 if (!is_bitwise_subset(data
, supported
, GENMASK_ULL(31, 0)))
2990 /* Check must-be-0 bits are still 0. */
2991 if (!is_bitwise_subset(supported
, data
, GENMASK_ULL(63, 32)))
2995 *highp
= data
>> 32;
2999 static int vmx_restore_vmx_misc(struct vcpu_vmx
*vmx
, u64 data
)
3001 const u64 feature_and_reserved_bits
=
3003 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3004 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3006 GENMASK_ULL(13, 9) | BIT_ULL(31);
3009 vmx_misc
= vmx_control_msr(vmx
->nested
.nested_vmx_misc_low
,
3010 vmx
->nested
.nested_vmx_misc_high
);
3012 if (!is_bitwise_subset(vmx_misc
, data
, feature_and_reserved_bits
))
3015 if ((vmx
->nested
.nested_vmx_pinbased_ctls_high
&
3016 PIN_BASED_VMX_PREEMPTION_TIMER
) &&
3017 vmx_misc_preemption_timer_rate(data
) !=
3018 vmx_misc_preemption_timer_rate(vmx_misc
))
3021 if (vmx_misc_cr3_count(data
) > vmx_misc_cr3_count(vmx_misc
))
3024 if (vmx_misc_max_msr(data
) > vmx_misc_max_msr(vmx_misc
))
3027 if (vmx_misc_mseg_revid(data
) != vmx_misc_mseg_revid(vmx_misc
))
3030 vmx
->nested
.nested_vmx_misc_low
= data
;
3031 vmx
->nested
.nested_vmx_misc_high
= data
>> 32;
3035 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx
*vmx
, u64 data
)
3037 u64 vmx_ept_vpid_cap
;
3039 vmx_ept_vpid_cap
= vmx_control_msr(vmx
->nested
.nested_vmx_ept_caps
,
3040 vmx
->nested
.nested_vmx_vpid_caps
);
3042 /* Every bit is either reserved or a feature bit. */
3043 if (!is_bitwise_subset(vmx_ept_vpid_cap
, data
, -1ULL))
3046 vmx
->nested
.nested_vmx_ept_caps
= data
;
3047 vmx
->nested
.nested_vmx_vpid_caps
= data
>> 32;
3051 static int vmx_restore_fixed0_msr(struct vcpu_vmx
*vmx
, u32 msr_index
, u64 data
)
3055 switch (msr_index
) {
3056 case MSR_IA32_VMX_CR0_FIXED0
:
3057 msr
= &vmx
->nested
.nested_vmx_cr0_fixed0
;
3059 case MSR_IA32_VMX_CR4_FIXED0
:
3060 msr
= &vmx
->nested
.nested_vmx_cr4_fixed0
;
3067 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3068 * must be 1 in the restored value.
3070 if (!is_bitwise_subset(data
, *msr
, -1ULL))
3078 * Called when userspace is restoring VMX MSRs.
3080 * Returns 0 on success, non-0 otherwise.
3082 static int vmx_set_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
3084 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3086 switch (msr_index
) {
3087 case MSR_IA32_VMX_BASIC
:
3088 return vmx_restore_vmx_basic(vmx
, data
);
3089 case MSR_IA32_VMX_PINBASED_CTLS
:
3090 case MSR_IA32_VMX_PROCBASED_CTLS
:
3091 case MSR_IA32_VMX_EXIT_CTLS
:
3092 case MSR_IA32_VMX_ENTRY_CTLS
:
3094 * The "non-true" VMX capability MSRs are generated from the
3095 * "true" MSRs, so we do not support restoring them directly.
3097 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3098 * should restore the "true" MSRs with the must-be-1 bits
3099 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3100 * DEFAULT SETTINGS".
3103 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
3104 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
3105 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
3106 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
3107 case MSR_IA32_VMX_PROCBASED_CTLS2
:
3108 return vmx_restore_control_msr(vmx
, msr_index
, data
);
3109 case MSR_IA32_VMX_MISC
:
3110 return vmx_restore_vmx_misc(vmx
, data
);
3111 case MSR_IA32_VMX_CR0_FIXED0
:
3112 case MSR_IA32_VMX_CR4_FIXED0
:
3113 return vmx_restore_fixed0_msr(vmx
, msr_index
, data
);
3114 case MSR_IA32_VMX_CR0_FIXED1
:
3115 case MSR_IA32_VMX_CR4_FIXED1
:
3117 * These MSRs are generated based on the vCPU's CPUID, so we
3118 * do not support restoring them directly.
3121 case MSR_IA32_VMX_EPT_VPID_CAP
:
3122 return vmx_restore_vmx_ept_vpid_cap(vmx
, data
);
3123 case MSR_IA32_VMX_VMCS_ENUM
:
3124 vmx
->nested
.nested_vmx_vmcs_enum
= data
;
3128 * The rest of the VMX capability MSRs do not support restore.
3134 /* Returns 0 on success, non-0 otherwise. */
3135 static int vmx_get_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
3137 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3139 switch (msr_index
) {
3140 case MSR_IA32_VMX_BASIC
:
3141 *pdata
= vmx
->nested
.nested_vmx_basic
;
3143 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
3144 case MSR_IA32_VMX_PINBASED_CTLS
:
3145 *pdata
= vmx_control_msr(
3146 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
3147 vmx
->nested
.nested_vmx_pinbased_ctls_high
);
3148 if (msr_index
== MSR_IA32_VMX_PINBASED_CTLS
)
3149 *pdata
|= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
3151 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
3152 case MSR_IA32_VMX_PROCBASED_CTLS
:
3153 *pdata
= vmx_control_msr(
3154 vmx
->nested
.nested_vmx_procbased_ctls_low
,
3155 vmx
->nested
.nested_vmx_procbased_ctls_high
);
3156 if (msr_index
== MSR_IA32_VMX_PROCBASED_CTLS
)
3157 *pdata
|= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
3159 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
3160 case MSR_IA32_VMX_EXIT_CTLS
:
3161 *pdata
= vmx_control_msr(
3162 vmx
->nested
.nested_vmx_exit_ctls_low
,
3163 vmx
->nested
.nested_vmx_exit_ctls_high
);
3164 if (msr_index
== MSR_IA32_VMX_EXIT_CTLS
)
3165 *pdata
|= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
3167 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
3168 case MSR_IA32_VMX_ENTRY_CTLS
:
3169 *pdata
= vmx_control_msr(
3170 vmx
->nested
.nested_vmx_entry_ctls_low
,
3171 vmx
->nested
.nested_vmx_entry_ctls_high
);
3172 if (msr_index
== MSR_IA32_VMX_ENTRY_CTLS
)
3173 *pdata
|= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
3175 case MSR_IA32_VMX_MISC
:
3176 *pdata
= vmx_control_msr(
3177 vmx
->nested
.nested_vmx_misc_low
,
3178 vmx
->nested
.nested_vmx_misc_high
);
3180 case MSR_IA32_VMX_CR0_FIXED0
:
3181 *pdata
= vmx
->nested
.nested_vmx_cr0_fixed0
;
3183 case MSR_IA32_VMX_CR0_FIXED1
:
3184 *pdata
= vmx
->nested
.nested_vmx_cr0_fixed1
;
3186 case MSR_IA32_VMX_CR4_FIXED0
:
3187 *pdata
= vmx
->nested
.nested_vmx_cr4_fixed0
;
3189 case MSR_IA32_VMX_CR4_FIXED1
:
3190 *pdata
= vmx
->nested
.nested_vmx_cr4_fixed1
;
3192 case MSR_IA32_VMX_VMCS_ENUM
:
3193 *pdata
= vmx
->nested
.nested_vmx_vmcs_enum
;
3195 case MSR_IA32_VMX_PROCBASED_CTLS2
:
3196 *pdata
= vmx_control_msr(
3197 vmx
->nested
.nested_vmx_secondary_ctls_low
,
3198 vmx
->nested
.nested_vmx_secondary_ctls_high
);
3200 case MSR_IA32_VMX_EPT_VPID_CAP
:
3201 *pdata
= vmx
->nested
.nested_vmx_ept_caps
|
3202 ((u64
)vmx
->nested
.nested_vmx_vpid_caps
<< 32);
3211 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu
*vcpu
,
3214 uint64_t valid_bits
= to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
;
3216 return !(val
& ~valid_bits
);
3220 * Reads an msr value (of 'msr_index') into 'pdata'.
3221 * Returns 0 on success, non-0 otherwise.
3222 * Assumes vcpu_load() was already called.
3224 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
3226 struct shared_msr_entry
*msr
;
3228 switch (msr_info
->index
) {
3229 #ifdef CONFIG_X86_64
3231 msr_info
->data
= vmcs_readl(GUEST_FS_BASE
);
3234 msr_info
->data
= vmcs_readl(GUEST_GS_BASE
);
3236 case MSR_KERNEL_GS_BASE
:
3237 vmx_load_host_state(to_vmx(vcpu
));
3238 msr_info
->data
= to_vmx(vcpu
)->msr_guest_kernel_gs_base
;
3242 return kvm_get_msr_common(vcpu
, msr_info
);
3244 msr_info
->data
= guest_read_tsc(vcpu
);
3246 case MSR_IA32_SYSENTER_CS
:
3247 msr_info
->data
= vmcs_read32(GUEST_SYSENTER_CS
);
3249 case MSR_IA32_SYSENTER_EIP
:
3250 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_EIP
);
3252 case MSR_IA32_SYSENTER_ESP
:
3253 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_ESP
);
3255 case MSR_IA32_BNDCFGS
:
3256 if (!kvm_mpx_supported() ||
3257 (!msr_info
->host_initiated
&& !guest_cpuid_has_mpx(vcpu
)))
3259 msr_info
->data
= vmcs_read64(GUEST_BNDCFGS
);
3261 case MSR_IA32_MCG_EXT_CTL
:
3262 if (!msr_info
->host_initiated
&&
3263 !(to_vmx(vcpu
)->msr_ia32_feature_control
&
3264 FEATURE_CONTROL_LMCE
))
3266 msr_info
->data
= vcpu
->arch
.mcg_ext_ctl
;
3268 case MSR_IA32_FEATURE_CONTROL
:
3269 msr_info
->data
= to_vmx(vcpu
)->msr_ia32_feature_control
;
3271 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
3272 if (!nested_vmx_allowed(vcpu
))
3274 return vmx_get_vmx_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
3276 if (!vmx_xsaves_supported())
3278 msr_info
->data
= vcpu
->arch
.ia32_xss
;
3281 if (!guest_cpuid_has_rdtscp(vcpu
) && !msr_info
->host_initiated
)
3283 /* Otherwise falls through */
3285 msr
= find_msr_entry(to_vmx(vcpu
), msr_info
->index
);
3287 msr_info
->data
= msr
->data
;
3290 return kvm_get_msr_common(vcpu
, msr_info
);
3296 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
);
3299 * Writes msr value into into the appropriate "register".
3300 * Returns 0 on success, non-0 otherwise.
3301 * Assumes vcpu_load() was already called.
3303 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
3305 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3306 struct shared_msr_entry
*msr
;
3308 u32 msr_index
= msr_info
->index
;
3309 u64 data
= msr_info
->data
;
3311 switch (msr_index
) {
3313 ret
= kvm_set_msr_common(vcpu
, msr_info
);
3315 #ifdef CONFIG_X86_64
3317 vmx_segment_cache_clear(vmx
);
3318 vmcs_writel(GUEST_FS_BASE
, data
);
3321 vmx_segment_cache_clear(vmx
);
3322 vmcs_writel(GUEST_GS_BASE
, data
);
3324 case MSR_KERNEL_GS_BASE
:
3325 vmx_load_host_state(vmx
);
3326 vmx
->msr_guest_kernel_gs_base
= data
;
3329 case MSR_IA32_SYSENTER_CS
:
3330 vmcs_write32(GUEST_SYSENTER_CS
, data
);
3332 case MSR_IA32_SYSENTER_EIP
:
3333 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
3335 case MSR_IA32_SYSENTER_ESP
:
3336 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
3338 case MSR_IA32_BNDCFGS
:
3339 if (!kvm_mpx_supported() ||
3340 (!msr_info
->host_initiated
&& !guest_cpuid_has_mpx(vcpu
)))
3342 if (is_noncanonical_address(data
& PAGE_MASK
) ||
3343 (data
& MSR_IA32_BNDCFGS_RSVD
))
3345 vmcs_write64(GUEST_BNDCFGS
, data
);
3348 kvm_write_tsc(vcpu
, msr_info
);
3350 case MSR_IA32_CR_PAT
:
3351 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
3352 if (!kvm_mtrr_valid(vcpu
, MSR_IA32_CR_PAT
, data
))
3354 vmcs_write64(GUEST_IA32_PAT
, data
);
3355 vcpu
->arch
.pat
= data
;
3358 ret
= kvm_set_msr_common(vcpu
, msr_info
);
3360 case MSR_IA32_TSC_ADJUST
:
3361 ret
= kvm_set_msr_common(vcpu
, msr_info
);
3363 case MSR_IA32_MCG_EXT_CTL
:
3364 if ((!msr_info
->host_initiated
&&
3365 !(to_vmx(vcpu
)->msr_ia32_feature_control
&
3366 FEATURE_CONTROL_LMCE
)) ||
3367 (data
& ~MCG_EXT_CTL_LMCE_EN
))
3369 vcpu
->arch
.mcg_ext_ctl
= data
;
3371 case MSR_IA32_FEATURE_CONTROL
:
3372 if (!vmx_feature_control_msr_valid(vcpu
, data
) ||
3373 (to_vmx(vcpu
)->msr_ia32_feature_control
&
3374 FEATURE_CONTROL_LOCKED
&& !msr_info
->host_initiated
))
3376 vmx
->msr_ia32_feature_control
= data
;
3377 if (msr_info
->host_initiated
&& data
== 0)
3378 vmx_leave_nested(vcpu
);
3380 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
3381 if (!msr_info
->host_initiated
)
3382 return 1; /* they are read-only */
3383 if (!nested_vmx_allowed(vcpu
))
3385 return vmx_set_vmx_msr(vcpu
, msr_index
, data
);
3387 if (!vmx_xsaves_supported())
3390 * The only supported bit as of Skylake is bit 8, but
3391 * it is not supported on KVM.
3395 vcpu
->arch
.ia32_xss
= data
;
3396 if (vcpu
->arch
.ia32_xss
!= host_xss
)
3397 add_atomic_switch_msr(vmx
, MSR_IA32_XSS
,
3398 vcpu
->arch
.ia32_xss
, host_xss
);
3400 clear_atomic_switch_msr(vmx
, MSR_IA32_XSS
);
3403 if (!guest_cpuid_has_rdtscp(vcpu
) && !msr_info
->host_initiated
)
3405 /* Check reserved bit, higher 32 bits should be zero */
3406 if ((data
>> 32) != 0)
3408 /* Otherwise falls through */
3410 msr
= find_msr_entry(vmx
, msr_index
);
3412 u64 old_msr_data
= msr
->data
;
3414 if (msr
- vmx
->guest_msrs
< vmx
->save_nmsrs
) {
3416 ret
= kvm_set_shared_msr(msr
->index
, msr
->data
,
3420 msr
->data
= old_msr_data
;
3424 ret
= kvm_set_msr_common(vcpu
, msr_info
);
3430 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
3432 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
3435 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
3438 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
3440 case VCPU_EXREG_PDPTR
:
3442 ept_save_pdptrs(vcpu
);
3449 static __init
int cpu_has_kvm_support(void)
3451 return cpu_has_vmx();
3454 static __init
int vmx_disabled_by_bios(void)
3458 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
3459 if (msr
& FEATURE_CONTROL_LOCKED
) {
3460 /* launched w/ TXT and VMX disabled */
3461 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
3464 /* launched w/o TXT and VMX only enabled w/ TXT */
3465 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
3466 && (msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
3467 && !tboot_enabled()) {
3468 printk(KERN_WARNING
"kvm: disable TXT in the BIOS or "
3469 "activate TXT before enabling KVM\n");
3472 /* launched w/o TXT and VMX disabled */
3473 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
3474 && !tboot_enabled())
3481 static void kvm_cpu_vmxon(u64 addr
)
3483 cr4_set_bits(X86_CR4_VMXE
);
3484 intel_pt_handle_vmx(1);
3486 asm volatile (ASM_VMX_VMXON_RAX
3487 : : "a"(&addr
), "m"(addr
)
3491 static int hardware_enable(void)
3493 int cpu
= raw_smp_processor_id();
3494 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
3497 if (cr4_read_shadow() & X86_CR4_VMXE
)
3500 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu
, cpu
));
3501 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu
, cpu
));
3502 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
3505 * Now we can enable the vmclear operation in kdump
3506 * since the loaded_vmcss_on_cpu list on this cpu
3507 * has been initialized.
3509 * Though the cpu is not in VMX operation now, there
3510 * is no problem to enable the vmclear operation
3511 * for the loaded_vmcss_on_cpu list is empty!
3513 crash_enable_local_vmclear(cpu
);
3515 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
3517 test_bits
= FEATURE_CONTROL_LOCKED
;
3518 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
3519 if (tboot_enabled())
3520 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
;
3522 if ((old
& test_bits
) != test_bits
) {
3523 /* enable and lock */
3524 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| test_bits
);
3526 kvm_cpu_vmxon(phys_addr
);
3532 static void vmclear_local_loaded_vmcss(void)
3534 int cpu
= raw_smp_processor_id();
3535 struct loaded_vmcs
*v
, *n
;
3537 list_for_each_entry_safe(v
, n
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
3538 loaded_vmcss_on_cpu_link
)
3539 __loaded_vmcs_clear(v
);
3543 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3546 static void kvm_cpu_vmxoff(void)
3548 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
3550 intel_pt_handle_vmx(0);
3551 cr4_clear_bits(X86_CR4_VMXE
);
3554 static void hardware_disable(void)
3556 vmclear_local_loaded_vmcss();
3560 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
3561 u32 msr
, u32
*result
)
3563 u32 vmx_msr_low
, vmx_msr_high
;
3564 u32 ctl
= ctl_min
| ctl_opt
;
3566 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
3568 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
3569 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
3571 /* Ensure minimum (required) set of control bits are supported. */
3579 static __init
bool allow_1_setting(u32 msr
, u32 ctl
)
3581 u32 vmx_msr_low
, vmx_msr_high
;
3583 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
3584 return vmx_msr_high
& ctl
;
3587 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
3589 u32 vmx_msr_low
, vmx_msr_high
;
3590 u32 min
, opt
, min2
, opt2
;
3591 u32 _pin_based_exec_control
= 0;
3592 u32 _cpu_based_exec_control
= 0;
3593 u32 _cpu_based_2nd_exec_control
= 0;
3594 u32 _vmexit_control
= 0;
3595 u32 _vmentry_control
= 0;
3597 min
= CPU_BASED_HLT_EXITING
|
3598 #ifdef CONFIG_X86_64
3599 CPU_BASED_CR8_LOAD_EXITING
|
3600 CPU_BASED_CR8_STORE_EXITING
|
3602 CPU_BASED_CR3_LOAD_EXITING
|
3603 CPU_BASED_CR3_STORE_EXITING
|
3604 CPU_BASED_USE_IO_BITMAPS
|
3605 CPU_BASED_MOV_DR_EXITING
|
3606 CPU_BASED_USE_TSC_OFFSETING
|
3607 CPU_BASED_INVLPG_EXITING
|
3608 CPU_BASED_RDPMC_EXITING
;
3610 if (!kvm_mwait_in_guest())
3611 min
|= CPU_BASED_MWAIT_EXITING
|
3612 CPU_BASED_MONITOR_EXITING
;
3614 opt
= CPU_BASED_TPR_SHADOW
|
3615 CPU_BASED_USE_MSR_BITMAPS
|
3616 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
3617 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
3618 &_cpu_based_exec_control
) < 0)
3620 #ifdef CONFIG_X86_64
3621 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
3622 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
3623 ~CPU_BASED_CR8_STORE_EXITING
;
3625 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
3627 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
3628 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
3629 SECONDARY_EXEC_WBINVD_EXITING
|
3630 SECONDARY_EXEC_ENABLE_VPID
|
3631 SECONDARY_EXEC_ENABLE_EPT
|
3632 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
3633 SECONDARY_EXEC_PAUSE_LOOP_EXITING
|
3634 SECONDARY_EXEC_RDTSCP
|
3635 SECONDARY_EXEC_ENABLE_INVPCID
|
3636 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
3637 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
3638 SECONDARY_EXEC_SHADOW_VMCS
|
3639 SECONDARY_EXEC_XSAVES
|
3640 SECONDARY_EXEC_ENABLE_PML
|
3641 SECONDARY_EXEC_TSC_SCALING
;
3642 if (adjust_vmx_controls(min2
, opt2
,
3643 MSR_IA32_VMX_PROCBASED_CTLS2
,
3644 &_cpu_based_2nd_exec_control
) < 0)
3647 #ifndef CONFIG_X86_64
3648 if (!(_cpu_based_2nd_exec_control
&
3649 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
3650 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
3653 if (!(_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
3654 _cpu_based_2nd_exec_control
&= ~(
3655 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
3656 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
3657 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
3659 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
3660 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3662 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
3663 CPU_BASED_CR3_STORE_EXITING
|
3664 CPU_BASED_INVLPG_EXITING
);
3665 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
3666 vmx_capability
.ept
, vmx_capability
.vpid
);
3669 min
= VM_EXIT_SAVE_DEBUG_CONTROLS
| VM_EXIT_ACK_INTR_ON_EXIT
;
3670 #ifdef CONFIG_X86_64
3671 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
3673 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
|
3674 VM_EXIT_CLEAR_BNDCFGS
;
3675 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
3676 &_vmexit_control
) < 0)
3679 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
|
3680 PIN_BASED_VIRTUAL_NMIS
;
3681 opt
= PIN_BASED_POSTED_INTR
| PIN_BASED_VMX_PREEMPTION_TIMER
;
3682 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
3683 &_pin_based_exec_control
) < 0)
3686 if (cpu_has_broken_vmx_preemption_timer())
3687 _pin_based_exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
3688 if (!(_cpu_based_2nd_exec_control
&
3689 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
))
3690 _pin_based_exec_control
&= ~PIN_BASED_POSTED_INTR
;
3692 min
= VM_ENTRY_LOAD_DEBUG_CONTROLS
;
3693 opt
= VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_BNDCFGS
;
3694 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
3695 &_vmentry_control
) < 0)
3698 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
3700 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3701 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
3704 #ifdef CONFIG_X86_64
3705 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3706 if (vmx_msr_high
& (1u<<16))
3710 /* Require Write-Back (WB) memory type for VMCS accesses. */
3711 if (((vmx_msr_high
>> 18) & 15) != 6)
3714 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
3715 vmcs_conf
->order
= get_order(vmcs_conf
->size
);
3716 vmcs_conf
->basic_cap
= vmx_msr_high
& ~0x1fff;
3717 vmcs_conf
->revision_id
= vmx_msr_low
;
3719 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
3720 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
3721 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
3722 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
3723 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
3725 cpu_has_load_ia32_efer
=
3726 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
3727 VM_ENTRY_LOAD_IA32_EFER
)
3728 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
3729 VM_EXIT_LOAD_IA32_EFER
);
3731 cpu_has_load_perf_global_ctrl
=
3732 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
3733 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
3734 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
3735 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
3738 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3739 * but due to errata below it can't be used. Workaround is to use
3740 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3742 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3747 * BC86,AAY89,BD102 (model 44)
3751 if (cpu_has_load_perf_global_ctrl
&& boot_cpu_data
.x86
== 0x6) {
3752 switch (boot_cpu_data
.x86_model
) {
3758 cpu_has_load_perf_global_ctrl
= false;
3759 printk_once(KERN_WARNING
"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3760 "does not work properly. Using workaround\n");
3767 if (boot_cpu_has(X86_FEATURE_XSAVES
))
3768 rdmsrl(MSR_IA32_XSS
, host_xss
);
3773 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
3775 int node
= cpu_to_node(cpu
);
3779 pages
= __alloc_pages_node(node
, GFP_KERNEL
, vmcs_config
.order
);
3782 vmcs
= page_address(pages
);
3783 memset(vmcs
, 0, vmcs_config
.size
);
3784 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
3788 static struct vmcs
*alloc_vmcs(void)
3790 return alloc_vmcs_cpu(raw_smp_processor_id());
3793 static void free_vmcs(struct vmcs
*vmcs
)
3795 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
3799 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3801 static void free_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
3803 if (!loaded_vmcs
->vmcs
)
3805 loaded_vmcs_clear(loaded_vmcs
);
3806 free_vmcs(loaded_vmcs
->vmcs
);
3807 loaded_vmcs
->vmcs
= NULL
;
3808 WARN_ON(loaded_vmcs
->shadow_vmcs
!= NULL
);
3811 static void free_kvm_area(void)
3815 for_each_possible_cpu(cpu
) {
3816 free_vmcs(per_cpu(vmxarea
, cpu
));
3817 per_cpu(vmxarea
, cpu
) = NULL
;
3821 enum vmcs_field_type
{
3822 VMCS_FIELD_TYPE_U16
= 0,
3823 VMCS_FIELD_TYPE_U64
= 1,
3824 VMCS_FIELD_TYPE_U32
= 2,
3825 VMCS_FIELD_TYPE_NATURAL_WIDTH
= 3
3828 static inline int vmcs_field_type(unsigned long field
)
3830 if (0x1 & field
) /* the *_HIGH fields are all 32 bit */
3831 return VMCS_FIELD_TYPE_U32
;
3832 return (field
>> 13) & 0x3 ;
3835 static inline int vmcs_field_readonly(unsigned long field
)
3837 return (((field
>> 10) & 0x3) == 1);
3840 static void init_vmcs_shadow_fields(void)
3844 /* No checks for read only fields yet */
3846 for (i
= j
= 0; i
< max_shadow_read_write_fields
; i
++) {
3847 switch (shadow_read_write_fields
[i
]) {
3849 if (!kvm_mpx_supported())
3857 shadow_read_write_fields
[j
] =
3858 shadow_read_write_fields
[i
];
3861 max_shadow_read_write_fields
= j
;
3863 /* shadowed fields guest access without vmexit */
3864 for (i
= 0; i
< max_shadow_read_write_fields
; i
++) {
3865 unsigned long field
= shadow_read_write_fields
[i
];
3867 clear_bit(field
, vmx_vmwrite_bitmap
);
3868 clear_bit(field
, vmx_vmread_bitmap
);
3869 if (vmcs_field_type(field
) == VMCS_FIELD_TYPE_U64
) {
3870 clear_bit(field
+ 1, vmx_vmwrite_bitmap
);
3871 clear_bit(field
+ 1, vmx_vmread_bitmap
);
3874 for (i
= 0; i
< max_shadow_read_only_fields
; i
++) {
3875 unsigned long field
= shadow_read_only_fields
[i
];
3877 clear_bit(field
, vmx_vmread_bitmap
);
3878 if (vmcs_field_type(field
) == VMCS_FIELD_TYPE_U64
)
3879 clear_bit(field
+ 1, vmx_vmread_bitmap
);
3883 static __init
int alloc_kvm_area(void)
3887 for_each_possible_cpu(cpu
) {
3890 vmcs
= alloc_vmcs_cpu(cpu
);
3896 per_cpu(vmxarea
, cpu
) = vmcs
;
3901 static void fix_pmode_seg(struct kvm_vcpu
*vcpu
, int seg
,
3902 struct kvm_segment
*save
)
3904 if (!emulate_invalid_guest_state
) {
3906 * CS and SS RPL should be equal during guest entry according
3907 * to VMX spec, but in reality it is not always so. Since vcpu
3908 * is in the middle of the transition from real mode to
3909 * protected mode it is safe to assume that RPL 0 is a good
3912 if (seg
== VCPU_SREG_CS
|| seg
== VCPU_SREG_SS
)
3913 save
->selector
&= ~SEGMENT_RPL_MASK
;
3914 save
->dpl
= save
->selector
& SEGMENT_RPL_MASK
;
3917 vmx_set_segment(vcpu
, save
, seg
);
3920 static void enter_pmode(struct kvm_vcpu
*vcpu
)
3922 unsigned long flags
;
3923 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3926 * Update real mode segment cache. It may be not up-to-date if sement
3927 * register was written while vcpu was in a guest mode.
3929 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3930 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3931 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3932 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3933 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3934 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3936 vmx
->rmode
.vm86_active
= 0;
3938 vmx_segment_cache_clear(vmx
);
3940 vmx_set_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3942 flags
= vmcs_readl(GUEST_RFLAGS
);
3943 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
3944 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
3945 vmcs_writel(GUEST_RFLAGS
, flags
);
3947 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
3948 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
3950 update_exception_bitmap(vcpu
);
3952 fix_pmode_seg(vcpu
, VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3953 fix_pmode_seg(vcpu
, VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3954 fix_pmode_seg(vcpu
, VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3955 fix_pmode_seg(vcpu
, VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3956 fix_pmode_seg(vcpu
, VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3957 fix_pmode_seg(vcpu
, VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3960 static void fix_rmode_seg(int seg
, struct kvm_segment
*save
)
3962 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3963 struct kvm_segment var
= *save
;
3966 if (seg
== VCPU_SREG_CS
)
3969 if (!emulate_invalid_guest_state
) {
3970 var
.selector
= var
.base
>> 4;
3971 var
.base
= var
.base
& 0xffff0;
3981 if (save
->base
& 0xf)
3982 printk_once(KERN_WARNING
"kvm: segment base is not "
3983 "paragraph aligned when entering "
3984 "protected mode (seg=%d)", seg
);
3987 vmcs_write16(sf
->selector
, var
.selector
);
3988 vmcs_writel(sf
->base
, var
.base
);
3989 vmcs_write32(sf
->limit
, var
.limit
);
3990 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(&var
));
3993 static void enter_rmode(struct kvm_vcpu
*vcpu
)
3995 unsigned long flags
;
3996 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3998 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3999 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
4000 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
4001 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
4002 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
4003 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
4004 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
4006 vmx
->rmode
.vm86_active
= 1;
4009 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4010 * vcpu. Warn the user that an update is overdue.
4012 if (!vcpu
->kvm
->arch
.tss_addr
)
4013 printk_once(KERN_WARNING
"kvm: KVM_SET_TSS_ADDR need to be "
4014 "called before entering vcpu\n");
4016 vmx_segment_cache_clear(vmx
);
4018 vmcs_writel(GUEST_TR_BASE
, vcpu
->kvm
->arch
.tss_addr
);
4019 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
4020 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
4022 flags
= vmcs_readl(GUEST_RFLAGS
);
4023 vmx
->rmode
.save_rflags
= flags
;
4025 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
4027 vmcs_writel(GUEST_RFLAGS
, flags
);
4028 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
4029 update_exception_bitmap(vcpu
);
4031 fix_rmode_seg(VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
4032 fix_rmode_seg(VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
4033 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
4034 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
4035 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
4036 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
4038 kvm_mmu_reset_context(vcpu
);
4041 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
4043 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4044 struct shared_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
4050 * Force kernel_gs_base reloading before EFER changes, as control
4051 * of this msr depends on is_long_mode().
4053 vmx_load_host_state(to_vmx(vcpu
));
4054 vcpu
->arch
.efer
= efer
;
4055 if (efer
& EFER_LMA
) {
4056 vm_entry_controls_setbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
4059 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
4061 msr
->data
= efer
& ~EFER_LME
;
4066 #ifdef CONFIG_X86_64
4068 static void enter_lmode(struct kvm_vcpu
*vcpu
)
4072 vmx_segment_cache_clear(to_vmx(vcpu
));
4074 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
4075 if ((guest_tr_ar
& VMX_AR_TYPE_MASK
) != VMX_AR_TYPE_BUSY_64_TSS
) {
4076 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4078 vmcs_write32(GUEST_TR_AR_BYTES
,
4079 (guest_tr_ar
& ~VMX_AR_TYPE_MASK
)
4080 | VMX_AR_TYPE_BUSY_64_TSS
);
4082 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
4085 static void exit_lmode(struct kvm_vcpu
*vcpu
)
4087 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
4088 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
4093 static inline void __vmx_flush_tlb(struct kvm_vcpu
*vcpu
, int vpid
)
4096 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
4098 ept_sync_context(construct_eptp(vcpu
, vcpu
->arch
.mmu
.root_hpa
));
4100 vpid_sync_context(vpid
);
4104 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
4106 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->vpid
);
4109 static void vmx_flush_tlb_ept_only(struct kvm_vcpu
*vcpu
)
4112 vmx_flush_tlb(vcpu
);
4115 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
4117 ulong cr0_guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
4119 vcpu
->arch
.cr0
&= ~cr0_guest_owned_bits
;
4120 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & cr0_guest_owned_bits
;
4123 static void vmx_decache_cr3(struct kvm_vcpu
*vcpu
)
4125 if (enable_ept
&& is_paging(vcpu
))
4126 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
4127 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
4130 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
4132 ulong cr4_guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
4134 vcpu
->arch
.cr4
&= ~cr4_guest_owned_bits
;
4135 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & cr4_guest_owned_bits
;
4138 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
4140 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
4142 if (!test_bit(VCPU_EXREG_PDPTR
,
4143 (unsigned long *)&vcpu
->arch
.regs_dirty
))
4146 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
4147 vmcs_write64(GUEST_PDPTR0
, mmu
->pdptrs
[0]);
4148 vmcs_write64(GUEST_PDPTR1
, mmu
->pdptrs
[1]);
4149 vmcs_write64(GUEST_PDPTR2
, mmu
->pdptrs
[2]);
4150 vmcs_write64(GUEST_PDPTR3
, mmu
->pdptrs
[3]);
4154 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
4156 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
4158 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
4159 mmu
->pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
4160 mmu
->pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
4161 mmu
->pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
4162 mmu
->pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
4165 __set_bit(VCPU_EXREG_PDPTR
,
4166 (unsigned long *)&vcpu
->arch
.regs_avail
);
4167 __set_bit(VCPU_EXREG_PDPTR
,
4168 (unsigned long *)&vcpu
->arch
.regs_dirty
);
4171 static bool nested_guest_cr0_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
4173 u64 fixed0
= to_vmx(vcpu
)->nested
.nested_vmx_cr0_fixed0
;
4174 u64 fixed1
= to_vmx(vcpu
)->nested
.nested_vmx_cr0_fixed1
;
4175 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
4177 if (to_vmx(vcpu
)->nested
.nested_vmx_secondary_ctls_high
&
4178 SECONDARY_EXEC_UNRESTRICTED_GUEST
&&
4179 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_UNRESTRICTED_GUEST
))
4180 fixed0
&= ~(X86_CR0_PE
| X86_CR0_PG
);
4182 return fixed_bits_valid(val
, fixed0
, fixed1
);
4185 static bool nested_host_cr0_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
4187 u64 fixed0
= to_vmx(vcpu
)->nested
.nested_vmx_cr0_fixed0
;
4188 u64 fixed1
= to_vmx(vcpu
)->nested
.nested_vmx_cr0_fixed1
;
4190 return fixed_bits_valid(val
, fixed0
, fixed1
);
4193 static bool nested_cr4_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
4195 u64 fixed0
= to_vmx(vcpu
)->nested
.nested_vmx_cr4_fixed0
;
4196 u64 fixed1
= to_vmx(vcpu
)->nested
.nested_vmx_cr4_fixed1
;
4198 return fixed_bits_valid(val
, fixed0
, fixed1
);
4201 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4202 #define nested_guest_cr4_valid nested_cr4_valid
4203 #define nested_host_cr4_valid nested_cr4_valid
4205 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
4207 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
4209 struct kvm_vcpu
*vcpu
)
4211 if (!test_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
))
4212 vmx_decache_cr3(vcpu
);
4213 if (!(cr0
& X86_CR0_PG
)) {
4214 /* From paging/starting to nonpaging */
4215 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
4216 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
4217 (CPU_BASED_CR3_LOAD_EXITING
|
4218 CPU_BASED_CR3_STORE_EXITING
));
4219 vcpu
->arch
.cr0
= cr0
;
4220 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
4221 } else if (!is_paging(vcpu
)) {
4222 /* From nonpaging to paging */
4223 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
4224 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
4225 ~(CPU_BASED_CR3_LOAD_EXITING
|
4226 CPU_BASED_CR3_STORE_EXITING
));
4227 vcpu
->arch
.cr0
= cr0
;
4228 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
4231 if (!(cr0
& X86_CR0_WP
))
4232 *hw_cr0
&= ~X86_CR0_WP
;
4235 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
4237 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4238 unsigned long hw_cr0
;
4240 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
);
4241 if (enable_unrestricted_guest
)
4242 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
4244 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON
;
4246 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
4249 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
4253 #ifdef CONFIG_X86_64
4254 if (vcpu
->arch
.efer
& EFER_LME
) {
4255 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
4257 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
4263 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
4265 vmcs_writel(CR0_READ_SHADOW
, cr0
);
4266 vmcs_writel(GUEST_CR0
, hw_cr0
);
4267 vcpu
->arch
.cr0
= cr0
;
4269 /* depends on vcpu->arch.cr0 to be set to a new value */
4270 vmx
->emulation_required
= emulation_required(vcpu
);
4273 static u64
construct_eptp(struct kvm_vcpu
*vcpu
, unsigned long root_hpa
)
4277 /* TODO write the value reading from MSR */
4278 eptp
= VMX_EPT_DEFAULT_MT
|
4279 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
4280 if (enable_ept_ad_bits
&&
4281 (!is_guest_mode(vcpu
) || nested_ept_ad_enabled(vcpu
)))
4282 eptp
|= VMX_EPT_AD_ENABLE_BIT
;
4283 eptp
|= (root_hpa
& PAGE_MASK
);
4288 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
4290 unsigned long guest_cr3
;
4295 eptp
= construct_eptp(vcpu
, cr3
);
4296 vmcs_write64(EPT_POINTER
, eptp
);
4297 if (is_paging(vcpu
) || is_guest_mode(vcpu
))
4298 guest_cr3
= kvm_read_cr3(vcpu
);
4300 guest_cr3
= vcpu
->kvm
->arch
.ept_identity_map_addr
;
4301 ept_load_pdptrs(vcpu
);
4304 vmx_flush_tlb(vcpu
);
4305 vmcs_writel(GUEST_CR3
, guest_cr3
);
4308 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
4311 * Pass through host's Machine Check Enable value to hw_cr4, which
4312 * is in force while we are in guest mode. Do not let guests control
4313 * this bit, even if host CR4.MCE == 0.
4315 unsigned long hw_cr4
=
4316 (cr4_read_shadow() & X86_CR4_MCE
) |
4317 (cr4
& ~X86_CR4_MCE
) |
4318 (to_vmx(vcpu
)->rmode
.vm86_active
?
4319 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
4321 if (cr4
& X86_CR4_VMXE
) {
4323 * To use VMXON (and later other VMX instructions), a guest
4324 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4325 * So basically the check on whether to allow nested VMX
4328 if (!nested_vmx_allowed(vcpu
))
4332 if (to_vmx(vcpu
)->nested
.vmxon
&& !nested_cr4_valid(vcpu
, cr4
))
4335 vcpu
->arch
.cr4
= cr4
;
4337 if (!is_paging(vcpu
)) {
4338 hw_cr4
&= ~X86_CR4_PAE
;
4339 hw_cr4
|= X86_CR4_PSE
;
4340 } else if (!(cr4
& X86_CR4_PAE
)) {
4341 hw_cr4
&= ~X86_CR4_PAE
;
4345 if (!enable_unrestricted_guest
&& !is_paging(vcpu
))
4347 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4348 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4349 * to be manually disabled when guest switches to non-paging
4352 * If !enable_unrestricted_guest, the CPU is always running
4353 * with CR0.PG=1 and CR4 needs to be modified.
4354 * If enable_unrestricted_guest, the CPU automatically
4355 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4357 hw_cr4
&= ~(X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
);
4359 vmcs_writel(CR4_READ_SHADOW
, cr4
);
4360 vmcs_writel(GUEST_CR4
, hw_cr4
);
4364 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
4365 struct kvm_segment
*var
, int seg
)
4367 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4370 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
4371 *var
= vmx
->rmode
.segs
[seg
];
4372 if (seg
== VCPU_SREG_TR
4373 || var
->selector
== vmx_read_guest_seg_selector(vmx
, seg
))
4375 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
4376 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
4379 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
4380 var
->limit
= vmx_read_guest_seg_limit(vmx
, seg
);
4381 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
4382 ar
= vmx_read_guest_seg_ar(vmx
, seg
);
4383 var
->unusable
= (ar
>> 16) & 1;
4384 var
->type
= ar
& 15;
4385 var
->s
= (ar
>> 4) & 1;
4386 var
->dpl
= (ar
>> 5) & 3;
4388 * Some userspaces do not preserve unusable property. Since usable
4389 * segment has to be present according to VMX spec we can use present
4390 * property to amend userspace bug by making unusable segment always
4391 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4392 * segment as unusable.
4394 var
->present
= !var
->unusable
;
4395 var
->avl
= (ar
>> 12) & 1;
4396 var
->l
= (ar
>> 13) & 1;
4397 var
->db
= (ar
>> 14) & 1;
4398 var
->g
= (ar
>> 15) & 1;
4401 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4403 struct kvm_segment s
;
4405 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
4406 vmx_get_segment(vcpu
, &s
, seg
);
4409 return vmx_read_guest_seg_base(to_vmx(vcpu
), seg
);
4412 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
4414 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4416 if (unlikely(vmx
->rmode
.vm86_active
))
4419 int ar
= vmx_read_guest_seg_ar(vmx
, VCPU_SREG_SS
);
4420 return VMX_AR_DPL(ar
);
4424 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
4428 if (var
->unusable
|| !var
->present
)
4431 ar
= var
->type
& 15;
4432 ar
|= (var
->s
& 1) << 4;
4433 ar
|= (var
->dpl
& 3) << 5;
4434 ar
|= (var
->present
& 1) << 7;
4435 ar
|= (var
->avl
& 1) << 12;
4436 ar
|= (var
->l
& 1) << 13;
4437 ar
|= (var
->db
& 1) << 14;
4438 ar
|= (var
->g
& 1) << 15;
4444 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
4445 struct kvm_segment
*var
, int seg
)
4447 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4448 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
4450 vmx_segment_cache_clear(vmx
);
4452 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
4453 vmx
->rmode
.segs
[seg
] = *var
;
4454 if (seg
== VCPU_SREG_TR
)
4455 vmcs_write16(sf
->selector
, var
->selector
);
4457 fix_rmode_seg(seg
, &vmx
->rmode
.segs
[seg
]);
4461 vmcs_writel(sf
->base
, var
->base
);
4462 vmcs_write32(sf
->limit
, var
->limit
);
4463 vmcs_write16(sf
->selector
, var
->selector
);
4466 * Fix the "Accessed" bit in AR field of segment registers for older
4468 * IA32 arch specifies that at the time of processor reset the
4469 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4470 * is setting it to 0 in the userland code. This causes invalid guest
4471 * state vmexit when "unrestricted guest" mode is turned on.
4472 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4473 * tree. Newer qemu binaries with that qemu fix would not need this
4476 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
4477 var
->type
|= 0x1; /* Accessed */
4479 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(var
));
4482 vmx
->emulation_required
= emulation_required(vcpu
);
4485 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
4487 u32 ar
= vmx_read_guest_seg_ar(to_vmx(vcpu
), VCPU_SREG_CS
);
4489 *db
= (ar
>> 14) & 1;
4490 *l
= (ar
>> 13) & 1;
4493 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4495 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
4496 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
4499 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4501 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
4502 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
4505 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4507 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
4508 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
4511 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4513 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
4514 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
4517 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
4519 struct kvm_segment var
;
4522 vmx_get_segment(vcpu
, &var
, seg
);
4524 if (seg
== VCPU_SREG_CS
)
4526 ar
= vmx_segment_access_rights(&var
);
4528 if (var
.base
!= (var
.selector
<< 4))
4530 if (var
.limit
!= 0xffff)
4538 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
4540 struct kvm_segment cs
;
4541 unsigned int cs_rpl
;
4543 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
4544 cs_rpl
= cs
.selector
& SEGMENT_RPL_MASK
;
4548 if (~cs
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_ACCESSES_MASK
))
4552 if (cs
.type
& VMX_AR_TYPE_WRITEABLE_MASK
) {
4553 if (cs
.dpl
> cs_rpl
)
4556 if (cs
.dpl
!= cs_rpl
)
4562 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4566 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
4568 struct kvm_segment ss
;
4569 unsigned int ss_rpl
;
4571 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
4572 ss_rpl
= ss
.selector
& SEGMENT_RPL_MASK
;
4576 if (ss
.type
!= 3 && ss
.type
!= 7)
4580 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
4588 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
4590 struct kvm_segment var
;
4593 vmx_get_segment(vcpu
, &var
, seg
);
4594 rpl
= var
.selector
& SEGMENT_RPL_MASK
;
4602 if (~var
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_WRITEABLE_MASK
)) {
4603 if (var
.dpl
< rpl
) /* DPL < RPL */
4607 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4613 static bool tr_valid(struct kvm_vcpu
*vcpu
)
4615 struct kvm_segment tr
;
4617 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
4621 if (tr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
4623 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
4631 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
4633 struct kvm_segment ldtr
;
4635 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
4639 if (ldtr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
4649 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
4651 struct kvm_segment cs
, ss
;
4653 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
4654 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
4656 return ((cs
.selector
& SEGMENT_RPL_MASK
) ==
4657 (ss
.selector
& SEGMENT_RPL_MASK
));
4661 * Check if guest state is valid. Returns true if valid, false if
4663 * We assume that registers are always usable
4665 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
4667 if (enable_unrestricted_guest
)
4670 /* real mode guest state checks */
4671 if (!is_protmode(vcpu
) || (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
4672 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
4674 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
4676 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
4678 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
4680 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
4682 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
4685 /* protected mode guest state checks */
4686 if (!cs_ss_rpl_check(vcpu
))
4688 if (!code_segment_valid(vcpu
))
4690 if (!stack_segment_valid(vcpu
))
4692 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
4694 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
4696 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
4698 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
4700 if (!tr_valid(vcpu
))
4702 if (!ldtr_valid(vcpu
))
4706 * - Add checks on RIP
4707 * - Add checks on RFLAGS
4713 static bool page_address_valid(struct kvm_vcpu
*vcpu
, gpa_t gpa
)
4715 return PAGE_ALIGNED(gpa
) && !(gpa
>> cpuid_maxphyaddr(vcpu
));
4718 static int init_rmode_tss(struct kvm
*kvm
)
4724 idx
= srcu_read_lock(&kvm
->srcu
);
4725 fn
= kvm
->arch
.tss_addr
>> PAGE_SHIFT
;
4726 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
4729 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
4730 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
4731 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
4734 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
4737 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
4741 r
= kvm_write_guest_page(kvm
, fn
, &data
,
4742 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
4745 srcu_read_unlock(&kvm
->srcu
, idx
);
4749 static int init_rmode_identity_map(struct kvm
*kvm
)
4752 kvm_pfn_t identity_map_pfn
;
4758 /* Protect kvm->arch.ept_identity_pagetable_done. */
4759 mutex_lock(&kvm
->slots_lock
);
4761 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
4764 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
4766 r
= alloc_identity_pagetable(kvm
);
4770 idx
= srcu_read_lock(&kvm
->srcu
);
4771 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
4774 /* Set up identity-mapping pagetable for EPT in real mode */
4775 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
4776 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
4777 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
4778 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
4779 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
4783 kvm
->arch
.ept_identity_pagetable_done
= true;
4786 srcu_read_unlock(&kvm
->srcu
, idx
);
4789 mutex_unlock(&kvm
->slots_lock
);
4793 static void seg_setup(int seg
)
4795 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
4798 vmcs_write16(sf
->selector
, 0);
4799 vmcs_writel(sf
->base
, 0);
4800 vmcs_write32(sf
->limit
, 0xffff);
4802 if (seg
== VCPU_SREG_CS
)
4803 ar
|= 0x08; /* code segment */
4805 vmcs_write32(sf
->ar_bytes
, ar
);
4808 static int alloc_apic_access_page(struct kvm
*kvm
)
4813 mutex_lock(&kvm
->slots_lock
);
4814 if (kvm
->arch
.apic_access_page_done
)
4816 r
= __x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
,
4817 APIC_DEFAULT_PHYS_BASE
, PAGE_SIZE
);
4821 page
= gfn_to_page(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
4822 if (is_error_page(page
)) {
4828 * Do not pin the page in memory, so that memory hot-unplug
4829 * is able to migrate it.
4832 kvm
->arch
.apic_access_page_done
= true;
4834 mutex_unlock(&kvm
->slots_lock
);
4838 static int alloc_identity_pagetable(struct kvm
*kvm
)
4840 /* Called with kvm->slots_lock held. */
4844 BUG_ON(kvm
->arch
.ept_identity_pagetable_done
);
4846 r
= __x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
,
4847 kvm
->arch
.ept_identity_map_addr
, PAGE_SIZE
);
4852 static int allocate_vpid(void)
4858 spin_lock(&vmx_vpid_lock
);
4859 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
4860 if (vpid
< VMX_NR_VPIDS
)
4861 __set_bit(vpid
, vmx_vpid_bitmap
);
4864 spin_unlock(&vmx_vpid_lock
);
4868 static void free_vpid(int vpid
)
4870 if (!enable_vpid
|| vpid
== 0)
4872 spin_lock(&vmx_vpid_lock
);
4873 __clear_bit(vpid
, vmx_vpid_bitmap
);
4874 spin_unlock(&vmx_vpid_lock
);
4877 #define MSR_TYPE_R 1
4878 #define MSR_TYPE_W 2
4879 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
,
4882 int f
= sizeof(unsigned long);
4884 if (!cpu_has_vmx_msr_bitmap())
4888 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4889 * have the write-low and read-high bitmap offsets the wrong way round.
4890 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4892 if (msr
<= 0x1fff) {
4893 if (type
& MSR_TYPE_R
)
4895 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
);
4897 if (type
& MSR_TYPE_W
)
4899 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
);
4901 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4903 if (type
& MSR_TYPE_R
)
4905 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
);
4907 if (type
& MSR_TYPE_W
)
4909 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
);
4915 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4916 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4918 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1
,
4919 unsigned long *msr_bitmap_nested
,
4922 int f
= sizeof(unsigned long);
4924 if (!cpu_has_vmx_msr_bitmap()) {
4930 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4931 * have the write-low and read-high bitmap offsets the wrong way round.
4932 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4934 if (msr
<= 0x1fff) {
4935 if (type
& MSR_TYPE_R
&&
4936 !test_bit(msr
, msr_bitmap_l1
+ 0x000 / f
))
4938 __clear_bit(msr
, msr_bitmap_nested
+ 0x000 / f
);
4940 if (type
& MSR_TYPE_W
&&
4941 !test_bit(msr
, msr_bitmap_l1
+ 0x800 / f
))
4943 __clear_bit(msr
, msr_bitmap_nested
+ 0x800 / f
);
4945 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4947 if (type
& MSR_TYPE_R
&&
4948 !test_bit(msr
, msr_bitmap_l1
+ 0x400 / f
))
4950 __clear_bit(msr
, msr_bitmap_nested
+ 0x400 / f
);
4952 if (type
& MSR_TYPE_W
&&
4953 !test_bit(msr
, msr_bitmap_l1
+ 0xc00 / f
))
4955 __clear_bit(msr
, msr_bitmap_nested
+ 0xc00 / f
);
4960 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
4963 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
,
4964 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4965 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
,
4966 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4969 static void vmx_disable_intercept_msr_x2apic(u32 msr
, int type
, bool apicv_active
)
4972 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv
,
4974 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv
,
4977 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4979 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4984 static bool vmx_get_enable_apicv(void)
4986 return enable_apicv
;
4989 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu
*vcpu
)
4991 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
4995 * Don't need to mark the APIC access page dirty; it is never
4996 * written to by the CPU during APIC virtualization.
4999 if (nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
)) {
5000 gfn
= vmcs12
->virtual_apic_page_addr
>> PAGE_SHIFT
;
5001 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
5004 if (nested_cpu_has_posted_intr(vmcs12
)) {
5005 gfn
= vmcs12
->posted_intr_desc_addr
>> PAGE_SHIFT
;
5006 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
5011 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu
*vcpu
)
5013 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5018 if (!vmx
->nested
.pi_desc
|| !vmx
->nested
.pi_pending
)
5021 vmx
->nested
.pi_pending
= false;
5022 if (!pi_test_and_clear_on(vmx
->nested
.pi_desc
))
5025 max_irr
= find_last_bit((unsigned long *)vmx
->nested
.pi_desc
->pir
, 256);
5026 if (max_irr
!= 256) {
5027 vapic_page
= kmap(vmx
->nested
.virtual_apic_page
);
5028 __kvm_apic_update_irr(vmx
->nested
.pi_desc
->pir
, vapic_page
);
5029 kunmap(vmx
->nested
.virtual_apic_page
);
5031 status
= vmcs_read16(GUEST_INTR_STATUS
);
5032 if ((u8
)max_irr
> ((u8
)status
& 0xff)) {
5034 status
|= (u8
)max_irr
;
5035 vmcs_write16(GUEST_INTR_STATUS
, status
);
5039 nested_mark_vmcs12_pages_dirty(vcpu
);
5042 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu
*vcpu
,
5046 int pi_vec
= nested
? POSTED_INTR_NESTED_VECTOR
: POSTED_INTR_VECTOR
;
5048 if (vcpu
->mode
== IN_GUEST_MODE
) {
5050 * The vector of interrupt to be delivered to vcpu had
5051 * been set in PIR before this function.
5053 * Following cases will be reached in this block, and
5054 * we always send a notification event in all cases as
5057 * Case 1: vcpu keeps in non-root mode. Sending a
5058 * notification event posts the interrupt to vcpu.
5060 * Case 2: vcpu exits to root mode and is still
5061 * runnable. PIR will be synced to vIRR before the
5062 * next vcpu entry. Sending a notification event in
5063 * this case has no effect, as vcpu is not in root
5066 * Case 3: vcpu exits to root mode and is blocked.
5067 * vcpu_block() has already synced PIR to vIRR and
5068 * never blocks vcpu if vIRR is not cleared. Therefore,
5069 * a blocked vcpu here does not wait for any requested
5070 * interrupts in PIR, and sending a notification event
5071 * which has no effect is safe here.
5074 apic
->send_IPI_mask(get_cpu_mask(vcpu
->cpu
), pi_vec
);
5081 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu
*vcpu
,
5084 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5086 if (is_guest_mode(vcpu
) &&
5087 vector
== vmx
->nested
.posted_intr_nv
) {
5088 /* the PIR and ON have been set by L1. */
5089 kvm_vcpu_trigger_posted_interrupt(vcpu
, true);
5091 * If a posted intr is not recognized by hardware,
5092 * we will accomplish it in the next vmentry.
5094 vmx
->nested
.pi_pending
= true;
5095 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5101 * Send interrupt to vcpu via posted interrupt way.
5102 * 1. If target vcpu is running(non-root mode), send posted interrupt
5103 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5104 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5105 * interrupt from PIR in next vmentry.
5107 static void vmx_deliver_posted_interrupt(struct kvm_vcpu
*vcpu
, int vector
)
5109 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5112 r
= vmx_deliver_nested_posted_interrupt(vcpu
, vector
);
5116 if (pi_test_and_set_pir(vector
, &vmx
->pi_desc
))
5119 /* If a previous notification has sent the IPI, nothing to do. */
5120 if (pi_test_and_set_on(&vmx
->pi_desc
))
5123 if (!kvm_vcpu_trigger_posted_interrupt(vcpu
, false))
5124 kvm_vcpu_kick(vcpu
);
5128 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5129 * will not change in the lifetime of the guest.
5130 * Note that host-state that does change is set elsewhere. E.g., host-state
5131 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5133 static void vmx_set_constant_host_state(struct vcpu_vmx
*vmx
)
5138 unsigned long cr0
, cr3
, cr4
;
5141 WARN_ON(cr0
& X86_CR0_TS
);
5142 vmcs_writel(HOST_CR0
, cr0
); /* 22.2.3 */
5145 * Save the most likely value for this task's CR3 in the VMCS.
5146 * We can't use __get_current_cr3_fast() because we're not atomic.
5149 vmcs_writel(HOST_CR3
, cr3
); /* 22.2.3 FIXME: shadow tables */
5150 vmx
->loaded_vmcs
->vmcs_host_cr3
= cr3
;
5152 /* Save the most likely value for this task's CR4 in the VMCS. */
5153 cr4
= cr4_read_shadow();
5154 vmcs_writel(HOST_CR4
, cr4
); /* 22.2.3, 22.2.5 */
5155 vmx
->loaded_vmcs
->vmcs_host_cr4
= cr4
;
5157 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
5158 #ifdef CONFIG_X86_64
5160 * Load null selectors, so we can avoid reloading them in
5161 * __vmx_load_host_state(), in case userspace uses the null selectors
5162 * too (the expected case).
5164 vmcs_write16(HOST_DS_SELECTOR
, 0);
5165 vmcs_write16(HOST_ES_SELECTOR
, 0);
5167 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
5168 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
5170 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
5171 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
5173 native_store_idt(&dt
);
5174 vmcs_writel(HOST_IDTR_BASE
, dt
.address
); /* 22.2.4 */
5175 vmx
->host_idt_base
= dt
.address
;
5177 vmcs_writel(HOST_RIP
, vmx_return
); /* 22.2.5 */
5179 rdmsr(MSR_IA32_SYSENTER_CS
, low32
, high32
);
5180 vmcs_write32(HOST_IA32_SYSENTER_CS
, low32
);
5181 rdmsrl(MSR_IA32_SYSENTER_EIP
, tmpl
);
5182 vmcs_writel(HOST_IA32_SYSENTER_EIP
, tmpl
); /* 22.2.3 */
5184 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
5185 rdmsr(MSR_IA32_CR_PAT
, low32
, high32
);
5186 vmcs_write64(HOST_IA32_PAT
, low32
| ((u64
) high32
<< 32));
5190 static void set_cr4_guest_host_mask(struct vcpu_vmx
*vmx
)
5192 vmx
->vcpu
.arch
.cr4_guest_owned_bits
= KVM_CR4_GUEST_OWNED_BITS
;
5194 vmx
->vcpu
.arch
.cr4_guest_owned_bits
|= X86_CR4_PGE
;
5195 if (is_guest_mode(&vmx
->vcpu
))
5196 vmx
->vcpu
.arch
.cr4_guest_owned_bits
&=
5197 ~get_vmcs12(&vmx
->vcpu
)->cr4_guest_host_mask
;
5198 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr4_guest_owned_bits
);
5201 static u32
vmx_pin_based_exec_ctrl(struct vcpu_vmx
*vmx
)
5203 u32 pin_based_exec_ctrl
= vmcs_config
.pin_based_exec_ctrl
;
5205 if (!kvm_vcpu_apicv_active(&vmx
->vcpu
))
5206 pin_based_exec_ctrl
&= ~PIN_BASED_POSTED_INTR
;
5207 /* Enable the preemption timer dynamically */
5208 pin_based_exec_ctrl
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
5209 return pin_based_exec_ctrl
;
5212 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu
*vcpu
)
5214 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5216 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
5217 if (cpu_has_secondary_exec_ctrls()) {
5218 if (kvm_vcpu_apicv_active(vcpu
))
5219 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
5220 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
5221 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
5223 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
,
5224 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
5225 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
5228 if (cpu_has_vmx_msr_bitmap())
5229 vmx_set_msr_bitmap(vcpu
);
5232 static u32
vmx_exec_control(struct vcpu_vmx
*vmx
)
5234 u32 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
5236 if (vmx
->vcpu
.arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)
5237 exec_control
&= ~CPU_BASED_MOV_DR_EXITING
;
5239 if (!cpu_need_tpr_shadow(&vmx
->vcpu
)) {
5240 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
5241 #ifdef CONFIG_X86_64
5242 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
5243 CPU_BASED_CR8_LOAD_EXITING
;
5247 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
5248 CPU_BASED_CR3_LOAD_EXITING
|
5249 CPU_BASED_INVLPG_EXITING
;
5250 return exec_control
;
5253 static u32
vmx_secondary_exec_control(struct vcpu_vmx
*vmx
)
5255 u32 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
5256 if (!cpu_need_virtualize_apic_accesses(&vmx
->vcpu
))
5257 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
5259 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
5261 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
5262 enable_unrestricted_guest
= 0;
5263 /* Enable INVPCID for non-ept guests may cause performance regression. */
5264 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
5266 if (!enable_unrestricted_guest
)
5267 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
5269 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
5270 if (!kvm_vcpu_apicv_active(&vmx
->vcpu
))
5271 exec_control
&= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT
|
5272 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
5273 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
5274 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5276 We can NOT enable shadow_vmcs here because we don't have yet
5279 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
5282 exec_control
&= ~SECONDARY_EXEC_ENABLE_PML
;
5284 return exec_control
;
5287 static void ept_set_mmio_spte_mask(void)
5290 * EPT Misconfigurations can be generated if the value of bits 2:0
5291 * of an EPT paging-structure entry is 110b (write/execute).
5293 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK
,
5294 VMX_EPT_MISCONFIG_WX_VALUE
);
5297 #define VMX_XSS_EXIT_BITMAP 0
5299 * Sets up the vmcs for emulated real mode.
5301 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
5303 #ifdef CONFIG_X86_64
5309 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
5310 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
5312 if (enable_shadow_vmcs
) {
5313 vmcs_write64(VMREAD_BITMAP
, __pa(vmx_vmread_bitmap
));
5314 vmcs_write64(VMWRITE_BITMAP
, __pa(vmx_vmwrite_bitmap
));
5316 if (cpu_has_vmx_msr_bitmap())
5317 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
5319 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
5322 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
5323 vmx
->hv_deadline_tsc
= -1;
5325 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, vmx_exec_control(vmx
));
5327 if (cpu_has_secondary_exec_ctrls()) {
5328 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
5329 vmx_secondary_exec_control(vmx
));
5332 if (kvm_vcpu_apicv_active(&vmx
->vcpu
)) {
5333 vmcs_write64(EOI_EXIT_BITMAP0
, 0);
5334 vmcs_write64(EOI_EXIT_BITMAP1
, 0);
5335 vmcs_write64(EOI_EXIT_BITMAP2
, 0);
5336 vmcs_write64(EOI_EXIT_BITMAP3
, 0);
5338 vmcs_write16(GUEST_INTR_STATUS
, 0);
5340 vmcs_write16(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
5341 vmcs_write64(POSTED_INTR_DESC_ADDR
, __pa((&vmx
->pi_desc
)));
5345 vmcs_write32(PLE_GAP
, ple_gap
);
5346 vmx
->ple_window
= ple_window
;
5347 vmx
->ple_window_dirty
= true;
5350 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
5351 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
5352 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
5354 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
5355 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
5356 vmx_set_constant_host_state(vmx
);
5357 #ifdef CONFIG_X86_64
5358 rdmsrl(MSR_FS_BASE
, a
);
5359 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
5360 rdmsrl(MSR_GS_BASE
, a
);
5361 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
5363 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
5364 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
5367 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
5368 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
5369 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
5370 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
5371 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
5373 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
5374 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
5376 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
) {
5377 u32 index
= vmx_msr_index
[i
];
5378 u32 data_low
, data_high
;
5381 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
5383 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
5385 vmx
->guest_msrs
[j
].index
= i
;
5386 vmx
->guest_msrs
[j
].data
= 0;
5387 vmx
->guest_msrs
[j
].mask
= -1ull;
5392 vm_exit_controls_init(vmx
, vmcs_config
.vmexit_ctrl
);
5394 /* 22.2.1, 20.8.1 */
5395 vm_entry_controls_init(vmx
, vmcs_config
.vmentry_ctrl
);
5397 vmx
->vcpu
.arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
5398 vmcs_writel(CR0_GUEST_HOST_MASK
, ~X86_CR0_TS
);
5400 set_cr4_guest_host_mask(vmx
);
5402 if (vmx_xsaves_supported())
5403 vmcs_write64(XSS_EXIT_BITMAP
, VMX_XSS_EXIT_BITMAP
);
5406 ASSERT(vmx
->pml_pg
);
5407 vmcs_write64(PML_ADDRESS
, page_to_phys(vmx
->pml_pg
));
5408 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
5414 static void vmx_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
5416 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5417 struct msr_data apic_base_msr
;
5420 vmx
->rmode
.vm86_active
= 0;
5422 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
5423 kvm_set_cr8(vcpu
, 0);
5426 apic_base_msr
.data
= APIC_DEFAULT_PHYS_BASE
|
5427 MSR_IA32_APICBASE_ENABLE
;
5428 if (kvm_vcpu_is_reset_bsp(vcpu
))
5429 apic_base_msr
.data
|= MSR_IA32_APICBASE_BSP
;
5430 apic_base_msr
.host_initiated
= true;
5431 kvm_set_apic_base(vcpu
, &apic_base_msr
);
5434 vmx_segment_cache_clear(vmx
);
5436 seg_setup(VCPU_SREG_CS
);
5437 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
5438 vmcs_writel(GUEST_CS_BASE
, 0xffff0000ul
);
5440 seg_setup(VCPU_SREG_DS
);
5441 seg_setup(VCPU_SREG_ES
);
5442 seg_setup(VCPU_SREG_FS
);
5443 seg_setup(VCPU_SREG_GS
);
5444 seg_setup(VCPU_SREG_SS
);
5446 vmcs_write16(GUEST_TR_SELECTOR
, 0);
5447 vmcs_writel(GUEST_TR_BASE
, 0);
5448 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
5449 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
5451 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
5452 vmcs_writel(GUEST_LDTR_BASE
, 0);
5453 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
5454 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
5457 vmcs_write32(GUEST_SYSENTER_CS
, 0);
5458 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
5459 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
5460 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
5463 vmcs_writel(GUEST_RFLAGS
, 0x02);
5464 kvm_rip_write(vcpu
, 0xfff0);
5466 vmcs_writel(GUEST_GDTR_BASE
, 0);
5467 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
5469 vmcs_writel(GUEST_IDTR_BASE
, 0);
5470 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
5472 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
5473 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
5474 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
5478 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
5480 if (cpu_has_vmx_tpr_shadow() && !init_event
) {
5481 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
5482 if (cpu_need_tpr_shadow(vcpu
))
5483 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
5484 __pa(vcpu
->arch
.apic
->regs
));
5485 vmcs_write32(TPR_THRESHOLD
, 0);
5488 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
5490 if (kvm_vcpu_apicv_active(vcpu
))
5491 memset(&vmx
->pi_desc
, 0, sizeof(struct pi_desc
));
5494 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
5496 cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
5497 vmx
->vcpu
.arch
.cr0
= cr0
;
5498 vmx_set_cr0(vcpu
, cr0
); /* enter rmode */
5499 vmx_set_cr4(vcpu
, 0);
5500 vmx_set_efer(vcpu
, 0);
5502 update_exception_bitmap(vcpu
);
5504 vpid_sync_context(vmx
->vpid
);
5508 * In nested virtualization, check if L1 asked to exit on external interrupts.
5509 * For most existing hypervisors, this will always return true.
5511 static bool nested_exit_on_intr(struct kvm_vcpu
*vcpu
)
5513 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
5514 PIN_BASED_EXT_INTR_MASK
;
5518 * In nested virtualization, check if L1 has set
5519 * VM_EXIT_ACK_INTR_ON_EXIT
5521 static bool nested_exit_intr_ack_set(struct kvm_vcpu
*vcpu
)
5523 return get_vmcs12(vcpu
)->vm_exit_controls
&
5524 VM_EXIT_ACK_INTR_ON_EXIT
;
5527 static bool nested_exit_on_nmi(struct kvm_vcpu
*vcpu
)
5529 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
5530 PIN_BASED_NMI_EXITING
;
5533 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
5535 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL
,
5536 CPU_BASED_VIRTUAL_INTR_PENDING
);
5539 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
5541 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_STI
) {
5542 enable_irq_window(vcpu
);
5546 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL
,
5547 CPU_BASED_VIRTUAL_NMI_PENDING
);
5550 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
5552 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5554 int irq
= vcpu
->arch
.interrupt
.nr
;
5556 trace_kvm_inj_virq(irq
);
5558 ++vcpu
->stat
.irq_injections
;
5559 if (vmx
->rmode
.vm86_active
) {
5561 if (vcpu
->arch
.interrupt
.soft
)
5562 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
5563 if (kvm_inject_realmode_interrupt(vcpu
, irq
, inc_eip
) != EMULATE_DONE
)
5564 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5567 intr
= irq
| INTR_INFO_VALID_MASK
;
5568 if (vcpu
->arch
.interrupt
.soft
) {
5569 intr
|= INTR_TYPE_SOFT_INTR
;
5570 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
5571 vmx
->vcpu
.arch
.event_exit_inst_len
);
5573 intr
|= INTR_TYPE_EXT_INTR
;
5574 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
5577 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
5579 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5581 ++vcpu
->stat
.nmi_injections
;
5582 vmx
->loaded_vmcs
->nmi_known_unmasked
= false;
5584 if (vmx
->rmode
.vm86_active
) {
5585 if (kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
, 0) != EMULATE_DONE
)
5586 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5590 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
5591 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
5594 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
5596 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5599 if (vmx
->loaded_vmcs
->nmi_known_unmasked
)
5601 masked
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
5602 vmx
->loaded_vmcs
->nmi_known_unmasked
= !masked
;
5606 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
5608 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5610 vmx
->loaded_vmcs
->nmi_known_unmasked
= !masked
;
5612 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
5613 GUEST_INTR_STATE_NMI
);
5615 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
5616 GUEST_INTR_STATE_NMI
);
5619 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
5621 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
5624 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
5625 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_STI
5626 | GUEST_INTR_STATE_NMI
));
5629 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
5631 return (!to_vmx(vcpu
)->nested
.nested_run_pending
&&
5632 vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
5633 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
5634 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
5637 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
5641 ret
= x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, addr
,
5645 kvm
->arch
.tss_addr
= addr
;
5646 return init_rmode_tss(kvm
);
5649 static bool rmode_exception(struct kvm_vcpu
*vcpu
, int vec
)
5654 * Update instruction length as we may reinject the exception
5655 * from user space while in guest debugging mode.
5657 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
5658 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
5659 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
5663 if (vcpu
->guest_debug
&
5664 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
5681 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
5682 int vec
, u32 err_code
)
5685 * Instruction with address size override prefix opcode 0x67
5686 * Cause the #SS fault with 0 error code in VM86 mode.
5688 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0) {
5689 if (emulate_instruction(vcpu
, 0) == EMULATE_DONE
) {
5690 if (vcpu
->arch
.halt_request
) {
5691 vcpu
->arch
.halt_request
= 0;
5692 return kvm_vcpu_halt(vcpu
);
5700 * Forward all other exceptions that are valid in real mode.
5701 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5702 * the required debugging infrastructure rework.
5704 kvm_queue_exception(vcpu
, vec
);
5709 * Trigger machine check on the host. We assume all the MSRs are already set up
5710 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5711 * We pass a fake environment to the machine check handler because we want
5712 * the guest to be always treated like user space, no matter what context
5713 * it used internally.
5715 static void kvm_machine_check(void)
5717 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5718 struct pt_regs regs
= {
5719 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
5720 .flags
= X86_EFLAGS_IF
,
5723 do_machine_check(®s
, 0);
5727 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
5729 /* already handled by vcpu_run */
5733 static int handle_exception(struct kvm_vcpu
*vcpu
)
5735 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5736 struct kvm_run
*kvm_run
= vcpu
->run
;
5737 u32 intr_info
, ex_no
, error_code
;
5738 unsigned long cr2
, rip
, dr6
;
5740 enum emulation_result er
;
5742 vect_info
= vmx
->idt_vectoring_info
;
5743 intr_info
= vmx
->exit_intr_info
;
5745 if (is_machine_check(intr_info
))
5746 return handle_machine_check(vcpu
);
5748 if (is_nmi(intr_info
))
5749 return 1; /* already handled by vmx_vcpu_run() */
5751 if (is_invalid_opcode(intr_info
)) {
5752 if (is_guest_mode(vcpu
)) {
5753 kvm_queue_exception(vcpu
, UD_VECTOR
);
5756 er
= emulate_instruction(vcpu
, EMULTYPE_TRAP_UD
);
5757 if (er
!= EMULATE_DONE
)
5758 kvm_queue_exception(vcpu
, UD_VECTOR
);
5763 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
5764 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
5767 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5768 * MMIO, it is better to report an internal error.
5769 * See the comments in vmx_handle_exit.
5771 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
5772 !(is_page_fault(intr_info
) && !(error_code
& PFERR_RSVD_MASK
))) {
5773 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5774 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
5775 vcpu
->run
->internal
.ndata
= 3;
5776 vcpu
->run
->internal
.data
[0] = vect_info
;
5777 vcpu
->run
->internal
.data
[1] = intr_info
;
5778 vcpu
->run
->internal
.data
[2] = error_code
;
5782 if (is_page_fault(intr_info
)) {
5783 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
5784 /* EPT won't cause page fault directly */
5785 WARN_ON_ONCE(!vcpu
->arch
.apf
.host_apf_reason
&& enable_ept
);
5786 return kvm_handle_page_fault(vcpu
, error_code
, cr2
, NULL
, 0,
5790 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
5792 if (vmx
->rmode
.vm86_active
&& rmode_exception(vcpu
, ex_no
))
5793 return handle_rmode_exception(vcpu
, ex_no
, error_code
);
5797 kvm_queue_exception_e(vcpu
, AC_VECTOR
, error_code
);
5800 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
5801 if (!(vcpu
->guest_debug
&
5802 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
5803 vcpu
->arch
.dr6
&= ~15;
5804 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5805 if (!(dr6
& ~DR6_RESERVED
)) /* icebp */
5806 skip_emulated_instruction(vcpu
);
5808 kvm_queue_exception(vcpu
, DB_VECTOR
);
5811 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
5812 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
5816 * Update instruction length as we may reinject #BP from
5817 * user space while in guest debugging mode. Reading it for
5818 * #DB as well causes no harm, it is not used in that case.
5820 vmx
->vcpu
.arch
.event_exit_inst_len
=
5821 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
5822 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5823 rip
= kvm_rip_read(vcpu
);
5824 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
5825 kvm_run
->debug
.arch
.exception
= ex_no
;
5828 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
5829 kvm_run
->ex
.exception
= ex_no
;
5830 kvm_run
->ex
.error_code
= error_code
;
5836 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
5838 ++vcpu
->stat
.irq_exits
;
5842 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
5844 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5848 static int handle_io(struct kvm_vcpu
*vcpu
)
5850 unsigned long exit_qualification
;
5851 int size
, in
, string
, ret
;
5854 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5855 string
= (exit_qualification
& 16) != 0;
5856 in
= (exit_qualification
& 8) != 0;
5858 ++vcpu
->stat
.io_exits
;
5861 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5863 port
= exit_qualification
>> 16;
5864 size
= (exit_qualification
& 7) + 1;
5866 ret
= kvm_skip_emulated_instruction(vcpu
);
5869 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5870 * KVM_EXIT_DEBUG here.
5872 return kvm_fast_pio_out(vcpu
, size
, port
) && ret
;
5876 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
5879 * Patch in the VMCALL instruction:
5881 hypercall
[0] = 0x0f;
5882 hypercall
[1] = 0x01;
5883 hypercall
[2] = 0xc1;
5886 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5887 static int handle_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long val
)
5889 if (is_guest_mode(vcpu
)) {
5890 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5891 unsigned long orig_val
= val
;
5894 * We get here when L2 changed cr0 in a way that did not change
5895 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5896 * but did change L0 shadowed bits. So we first calculate the
5897 * effective cr0 value that L1 would like to write into the
5898 * hardware. It consists of the L2-owned bits from the new
5899 * value combined with the L1-owned bits from L1's guest_cr0.
5901 val
= (val
& ~vmcs12
->cr0_guest_host_mask
) |
5902 (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
);
5904 if (!nested_guest_cr0_valid(vcpu
, val
))
5907 if (kvm_set_cr0(vcpu
, val
))
5909 vmcs_writel(CR0_READ_SHADOW
, orig_val
);
5912 if (to_vmx(vcpu
)->nested
.vmxon
&&
5913 !nested_host_cr0_valid(vcpu
, val
))
5916 return kvm_set_cr0(vcpu
, val
);
5920 static int handle_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long val
)
5922 if (is_guest_mode(vcpu
)) {
5923 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5924 unsigned long orig_val
= val
;
5926 /* analogously to handle_set_cr0 */
5927 val
= (val
& ~vmcs12
->cr4_guest_host_mask
) |
5928 (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
);
5929 if (kvm_set_cr4(vcpu
, val
))
5931 vmcs_writel(CR4_READ_SHADOW
, orig_val
);
5934 return kvm_set_cr4(vcpu
, val
);
5937 static int handle_cr(struct kvm_vcpu
*vcpu
)
5939 unsigned long exit_qualification
, val
;
5945 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5946 cr
= exit_qualification
& 15;
5947 reg
= (exit_qualification
>> 8) & 15;
5948 switch ((exit_qualification
>> 4) & 3) {
5949 case 0: /* mov to cr */
5950 val
= kvm_register_readl(vcpu
, reg
);
5951 trace_kvm_cr_write(cr
, val
);
5954 err
= handle_set_cr0(vcpu
, val
);
5955 return kvm_complete_insn_gp(vcpu
, err
);
5957 err
= kvm_set_cr3(vcpu
, val
);
5958 return kvm_complete_insn_gp(vcpu
, err
);
5960 err
= handle_set_cr4(vcpu
, val
);
5961 return kvm_complete_insn_gp(vcpu
, err
);
5963 u8 cr8_prev
= kvm_get_cr8(vcpu
);
5965 err
= kvm_set_cr8(vcpu
, cr8
);
5966 ret
= kvm_complete_insn_gp(vcpu
, err
);
5967 if (lapic_in_kernel(vcpu
))
5969 if (cr8_prev
<= cr8
)
5972 * TODO: we might be squashing a
5973 * KVM_GUESTDBG_SINGLESTEP-triggered
5974 * KVM_EXIT_DEBUG here.
5976 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
5982 WARN_ONCE(1, "Guest should always own CR0.TS");
5983 vmx_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
5984 trace_kvm_cr_write(0, kvm_read_cr0(vcpu
));
5985 return kvm_skip_emulated_instruction(vcpu
);
5986 case 1: /*mov from cr*/
5989 val
= kvm_read_cr3(vcpu
);
5990 kvm_register_write(vcpu
, reg
, val
);
5991 trace_kvm_cr_read(cr
, val
);
5992 return kvm_skip_emulated_instruction(vcpu
);
5994 val
= kvm_get_cr8(vcpu
);
5995 kvm_register_write(vcpu
, reg
, val
);
5996 trace_kvm_cr_read(cr
, val
);
5997 return kvm_skip_emulated_instruction(vcpu
);
6001 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
6002 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu
) & ~0xful
) | val
);
6003 kvm_lmsw(vcpu
, val
);
6005 return kvm_skip_emulated_instruction(vcpu
);
6009 vcpu
->run
->exit_reason
= 0;
6010 vcpu_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
6011 (int)(exit_qualification
>> 4) & 3, cr
);
6015 static int handle_dr(struct kvm_vcpu
*vcpu
)
6017 unsigned long exit_qualification
;
6020 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6021 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
6023 /* First, if DR does not exist, trigger UD */
6024 if (!kvm_require_dr(vcpu
, dr
))
6027 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
6028 if (!kvm_require_cpl(vcpu
, 0))
6030 dr7
= vmcs_readl(GUEST_DR7
);
6033 * As the vm-exit takes precedence over the debug trap, we
6034 * need to emulate the latter, either for the host or the
6035 * guest debugging itself.
6037 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
6038 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
6039 vcpu
->run
->debug
.arch
.dr7
= dr7
;
6040 vcpu
->run
->debug
.arch
.pc
= kvm_get_linear_rip(vcpu
);
6041 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
6042 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
6045 vcpu
->arch
.dr6
&= ~15;
6046 vcpu
->arch
.dr6
|= DR6_BD
| DR6_RTM
;
6047 kvm_queue_exception(vcpu
, DB_VECTOR
);
6052 if (vcpu
->guest_debug
== 0) {
6053 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
6054 CPU_BASED_MOV_DR_EXITING
);
6057 * No more DR vmexits; force a reload of the debug registers
6058 * and reenter on this instruction. The next vmexit will
6059 * retrieve the full state of the debug registers.
6061 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
6065 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
6066 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
6069 if (kvm_get_dr(vcpu
, dr
, &val
))
6071 kvm_register_write(vcpu
, reg
, val
);
6073 if (kvm_set_dr(vcpu
, dr
, kvm_register_readl(vcpu
, reg
)))
6076 return kvm_skip_emulated_instruction(vcpu
);
6079 static u64
vmx_get_dr6(struct kvm_vcpu
*vcpu
)
6081 return vcpu
->arch
.dr6
;
6084 static void vmx_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long val
)
6088 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
6090 get_debugreg(vcpu
->arch
.db
[0], 0);
6091 get_debugreg(vcpu
->arch
.db
[1], 1);
6092 get_debugreg(vcpu
->arch
.db
[2], 2);
6093 get_debugreg(vcpu
->arch
.db
[3], 3);
6094 get_debugreg(vcpu
->arch
.dr6
, 6);
6095 vcpu
->arch
.dr7
= vmcs_readl(GUEST_DR7
);
6097 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
6098 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL
, CPU_BASED_MOV_DR_EXITING
);
6101 static void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
6103 vmcs_writel(GUEST_DR7
, val
);
6106 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
6108 return kvm_emulate_cpuid(vcpu
);
6111 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
6113 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
6114 struct msr_data msr_info
;
6116 msr_info
.index
= ecx
;
6117 msr_info
.host_initiated
= false;
6118 if (vmx_get_msr(vcpu
, &msr_info
)) {
6119 trace_kvm_msr_read_ex(ecx
);
6120 kvm_inject_gp(vcpu
, 0);
6124 trace_kvm_msr_read(ecx
, msr_info
.data
);
6126 /* FIXME: handling of bits 32:63 of rax, rdx */
6127 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = msr_info
.data
& -1u;
6128 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (msr_info
.data
>> 32) & -1u;
6129 return kvm_skip_emulated_instruction(vcpu
);
6132 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
6134 struct msr_data msr
;
6135 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
6136 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
6137 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
6141 msr
.host_initiated
= false;
6142 if (kvm_set_msr(vcpu
, &msr
) != 0) {
6143 trace_kvm_msr_write_ex(ecx
, data
);
6144 kvm_inject_gp(vcpu
, 0);
6148 trace_kvm_msr_write(ecx
, data
);
6149 return kvm_skip_emulated_instruction(vcpu
);
6152 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
6154 kvm_apic_update_ppr(vcpu
);
6158 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
6160 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
6161 CPU_BASED_VIRTUAL_INTR_PENDING
);
6163 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6165 ++vcpu
->stat
.irq_window_exits
;
6169 static int handle_halt(struct kvm_vcpu
*vcpu
)
6171 return kvm_emulate_halt(vcpu
);
6174 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
6176 return kvm_emulate_hypercall(vcpu
);
6179 static int handle_invd(struct kvm_vcpu
*vcpu
)
6181 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
6184 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
6186 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6188 kvm_mmu_invlpg(vcpu
, exit_qualification
);
6189 return kvm_skip_emulated_instruction(vcpu
);
6192 static int handle_rdpmc(struct kvm_vcpu
*vcpu
)
6196 err
= kvm_rdpmc(vcpu
);
6197 return kvm_complete_insn_gp(vcpu
, err
);
6200 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
6202 return kvm_emulate_wbinvd(vcpu
);
6205 static int handle_xsetbv(struct kvm_vcpu
*vcpu
)
6207 u64 new_bv
= kvm_read_edx_eax(vcpu
);
6208 u32 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6210 if (kvm_set_xcr(vcpu
, index
, new_bv
) == 0)
6211 return kvm_skip_emulated_instruction(vcpu
);
6215 static int handle_xsaves(struct kvm_vcpu
*vcpu
)
6217 kvm_skip_emulated_instruction(vcpu
);
6218 WARN(1, "this should never happen\n");
6222 static int handle_xrstors(struct kvm_vcpu
*vcpu
)
6224 kvm_skip_emulated_instruction(vcpu
);
6225 WARN(1, "this should never happen\n");
6229 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
6231 if (likely(fasteoi
)) {
6232 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6233 int access_type
, offset
;
6235 access_type
= exit_qualification
& APIC_ACCESS_TYPE
;
6236 offset
= exit_qualification
& APIC_ACCESS_OFFSET
;
6238 * Sane guest uses MOV to write EOI, with written value
6239 * not cared. So make a short-circuit here by avoiding
6240 * heavy instruction emulation.
6242 if ((access_type
== TYPE_LINEAR_APIC_INST_WRITE
) &&
6243 (offset
== APIC_EOI
)) {
6244 kvm_lapic_set_eoi(vcpu
);
6245 return kvm_skip_emulated_instruction(vcpu
);
6248 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
6251 static int handle_apic_eoi_induced(struct kvm_vcpu
*vcpu
)
6253 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6254 int vector
= exit_qualification
& 0xff;
6256 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6257 kvm_apic_set_eoi_accelerated(vcpu
, vector
);
6261 static int handle_apic_write(struct kvm_vcpu
*vcpu
)
6263 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6264 u32 offset
= exit_qualification
& 0xfff;
6266 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6267 kvm_apic_write_nodecode(vcpu
, offset
);
6271 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
6273 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6274 unsigned long exit_qualification
;
6275 bool has_error_code
= false;
6278 int reason
, type
, idt_v
, idt_index
;
6280 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
6281 idt_index
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
);
6282 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
6284 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6286 reason
= (u32
)exit_qualification
>> 30;
6287 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
6289 case INTR_TYPE_NMI_INTR
:
6290 vcpu
->arch
.nmi_injected
= false;
6291 vmx_set_nmi_mask(vcpu
, true);
6293 case INTR_TYPE_EXT_INTR
:
6294 case INTR_TYPE_SOFT_INTR
:
6295 kvm_clear_interrupt_queue(vcpu
);
6297 case INTR_TYPE_HARD_EXCEPTION
:
6298 if (vmx
->idt_vectoring_info
&
6299 VECTORING_INFO_DELIVER_CODE_MASK
) {
6300 has_error_code
= true;
6302 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
6305 case INTR_TYPE_SOFT_EXCEPTION
:
6306 kvm_clear_exception_queue(vcpu
);
6312 tss_selector
= exit_qualification
;
6314 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
6315 type
!= INTR_TYPE_EXT_INTR
&&
6316 type
!= INTR_TYPE_NMI_INTR
))
6317 skip_emulated_instruction(vcpu
);
6319 if (kvm_task_switch(vcpu
, tss_selector
,
6320 type
== INTR_TYPE_SOFT_INTR
? idt_index
: -1, reason
,
6321 has_error_code
, error_code
) == EMULATE_FAIL
) {
6322 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6323 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
6324 vcpu
->run
->internal
.ndata
= 0;
6329 * TODO: What about debug traps on tss switch?
6330 * Are we supposed to inject them and update dr6?
6336 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
6338 unsigned long exit_qualification
;
6342 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6345 * EPT violation happened while executing iret from NMI,
6346 * "blocked by NMI" bit has to be set before next VM entry.
6347 * There are errata that may cause this bit to not be set:
6350 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
6351 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
6352 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
, GUEST_INTR_STATE_NMI
);
6354 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
6355 trace_kvm_page_fault(gpa
, exit_qualification
);
6357 /* Is it a read fault? */
6358 error_code
= (exit_qualification
& EPT_VIOLATION_ACC_READ
)
6359 ? PFERR_USER_MASK
: 0;
6360 /* Is it a write fault? */
6361 error_code
|= (exit_qualification
& EPT_VIOLATION_ACC_WRITE
)
6362 ? PFERR_WRITE_MASK
: 0;
6363 /* Is it a fetch fault? */
6364 error_code
|= (exit_qualification
& EPT_VIOLATION_ACC_INSTR
)
6365 ? PFERR_FETCH_MASK
: 0;
6366 /* ept page table entry is present? */
6367 error_code
|= (exit_qualification
&
6368 (EPT_VIOLATION_READABLE
| EPT_VIOLATION_WRITABLE
|
6369 EPT_VIOLATION_EXECUTABLE
))
6370 ? PFERR_PRESENT_MASK
: 0;
6372 vcpu
->arch
.gpa_available
= true;
6373 vcpu
->arch
.exit_qualification
= exit_qualification
;
6375 return kvm_mmu_page_fault(vcpu
, gpa
, error_code
, NULL
, 0);
6378 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
6383 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
6384 if (!kvm_io_bus_write(vcpu
, KVM_FAST_MMIO_BUS
, gpa
, 0, NULL
)) {
6385 trace_kvm_fast_mmio(gpa
);
6386 return kvm_skip_emulated_instruction(vcpu
);
6389 ret
= handle_mmio_page_fault(vcpu
, gpa
, true);
6390 vcpu
->arch
.gpa_available
= true;
6391 if (likely(ret
== RET_MMIO_PF_EMULATE
))
6392 return x86_emulate_instruction(vcpu
, gpa
, 0, NULL
, 0) ==
6395 if (unlikely(ret
== RET_MMIO_PF_INVALID
))
6396 return kvm_mmu_page_fault(vcpu
, gpa
, 0, NULL
, 0);
6398 if (unlikely(ret
== RET_MMIO_PF_RETRY
))
6401 /* It is the real ept misconfig */
6404 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
6405 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
6410 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
6412 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
6413 CPU_BASED_VIRTUAL_NMI_PENDING
);
6414 ++vcpu
->stat
.nmi_window_exits
;
6415 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6420 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
6422 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6423 enum emulation_result err
= EMULATE_DONE
;
6426 bool intr_window_requested
;
6427 unsigned count
= 130;
6429 cpu_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
6430 intr_window_requested
= cpu_exec_ctrl
& CPU_BASED_VIRTUAL_INTR_PENDING
;
6432 while (vmx
->emulation_required
&& count
-- != 0) {
6433 if (intr_window_requested
&& vmx_interrupt_allowed(vcpu
))
6434 return handle_interrupt_window(&vmx
->vcpu
);
6436 if (kvm_test_request(KVM_REQ_EVENT
, vcpu
))
6439 err
= emulate_instruction(vcpu
, EMULTYPE_NO_REEXECUTE
);
6441 if (err
== EMULATE_USER_EXIT
) {
6442 ++vcpu
->stat
.mmio_exits
;
6447 if (err
!= EMULATE_DONE
) {
6448 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6449 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
6450 vcpu
->run
->internal
.ndata
= 0;
6454 if (vcpu
->arch
.halt_request
) {
6455 vcpu
->arch
.halt_request
= 0;
6456 ret
= kvm_vcpu_halt(vcpu
);
6460 if (signal_pending(current
))
6470 static int __grow_ple_window(int val
)
6472 if (ple_window_grow
< 1)
6475 val
= min(val
, ple_window_actual_max
);
6477 if (ple_window_grow
< ple_window
)
6478 val
*= ple_window_grow
;
6480 val
+= ple_window_grow
;
6485 static int __shrink_ple_window(int val
, int modifier
, int minimum
)
6490 if (modifier
< ple_window
)
6495 return max(val
, minimum
);
6498 static void grow_ple_window(struct kvm_vcpu
*vcpu
)
6500 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6501 int old
= vmx
->ple_window
;
6503 vmx
->ple_window
= __grow_ple_window(old
);
6505 if (vmx
->ple_window
!= old
)
6506 vmx
->ple_window_dirty
= true;
6508 trace_kvm_ple_window_grow(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
6511 static void shrink_ple_window(struct kvm_vcpu
*vcpu
)
6513 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6514 int old
= vmx
->ple_window
;
6516 vmx
->ple_window
= __shrink_ple_window(old
,
6517 ple_window_shrink
, ple_window
);
6519 if (vmx
->ple_window
!= old
)
6520 vmx
->ple_window_dirty
= true;
6522 trace_kvm_ple_window_shrink(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
6526 * ple_window_actual_max is computed to be one grow_ple_window() below
6527 * ple_window_max. (See __grow_ple_window for the reason.)
6528 * This prevents overflows, because ple_window_max is int.
6529 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6531 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6533 static void update_ple_window_actual_max(void)
6535 ple_window_actual_max
=
6536 __shrink_ple_window(max(ple_window_max
, ple_window
),
6537 ple_window_grow
, INT_MIN
);
6541 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6543 static void wakeup_handler(void)
6545 struct kvm_vcpu
*vcpu
;
6546 int cpu
= smp_processor_id();
6548 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
6549 list_for_each_entry(vcpu
, &per_cpu(blocked_vcpu_on_cpu
, cpu
),
6550 blocked_vcpu_list
) {
6551 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
6553 if (pi_test_on(pi_desc
) == 1)
6554 kvm_vcpu_kick(vcpu
);
6556 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
6559 void vmx_enable_tdp(void)
6561 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK
,
6562 enable_ept_ad_bits
? VMX_EPT_ACCESS_BIT
: 0ull,
6563 enable_ept_ad_bits
? VMX_EPT_DIRTY_BIT
: 0ull,
6564 0ull, VMX_EPT_EXECUTABLE_MASK
,
6565 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK
,
6568 ept_set_mmio_spte_mask();
6572 static __init
int hardware_setup(void)
6574 int r
= -ENOMEM
, i
, msr
;
6576 rdmsrl_safe(MSR_EFER
, &host_efer
);
6578 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
)
6579 kvm_define_shared_msr(i
, vmx_msr_index
[i
]);
6581 for (i
= 0; i
< VMX_BITMAP_NR
; i
++) {
6582 vmx_bitmap
[i
] = (unsigned long *)__get_free_page(GFP_KERNEL
);
6587 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6588 memset(vmx_vmread_bitmap
, 0xff, PAGE_SIZE
);
6589 memset(vmx_vmwrite_bitmap
, 0xff, PAGE_SIZE
);
6592 * Allow direct access to the PC debug port (it is often used for I/O
6593 * delays, but the vmexits simply slow things down).
6595 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
6596 clear_bit(0x80, vmx_io_bitmap_a
);
6598 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
6600 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
6601 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
6603 if (setup_vmcs_config(&vmcs_config
) < 0) {
6608 if (boot_cpu_has(X86_FEATURE_NX
))
6609 kvm_enable_efer_bits(EFER_NX
);
6611 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6612 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6615 if (!cpu_has_vmx_shadow_vmcs())
6616 enable_shadow_vmcs
= 0;
6617 if (enable_shadow_vmcs
)
6618 init_vmcs_shadow_fields();
6620 if (!cpu_has_vmx_ept() ||
6621 !cpu_has_vmx_ept_4levels()) {
6623 enable_unrestricted_guest
= 0;
6624 enable_ept_ad_bits
= 0;
6627 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept
)
6628 enable_ept_ad_bits
= 0;
6630 if (!cpu_has_vmx_unrestricted_guest())
6631 enable_unrestricted_guest
= 0;
6633 if (!cpu_has_vmx_flexpriority())
6634 flexpriority_enabled
= 0;
6637 * set_apic_access_page_addr() is used to reload apic access
6638 * page upon invalidation. No need to do anything if not
6639 * using the APIC_ACCESS_ADDR VMCS field.
6641 if (!flexpriority_enabled
)
6642 kvm_x86_ops
->set_apic_access_page_addr
= NULL
;
6644 if (!cpu_has_vmx_tpr_shadow())
6645 kvm_x86_ops
->update_cr8_intercept
= NULL
;
6647 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
6648 kvm_disable_largepages();
6650 if (!cpu_has_vmx_ple())
6653 if (!cpu_has_vmx_apicv()) {
6655 kvm_x86_ops
->sync_pir_to_irr
= NULL
;
6658 if (cpu_has_vmx_tsc_scaling()) {
6659 kvm_has_tsc_control
= true;
6660 kvm_max_tsc_scaling_ratio
= KVM_VMX_TSC_MULTIPLIER_MAX
;
6661 kvm_tsc_scaling_ratio_frac_bits
= 48;
6664 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
6665 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
6666 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
6667 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
6668 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
6669 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
6671 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv
,
6672 vmx_msr_bitmap_legacy
, PAGE_SIZE
);
6673 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv
,
6674 vmx_msr_bitmap_longmode
, PAGE_SIZE
);
6675 memcpy(vmx_msr_bitmap_legacy_x2apic
,
6676 vmx_msr_bitmap_legacy
, PAGE_SIZE
);
6677 memcpy(vmx_msr_bitmap_longmode_x2apic
,
6678 vmx_msr_bitmap_longmode
, PAGE_SIZE
);
6680 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
6682 for (msr
= 0x800; msr
<= 0x8ff; msr
++) {
6683 if (msr
== 0x839 /* TMCCT */)
6685 vmx_disable_intercept_msr_x2apic(msr
, MSR_TYPE_R
, true);
6689 * TPR reads and writes can be virtualized even if virtual interrupt
6690 * delivery is not in use.
6692 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W
, true);
6693 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R
| MSR_TYPE_W
, false);
6696 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W
, true);
6698 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W
, true);
6705 update_ple_window_actual_max();
6708 * Only enable PML when hardware supports PML feature, and both EPT
6709 * and EPT A/D bit features are enabled -- PML depends on them to work.
6711 if (!enable_ept
|| !enable_ept_ad_bits
|| !cpu_has_vmx_pml())
6715 kvm_x86_ops
->slot_enable_log_dirty
= NULL
;
6716 kvm_x86_ops
->slot_disable_log_dirty
= NULL
;
6717 kvm_x86_ops
->flush_log_dirty
= NULL
;
6718 kvm_x86_ops
->enable_log_dirty_pt_masked
= NULL
;
6721 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer
) {
6724 rdmsrl(MSR_IA32_VMX_MISC
, vmx_msr
);
6725 cpu_preemption_timer_multi
=
6726 vmx_msr
& VMX_MISC_PREEMPTION_TIMER_RATE_MASK
;
6728 kvm_x86_ops
->set_hv_timer
= NULL
;
6729 kvm_x86_ops
->cancel_hv_timer
= NULL
;
6732 kvm_set_posted_intr_wakeup_handler(wakeup_handler
);
6734 kvm_mce_cap_supported
|= MCG_LMCE_P
;
6736 return alloc_kvm_area();
6739 for (i
= 0; i
< VMX_BITMAP_NR
; i
++)
6740 free_page((unsigned long)vmx_bitmap
[i
]);
6745 static __exit
void hardware_unsetup(void)
6749 for (i
= 0; i
< VMX_BITMAP_NR
; i
++)
6750 free_page((unsigned long)vmx_bitmap
[i
]);
6756 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6757 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6759 static int handle_pause(struct kvm_vcpu
*vcpu
)
6762 grow_ple_window(vcpu
);
6764 kvm_vcpu_on_spin(vcpu
);
6765 return kvm_skip_emulated_instruction(vcpu
);
6768 static int handle_nop(struct kvm_vcpu
*vcpu
)
6770 return kvm_skip_emulated_instruction(vcpu
);
6773 static int handle_mwait(struct kvm_vcpu
*vcpu
)
6775 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
6776 return handle_nop(vcpu
);
6779 static int handle_monitor_trap(struct kvm_vcpu
*vcpu
)
6784 static int handle_monitor(struct kvm_vcpu
*vcpu
)
6786 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
6787 return handle_nop(vcpu
);
6791 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6792 * We could reuse a single VMCS for all the L2 guests, but we also want the
6793 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6794 * allows keeping them loaded on the processor, and in the future will allow
6795 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6796 * every entry if they never change.
6797 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6798 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6800 * The following functions allocate and free a vmcs02 in this pool.
6803 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6804 static struct loaded_vmcs
*nested_get_current_vmcs02(struct vcpu_vmx
*vmx
)
6806 struct vmcs02_list
*item
;
6807 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
6808 if (item
->vmptr
== vmx
->nested
.current_vmptr
) {
6809 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
6810 return &item
->vmcs02
;
6813 if (vmx
->nested
.vmcs02_num
>= max(VMCS02_POOL_SIZE
, 1)) {
6814 /* Recycle the least recently used VMCS. */
6815 item
= list_last_entry(&vmx
->nested
.vmcs02_pool
,
6816 struct vmcs02_list
, list
);
6817 item
->vmptr
= vmx
->nested
.current_vmptr
;
6818 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
6819 return &item
->vmcs02
;
6822 /* Create a new VMCS */
6823 item
= kmalloc(sizeof(struct vmcs02_list
), GFP_KERNEL
);
6826 item
->vmcs02
.vmcs
= alloc_vmcs();
6827 item
->vmcs02
.shadow_vmcs
= NULL
;
6828 if (!item
->vmcs02
.vmcs
) {
6832 loaded_vmcs_init(&item
->vmcs02
);
6833 item
->vmptr
= vmx
->nested
.current_vmptr
;
6834 list_add(&(item
->list
), &(vmx
->nested
.vmcs02_pool
));
6835 vmx
->nested
.vmcs02_num
++;
6836 return &item
->vmcs02
;
6839 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6840 static void nested_free_vmcs02(struct vcpu_vmx
*vmx
, gpa_t vmptr
)
6842 struct vmcs02_list
*item
;
6843 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
6844 if (item
->vmptr
== vmptr
) {
6845 free_loaded_vmcs(&item
->vmcs02
);
6846 list_del(&item
->list
);
6848 vmx
->nested
.vmcs02_num
--;
6854 * Free all VMCSs saved for this vcpu, except the one pointed by
6855 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6856 * must be &vmx->vmcs01.
6858 static void nested_free_all_saved_vmcss(struct vcpu_vmx
*vmx
)
6860 struct vmcs02_list
*item
, *n
;
6862 WARN_ON(vmx
->loaded_vmcs
!= &vmx
->vmcs01
);
6863 list_for_each_entry_safe(item
, n
, &vmx
->nested
.vmcs02_pool
, list
) {
6865 * Something will leak if the above WARN triggers. Better than
6868 if (vmx
->loaded_vmcs
== &item
->vmcs02
)
6871 free_loaded_vmcs(&item
->vmcs02
);
6872 list_del(&item
->list
);
6874 vmx
->nested
.vmcs02_num
--;
6879 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6880 * set the success or error code of an emulated VMX instruction, as specified
6881 * by Vol 2B, VMX Instruction Reference, "Conventions".
6883 static void nested_vmx_succeed(struct kvm_vcpu
*vcpu
)
6885 vmx_set_rflags(vcpu
, vmx_get_rflags(vcpu
)
6886 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
6887 X86_EFLAGS_ZF
| X86_EFLAGS_SF
| X86_EFLAGS_OF
));
6890 static void nested_vmx_failInvalid(struct kvm_vcpu
*vcpu
)
6892 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
6893 & ~(X86_EFLAGS_PF
| X86_EFLAGS_AF
| X86_EFLAGS_ZF
|
6894 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
6898 static void nested_vmx_failValid(struct kvm_vcpu
*vcpu
,
6899 u32 vm_instruction_error
)
6901 if (to_vmx(vcpu
)->nested
.current_vmptr
== -1ull) {
6903 * failValid writes the error number to the current VMCS, which
6904 * can't be done there isn't a current VMCS.
6906 nested_vmx_failInvalid(vcpu
);
6909 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
6910 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
6911 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
6913 get_vmcs12(vcpu
)->vm_instruction_error
= vm_instruction_error
;
6915 * We don't need to force a shadow sync because
6916 * VM_INSTRUCTION_ERROR is not shadowed
6920 static void nested_vmx_abort(struct kvm_vcpu
*vcpu
, u32 indicator
)
6922 /* TODO: not to reset guest simply here. */
6923 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
6924 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator
);
6927 static enum hrtimer_restart
vmx_preemption_timer_fn(struct hrtimer
*timer
)
6929 struct vcpu_vmx
*vmx
=
6930 container_of(timer
, struct vcpu_vmx
, nested
.preemption_timer
);
6932 vmx
->nested
.preemption_timer_expired
= true;
6933 kvm_make_request(KVM_REQ_EVENT
, &vmx
->vcpu
);
6934 kvm_vcpu_kick(&vmx
->vcpu
);
6936 return HRTIMER_NORESTART
;
6940 * Decode the memory-address operand of a vmx instruction, as recorded on an
6941 * exit caused by such an instruction (run by a guest hypervisor).
6942 * On success, returns 0. When the operand is invalid, returns 1 and throws
6945 static int get_vmx_mem_address(struct kvm_vcpu
*vcpu
,
6946 unsigned long exit_qualification
,
6947 u32 vmx_instruction_info
, bool wr
, gva_t
*ret
)
6951 struct kvm_segment s
;
6954 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6955 * Execution", on an exit, vmx_instruction_info holds most of the
6956 * addressing components of the operand. Only the displacement part
6957 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6958 * For how an actual address is calculated from all these components,
6959 * refer to Vol. 1, "Operand Addressing".
6961 int scaling
= vmx_instruction_info
& 3;
6962 int addr_size
= (vmx_instruction_info
>> 7) & 7;
6963 bool is_reg
= vmx_instruction_info
& (1u << 10);
6964 int seg_reg
= (vmx_instruction_info
>> 15) & 7;
6965 int index_reg
= (vmx_instruction_info
>> 18) & 0xf;
6966 bool index_is_valid
= !(vmx_instruction_info
& (1u << 22));
6967 int base_reg
= (vmx_instruction_info
>> 23) & 0xf;
6968 bool base_is_valid
= !(vmx_instruction_info
& (1u << 27));
6971 kvm_queue_exception(vcpu
, UD_VECTOR
);
6975 /* Addr = segment_base + offset */
6976 /* offset = base + [index * scale] + displacement */
6977 off
= exit_qualification
; /* holds the displacement */
6979 off
+= kvm_register_read(vcpu
, base_reg
);
6981 off
+= kvm_register_read(vcpu
, index_reg
)<<scaling
;
6982 vmx_get_segment(vcpu
, &s
, seg_reg
);
6983 *ret
= s
.base
+ off
;
6985 if (addr_size
== 1) /* 32 bit */
6988 /* Checks for #GP/#SS exceptions. */
6990 if (is_long_mode(vcpu
)) {
6991 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6992 * non-canonical form. This is the only check on the memory
6993 * destination for long mode!
6995 exn
= is_noncanonical_address(*ret
);
6996 } else if (is_protmode(vcpu
)) {
6997 /* Protected mode: apply checks for segment validity in the
6999 * - segment type check (#GP(0) may be thrown)
7000 * - usability check (#GP(0)/#SS(0))
7001 * - limit check (#GP(0)/#SS(0))
7004 /* #GP(0) if the destination operand is located in a
7005 * read-only data segment or any code segment.
7007 exn
= ((s
.type
& 0xa) == 0 || (s
.type
& 8));
7009 /* #GP(0) if the source operand is located in an
7010 * execute-only code segment
7012 exn
= ((s
.type
& 0xa) == 8);
7014 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
7017 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7019 exn
= (s
.unusable
!= 0);
7020 /* Protected mode: #GP(0)/#SS(0) if the memory
7021 * operand is outside the segment limit.
7023 exn
= exn
|| (off
+ sizeof(u64
) > s
.limit
);
7026 kvm_queue_exception_e(vcpu
,
7027 seg_reg
== VCPU_SREG_SS
?
7028 SS_VECTOR
: GP_VECTOR
,
7036 static int nested_vmx_get_vmptr(struct kvm_vcpu
*vcpu
, gpa_t
*vmpointer
)
7039 struct x86_exception e
;
7041 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
7042 vmcs_read32(VMX_INSTRUCTION_INFO
), false, &gva
))
7045 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, vmpointer
,
7046 sizeof(*vmpointer
), &e
)) {
7047 kvm_inject_page_fault(vcpu
, &e
);
7054 static int enter_vmx_operation(struct kvm_vcpu
*vcpu
)
7056 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7057 struct vmcs
*shadow_vmcs
;
7059 if (cpu_has_vmx_msr_bitmap()) {
7060 vmx
->nested
.msr_bitmap
=
7061 (unsigned long *)__get_free_page(GFP_KERNEL
);
7062 if (!vmx
->nested
.msr_bitmap
)
7063 goto out_msr_bitmap
;
7066 vmx
->nested
.cached_vmcs12
= kmalloc(VMCS12_SIZE
, GFP_KERNEL
);
7067 if (!vmx
->nested
.cached_vmcs12
)
7068 goto out_cached_vmcs12
;
7070 if (enable_shadow_vmcs
) {
7071 shadow_vmcs
= alloc_vmcs();
7073 goto out_shadow_vmcs
;
7074 /* mark vmcs as shadow */
7075 shadow_vmcs
->revision_id
|= (1u << 31);
7076 /* init shadow vmcs */
7077 vmcs_clear(shadow_vmcs
);
7078 vmx
->vmcs01
.shadow_vmcs
= shadow_vmcs
;
7081 INIT_LIST_HEAD(&(vmx
->nested
.vmcs02_pool
));
7082 vmx
->nested
.vmcs02_num
= 0;
7084 hrtimer_init(&vmx
->nested
.preemption_timer
, CLOCK_MONOTONIC
,
7085 HRTIMER_MODE_REL_PINNED
);
7086 vmx
->nested
.preemption_timer
.function
= vmx_preemption_timer_fn
;
7088 vmx
->nested
.vmxon
= true;
7092 kfree(vmx
->nested
.cached_vmcs12
);
7095 free_page((unsigned long)vmx
->nested
.msr_bitmap
);
7102 * Emulate the VMXON instruction.
7103 * Currently, we just remember that VMX is active, and do not save or even
7104 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7105 * do not currently need to store anything in that guest-allocated memory
7106 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7107 * argument is different from the VMXON pointer (which the spec says they do).
7109 static int handle_vmon(struct kvm_vcpu
*vcpu
)
7114 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7115 const u64 VMXON_NEEDED_FEATURES
= FEATURE_CONTROL_LOCKED
7116 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
7119 * The Intel VMX Instruction Reference lists a bunch of bits that are
7120 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7121 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7122 * Otherwise, we should fail with #UD. But most faulting conditions
7123 * have already been checked by hardware, prior to the VM-exit for
7124 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7125 * that bit set to 1 in non-root mode.
7127 if (!kvm_read_cr4_bits(vcpu
, X86_CR4_VMXE
)) {
7128 kvm_queue_exception(vcpu
, UD_VECTOR
);
7132 if (vmx
->nested
.vmxon
) {
7133 nested_vmx_failValid(vcpu
, VMXERR_VMXON_IN_VMX_ROOT_OPERATION
);
7134 return kvm_skip_emulated_instruction(vcpu
);
7137 if ((vmx
->msr_ia32_feature_control
& VMXON_NEEDED_FEATURES
)
7138 != VMXON_NEEDED_FEATURES
) {
7139 kvm_inject_gp(vcpu
, 0);
7143 if (nested_vmx_get_vmptr(vcpu
, &vmptr
))
7148 * The first 4 bytes of VMXON region contain the supported
7149 * VMCS revision identifier
7151 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7152 * which replaces physical address width with 32
7154 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> cpuid_maxphyaddr(vcpu
))) {
7155 nested_vmx_failInvalid(vcpu
);
7156 return kvm_skip_emulated_instruction(vcpu
);
7159 page
= nested_get_page(vcpu
, vmptr
);
7161 nested_vmx_failInvalid(vcpu
);
7162 return kvm_skip_emulated_instruction(vcpu
);
7164 if (*(u32
*)kmap(page
) != VMCS12_REVISION
) {
7166 nested_release_page_clean(page
);
7167 nested_vmx_failInvalid(vcpu
);
7168 return kvm_skip_emulated_instruction(vcpu
);
7171 nested_release_page_clean(page
);
7173 vmx
->nested
.vmxon_ptr
= vmptr
;
7174 ret
= enter_vmx_operation(vcpu
);
7178 nested_vmx_succeed(vcpu
);
7179 return kvm_skip_emulated_instruction(vcpu
);
7183 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7184 * for running VMX instructions (except VMXON, whose prerequisites are
7185 * slightly different). It also specifies what exception to inject otherwise.
7186 * Note that many of these exceptions have priority over VM exits, so they
7187 * don't have to be checked again here.
7189 static int nested_vmx_check_permission(struct kvm_vcpu
*vcpu
)
7191 if (!to_vmx(vcpu
)->nested
.vmxon
) {
7192 kvm_queue_exception(vcpu
, UD_VECTOR
);
7198 static void vmx_disable_shadow_vmcs(struct vcpu_vmx
*vmx
)
7200 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
, SECONDARY_EXEC_SHADOW_VMCS
);
7201 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
7204 static inline void nested_release_vmcs12(struct vcpu_vmx
*vmx
)
7206 if (vmx
->nested
.current_vmptr
== -1ull)
7209 if (enable_shadow_vmcs
) {
7210 /* copy to memory all shadowed fields in case
7211 they were modified */
7212 copy_shadow_to_vmcs12(vmx
);
7213 vmx
->nested
.sync_shadow_vmcs
= false;
7214 vmx_disable_shadow_vmcs(vmx
);
7216 vmx
->nested
.posted_intr_nv
= -1;
7218 /* Flush VMCS12 to guest memory */
7219 kvm_vcpu_write_guest_page(&vmx
->vcpu
,
7220 vmx
->nested
.current_vmptr
>> PAGE_SHIFT
,
7221 vmx
->nested
.cached_vmcs12
, 0, VMCS12_SIZE
);
7223 vmx
->nested
.current_vmptr
= -1ull;
7227 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7228 * just stops using VMX.
7230 static void free_nested(struct vcpu_vmx
*vmx
)
7232 if (!vmx
->nested
.vmxon
)
7235 vmx
->nested
.vmxon
= false;
7236 free_vpid(vmx
->nested
.vpid02
);
7237 vmx
->nested
.posted_intr_nv
= -1;
7238 vmx
->nested
.current_vmptr
= -1ull;
7239 if (vmx
->nested
.msr_bitmap
) {
7240 free_page((unsigned long)vmx
->nested
.msr_bitmap
);
7241 vmx
->nested
.msr_bitmap
= NULL
;
7243 if (enable_shadow_vmcs
) {
7244 vmx_disable_shadow_vmcs(vmx
);
7245 vmcs_clear(vmx
->vmcs01
.shadow_vmcs
);
7246 free_vmcs(vmx
->vmcs01
.shadow_vmcs
);
7247 vmx
->vmcs01
.shadow_vmcs
= NULL
;
7249 kfree(vmx
->nested
.cached_vmcs12
);
7250 /* Unpin physical memory we referred to in current vmcs02 */
7251 if (vmx
->nested
.apic_access_page
) {
7252 nested_release_page(vmx
->nested
.apic_access_page
);
7253 vmx
->nested
.apic_access_page
= NULL
;
7255 if (vmx
->nested
.virtual_apic_page
) {
7256 nested_release_page(vmx
->nested
.virtual_apic_page
);
7257 vmx
->nested
.virtual_apic_page
= NULL
;
7259 if (vmx
->nested
.pi_desc_page
) {
7260 kunmap(vmx
->nested
.pi_desc_page
);
7261 nested_release_page(vmx
->nested
.pi_desc_page
);
7262 vmx
->nested
.pi_desc_page
= NULL
;
7263 vmx
->nested
.pi_desc
= NULL
;
7266 nested_free_all_saved_vmcss(vmx
);
7269 /* Emulate the VMXOFF instruction */
7270 static int handle_vmoff(struct kvm_vcpu
*vcpu
)
7272 if (!nested_vmx_check_permission(vcpu
))
7274 free_nested(to_vmx(vcpu
));
7275 nested_vmx_succeed(vcpu
);
7276 return kvm_skip_emulated_instruction(vcpu
);
7279 /* Emulate the VMCLEAR instruction */
7280 static int handle_vmclear(struct kvm_vcpu
*vcpu
)
7282 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7286 if (!nested_vmx_check_permission(vcpu
))
7289 if (nested_vmx_get_vmptr(vcpu
, &vmptr
))
7292 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> cpuid_maxphyaddr(vcpu
))) {
7293 nested_vmx_failValid(vcpu
, VMXERR_VMCLEAR_INVALID_ADDRESS
);
7294 return kvm_skip_emulated_instruction(vcpu
);
7297 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
7298 nested_vmx_failValid(vcpu
, VMXERR_VMCLEAR_VMXON_POINTER
);
7299 return kvm_skip_emulated_instruction(vcpu
);
7302 if (vmptr
== vmx
->nested
.current_vmptr
)
7303 nested_release_vmcs12(vmx
);
7305 kvm_vcpu_write_guest(vcpu
,
7306 vmptr
+ offsetof(struct vmcs12
, launch_state
),
7307 &zero
, sizeof(zero
));
7309 nested_free_vmcs02(vmx
, vmptr
);
7311 nested_vmx_succeed(vcpu
);
7312 return kvm_skip_emulated_instruction(vcpu
);
7315 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
);
7317 /* Emulate the VMLAUNCH instruction */
7318 static int handle_vmlaunch(struct kvm_vcpu
*vcpu
)
7320 return nested_vmx_run(vcpu
, true);
7323 /* Emulate the VMRESUME instruction */
7324 static int handle_vmresume(struct kvm_vcpu
*vcpu
)
7327 return nested_vmx_run(vcpu
, false);
7331 * Read a vmcs12 field. Since these can have varying lengths and we return
7332 * one type, we chose the biggest type (u64) and zero-extend the return value
7333 * to that size. Note that the caller, handle_vmread, might need to use only
7334 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7335 * 64-bit fields are to be returned).
7337 static inline int vmcs12_read_any(struct kvm_vcpu
*vcpu
,
7338 unsigned long field
, u64
*ret
)
7340 short offset
= vmcs_field_to_offset(field
);
7346 p
= ((char *)(get_vmcs12(vcpu
))) + offset
;
7348 switch (vmcs_field_type(field
)) {
7349 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7350 *ret
= *((natural_width
*)p
);
7352 case VMCS_FIELD_TYPE_U16
:
7355 case VMCS_FIELD_TYPE_U32
:
7358 case VMCS_FIELD_TYPE_U64
:
7368 static inline int vmcs12_write_any(struct kvm_vcpu
*vcpu
,
7369 unsigned long field
, u64 field_value
){
7370 short offset
= vmcs_field_to_offset(field
);
7371 char *p
= ((char *) get_vmcs12(vcpu
)) + offset
;
7375 switch (vmcs_field_type(field
)) {
7376 case VMCS_FIELD_TYPE_U16
:
7377 *(u16
*)p
= field_value
;
7379 case VMCS_FIELD_TYPE_U32
:
7380 *(u32
*)p
= field_value
;
7382 case VMCS_FIELD_TYPE_U64
:
7383 *(u64
*)p
= field_value
;
7385 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7386 *(natural_width
*)p
= field_value
;
7395 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
)
7398 unsigned long field
;
7400 struct vmcs
*shadow_vmcs
= vmx
->vmcs01
.shadow_vmcs
;
7401 const unsigned long *fields
= shadow_read_write_fields
;
7402 const int num_fields
= max_shadow_read_write_fields
;
7406 vmcs_load(shadow_vmcs
);
7408 for (i
= 0; i
< num_fields
; i
++) {
7410 switch (vmcs_field_type(field
)) {
7411 case VMCS_FIELD_TYPE_U16
:
7412 field_value
= vmcs_read16(field
);
7414 case VMCS_FIELD_TYPE_U32
:
7415 field_value
= vmcs_read32(field
);
7417 case VMCS_FIELD_TYPE_U64
:
7418 field_value
= vmcs_read64(field
);
7420 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7421 field_value
= vmcs_readl(field
);
7427 vmcs12_write_any(&vmx
->vcpu
, field
, field_value
);
7430 vmcs_clear(shadow_vmcs
);
7431 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
7436 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
)
7438 const unsigned long *fields
[] = {
7439 shadow_read_write_fields
,
7440 shadow_read_only_fields
7442 const int max_fields
[] = {
7443 max_shadow_read_write_fields
,
7444 max_shadow_read_only_fields
7447 unsigned long field
;
7448 u64 field_value
= 0;
7449 struct vmcs
*shadow_vmcs
= vmx
->vmcs01
.shadow_vmcs
;
7451 vmcs_load(shadow_vmcs
);
7453 for (q
= 0; q
< ARRAY_SIZE(fields
); q
++) {
7454 for (i
= 0; i
< max_fields
[q
]; i
++) {
7455 field
= fields
[q
][i
];
7456 vmcs12_read_any(&vmx
->vcpu
, field
, &field_value
);
7458 switch (vmcs_field_type(field
)) {
7459 case VMCS_FIELD_TYPE_U16
:
7460 vmcs_write16(field
, (u16
)field_value
);
7462 case VMCS_FIELD_TYPE_U32
:
7463 vmcs_write32(field
, (u32
)field_value
);
7465 case VMCS_FIELD_TYPE_U64
:
7466 vmcs_write64(field
, (u64
)field_value
);
7468 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7469 vmcs_writel(field
, (long)field_value
);
7478 vmcs_clear(shadow_vmcs
);
7479 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
7483 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7484 * used before) all generate the same failure when it is missing.
7486 static int nested_vmx_check_vmcs12(struct kvm_vcpu
*vcpu
)
7488 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7489 if (vmx
->nested
.current_vmptr
== -1ull) {
7490 nested_vmx_failInvalid(vcpu
);
7496 static int handle_vmread(struct kvm_vcpu
*vcpu
)
7498 unsigned long field
;
7500 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7501 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7504 if (!nested_vmx_check_permission(vcpu
))
7507 if (!nested_vmx_check_vmcs12(vcpu
))
7508 return kvm_skip_emulated_instruction(vcpu
);
7510 /* Decode instruction info and find the field to read */
7511 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
7512 /* Read the field, zero-extended to a u64 field_value */
7513 if (vmcs12_read_any(vcpu
, field
, &field_value
) < 0) {
7514 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
7515 return kvm_skip_emulated_instruction(vcpu
);
7518 * Now copy part of this value to register or memory, as requested.
7519 * Note that the number of bits actually copied is 32 or 64 depending
7520 * on the guest's mode (32 or 64 bit), not on the given field's length.
7522 if (vmx_instruction_info
& (1u << 10)) {
7523 kvm_register_writel(vcpu
, (((vmx_instruction_info
) >> 3) & 0xf),
7526 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7527 vmx_instruction_info
, true, &gva
))
7529 /* _system ok, as hardware has verified cpl=0 */
7530 kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, gva
,
7531 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), NULL
);
7534 nested_vmx_succeed(vcpu
);
7535 return kvm_skip_emulated_instruction(vcpu
);
7539 static int handle_vmwrite(struct kvm_vcpu
*vcpu
)
7541 unsigned long field
;
7543 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7544 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7545 /* The value to write might be 32 or 64 bits, depending on L1's long
7546 * mode, and eventually we need to write that into a field of several
7547 * possible lengths. The code below first zero-extends the value to 64
7548 * bit (field_value), and then copies only the appropriate number of
7549 * bits into the vmcs12 field.
7551 u64 field_value
= 0;
7552 struct x86_exception e
;
7554 if (!nested_vmx_check_permission(vcpu
))
7557 if (!nested_vmx_check_vmcs12(vcpu
))
7558 return kvm_skip_emulated_instruction(vcpu
);
7560 if (vmx_instruction_info
& (1u << 10))
7561 field_value
= kvm_register_readl(vcpu
,
7562 (((vmx_instruction_info
) >> 3) & 0xf));
7564 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7565 vmx_instruction_info
, false, &gva
))
7567 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
,
7568 &field_value
, (is_64_bit_mode(vcpu
) ? 8 : 4), &e
)) {
7569 kvm_inject_page_fault(vcpu
, &e
);
7575 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
7576 if (vmcs_field_readonly(field
)) {
7577 nested_vmx_failValid(vcpu
,
7578 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT
);
7579 return kvm_skip_emulated_instruction(vcpu
);
7582 if (vmcs12_write_any(vcpu
, field
, field_value
) < 0) {
7583 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
7584 return kvm_skip_emulated_instruction(vcpu
);
7587 nested_vmx_succeed(vcpu
);
7588 return kvm_skip_emulated_instruction(vcpu
);
7591 static void set_current_vmptr(struct vcpu_vmx
*vmx
, gpa_t vmptr
)
7593 vmx
->nested
.current_vmptr
= vmptr
;
7594 if (enable_shadow_vmcs
) {
7595 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
7596 SECONDARY_EXEC_SHADOW_VMCS
);
7597 vmcs_write64(VMCS_LINK_POINTER
,
7598 __pa(vmx
->vmcs01
.shadow_vmcs
));
7599 vmx
->nested
.sync_shadow_vmcs
= true;
7603 /* Emulate the VMPTRLD instruction */
7604 static int handle_vmptrld(struct kvm_vcpu
*vcpu
)
7606 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7609 if (!nested_vmx_check_permission(vcpu
))
7612 if (nested_vmx_get_vmptr(vcpu
, &vmptr
))
7615 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> cpuid_maxphyaddr(vcpu
))) {
7616 nested_vmx_failValid(vcpu
, VMXERR_VMPTRLD_INVALID_ADDRESS
);
7617 return kvm_skip_emulated_instruction(vcpu
);
7620 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
7621 nested_vmx_failValid(vcpu
, VMXERR_VMPTRLD_VMXON_POINTER
);
7622 return kvm_skip_emulated_instruction(vcpu
);
7625 if (vmx
->nested
.current_vmptr
!= vmptr
) {
7626 struct vmcs12
*new_vmcs12
;
7628 page
= nested_get_page(vcpu
, vmptr
);
7630 nested_vmx_failInvalid(vcpu
);
7631 return kvm_skip_emulated_instruction(vcpu
);
7633 new_vmcs12
= kmap(page
);
7634 if (new_vmcs12
->revision_id
!= VMCS12_REVISION
) {
7636 nested_release_page_clean(page
);
7637 nested_vmx_failValid(vcpu
,
7638 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
7639 return kvm_skip_emulated_instruction(vcpu
);
7642 nested_release_vmcs12(vmx
);
7644 * Load VMCS12 from guest memory since it is not already
7647 memcpy(vmx
->nested
.cached_vmcs12
, new_vmcs12
, VMCS12_SIZE
);
7649 nested_release_page_clean(page
);
7651 set_current_vmptr(vmx
, vmptr
);
7654 nested_vmx_succeed(vcpu
);
7655 return kvm_skip_emulated_instruction(vcpu
);
7658 /* Emulate the VMPTRST instruction */
7659 static int handle_vmptrst(struct kvm_vcpu
*vcpu
)
7661 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7662 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7664 struct x86_exception e
;
7666 if (!nested_vmx_check_permission(vcpu
))
7669 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7670 vmx_instruction_info
, true, &vmcs_gva
))
7672 /* ok to use *_system, as hardware has verified cpl=0 */
7673 if (kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, vmcs_gva
,
7674 (void *)&to_vmx(vcpu
)->nested
.current_vmptr
,
7676 kvm_inject_page_fault(vcpu
, &e
);
7679 nested_vmx_succeed(vcpu
);
7680 return kvm_skip_emulated_instruction(vcpu
);
7683 /* Emulate the INVEPT instruction */
7684 static int handle_invept(struct kvm_vcpu
*vcpu
)
7686 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7687 u32 vmx_instruction_info
, types
;
7690 struct x86_exception e
;
7695 if (!(vmx
->nested
.nested_vmx_secondary_ctls_high
&
7696 SECONDARY_EXEC_ENABLE_EPT
) ||
7697 !(vmx
->nested
.nested_vmx_ept_caps
& VMX_EPT_INVEPT_BIT
)) {
7698 kvm_queue_exception(vcpu
, UD_VECTOR
);
7702 if (!nested_vmx_check_permission(vcpu
))
7705 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7706 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
7708 types
= (vmx
->nested
.nested_vmx_ept_caps
>> VMX_EPT_EXTENT_SHIFT
) & 6;
7710 if (type
>= 32 || !(types
& (1 << type
))) {
7711 nested_vmx_failValid(vcpu
,
7712 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
7713 return kvm_skip_emulated_instruction(vcpu
);
7716 /* According to the Intel VMX instruction reference, the memory
7717 * operand is read even if it isn't needed (e.g., for type==global)
7719 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
7720 vmx_instruction_info
, false, &gva
))
7722 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &operand
,
7723 sizeof(operand
), &e
)) {
7724 kvm_inject_page_fault(vcpu
, &e
);
7729 case VMX_EPT_EXTENT_GLOBAL
:
7731 * TODO: track mappings and invalidate
7732 * single context requests appropriately
7734 case VMX_EPT_EXTENT_CONTEXT
:
7735 kvm_mmu_sync_roots(vcpu
);
7736 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
7737 nested_vmx_succeed(vcpu
);
7744 return kvm_skip_emulated_instruction(vcpu
);
7747 static int handle_invvpid(struct kvm_vcpu
*vcpu
)
7749 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7750 u32 vmx_instruction_info
;
7751 unsigned long type
, types
;
7753 struct x86_exception e
;
7759 if (!(vmx
->nested
.nested_vmx_secondary_ctls_high
&
7760 SECONDARY_EXEC_ENABLE_VPID
) ||
7761 !(vmx
->nested
.nested_vmx_vpid_caps
& VMX_VPID_INVVPID_BIT
)) {
7762 kvm_queue_exception(vcpu
, UD_VECTOR
);
7766 if (!nested_vmx_check_permission(vcpu
))
7769 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7770 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
7772 types
= (vmx
->nested
.nested_vmx_vpid_caps
&
7773 VMX_VPID_EXTENT_SUPPORTED_MASK
) >> 8;
7775 if (type
>= 32 || !(types
& (1 << type
))) {
7776 nested_vmx_failValid(vcpu
,
7777 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
7778 return kvm_skip_emulated_instruction(vcpu
);
7781 /* according to the intel vmx instruction reference, the memory
7782 * operand is read even if it isn't needed (e.g., for type==global)
7784 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
7785 vmx_instruction_info
, false, &gva
))
7787 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &operand
,
7788 sizeof(operand
), &e
)) {
7789 kvm_inject_page_fault(vcpu
, &e
);
7792 if (operand
.vpid
>> 16) {
7793 nested_vmx_failValid(vcpu
,
7794 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
7795 return kvm_skip_emulated_instruction(vcpu
);
7799 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR
:
7800 if (is_noncanonical_address(operand
.gla
)) {
7801 nested_vmx_failValid(vcpu
,
7802 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
7803 return kvm_skip_emulated_instruction(vcpu
);
7806 case VMX_VPID_EXTENT_SINGLE_CONTEXT
:
7807 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL
:
7808 if (!operand
.vpid
) {
7809 nested_vmx_failValid(vcpu
,
7810 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
7811 return kvm_skip_emulated_instruction(vcpu
);
7814 case VMX_VPID_EXTENT_ALL_CONTEXT
:
7818 return kvm_skip_emulated_instruction(vcpu
);
7821 __vmx_flush_tlb(vcpu
, vmx
->nested
.vpid02
);
7822 nested_vmx_succeed(vcpu
);
7824 return kvm_skip_emulated_instruction(vcpu
);
7827 static int handle_pml_full(struct kvm_vcpu
*vcpu
)
7829 unsigned long exit_qualification
;
7831 trace_kvm_pml_full(vcpu
->vcpu_id
);
7833 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7836 * PML buffer FULL happened while executing iret from NMI,
7837 * "blocked by NMI" bit has to be set before next VM entry.
7839 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
7840 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
7841 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
7842 GUEST_INTR_STATE_NMI
);
7845 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7846 * here.., and there's no userspace involvement needed for PML.
7851 static int handle_preemption_timer(struct kvm_vcpu
*vcpu
)
7853 kvm_lapic_expired_hv_timer(vcpu
);
7858 * The exit handlers return 1 if the exit was handled fully and guest execution
7859 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7860 * to be done to userspace and return 0.
7862 static int (*const kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
7863 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
7864 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
7865 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
7866 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
7867 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
7868 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
7869 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
7870 [EXIT_REASON_CPUID
] = handle_cpuid
,
7871 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
7872 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
7873 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
7874 [EXIT_REASON_HLT
] = handle_halt
,
7875 [EXIT_REASON_INVD
] = handle_invd
,
7876 [EXIT_REASON_INVLPG
] = handle_invlpg
,
7877 [EXIT_REASON_RDPMC
] = handle_rdpmc
,
7878 [EXIT_REASON_VMCALL
] = handle_vmcall
,
7879 [EXIT_REASON_VMCLEAR
] = handle_vmclear
,
7880 [EXIT_REASON_VMLAUNCH
] = handle_vmlaunch
,
7881 [EXIT_REASON_VMPTRLD
] = handle_vmptrld
,
7882 [EXIT_REASON_VMPTRST
] = handle_vmptrst
,
7883 [EXIT_REASON_VMREAD
] = handle_vmread
,
7884 [EXIT_REASON_VMRESUME
] = handle_vmresume
,
7885 [EXIT_REASON_VMWRITE
] = handle_vmwrite
,
7886 [EXIT_REASON_VMOFF
] = handle_vmoff
,
7887 [EXIT_REASON_VMON
] = handle_vmon
,
7888 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
7889 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
7890 [EXIT_REASON_APIC_WRITE
] = handle_apic_write
,
7891 [EXIT_REASON_EOI_INDUCED
] = handle_apic_eoi_induced
,
7892 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
7893 [EXIT_REASON_XSETBV
] = handle_xsetbv
,
7894 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
7895 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
7896 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
7897 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
7898 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
7899 [EXIT_REASON_MWAIT_INSTRUCTION
] = handle_mwait
,
7900 [EXIT_REASON_MONITOR_TRAP_FLAG
] = handle_monitor_trap
,
7901 [EXIT_REASON_MONITOR_INSTRUCTION
] = handle_monitor
,
7902 [EXIT_REASON_INVEPT
] = handle_invept
,
7903 [EXIT_REASON_INVVPID
] = handle_invvpid
,
7904 [EXIT_REASON_XSAVES
] = handle_xsaves
,
7905 [EXIT_REASON_XRSTORS
] = handle_xrstors
,
7906 [EXIT_REASON_PML_FULL
] = handle_pml_full
,
7907 [EXIT_REASON_PREEMPTION_TIMER
] = handle_preemption_timer
,
7910 static const int kvm_vmx_max_exit_handlers
=
7911 ARRAY_SIZE(kvm_vmx_exit_handlers
);
7913 static bool nested_vmx_exit_handled_io(struct kvm_vcpu
*vcpu
,
7914 struct vmcs12
*vmcs12
)
7916 unsigned long exit_qualification
;
7917 gpa_t bitmap
, last_bitmap
;
7922 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
7923 return nested_cpu_has(vmcs12
, CPU_BASED_UNCOND_IO_EXITING
);
7925 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7927 port
= exit_qualification
>> 16;
7928 size
= (exit_qualification
& 7) + 1;
7930 last_bitmap
= (gpa_t
)-1;
7935 bitmap
= vmcs12
->io_bitmap_a
;
7936 else if (port
< 0x10000)
7937 bitmap
= vmcs12
->io_bitmap_b
;
7940 bitmap
+= (port
& 0x7fff) / 8;
7942 if (last_bitmap
!= bitmap
)
7943 if (kvm_vcpu_read_guest(vcpu
, bitmap
, &b
, 1))
7945 if (b
& (1 << (port
& 7)))
7950 last_bitmap
= bitmap
;
7957 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7958 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7959 * disinterest in the current event (read or write a specific MSR) by using an
7960 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7962 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu
*vcpu
,
7963 struct vmcs12
*vmcs12
, u32 exit_reason
)
7965 u32 msr_index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
7968 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
7972 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7973 * for the four combinations of read/write and low/high MSR numbers.
7974 * First we need to figure out which of the four to use:
7976 bitmap
= vmcs12
->msr_bitmap
;
7977 if (exit_reason
== EXIT_REASON_MSR_WRITE
)
7979 if (msr_index
>= 0xc0000000) {
7980 msr_index
-= 0xc0000000;
7984 /* Then read the msr_index'th bit from this bitmap: */
7985 if (msr_index
< 1024*8) {
7987 if (kvm_vcpu_read_guest(vcpu
, bitmap
+ msr_index
/8, &b
, 1))
7989 return 1 & (b
>> (msr_index
& 7));
7991 return true; /* let L1 handle the wrong parameter */
7995 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7996 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7997 * intercept (via guest_host_mask etc.) the current event.
7999 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu
*vcpu
,
8000 struct vmcs12
*vmcs12
)
8002 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
8003 int cr
= exit_qualification
& 15;
8007 switch ((exit_qualification
>> 4) & 3) {
8008 case 0: /* mov to cr */
8009 reg
= (exit_qualification
>> 8) & 15;
8010 val
= kvm_register_readl(vcpu
, reg
);
8013 if (vmcs12
->cr0_guest_host_mask
&
8014 (val
^ vmcs12
->cr0_read_shadow
))
8018 if ((vmcs12
->cr3_target_count
>= 1 &&
8019 vmcs12
->cr3_target_value0
== val
) ||
8020 (vmcs12
->cr3_target_count
>= 2 &&
8021 vmcs12
->cr3_target_value1
== val
) ||
8022 (vmcs12
->cr3_target_count
>= 3 &&
8023 vmcs12
->cr3_target_value2
== val
) ||
8024 (vmcs12
->cr3_target_count
>= 4 &&
8025 vmcs12
->cr3_target_value3
== val
))
8027 if (nested_cpu_has(vmcs12
, CPU_BASED_CR3_LOAD_EXITING
))
8031 if (vmcs12
->cr4_guest_host_mask
&
8032 (vmcs12
->cr4_read_shadow
^ val
))
8036 if (nested_cpu_has(vmcs12
, CPU_BASED_CR8_LOAD_EXITING
))
8042 if ((vmcs12
->cr0_guest_host_mask
& X86_CR0_TS
) &&
8043 (vmcs12
->cr0_read_shadow
& X86_CR0_TS
))
8046 case 1: /* mov from cr */
8049 if (vmcs12
->cpu_based_vm_exec_control
&
8050 CPU_BASED_CR3_STORE_EXITING
)
8054 if (vmcs12
->cpu_based_vm_exec_control
&
8055 CPU_BASED_CR8_STORE_EXITING
)
8062 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8063 * cr0. Other attempted changes are ignored, with no exit.
8065 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
8066 if (vmcs12
->cr0_guest_host_mask
& 0xe &
8067 (val
^ vmcs12
->cr0_read_shadow
))
8069 if ((vmcs12
->cr0_guest_host_mask
& 0x1) &&
8070 !(vmcs12
->cr0_read_shadow
& 0x1) &&
8079 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8080 * should handle it ourselves in L0 (and then continue L2). Only call this
8081 * when in is_guest_mode (L2).
8083 static bool nested_vmx_exit_reflected(struct kvm_vcpu
*vcpu
, u32 exit_reason
)
8085 u32 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8086 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8087 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8089 trace_kvm_nested_vmexit(kvm_rip_read(vcpu
), exit_reason
,
8090 vmcs_readl(EXIT_QUALIFICATION
),
8091 vmx
->idt_vectoring_info
,
8093 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
8097 * The host physical addresses of some pages of guest memory
8098 * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8099 * may write to these pages via their host physical address while
8100 * L2 is running, bypassing any address-translation-based dirty
8101 * tracking (e.g. EPT write protection).
8103 * Mark them dirty on every exit from L2 to prevent them from
8104 * getting out of sync with dirty tracking.
8106 nested_mark_vmcs12_pages_dirty(vcpu
);
8108 if (vmx
->nested
.nested_run_pending
)
8111 if (unlikely(vmx
->fail
)) {
8112 pr_info_ratelimited("%s failed vm entry %x\n", __func__
,
8113 vmcs_read32(VM_INSTRUCTION_ERROR
));
8117 switch (exit_reason
) {
8118 case EXIT_REASON_EXCEPTION_NMI
:
8119 if (is_nmi(intr_info
))
8121 else if (is_page_fault(intr_info
))
8122 return !vmx
->vcpu
.arch
.apf
.host_apf_reason
&& enable_ept
;
8123 else if (is_no_device(intr_info
) &&
8124 !(vmcs12
->guest_cr0
& X86_CR0_TS
))
8126 else if (is_debug(intr_info
) &&
8128 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
8130 else if (is_breakpoint(intr_info
) &&
8131 vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
8133 return vmcs12
->exception_bitmap
&
8134 (1u << (intr_info
& INTR_INFO_VECTOR_MASK
));
8135 case EXIT_REASON_EXTERNAL_INTERRUPT
:
8137 case EXIT_REASON_TRIPLE_FAULT
:
8139 case EXIT_REASON_PENDING_INTERRUPT
:
8140 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_INTR_PENDING
);
8141 case EXIT_REASON_NMI_WINDOW
:
8142 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_NMI_PENDING
);
8143 case EXIT_REASON_TASK_SWITCH
:
8145 case EXIT_REASON_CPUID
:
8147 case EXIT_REASON_HLT
:
8148 return nested_cpu_has(vmcs12
, CPU_BASED_HLT_EXITING
);
8149 case EXIT_REASON_INVD
:
8151 case EXIT_REASON_INVLPG
:
8152 return nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
8153 case EXIT_REASON_RDPMC
:
8154 return nested_cpu_has(vmcs12
, CPU_BASED_RDPMC_EXITING
);
8155 case EXIT_REASON_RDRAND
:
8156 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_RDRAND
);
8157 case EXIT_REASON_RDSEED
:
8158 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_RDSEED
);
8159 case EXIT_REASON_RDTSC
: case EXIT_REASON_RDTSCP
:
8160 return nested_cpu_has(vmcs12
, CPU_BASED_RDTSC_EXITING
);
8161 case EXIT_REASON_VMCALL
: case EXIT_REASON_VMCLEAR
:
8162 case EXIT_REASON_VMLAUNCH
: case EXIT_REASON_VMPTRLD
:
8163 case EXIT_REASON_VMPTRST
: case EXIT_REASON_VMREAD
:
8164 case EXIT_REASON_VMRESUME
: case EXIT_REASON_VMWRITE
:
8165 case EXIT_REASON_VMOFF
: case EXIT_REASON_VMON
:
8166 case EXIT_REASON_INVEPT
: case EXIT_REASON_INVVPID
:
8168 * VMX instructions trap unconditionally. This allows L1 to
8169 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8172 case EXIT_REASON_CR_ACCESS
:
8173 return nested_vmx_exit_handled_cr(vcpu
, vmcs12
);
8174 case EXIT_REASON_DR_ACCESS
:
8175 return nested_cpu_has(vmcs12
, CPU_BASED_MOV_DR_EXITING
);
8176 case EXIT_REASON_IO_INSTRUCTION
:
8177 return nested_vmx_exit_handled_io(vcpu
, vmcs12
);
8178 case EXIT_REASON_GDTR_IDTR
: case EXIT_REASON_LDTR_TR
:
8179 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_DESC
);
8180 case EXIT_REASON_MSR_READ
:
8181 case EXIT_REASON_MSR_WRITE
:
8182 return nested_vmx_exit_handled_msr(vcpu
, vmcs12
, exit_reason
);
8183 case EXIT_REASON_INVALID_STATE
:
8185 case EXIT_REASON_MWAIT_INSTRUCTION
:
8186 return nested_cpu_has(vmcs12
, CPU_BASED_MWAIT_EXITING
);
8187 case EXIT_REASON_MONITOR_TRAP_FLAG
:
8188 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_TRAP_FLAG
);
8189 case EXIT_REASON_MONITOR_INSTRUCTION
:
8190 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_EXITING
);
8191 case EXIT_REASON_PAUSE_INSTRUCTION
:
8192 return nested_cpu_has(vmcs12
, CPU_BASED_PAUSE_EXITING
) ||
8193 nested_cpu_has2(vmcs12
,
8194 SECONDARY_EXEC_PAUSE_LOOP_EXITING
);
8195 case EXIT_REASON_MCE_DURING_VMENTRY
:
8197 case EXIT_REASON_TPR_BELOW_THRESHOLD
:
8198 return nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
);
8199 case EXIT_REASON_APIC_ACCESS
:
8200 return nested_cpu_has2(vmcs12
,
8201 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
8202 case EXIT_REASON_APIC_WRITE
:
8203 case EXIT_REASON_EOI_INDUCED
:
8204 /* apic_write and eoi_induced should exit unconditionally. */
8206 case EXIT_REASON_EPT_VIOLATION
:
8208 * L0 always deals with the EPT violation. If nested EPT is
8209 * used, and the nested mmu code discovers that the address is
8210 * missing in the guest EPT table (EPT12), the EPT violation
8211 * will be injected with nested_ept_inject_page_fault()
8214 case EXIT_REASON_EPT_MISCONFIG
:
8216 * L2 never uses directly L1's EPT, but rather L0's own EPT
8217 * table (shadow on EPT) or a merged EPT table that L0 built
8218 * (EPT on EPT). So any problems with the structure of the
8219 * table is L0's fault.
8222 case EXIT_REASON_WBINVD
:
8223 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_WBINVD_EXITING
);
8224 case EXIT_REASON_XSETBV
:
8226 case EXIT_REASON_XSAVES
: case EXIT_REASON_XRSTORS
:
8228 * This should never happen, since it is not possible to
8229 * set XSS to a non-zero value---neither in L1 nor in L2.
8230 * If if it were, XSS would have to be checked against
8231 * the XSS exit bitmap in vmcs12.
8233 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
);
8234 case EXIT_REASON_PREEMPTION_TIMER
:
8236 case EXIT_REASON_PML_FULL
:
8237 /* We emulate PML support to L1. */
8244 static int nested_vmx_reflect_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
)
8246 u32 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8249 * At this point, the exit interruption info in exit_intr_info
8250 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8251 * we need to query the in-kernel LAPIC.
8253 WARN_ON(exit_reason
== EXIT_REASON_EXTERNAL_INTERRUPT
);
8254 if ((exit_intr_info
&
8255 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
)) ==
8256 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
)) {
8257 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8258 vmcs12
->vm_exit_intr_error_code
=
8259 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
8262 nested_vmx_vmexit(vcpu
, exit_reason
, exit_intr_info
,
8263 vmcs_readl(EXIT_QUALIFICATION
));
8267 static void vmx_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
8269 *info1
= vmcs_readl(EXIT_QUALIFICATION
);
8270 *info2
= vmcs_read32(VM_EXIT_INTR_INFO
);
8273 static void vmx_destroy_pml_buffer(struct vcpu_vmx
*vmx
)
8276 __free_page(vmx
->pml_pg
);
8281 static void vmx_flush_pml_buffer(struct kvm_vcpu
*vcpu
)
8283 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8287 pml_idx
= vmcs_read16(GUEST_PML_INDEX
);
8289 /* Do nothing if PML buffer is empty */
8290 if (pml_idx
== (PML_ENTITY_NUM
- 1))
8293 /* PML index always points to next available PML buffer entity */
8294 if (pml_idx
>= PML_ENTITY_NUM
)
8299 pml_buf
= page_address(vmx
->pml_pg
);
8300 for (; pml_idx
< PML_ENTITY_NUM
; pml_idx
++) {
8303 gpa
= pml_buf
[pml_idx
];
8304 WARN_ON(gpa
& (PAGE_SIZE
- 1));
8305 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
8308 /* reset PML index */
8309 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
8313 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8314 * Called before reporting dirty_bitmap to userspace.
8316 static void kvm_flush_pml_buffers(struct kvm
*kvm
)
8319 struct kvm_vcpu
*vcpu
;
8321 * We only need to kick vcpu out of guest mode here, as PML buffer
8322 * is flushed at beginning of all VMEXITs, and it's obvious that only
8323 * vcpus running in guest are possible to have unflushed GPAs in PML
8326 kvm_for_each_vcpu(i
, vcpu
, kvm
)
8327 kvm_vcpu_kick(vcpu
);
8330 static void vmx_dump_sel(char *name
, uint32_t sel
)
8332 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8333 name
, vmcs_read16(sel
),
8334 vmcs_read32(sel
+ GUEST_ES_AR_BYTES
- GUEST_ES_SELECTOR
),
8335 vmcs_read32(sel
+ GUEST_ES_LIMIT
- GUEST_ES_SELECTOR
),
8336 vmcs_readl(sel
+ GUEST_ES_BASE
- GUEST_ES_SELECTOR
));
8339 static void vmx_dump_dtsel(char *name
, uint32_t limit
)
8341 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8342 name
, vmcs_read32(limit
),
8343 vmcs_readl(limit
+ GUEST_GDTR_BASE
- GUEST_GDTR_LIMIT
));
8346 static void dump_vmcs(void)
8348 u32 vmentry_ctl
= vmcs_read32(VM_ENTRY_CONTROLS
);
8349 u32 vmexit_ctl
= vmcs_read32(VM_EXIT_CONTROLS
);
8350 u32 cpu_based_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
8351 u32 pin_based_exec_ctrl
= vmcs_read32(PIN_BASED_VM_EXEC_CONTROL
);
8352 u32 secondary_exec_control
= 0;
8353 unsigned long cr4
= vmcs_readl(GUEST_CR4
);
8354 u64 efer
= vmcs_read64(GUEST_IA32_EFER
);
8357 if (cpu_has_secondary_exec_ctrls())
8358 secondary_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
8360 pr_err("*** Guest State ***\n");
8361 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8362 vmcs_readl(GUEST_CR0
), vmcs_readl(CR0_READ_SHADOW
),
8363 vmcs_readl(CR0_GUEST_HOST_MASK
));
8364 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8365 cr4
, vmcs_readl(CR4_READ_SHADOW
), vmcs_readl(CR4_GUEST_HOST_MASK
));
8366 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3
));
8367 if ((secondary_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) &&
8368 (cr4
& X86_CR4_PAE
) && !(efer
& EFER_LMA
))
8370 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8371 vmcs_read64(GUEST_PDPTR0
), vmcs_read64(GUEST_PDPTR1
));
8372 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8373 vmcs_read64(GUEST_PDPTR2
), vmcs_read64(GUEST_PDPTR3
));
8375 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8376 vmcs_readl(GUEST_RSP
), vmcs_readl(GUEST_RIP
));
8377 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8378 vmcs_readl(GUEST_RFLAGS
), vmcs_readl(GUEST_DR7
));
8379 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8380 vmcs_readl(GUEST_SYSENTER_ESP
),
8381 vmcs_read32(GUEST_SYSENTER_CS
), vmcs_readl(GUEST_SYSENTER_EIP
));
8382 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR
);
8383 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR
);
8384 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR
);
8385 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR
);
8386 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR
);
8387 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR
);
8388 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT
);
8389 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR
);
8390 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT
);
8391 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR
);
8392 if ((vmexit_ctl
& (VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_SAVE_IA32_EFER
)) ||
8393 (vmentry_ctl
& (VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_IA32_EFER
)))
8394 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8395 efer
, vmcs_read64(GUEST_IA32_PAT
));
8396 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8397 vmcs_read64(GUEST_IA32_DEBUGCTL
),
8398 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
));
8399 if (vmentry_ctl
& VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
8400 pr_err("PerfGlobCtl = 0x%016llx\n",
8401 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL
));
8402 if (vmentry_ctl
& VM_ENTRY_LOAD_BNDCFGS
)
8403 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS
));
8404 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8405 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
),
8406 vmcs_read32(GUEST_ACTIVITY_STATE
));
8407 if (secondary_exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
)
8408 pr_err("InterruptStatus = %04x\n",
8409 vmcs_read16(GUEST_INTR_STATUS
));
8411 pr_err("*** Host State ***\n");
8412 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8413 vmcs_readl(HOST_RIP
), vmcs_readl(HOST_RSP
));
8414 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8415 vmcs_read16(HOST_CS_SELECTOR
), vmcs_read16(HOST_SS_SELECTOR
),
8416 vmcs_read16(HOST_DS_SELECTOR
), vmcs_read16(HOST_ES_SELECTOR
),
8417 vmcs_read16(HOST_FS_SELECTOR
), vmcs_read16(HOST_GS_SELECTOR
),
8418 vmcs_read16(HOST_TR_SELECTOR
));
8419 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8420 vmcs_readl(HOST_FS_BASE
), vmcs_readl(HOST_GS_BASE
),
8421 vmcs_readl(HOST_TR_BASE
));
8422 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8423 vmcs_readl(HOST_GDTR_BASE
), vmcs_readl(HOST_IDTR_BASE
));
8424 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8425 vmcs_readl(HOST_CR0
), vmcs_readl(HOST_CR3
),
8426 vmcs_readl(HOST_CR4
));
8427 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8428 vmcs_readl(HOST_IA32_SYSENTER_ESP
),
8429 vmcs_read32(HOST_IA32_SYSENTER_CS
),
8430 vmcs_readl(HOST_IA32_SYSENTER_EIP
));
8431 if (vmexit_ctl
& (VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_LOAD_IA32_EFER
))
8432 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8433 vmcs_read64(HOST_IA32_EFER
),
8434 vmcs_read64(HOST_IA32_PAT
));
8435 if (vmexit_ctl
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
8436 pr_err("PerfGlobCtl = 0x%016llx\n",
8437 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL
));
8439 pr_err("*** Control State ***\n");
8440 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8441 pin_based_exec_ctrl
, cpu_based_exec_ctrl
, secondary_exec_control
);
8442 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl
, vmexit_ctl
);
8443 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8444 vmcs_read32(EXCEPTION_BITMAP
),
8445 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK
),
8446 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH
));
8447 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8448 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
8449 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE
),
8450 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN
));
8451 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8452 vmcs_read32(VM_EXIT_INTR_INFO
),
8453 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
8454 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
));
8455 pr_err(" reason=%08x qualification=%016lx\n",
8456 vmcs_read32(VM_EXIT_REASON
), vmcs_readl(EXIT_QUALIFICATION
));
8457 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8458 vmcs_read32(IDT_VECTORING_INFO_FIELD
),
8459 vmcs_read32(IDT_VECTORING_ERROR_CODE
));
8460 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET
));
8461 if (secondary_exec_control
& SECONDARY_EXEC_TSC_SCALING
)
8462 pr_err("TSC Multiplier = 0x%016llx\n",
8463 vmcs_read64(TSC_MULTIPLIER
));
8464 if (cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
)
8465 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD
));
8466 if (pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
)
8467 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV
));
8468 if ((secondary_exec_control
& SECONDARY_EXEC_ENABLE_EPT
))
8469 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER
));
8470 n
= vmcs_read32(CR3_TARGET_COUNT
);
8471 for (i
= 0; i
+ 1 < n
; i
+= 4)
8472 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8473 i
, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2),
8474 i
+ 1, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2 + 2));
8476 pr_err("CR3 target%u=%016lx\n",
8477 i
, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2));
8478 if (secondary_exec_control
& SECONDARY_EXEC_PAUSE_LOOP_EXITING
)
8479 pr_err("PLE Gap=%08x Window=%08x\n",
8480 vmcs_read32(PLE_GAP
), vmcs_read32(PLE_WINDOW
));
8481 if (secondary_exec_control
& SECONDARY_EXEC_ENABLE_VPID
)
8482 pr_err("Virtual processor ID = 0x%04x\n",
8483 vmcs_read16(VIRTUAL_PROCESSOR_ID
));
8487 * The guest has exited. See if we can fix it or if we need userspace
8490 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
8492 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8493 u32 exit_reason
= vmx
->exit_reason
;
8494 u32 vectoring_info
= vmx
->idt_vectoring_info
;
8496 trace_kvm_exit(exit_reason
, vcpu
, KVM_ISA_VMX
);
8497 vcpu
->arch
.gpa_available
= false;
8500 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8501 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8502 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8503 * mode as if vcpus is in root mode, the PML buffer must has been
8507 vmx_flush_pml_buffer(vcpu
);
8509 /* If guest state is invalid, start emulating */
8510 if (vmx
->emulation_required
)
8511 return handle_invalid_guest_state(vcpu
);
8513 if (is_guest_mode(vcpu
) && nested_vmx_exit_reflected(vcpu
, exit_reason
))
8514 return nested_vmx_reflect_vmexit(vcpu
, exit_reason
);
8516 if (exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
) {
8518 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
8519 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
8524 if (unlikely(vmx
->fail
)) {
8525 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
8526 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
8527 = vmcs_read32(VM_INSTRUCTION_ERROR
);
8533 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8534 * delivery event since it indicates guest is accessing MMIO.
8535 * The vm-exit can be triggered again after return to guest that
8536 * will cause infinite loop.
8538 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
8539 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
8540 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
8541 exit_reason
!= EXIT_REASON_PML_FULL
&&
8542 exit_reason
!= EXIT_REASON_TASK_SWITCH
)) {
8543 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
8544 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_DELIVERY_EV
;
8545 vcpu
->run
->internal
.ndata
= 3;
8546 vcpu
->run
->internal
.data
[0] = vectoring_info
;
8547 vcpu
->run
->internal
.data
[1] = exit_reason
;
8548 vcpu
->run
->internal
.data
[2] = vcpu
->arch
.exit_qualification
;
8549 if (exit_reason
== EXIT_REASON_EPT_MISCONFIG
) {
8550 vcpu
->run
->internal
.ndata
++;
8551 vcpu
->run
->internal
.data
[3] =
8552 vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
8557 if (exit_reason
< kvm_vmx_max_exit_handlers
8558 && kvm_vmx_exit_handlers
[exit_reason
])
8559 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
8561 vcpu_unimpl(vcpu
, "vmx: unexpected exit reason 0x%x\n",
8563 kvm_queue_exception(vcpu
, UD_VECTOR
);
8568 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
8570 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8572 if (is_guest_mode(vcpu
) &&
8573 nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
8576 if (irr
== -1 || tpr
< irr
) {
8577 vmcs_write32(TPR_THRESHOLD
, 0);
8581 vmcs_write32(TPR_THRESHOLD
, irr
);
8584 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
8586 u32 sec_exec_control
;
8588 /* Postpone execution until vmcs01 is the current VMCS. */
8589 if (is_guest_mode(vcpu
)) {
8590 to_vmx(vcpu
)->nested
.change_vmcs01_virtual_x2apic_mode
= true;
8594 if (!cpu_has_vmx_virtualize_x2apic_mode())
8597 if (!cpu_need_tpr_shadow(vcpu
))
8600 sec_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
8603 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
8604 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
8606 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
8607 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
8608 vmx_flush_tlb_ept_only(vcpu
);
8610 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, sec_exec_control
);
8612 vmx_set_msr_bitmap(vcpu
);
8615 static void vmx_set_apic_access_page_addr(struct kvm_vcpu
*vcpu
, hpa_t hpa
)
8617 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8620 * Currently we do not handle the nested case where L2 has an
8621 * APIC access page of its own; that page is still pinned.
8622 * Hence, we skip the case where the VCPU is in guest mode _and_
8623 * L1 prepared an APIC access page for L2.
8625 * For the case where L1 and L2 share the same APIC access page
8626 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8627 * in the vmcs12), this function will only update either the vmcs01
8628 * or the vmcs02. If the former, the vmcs02 will be updated by
8629 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8630 * the next L2->L1 exit.
8632 if (!is_guest_mode(vcpu
) ||
8633 !nested_cpu_has2(get_vmcs12(&vmx
->vcpu
),
8634 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
8635 vmcs_write64(APIC_ACCESS_ADDR
, hpa
);
8636 vmx_flush_tlb_ept_only(vcpu
);
8640 static void vmx_hwapic_isr_update(struct kvm_vcpu
*vcpu
, int max_isr
)
8648 status
= vmcs_read16(GUEST_INTR_STATUS
);
8650 if (max_isr
!= old
) {
8652 status
|= max_isr
<< 8;
8653 vmcs_write16(GUEST_INTR_STATUS
, status
);
8657 static void vmx_set_rvi(int vector
)
8665 status
= vmcs_read16(GUEST_INTR_STATUS
);
8666 old
= (u8
)status
& 0xff;
8667 if ((u8
)vector
!= old
) {
8669 status
|= (u8
)vector
;
8670 vmcs_write16(GUEST_INTR_STATUS
, status
);
8674 static void vmx_hwapic_irr_update(struct kvm_vcpu
*vcpu
, int max_irr
)
8676 if (!is_guest_mode(vcpu
)) {
8677 vmx_set_rvi(max_irr
);
8685 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8688 if (nested_exit_on_intr(vcpu
))
8692 * Else, fall back to pre-APICv interrupt injection since L2
8693 * is run without virtual interrupt delivery.
8695 if (!kvm_event_needs_reinjection(vcpu
) &&
8696 vmx_interrupt_allowed(vcpu
)) {
8697 kvm_queue_interrupt(vcpu
, max_irr
, false);
8698 vmx_inject_irq(vcpu
);
8702 static int vmx_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
8704 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8707 WARN_ON(!vcpu
->arch
.apicv_active
);
8708 if (pi_test_on(&vmx
->pi_desc
)) {
8709 pi_clear_on(&vmx
->pi_desc
);
8711 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8712 * But on x86 this is just a compiler barrier anyway.
8714 smp_mb__after_atomic();
8715 max_irr
= kvm_apic_update_irr(vcpu
, vmx
->pi_desc
.pir
);
8717 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
8719 vmx_hwapic_irr_update(vcpu
, max_irr
);
8723 static void vmx_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
8725 if (!kvm_vcpu_apicv_active(vcpu
))
8728 vmcs_write64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap
[0]);
8729 vmcs_write64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap
[1]);
8730 vmcs_write64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap
[2]);
8731 vmcs_write64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap
[3]);
8734 static void vmx_apicv_post_state_restore(struct kvm_vcpu
*vcpu
)
8736 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8738 pi_clear_on(&vmx
->pi_desc
);
8739 memset(vmx
->pi_desc
.pir
, 0, sizeof(vmx
->pi_desc
.pir
));
8742 static void vmx_complete_atomic_exit(struct vcpu_vmx
*vmx
)
8744 u32 exit_intr_info
= 0;
8745 u16 basic_exit_reason
= (u16
)vmx
->exit_reason
;
8747 if (!(basic_exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
8748 || basic_exit_reason
== EXIT_REASON_EXCEPTION_NMI
))
8751 if (!(vmx
->exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
))
8752 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8753 vmx
->exit_intr_info
= exit_intr_info
;
8755 /* if exit due to PF check for async PF */
8756 if (is_page_fault(exit_intr_info
))
8757 vmx
->vcpu
.arch
.apf
.host_apf_reason
= kvm_read_and_reset_pf_reason();
8759 /* Handle machine checks before interrupts are enabled */
8760 if (basic_exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
||
8761 is_machine_check(exit_intr_info
))
8762 kvm_machine_check();
8764 /* We need to handle NMIs before interrupts are enabled */
8765 if (is_nmi(exit_intr_info
)) {
8766 kvm_before_handle_nmi(&vmx
->vcpu
);
8768 kvm_after_handle_nmi(&vmx
->vcpu
);
8772 static void vmx_handle_external_intr(struct kvm_vcpu
*vcpu
)
8774 u32 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8775 register void *__sp
asm(_ASM_SP
);
8777 if ((exit_intr_info
& (INTR_INFO_VALID_MASK
| INTR_INFO_INTR_TYPE_MASK
))
8778 == (INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
)) {
8779 unsigned int vector
;
8780 unsigned long entry
;
8782 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8783 #ifdef CONFIG_X86_64
8787 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
8788 desc
= (gate_desc
*)vmx
->host_idt_base
+ vector
;
8789 entry
= gate_offset(*desc
);
8791 #ifdef CONFIG_X86_64
8792 "mov %%" _ASM_SP
", %[sp]\n\t"
8793 "and $0xfffffffffffffff0, %%" _ASM_SP
"\n\t"
8798 __ASM_SIZE(push
) " $%c[cs]\n\t"
8799 "call *%[entry]\n\t"
8801 #ifdef CONFIG_X86_64
8807 [ss
]"i"(__KERNEL_DS
),
8808 [cs
]"i"(__KERNEL_CS
)
8812 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr
);
8814 static bool vmx_has_high_real_mode_segbase(void)
8816 return enable_unrestricted_guest
|| emulate_invalid_guest_state
;
8819 static bool vmx_mpx_supported(void)
8821 return (vmcs_config
.vmexit_ctrl
& VM_EXIT_CLEAR_BNDCFGS
) &&
8822 (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_BNDCFGS
);
8825 static bool vmx_xsaves_supported(void)
8827 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
8828 SECONDARY_EXEC_XSAVES
;
8831 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
8836 bool idtv_info_valid
;
8838 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
8840 if (vmx
->loaded_vmcs
->nmi_known_unmasked
)
8843 * Can't use vmx->exit_intr_info since we're not sure what
8844 * the exit reason is.
8846 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8847 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
8848 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
8850 * SDM 3: 27.7.1.2 (September 2008)
8851 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8852 * a guest IRET fault.
8853 * SDM 3: 23.2.2 (September 2008)
8854 * Bit 12 is undefined in any of the following cases:
8855 * If the VM exit sets the valid bit in the IDT-vectoring
8856 * information field.
8857 * If the VM exit is due to a double fault.
8859 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
8860 vector
!= DF_VECTOR
&& !idtv_info_valid
)
8861 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
8862 GUEST_INTR_STATE_NMI
);
8864 vmx
->loaded_vmcs
->nmi_known_unmasked
=
8865 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
)
8866 & GUEST_INTR_STATE_NMI
);
8869 static void __vmx_complete_interrupts(struct kvm_vcpu
*vcpu
,
8870 u32 idt_vectoring_info
,
8871 int instr_len_field
,
8872 int error_code_field
)
8876 bool idtv_info_valid
;
8878 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
8880 vcpu
->arch
.nmi_injected
= false;
8881 kvm_clear_exception_queue(vcpu
);
8882 kvm_clear_interrupt_queue(vcpu
);
8884 if (!idtv_info_valid
)
8887 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8889 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
8890 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
8893 case INTR_TYPE_NMI_INTR
:
8894 vcpu
->arch
.nmi_injected
= true;
8896 * SDM 3: 27.7.1.2 (September 2008)
8897 * Clear bit "block by NMI" before VM entry if a NMI
8900 vmx_set_nmi_mask(vcpu
, false);
8902 case INTR_TYPE_SOFT_EXCEPTION
:
8903 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
8905 case INTR_TYPE_HARD_EXCEPTION
:
8906 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
8907 u32 err
= vmcs_read32(error_code_field
);
8908 kvm_requeue_exception_e(vcpu
, vector
, err
);
8910 kvm_requeue_exception(vcpu
, vector
);
8912 case INTR_TYPE_SOFT_INTR
:
8913 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
8915 case INTR_TYPE_EXT_INTR
:
8916 kvm_queue_interrupt(vcpu
, vector
, type
== INTR_TYPE_SOFT_INTR
);
8923 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
8925 __vmx_complete_interrupts(&vmx
->vcpu
, vmx
->idt_vectoring_info
,
8926 VM_EXIT_INSTRUCTION_LEN
,
8927 IDT_VECTORING_ERROR_CODE
);
8930 static void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
8932 __vmx_complete_interrupts(vcpu
,
8933 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
8934 VM_ENTRY_INSTRUCTION_LEN
,
8935 VM_ENTRY_EXCEPTION_ERROR_CODE
);
8937 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
8940 static void atomic_switch_perf_msrs(struct vcpu_vmx
*vmx
)
8943 struct perf_guest_switch_msr
*msrs
;
8945 msrs
= perf_guest_get_msrs(&nr_msrs
);
8950 for (i
= 0; i
< nr_msrs
; i
++)
8951 if (msrs
[i
].host
== msrs
[i
].guest
)
8952 clear_atomic_switch_msr(vmx
, msrs
[i
].msr
);
8954 add_atomic_switch_msr(vmx
, msrs
[i
].msr
, msrs
[i
].guest
,
8958 static void vmx_arm_hv_timer(struct kvm_vcpu
*vcpu
)
8960 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8964 if (vmx
->hv_deadline_tsc
== -1)
8968 if (vmx
->hv_deadline_tsc
> tscl
)
8969 /* sure to be 32 bit only because checked on set_hv_timer */
8970 delta_tsc
= (u32
)((vmx
->hv_deadline_tsc
- tscl
) >>
8971 cpu_preemption_timer_multi
);
8975 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE
, delta_tsc
);
8978 static void __noclone
vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
8980 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8981 unsigned long debugctlmsr
, cr3
, cr4
;
8983 /* Don't enter VMX if guest state is invalid, let the exit handler
8984 start emulation until we arrive back to a valid state */
8985 if (vmx
->emulation_required
)
8988 if (vmx
->ple_window_dirty
) {
8989 vmx
->ple_window_dirty
= false;
8990 vmcs_write32(PLE_WINDOW
, vmx
->ple_window
);
8993 if (vmx
->nested
.sync_shadow_vmcs
) {
8994 copy_vmcs12_to_shadow(vmx
);
8995 vmx
->nested
.sync_shadow_vmcs
= false;
8998 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
8999 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
9000 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
9001 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
9003 cr3
= __get_current_cr3_fast();
9004 if (unlikely(cr3
!= vmx
->loaded_vmcs
->vmcs_host_cr3
)) {
9005 vmcs_writel(HOST_CR3
, cr3
);
9006 vmx
->loaded_vmcs
->vmcs_host_cr3
= cr3
;
9009 cr4
= cr4_read_shadow();
9010 if (unlikely(cr4
!= vmx
->loaded_vmcs
->vmcs_host_cr4
)) {
9011 vmcs_writel(HOST_CR4
, cr4
);
9012 vmx
->loaded_vmcs
->vmcs_host_cr4
= cr4
;
9015 /* When single-stepping over STI and MOV SS, we must clear the
9016 * corresponding interruptibility bits in the guest state. Otherwise
9017 * vmentry fails as it then expects bit 14 (BS) in pending debug
9018 * exceptions being set, but that's not correct for the guest debugging
9020 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
9021 vmx_set_interrupt_shadow(vcpu
, 0);
9023 if (static_cpu_has(X86_FEATURE_PKU
) &&
9024 kvm_read_cr4_bits(vcpu
, X86_CR4_PKE
) &&
9025 vcpu
->arch
.pkru
!= vmx
->host_pkru
)
9026 __write_pkru(vcpu
->arch
.pkru
);
9028 atomic_switch_perf_msrs(vmx
);
9029 debugctlmsr
= get_debugctlmsr();
9031 vmx_arm_hv_timer(vcpu
);
9033 vmx
->__launched
= vmx
->loaded_vmcs
->launched
;
9035 /* Store host registers */
9036 "push %%" _ASM_DX
"; push %%" _ASM_BP
";"
9037 "push %%" _ASM_CX
" \n\t" /* placeholder for guest rcx */
9038 "push %%" _ASM_CX
" \n\t"
9039 "cmp %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
9041 "mov %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
9042 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
9044 /* Reload cr2 if changed */
9045 "mov %c[cr2](%0), %%" _ASM_AX
" \n\t"
9046 "mov %%cr2, %%" _ASM_DX
" \n\t"
9047 "cmp %%" _ASM_AX
", %%" _ASM_DX
" \n\t"
9049 "mov %%" _ASM_AX
", %%cr2 \n\t"
9051 /* Check if vmlaunch of vmresume is needed */
9052 "cmpl $0, %c[launched](%0) \n\t"
9053 /* Load guest registers. Don't clobber flags. */
9054 "mov %c[rax](%0), %%" _ASM_AX
" \n\t"
9055 "mov %c[rbx](%0), %%" _ASM_BX
" \n\t"
9056 "mov %c[rdx](%0), %%" _ASM_DX
" \n\t"
9057 "mov %c[rsi](%0), %%" _ASM_SI
" \n\t"
9058 "mov %c[rdi](%0), %%" _ASM_DI
" \n\t"
9059 "mov %c[rbp](%0), %%" _ASM_BP
" \n\t"
9060 #ifdef CONFIG_X86_64
9061 "mov %c[r8](%0), %%r8 \n\t"
9062 "mov %c[r9](%0), %%r9 \n\t"
9063 "mov %c[r10](%0), %%r10 \n\t"
9064 "mov %c[r11](%0), %%r11 \n\t"
9065 "mov %c[r12](%0), %%r12 \n\t"
9066 "mov %c[r13](%0), %%r13 \n\t"
9067 "mov %c[r14](%0), %%r14 \n\t"
9068 "mov %c[r15](%0), %%r15 \n\t"
9070 "mov %c[rcx](%0), %%" _ASM_CX
" \n\t" /* kills %0 (ecx) */
9072 /* Enter guest mode */
9074 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
9076 "1: " __ex(ASM_VMX_VMRESUME
) "\n\t"
9078 /* Save guest registers, load host registers, keep flags */
9079 "mov %0, %c[wordsize](%%" _ASM_SP
") \n\t"
9081 "mov %%" _ASM_AX
", %c[rax](%0) \n\t"
9082 "mov %%" _ASM_BX
", %c[rbx](%0) \n\t"
9083 __ASM_SIZE(pop
) " %c[rcx](%0) \n\t"
9084 "mov %%" _ASM_DX
", %c[rdx](%0) \n\t"
9085 "mov %%" _ASM_SI
", %c[rsi](%0) \n\t"
9086 "mov %%" _ASM_DI
", %c[rdi](%0) \n\t"
9087 "mov %%" _ASM_BP
", %c[rbp](%0) \n\t"
9088 #ifdef CONFIG_X86_64
9089 "mov %%r8, %c[r8](%0) \n\t"
9090 "mov %%r9, %c[r9](%0) \n\t"
9091 "mov %%r10, %c[r10](%0) \n\t"
9092 "mov %%r11, %c[r11](%0) \n\t"
9093 "mov %%r12, %c[r12](%0) \n\t"
9094 "mov %%r13, %c[r13](%0) \n\t"
9095 "mov %%r14, %c[r14](%0) \n\t"
9096 "mov %%r15, %c[r15](%0) \n\t"
9098 "mov %%cr2, %%" _ASM_AX
" \n\t"
9099 "mov %%" _ASM_AX
", %c[cr2](%0) \n\t"
9101 "pop %%" _ASM_BP
"; pop %%" _ASM_DX
" \n\t"
9102 "setbe %c[fail](%0) \n\t"
9103 ".pushsection .rodata \n\t"
9104 ".global vmx_return \n\t"
9105 "vmx_return: " _ASM_PTR
" 2b \n\t"
9107 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
9108 [launched
]"i"(offsetof(struct vcpu_vmx
, __launched
)),
9109 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
9110 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
9111 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
9112 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
9113 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
9114 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
9115 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
9116 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
9117 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
9118 #ifdef CONFIG_X86_64
9119 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
9120 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
9121 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
9122 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
9123 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
9124 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
9125 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
9126 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
9128 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
)),
9129 [wordsize
]"i"(sizeof(ulong
))
9131 #ifdef CONFIG_X86_64
9132 , "rax", "rbx", "rdi", "rsi"
9133 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9135 , "eax", "ebx", "edi", "esi"
9139 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9141 update_debugctlmsr(debugctlmsr
);
9143 #ifndef CONFIG_X86_64
9145 * The sysexit path does not restore ds/es, so we must set them to
9146 * a reasonable value ourselves.
9148 * We can't defer this to vmx_load_host_state() since that function
9149 * may be executed in interrupt context, which saves and restore segments
9150 * around it, nullifying its effect.
9152 loadsegment(ds
, __USER_DS
);
9153 loadsegment(es
, __USER_DS
);
9156 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
9157 | (1 << VCPU_EXREG_RFLAGS
)
9158 | (1 << VCPU_EXREG_PDPTR
)
9159 | (1 << VCPU_EXREG_SEGMENTS
)
9160 | (1 << VCPU_EXREG_CR3
));
9161 vcpu
->arch
.regs_dirty
= 0;
9163 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
9165 vmx
->loaded_vmcs
->launched
= 1;
9167 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
9170 * eager fpu is enabled if PKEY is supported and CR4 is switched
9171 * back on host, so it is safe to read guest PKRU from current
9174 if (static_cpu_has(X86_FEATURE_PKU
) &&
9175 kvm_read_cr4_bits(vcpu
, X86_CR4_PKE
)) {
9176 vcpu
->arch
.pkru
= __read_pkru();
9177 if (vcpu
->arch
.pkru
!= vmx
->host_pkru
)
9178 __write_pkru(vmx
->host_pkru
);
9182 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9183 * we did not inject a still-pending event to L1 now because of
9184 * nested_run_pending, we need to re-enable this bit.
9186 if (vmx
->nested
.nested_run_pending
)
9187 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
9189 vmx
->nested
.nested_run_pending
= 0;
9191 vmx_complete_atomic_exit(vmx
);
9192 vmx_recover_nmi_blocking(vmx
);
9193 vmx_complete_interrupts(vmx
);
9195 STACK_FRAME_NON_STANDARD(vmx_vcpu_run
);
9197 static void vmx_switch_vmcs(struct kvm_vcpu
*vcpu
, struct loaded_vmcs
*vmcs
)
9199 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9202 if (vmx
->loaded_vmcs
== vmcs
)
9206 vmx
->loaded_vmcs
= vmcs
;
9208 vmx_vcpu_load(vcpu
, cpu
);
9214 * Ensure that the current vmcs of the logical processor is the
9215 * vmcs01 of the vcpu before calling free_nested().
9217 static void vmx_free_vcpu_nested(struct kvm_vcpu
*vcpu
)
9219 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9222 r
= vcpu_load(vcpu
);
9224 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
9229 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
9231 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9234 vmx_destroy_pml_buffer(vmx
);
9235 free_vpid(vmx
->vpid
);
9236 leave_guest_mode(vcpu
);
9237 vmx_free_vcpu_nested(vcpu
);
9238 free_loaded_vmcs(vmx
->loaded_vmcs
);
9239 kfree(vmx
->guest_msrs
);
9240 kvm_vcpu_uninit(vcpu
);
9241 kmem_cache_free(kvm_vcpu_cache
, vmx
);
9244 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
9247 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
9251 return ERR_PTR(-ENOMEM
);
9253 vmx
->vpid
= allocate_vpid();
9255 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
9262 * If PML is turned on, failure on enabling PML just results in failure
9263 * of creating the vcpu, therefore we can simplify PML logic (by
9264 * avoiding dealing with cases, such as enabling PML partially on vcpus
9265 * for the guest, etc.
9268 vmx
->pml_pg
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
9273 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
9274 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index
) * sizeof(vmx
->guest_msrs
[0])
9277 if (!vmx
->guest_msrs
)
9280 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
9281 vmx
->loaded_vmcs
->vmcs
= alloc_vmcs();
9282 vmx
->loaded_vmcs
->shadow_vmcs
= NULL
;
9283 if (!vmx
->loaded_vmcs
->vmcs
)
9285 loaded_vmcs_init(vmx
->loaded_vmcs
);
9288 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
9289 vmx
->vcpu
.cpu
= cpu
;
9290 err
= vmx_vcpu_setup(vmx
);
9291 vmx_vcpu_put(&vmx
->vcpu
);
9295 if (cpu_need_virtualize_apic_accesses(&vmx
->vcpu
)) {
9296 err
= alloc_apic_access_page(kvm
);
9302 if (!kvm
->arch
.ept_identity_map_addr
)
9303 kvm
->arch
.ept_identity_map_addr
=
9304 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
9305 err
= init_rmode_identity_map(kvm
);
9311 nested_vmx_setup_ctls_msrs(vmx
);
9312 vmx
->nested
.vpid02
= allocate_vpid();
9315 vmx
->nested
.posted_intr_nv
= -1;
9316 vmx
->nested
.current_vmptr
= -1ull;
9318 vmx
->msr_ia32_feature_control_valid_bits
= FEATURE_CONTROL_LOCKED
;
9321 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9322 * or POSTED_INTR_WAKEUP_VECTOR.
9324 vmx
->pi_desc
.nv
= POSTED_INTR_VECTOR
;
9325 vmx
->pi_desc
.sn
= 1;
9330 free_vpid(vmx
->nested
.vpid02
);
9331 free_loaded_vmcs(vmx
->loaded_vmcs
);
9333 kfree(vmx
->guest_msrs
);
9335 vmx_destroy_pml_buffer(vmx
);
9337 kvm_vcpu_uninit(&vmx
->vcpu
);
9339 free_vpid(vmx
->vpid
);
9340 kmem_cache_free(kvm_vcpu_cache
, vmx
);
9341 return ERR_PTR(err
);
9344 static void __init
vmx_check_processor_compat(void *rtn
)
9346 struct vmcs_config vmcs_conf
;
9349 if (setup_vmcs_config(&vmcs_conf
) < 0)
9351 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
9352 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
9353 smp_processor_id());
9358 static int get_ept_level(void)
9360 return VMX_EPT_DEFAULT_GAW
+ 1;
9363 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
9368 /* For VT-d and EPT combination
9369 * 1. MMIO: always map as UC
9371 * a. VT-d without snooping control feature: can't guarantee the
9372 * result, try to trust guest.
9373 * b. VT-d with snooping control feature: snooping control feature of
9374 * VT-d engine can guarantee the cache correctness. Just set it
9375 * to WB to keep consistent with host. So the same as item 3.
9376 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9377 * consistent with host MTRR
9380 cache
= MTRR_TYPE_UNCACHABLE
;
9384 if (!kvm_arch_has_noncoherent_dma(vcpu
->kvm
)) {
9385 ipat
= VMX_EPT_IPAT_BIT
;
9386 cache
= MTRR_TYPE_WRBACK
;
9390 if (kvm_read_cr0(vcpu
) & X86_CR0_CD
) {
9391 ipat
= VMX_EPT_IPAT_BIT
;
9392 if (kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
9393 cache
= MTRR_TYPE_WRBACK
;
9395 cache
= MTRR_TYPE_UNCACHABLE
;
9399 cache
= kvm_mtrr_get_guest_memory_type(vcpu
, gfn
);
9402 return (cache
<< VMX_EPT_MT_EPTE_SHIFT
) | ipat
;
9405 static int vmx_get_lpage_level(void)
9407 if (enable_ept
&& !cpu_has_vmx_ept_1g_page())
9408 return PT_DIRECTORY_LEVEL
;
9410 /* For shadow and EPT supported 1GB page */
9411 return PT_PDPE_LEVEL
;
9414 static void vmcs_set_secondary_exec_control(u32 new_ctl
)
9417 * These bits in the secondary execution controls field
9418 * are dynamic, the others are mostly based on the hypervisor
9419 * architecture and the guest's CPUID. Do not touch the
9423 SECONDARY_EXEC_SHADOW_VMCS
|
9424 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
9425 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
9427 u32 cur_ctl
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
9429 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
9430 (new_ctl
& ~mask
) | (cur_ctl
& mask
));
9434 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9435 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9437 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu
*vcpu
)
9439 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9440 struct kvm_cpuid_entry2
*entry
;
9442 vmx
->nested
.nested_vmx_cr0_fixed1
= 0xffffffff;
9443 vmx
->nested
.nested_vmx_cr4_fixed1
= X86_CR4_PCE
;
9445 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9446 if (entry && (entry->_reg & (_cpuid_mask))) \
9447 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9450 entry
= kvm_find_cpuid_entry(vcpu
, 0x1, 0);
9451 cr4_fixed1_update(X86_CR4_VME
, edx
, bit(X86_FEATURE_VME
));
9452 cr4_fixed1_update(X86_CR4_PVI
, edx
, bit(X86_FEATURE_VME
));
9453 cr4_fixed1_update(X86_CR4_TSD
, edx
, bit(X86_FEATURE_TSC
));
9454 cr4_fixed1_update(X86_CR4_DE
, edx
, bit(X86_FEATURE_DE
));
9455 cr4_fixed1_update(X86_CR4_PSE
, edx
, bit(X86_FEATURE_PSE
));
9456 cr4_fixed1_update(X86_CR4_PAE
, edx
, bit(X86_FEATURE_PAE
));
9457 cr4_fixed1_update(X86_CR4_MCE
, edx
, bit(X86_FEATURE_MCE
));
9458 cr4_fixed1_update(X86_CR4_PGE
, edx
, bit(X86_FEATURE_PGE
));
9459 cr4_fixed1_update(X86_CR4_OSFXSR
, edx
, bit(X86_FEATURE_FXSR
));
9460 cr4_fixed1_update(X86_CR4_OSXMMEXCPT
, edx
, bit(X86_FEATURE_XMM
));
9461 cr4_fixed1_update(X86_CR4_VMXE
, ecx
, bit(X86_FEATURE_VMX
));
9462 cr4_fixed1_update(X86_CR4_SMXE
, ecx
, bit(X86_FEATURE_SMX
));
9463 cr4_fixed1_update(X86_CR4_PCIDE
, ecx
, bit(X86_FEATURE_PCID
));
9464 cr4_fixed1_update(X86_CR4_OSXSAVE
, ecx
, bit(X86_FEATURE_XSAVE
));
9466 entry
= kvm_find_cpuid_entry(vcpu
, 0x7, 0);
9467 cr4_fixed1_update(X86_CR4_FSGSBASE
, ebx
, bit(X86_FEATURE_FSGSBASE
));
9468 cr4_fixed1_update(X86_CR4_SMEP
, ebx
, bit(X86_FEATURE_SMEP
));
9469 cr4_fixed1_update(X86_CR4_SMAP
, ebx
, bit(X86_FEATURE_SMAP
));
9470 cr4_fixed1_update(X86_CR4_PKE
, ecx
, bit(X86_FEATURE_PKU
));
9471 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9472 cr4_fixed1_update(bit(11), ecx
, bit(2));
9474 #undef cr4_fixed1_update
9477 static void vmx_cpuid_update(struct kvm_vcpu
*vcpu
)
9479 struct kvm_cpuid_entry2
*best
;
9480 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9481 u32 secondary_exec_ctl
= vmx_secondary_exec_control(vmx
);
9483 if (vmx_rdtscp_supported()) {
9484 bool rdtscp_enabled
= guest_cpuid_has_rdtscp(vcpu
);
9485 if (!rdtscp_enabled
)
9486 secondary_exec_ctl
&= ~SECONDARY_EXEC_RDTSCP
;
9490 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
9491 SECONDARY_EXEC_RDTSCP
;
9493 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
9494 ~SECONDARY_EXEC_RDTSCP
;
9498 /* Exposing INVPCID only when PCID is exposed */
9499 best
= kvm_find_cpuid_entry(vcpu
, 0x7, 0);
9500 if (vmx_invpcid_supported() &&
9501 (!best
|| !(best
->ebx
& bit(X86_FEATURE_INVPCID
)) ||
9502 !guest_cpuid_has_pcid(vcpu
))) {
9503 secondary_exec_ctl
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
9506 best
->ebx
&= ~bit(X86_FEATURE_INVPCID
);
9509 if (cpu_has_secondary_exec_ctrls())
9510 vmcs_set_secondary_exec_control(secondary_exec_ctl
);
9512 if (nested_vmx_allowed(vcpu
))
9513 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
|=
9514 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
9516 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
&=
9517 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
9519 if (nested_vmx_allowed(vcpu
))
9520 nested_vmx_cr_fixed1_bits_update(vcpu
);
9523 static void vmx_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
9525 if (func
== 1 && nested
)
9526 entry
->ecx
|= bit(X86_FEATURE_VMX
);
9529 static void nested_ept_inject_page_fault(struct kvm_vcpu
*vcpu
,
9530 struct x86_exception
*fault
)
9532 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
9533 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9535 unsigned long exit_qualification
= vcpu
->arch
.exit_qualification
;
9537 if (vmx
->nested
.pml_full
) {
9538 exit_reason
= EXIT_REASON_PML_FULL
;
9539 vmx
->nested
.pml_full
= false;
9540 exit_qualification
&= INTR_INFO_UNBLOCK_NMI
;
9541 } else if (fault
->error_code
& PFERR_RSVD_MASK
)
9542 exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
9544 exit_reason
= EXIT_REASON_EPT_VIOLATION
;
9546 nested_vmx_vmexit(vcpu
, exit_reason
, 0, exit_qualification
);
9547 vmcs12
->guest_physical_address
= fault
->address
;
9550 static bool nested_ept_ad_enabled(struct kvm_vcpu
*vcpu
)
9552 return nested_ept_get_cr3(vcpu
) & VMX_EPT_AD_ENABLE_BIT
;
9555 /* Callbacks for nested_ept_init_mmu_context: */
9557 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
)
9559 /* return the page table to be shadowed - in our case, EPT12 */
9560 return get_vmcs12(vcpu
)->ept_pointer
;
9563 static int nested_ept_init_mmu_context(struct kvm_vcpu
*vcpu
)
9567 WARN_ON(mmu_is_nested(vcpu
));
9568 wants_ad
= nested_ept_ad_enabled(vcpu
);
9569 if (wants_ad
&& !enable_ept_ad_bits
)
9572 kvm_mmu_unload(vcpu
);
9573 kvm_init_shadow_ept_mmu(vcpu
,
9574 to_vmx(vcpu
)->nested
.nested_vmx_ept_caps
&
9575 VMX_EPT_EXECUTE_ONLY_BIT
,
9577 vcpu
->arch
.mmu
.set_cr3
= vmx_set_cr3
;
9578 vcpu
->arch
.mmu
.get_cr3
= nested_ept_get_cr3
;
9579 vcpu
->arch
.mmu
.inject_page_fault
= nested_ept_inject_page_fault
;
9581 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
9585 static void nested_ept_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
9587 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
9590 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12
*vmcs12
,
9593 bool inequality
, bit
;
9595 bit
= (vmcs12
->exception_bitmap
& (1u << PF_VECTOR
)) != 0;
9597 (error_code
& vmcs12
->page_fault_error_code_mask
) !=
9598 vmcs12
->page_fault_error_code_match
;
9599 return inequality
^ bit
;
9602 static void vmx_inject_page_fault_nested(struct kvm_vcpu
*vcpu
,
9603 struct x86_exception
*fault
)
9605 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
9607 WARN_ON(!is_guest_mode(vcpu
));
9609 if (nested_vmx_is_page_fault_vmexit(vmcs12
, fault
->error_code
)) {
9610 vmcs12
->vm_exit_intr_error_code
= fault
->error_code
;
9611 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
,
9612 PF_VECTOR
| INTR_TYPE_HARD_EXCEPTION
|
9613 INTR_INFO_DELIVER_CODE_MASK
| INTR_INFO_VALID_MASK
,
9616 kvm_inject_page_fault(vcpu
, fault
);
9620 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu
*vcpu
,
9621 struct vmcs12
*vmcs12
);
9623 static void nested_get_vmcs12_pages(struct kvm_vcpu
*vcpu
,
9624 struct vmcs12
*vmcs12
)
9626 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9629 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
9631 * Translate L1 physical address to host physical
9632 * address for vmcs02. Keep the page pinned, so this
9633 * physical address remains valid. We keep a reference
9634 * to it so we can release it later.
9636 if (vmx
->nested
.apic_access_page
) /* shouldn't happen */
9637 nested_release_page(vmx
->nested
.apic_access_page
);
9638 vmx
->nested
.apic_access_page
=
9639 nested_get_page(vcpu
, vmcs12
->apic_access_addr
);
9641 * If translation failed, no matter: This feature asks
9642 * to exit when accessing the given address, and if it
9643 * can never be accessed, this feature won't do
9646 if (vmx
->nested
.apic_access_page
) {
9647 hpa
= page_to_phys(vmx
->nested
.apic_access_page
);
9648 vmcs_write64(APIC_ACCESS_ADDR
, hpa
);
9650 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
,
9651 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
9653 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12
)) &&
9654 cpu_need_virtualize_apic_accesses(&vmx
->vcpu
)) {
9655 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
9656 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
9657 kvm_vcpu_reload_apic_access_page(vcpu
);
9660 if (nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
)) {
9661 if (vmx
->nested
.virtual_apic_page
) /* shouldn't happen */
9662 nested_release_page(vmx
->nested
.virtual_apic_page
);
9663 vmx
->nested
.virtual_apic_page
=
9664 nested_get_page(vcpu
, vmcs12
->virtual_apic_page_addr
);
9667 * If translation failed, VM entry will fail because
9668 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9669 * Failing the vm entry is _not_ what the processor
9670 * does but it's basically the only possibility we
9671 * have. We could still enter the guest if CR8 load
9672 * exits are enabled, CR8 store exits are enabled, and
9673 * virtualize APIC access is disabled; in this case
9674 * the processor would never use the TPR shadow and we
9675 * could simply clear the bit from the execution
9676 * control. But such a configuration is useless, so
9677 * let's keep the code simple.
9679 if (vmx
->nested
.virtual_apic_page
) {
9680 hpa
= page_to_phys(vmx
->nested
.virtual_apic_page
);
9681 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, hpa
);
9685 if (nested_cpu_has_posted_intr(vmcs12
)) {
9686 if (vmx
->nested
.pi_desc_page
) { /* shouldn't happen */
9687 kunmap(vmx
->nested
.pi_desc_page
);
9688 nested_release_page(vmx
->nested
.pi_desc_page
);
9690 vmx
->nested
.pi_desc_page
=
9691 nested_get_page(vcpu
, vmcs12
->posted_intr_desc_addr
);
9692 vmx
->nested
.pi_desc
=
9693 (struct pi_desc
*)kmap(vmx
->nested
.pi_desc_page
);
9694 if (!vmx
->nested
.pi_desc
) {
9695 nested_release_page_clean(vmx
->nested
.pi_desc_page
);
9698 vmx
->nested
.pi_desc
=
9699 (struct pi_desc
*)((void *)vmx
->nested
.pi_desc
+
9700 (unsigned long)(vmcs12
->posted_intr_desc_addr
&
9702 vmcs_write64(POSTED_INTR_DESC_ADDR
,
9703 page_to_phys(vmx
->nested
.pi_desc_page
) +
9704 (unsigned long)(vmcs12
->posted_intr_desc_addr
&
9707 if (cpu_has_vmx_msr_bitmap() &&
9708 nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
) &&
9709 nested_vmx_merge_msr_bitmap(vcpu
, vmcs12
))
9712 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
9713 CPU_BASED_USE_MSR_BITMAPS
);
9716 static void vmx_start_preemption_timer(struct kvm_vcpu
*vcpu
)
9718 u64 preemption_timeout
= get_vmcs12(vcpu
)->vmx_preemption_timer_value
;
9719 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9721 if (vcpu
->arch
.virtual_tsc_khz
== 0)
9724 /* Make sure short timeouts reliably trigger an immediate vmexit.
9725 * hrtimer_start does not guarantee this. */
9726 if (preemption_timeout
<= 1) {
9727 vmx_preemption_timer_fn(&vmx
->nested
.preemption_timer
);
9731 preemption_timeout
<<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
9732 preemption_timeout
*= 1000000;
9733 do_div(preemption_timeout
, vcpu
->arch
.virtual_tsc_khz
);
9734 hrtimer_start(&vmx
->nested
.preemption_timer
,
9735 ns_to_ktime(preemption_timeout
), HRTIMER_MODE_REL
);
9738 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu
*vcpu
,
9739 struct vmcs12
*vmcs12
)
9741 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
9744 if (!page_address_valid(vcpu
, vmcs12
->io_bitmap_a
) ||
9745 !page_address_valid(vcpu
, vmcs12
->io_bitmap_b
))
9751 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu
*vcpu
,
9752 struct vmcs12
*vmcs12
)
9754 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
9757 if (!page_address_valid(vcpu
, vmcs12
->msr_bitmap
))
9764 * Merge L0's and L1's MSR bitmap, return false to indicate that
9765 * we do not use the hardware.
9767 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu
*vcpu
,
9768 struct vmcs12
*vmcs12
)
9772 unsigned long *msr_bitmap_l1
;
9773 unsigned long *msr_bitmap_l0
= to_vmx(vcpu
)->nested
.msr_bitmap
;
9775 /* This shortcut is ok because we support only x2APIC MSRs so far. */
9776 if (!nested_cpu_has_virt_x2apic_mode(vmcs12
))
9779 page
= nested_get_page(vcpu
, vmcs12
->msr_bitmap
);
9782 msr_bitmap_l1
= (unsigned long *)kmap(page
);
9784 memset(msr_bitmap_l0
, 0xff, PAGE_SIZE
);
9786 if (nested_cpu_has_virt_x2apic_mode(vmcs12
)) {
9787 if (nested_cpu_has_apic_reg_virt(vmcs12
))
9788 for (msr
= 0x800; msr
<= 0x8ff; msr
++)
9789 nested_vmx_disable_intercept_for_msr(
9790 msr_bitmap_l1
, msr_bitmap_l0
,
9793 nested_vmx_disable_intercept_for_msr(
9794 msr_bitmap_l1
, msr_bitmap_l0
,
9795 APIC_BASE_MSR
+ (APIC_TASKPRI
>> 4),
9796 MSR_TYPE_R
| MSR_TYPE_W
);
9798 if (nested_cpu_has_vid(vmcs12
)) {
9799 nested_vmx_disable_intercept_for_msr(
9800 msr_bitmap_l1
, msr_bitmap_l0
,
9801 APIC_BASE_MSR
+ (APIC_EOI
>> 4),
9803 nested_vmx_disable_intercept_for_msr(
9804 msr_bitmap_l1
, msr_bitmap_l0
,
9805 APIC_BASE_MSR
+ (APIC_SELF_IPI
>> 4),
9810 nested_release_page_clean(page
);
9815 static int nested_vmx_check_apicv_controls(struct kvm_vcpu
*vcpu
,
9816 struct vmcs12
*vmcs12
)
9818 if (!nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
9819 !nested_cpu_has_apic_reg_virt(vmcs12
) &&
9820 !nested_cpu_has_vid(vmcs12
) &&
9821 !nested_cpu_has_posted_intr(vmcs12
))
9825 * If virtualize x2apic mode is enabled,
9826 * virtualize apic access must be disabled.
9828 if (nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
9829 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
9833 * If virtual interrupt delivery is enabled,
9834 * we must exit on external interrupts.
9836 if (nested_cpu_has_vid(vmcs12
) &&
9837 !nested_exit_on_intr(vcpu
))
9841 * bits 15:8 should be zero in posted_intr_nv,
9842 * the descriptor address has been already checked
9843 * in nested_get_vmcs12_pages.
9845 if (nested_cpu_has_posted_intr(vmcs12
) &&
9846 (!nested_cpu_has_vid(vmcs12
) ||
9847 !nested_exit_intr_ack_set(vcpu
) ||
9848 vmcs12
->posted_intr_nv
& 0xff00))
9851 /* tpr shadow is needed by all apicv features. */
9852 if (!nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
9858 static int nested_vmx_check_msr_switch(struct kvm_vcpu
*vcpu
,
9859 unsigned long count_field
,
9860 unsigned long addr_field
)
9865 if (vmcs12_read_any(vcpu
, count_field
, &count
) ||
9866 vmcs12_read_any(vcpu
, addr_field
, &addr
)) {
9872 maxphyaddr
= cpuid_maxphyaddr(vcpu
);
9873 if (!IS_ALIGNED(addr
, 16) || addr
>> maxphyaddr
||
9874 (addr
+ count
* sizeof(struct vmx_msr_entry
) - 1) >> maxphyaddr
) {
9875 pr_debug_ratelimited(
9876 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9877 addr_field
, maxphyaddr
, count
, addr
);
9883 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu
*vcpu
,
9884 struct vmcs12
*vmcs12
)
9886 if (vmcs12
->vm_exit_msr_load_count
== 0 &&
9887 vmcs12
->vm_exit_msr_store_count
== 0 &&
9888 vmcs12
->vm_entry_msr_load_count
== 0)
9889 return 0; /* Fast path */
9890 if (nested_vmx_check_msr_switch(vcpu
, VM_EXIT_MSR_LOAD_COUNT
,
9891 VM_EXIT_MSR_LOAD_ADDR
) ||
9892 nested_vmx_check_msr_switch(vcpu
, VM_EXIT_MSR_STORE_COUNT
,
9893 VM_EXIT_MSR_STORE_ADDR
) ||
9894 nested_vmx_check_msr_switch(vcpu
, VM_ENTRY_MSR_LOAD_COUNT
,
9895 VM_ENTRY_MSR_LOAD_ADDR
))
9900 static int nested_vmx_check_pml_controls(struct kvm_vcpu
*vcpu
,
9901 struct vmcs12
*vmcs12
)
9903 u64 address
= vmcs12
->pml_address
;
9904 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
9906 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_PML
)) {
9907 if (!nested_cpu_has_ept(vmcs12
) ||
9908 !IS_ALIGNED(address
, 4096) ||
9909 address
>> maxphyaddr
)
9916 static int nested_vmx_msr_check_common(struct kvm_vcpu
*vcpu
,
9917 struct vmx_msr_entry
*e
)
9919 /* x2APIC MSR accesses are not allowed */
9920 if (vcpu
->arch
.apic_base
& X2APIC_ENABLE
&& e
->index
>> 8 == 0x8)
9922 if (e
->index
== MSR_IA32_UCODE_WRITE
|| /* SDM Table 35-2 */
9923 e
->index
== MSR_IA32_UCODE_REV
)
9925 if (e
->reserved
!= 0)
9930 static int nested_vmx_load_msr_check(struct kvm_vcpu
*vcpu
,
9931 struct vmx_msr_entry
*e
)
9933 if (e
->index
== MSR_FS_BASE
||
9934 e
->index
== MSR_GS_BASE
||
9935 e
->index
== MSR_IA32_SMM_MONITOR_CTL
|| /* SMM is not supported */
9936 nested_vmx_msr_check_common(vcpu
, e
))
9941 static int nested_vmx_store_msr_check(struct kvm_vcpu
*vcpu
,
9942 struct vmx_msr_entry
*e
)
9944 if (e
->index
== MSR_IA32_SMBASE
|| /* SMM is not supported */
9945 nested_vmx_msr_check_common(vcpu
, e
))
9951 * Load guest's/host's msr at nested entry/exit.
9952 * return 0 for success, entry index for failure.
9954 static u32
nested_vmx_load_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
9957 struct vmx_msr_entry e
;
9958 struct msr_data msr
;
9960 msr
.host_initiated
= false;
9961 for (i
= 0; i
< count
; i
++) {
9962 if (kvm_vcpu_read_guest(vcpu
, gpa
+ i
* sizeof(e
),
9964 pr_debug_ratelimited(
9965 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9966 __func__
, i
, gpa
+ i
* sizeof(e
));
9969 if (nested_vmx_load_msr_check(vcpu
, &e
)) {
9970 pr_debug_ratelimited(
9971 "%s check failed (%u, 0x%x, 0x%x)\n",
9972 __func__
, i
, e
.index
, e
.reserved
);
9975 msr
.index
= e
.index
;
9977 if (kvm_set_msr(vcpu
, &msr
)) {
9978 pr_debug_ratelimited(
9979 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9980 __func__
, i
, e
.index
, e
.value
);
9989 static int nested_vmx_store_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
9992 struct vmx_msr_entry e
;
9994 for (i
= 0; i
< count
; i
++) {
9995 struct msr_data msr_info
;
9996 if (kvm_vcpu_read_guest(vcpu
,
9997 gpa
+ i
* sizeof(e
),
9998 &e
, 2 * sizeof(u32
))) {
9999 pr_debug_ratelimited(
10000 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10001 __func__
, i
, gpa
+ i
* sizeof(e
));
10004 if (nested_vmx_store_msr_check(vcpu
, &e
)) {
10005 pr_debug_ratelimited(
10006 "%s check failed (%u, 0x%x, 0x%x)\n",
10007 __func__
, i
, e
.index
, e
.reserved
);
10010 msr_info
.host_initiated
= false;
10011 msr_info
.index
= e
.index
;
10012 if (kvm_get_msr(vcpu
, &msr_info
)) {
10013 pr_debug_ratelimited(
10014 "%s cannot read MSR (%u, 0x%x)\n",
10015 __func__
, i
, e
.index
);
10018 if (kvm_vcpu_write_guest(vcpu
,
10019 gpa
+ i
* sizeof(e
) +
10020 offsetof(struct vmx_msr_entry
, value
),
10021 &msr_info
.data
, sizeof(msr_info
.data
))) {
10022 pr_debug_ratelimited(
10023 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10024 __func__
, i
, e
.index
, msr_info
.data
);
10031 static bool nested_cr3_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
10033 unsigned long invalid_mask
;
10035 invalid_mask
= (~0ULL) << cpuid_maxphyaddr(vcpu
);
10036 return (val
& invalid_mask
) == 0;
10040 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10041 * emulating VM entry into a guest with EPT enabled.
10042 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10043 * is assigned to entry_failure_code on failure.
10045 static int nested_vmx_load_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
, bool nested_ept
,
10046 u32
*entry_failure_code
)
10048 if (cr3
!= kvm_read_cr3(vcpu
) || (!nested_ept
&& pdptrs_changed(vcpu
))) {
10049 if (!nested_cr3_valid(vcpu
, cr3
)) {
10050 *entry_failure_code
= ENTRY_FAIL_DEFAULT
;
10055 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10056 * must not be dereferenced.
10058 if (!is_long_mode(vcpu
) && is_pae(vcpu
) && is_paging(vcpu
) &&
10060 if (!load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
)) {
10061 *entry_failure_code
= ENTRY_FAIL_PDPTE
;
10066 vcpu
->arch
.cr3
= cr3
;
10067 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
10070 kvm_mmu_reset_context(vcpu
);
10075 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10076 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
10077 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
10078 * guest in a way that will both be appropriate to L1's requests, and our
10079 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10080 * function also has additional necessary side-effects, like setting various
10081 * vcpu->arch fields.
10082 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10083 * is assigned to entry_failure_code on failure.
10085 static int prepare_vmcs02(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
10086 bool from_vmentry
, u32
*entry_failure_code
)
10088 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10089 u32 exec_control
, vmcs12_exec_ctrl
;
10091 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->guest_es_selector
);
10092 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->guest_cs_selector
);
10093 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->guest_ss_selector
);
10094 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->guest_ds_selector
);
10095 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->guest_fs_selector
);
10096 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->guest_gs_selector
);
10097 vmcs_write16(GUEST_LDTR_SELECTOR
, vmcs12
->guest_ldtr_selector
);
10098 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->guest_tr_selector
);
10099 vmcs_write32(GUEST_ES_LIMIT
, vmcs12
->guest_es_limit
);
10100 vmcs_write32(GUEST_CS_LIMIT
, vmcs12
->guest_cs_limit
);
10101 vmcs_write32(GUEST_SS_LIMIT
, vmcs12
->guest_ss_limit
);
10102 vmcs_write32(GUEST_DS_LIMIT
, vmcs12
->guest_ds_limit
);
10103 vmcs_write32(GUEST_FS_LIMIT
, vmcs12
->guest_fs_limit
);
10104 vmcs_write32(GUEST_GS_LIMIT
, vmcs12
->guest_gs_limit
);
10105 vmcs_write32(GUEST_LDTR_LIMIT
, vmcs12
->guest_ldtr_limit
);
10106 vmcs_write32(GUEST_TR_LIMIT
, vmcs12
->guest_tr_limit
);
10107 vmcs_write32(GUEST_GDTR_LIMIT
, vmcs12
->guest_gdtr_limit
);
10108 vmcs_write32(GUEST_IDTR_LIMIT
, vmcs12
->guest_idtr_limit
);
10109 vmcs_write32(GUEST_ES_AR_BYTES
, vmcs12
->guest_es_ar_bytes
);
10110 vmcs_write32(GUEST_CS_AR_BYTES
, vmcs12
->guest_cs_ar_bytes
);
10111 vmcs_write32(GUEST_SS_AR_BYTES
, vmcs12
->guest_ss_ar_bytes
);
10112 vmcs_write32(GUEST_DS_AR_BYTES
, vmcs12
->guest_ds_ar_bytes
);
10113 vmcs_write32(GUEST_FS_AR_BYTES
, vmcs12
->guest_fs_ar_bytes
);
10114 vmcs_write32(GUEST_GS_AR_BYTES
, vmcs12
->guest_gs_ar_bytes
);
10115 vmcs_write32(GUEST_LDTR_AR_BYTES
, vmcs12
->guest_ldtr_ar_bytes
);
10116 vmcs_write32(GUEST_TR_AR_BYTES
, vmcs12
->guest_tr_ar_bytes
);
10117 vmcs_writel(GUEST_ES_BASE
, vmcs12
->guest_es_base
);
10118 vmcs_writel(GUEST_CS_BASE
, vmcs12
->guest_cs_base
);
10119 vmcs_writel(GUEST_SS_BASE
, vmcs12
->guest_ss_base
);
10120 vmcs_writel(GUEST_DS_BASE
, vmcs12
->guest_ds_base
);
10121 vmcs_writel(GUEST_FS_BASE
, vmcs12
->guest_fs_base
);
10122 vmcs_writel(GUEST_GS_BASE
, vmcs12
->guest_gs_base
);
10123 vmcs_writel(GUEST_LDTR_BASE
, vmcs12
->guest_ldtr_base
);
10124 vmcs_writel(GUEST_TR_BASE
, vmcs12
->guest_tr_base
);
10125 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->guest_gdtr_base
);
10126 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->guest_idtr_base
);
10128 if (from_vmentry
&&
10129 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
)) {
10130 kvm_set_dr(vcpu
, 7, vmcs12
->guest_dr7
);
10131 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmcs12
->guest_ia32_debugctl
);
10133 kvm_set_dr(vcpu
, 7, vcpu
->arch
.dr7
);
10134 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmx
->nested
.vmcs01_debugctl
);
10136 if (from_vmentry
) {
10137 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
10138 vmcs12
->vm_entry_intr_info_field
);
10139 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
10140 vmcs12
->vm_entry_exception_error_code
);
10141 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
10142 vmcs12
->vm_entry_instruction_len
);
10143 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
10144 vmcs12
->guest_interruptibility_info
);
10145 vmx
->loaded_vmcs
->nmi_known_unmasked
=
10146 !(vmcs12
->guest_interruptibility_info
& GUEST_INTR_STATE_NMI
);
10148 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
10150 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->guest_sysenter_cs
);
10151 vmx_set_rflags(vcpu
, vmcs12
->guest_rflags
);
10152 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
,
10153 vmcs12
->guest_pending_dbg_exceptions
);
10154 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->guest_sysenter_esp
);
10155 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->guest_sysenter_eip
);
10157 if (nested_cpu_has_xsaves(vmcs12
))
10158 vmcs_write64(XSS_EXIT_BITMAP
, vmcs12
->xss_exit_bitmap
);
10159 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
10161 exec_control
= vmcs12
->pin_based_vm_exec_control
;
10163 /* Preemption timer setting is only taken from vmcs01. */
10164 exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
10165 exec_control
|= vmcs_config
.pin_based_exec_ctrl
;
10166 if (vmx
->hv_deadline_tsc
== -1)
10167 exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
10169 /* Posted interrupts setting is only taken from vmcs12. */
10170 if (nested_cpu_has_posted_intr(vmcs12
)) {
10171 vmx
->nested
.posted_intr_nv
= vmcs12
->posted_intr_nv
;
10172 vmx
->nested
.pi_pending
= false;
10173 vmcs_write16(POSTED_INTR_NV
, POSTED_INTR_NESTED_VECTOR
);
10175 exec_control
&= ~PIN_BASED_POSTED_INTR
;
10178 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, exec_control
);
10180 vmx
->nested
.preemption_timer_expired
= false;
10181 if (nested_cpu_has_preemption_timer(vmcs12
))
10182 vmx_start_preemption_timer(vcpu
);
10185 * Whether page-faults are trapped is determined by a combination of
10186 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10187 * If enable_ept, L0 doesn't care about page faults and we should
10188 * set all of these to L1's desires. However, if !enable_ept, L0 does
10189 * care about (at least some) page faults, and because it is not easy
10190 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10191 * to exit on each and every L2 page fault. This is done by setting
10192 * MASK=MATCH=0 and (see below) EB.PF=1.
10193 * Note that below we don't need special code to set EB.PF beyond the
10194 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10195 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10196 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10198 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
,
10199 enable_ept
? vmcs12
->page_fault_error_code_mask
: 0);
10200 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
,
10201 enable_ept
? vmcs12
->page_fault_error_code_match
: 0);
10203 if (cpu_has_secondary_exec_ctrls()) {
10204 exec_control
= vmx_secondary_exec_control(vmx
);
10206 /* Take the following fields only from vmcs12 */
10207 exec_control
&= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
10208 SECONDARY_EXEC_RDTSCP
|
10209 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
10210 SECONDARY_EXEC_APIC_REGISTER_VIRT
);
10211 if (nested_cpu_has(vmcs12
,
10212 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
)) {
10213 vmcs12_exec_ctrl
= vmcs12
->secondary_vm_exec_control
&
10214 ~SECONDARY_EXEC_ENABLE_PML
;
10215 exec_control
|= vmcs12_exec_ctrl
;
10218 if (exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
) {
10219 vmcs_write64(EOI_EXIT_BITMAP0
,
10220 vmcs12
->eoi_exit_bitmap0
);
10221 vmcs_write64(EOI_EXIT_BITMAP1
,
10222 vmcs12
->eoi_exit_bitmap1
);
10223 vmcs_write64(EOI_EXIT_BITMAP2
,
10224 vmcs12
->eoi_exit_bitmap2
);
10225 vmcs_write64(EOI_EXIT_BITMAP3
,
10226 vmcs12
->eoi_exit_bitmap3
);
10227 vmcs_write16(GUEST_INTR_STATUS
,
10228 vmcs12
->guest_intr_status
);
10232 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10233 * nested_get_vmcs12_pages will either fix it up or
10234 * remove the VM execution control.
10236 if (exec_control
& SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)
10237 vmcs_write64(APIC_ACCESS_ADDR
, -1ull);
10239 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
10244 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10245 * Some constant fields are set here by vmx_set_constant_host_state().
10246 * Other fields are different per CPU, and will be set later when
10247 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10249 vmx_set_constant_host_state(vmx
);
10252 * Set the MSR load/store lists to match L0's settings.
10254 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
10255 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, vmx
->msr_autoload
.nr
);
10256 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
10257 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, vmx
->msr_autoload
.nr
);
10258 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
10261 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10262 * entry, but only if the current (host) sp changed from the value
10263 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10264 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10265 * here we just force the write to happen on entry.
10269 exec_control
= vmx_exec_control(vmx
); /* L0's desires */
10270 exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
10271 exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
10272 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
10273 exec_control
|= vmcs12
->cpu_based_vm_exec_control
;
10276 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10277 * nested_get_vmcs12_pages can't fix it up, the illegal value
10278 * will result in a VM entry failure.
10280 if (exec_control
& CPU_BASED_TPR_SHADOW
) {
10281 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, -1ull);
10282 vmcs_write32(TPR_THRESHOLD
, vmcs12
->tpr_threshold
);
10284 #ifdef CONFIG_X86_64
10285 exec_control
|= CPU_BASED_CR8_LOAD_EXITING
|
10286 CPU_BASED_CR8_STORE_EXITING
;
10291 * Merging of IO bitmap not currently supported.
10292 * Rather, exit every time.
10294 exec_control
&= ~CPU_BASED_USE_IO_BITMAPS
;
10295 exec_control
|= CPU_BASED_UNCOND_IO_EXITING
;
10297 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
10299 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10300 * bitwise-or of what L1 wants to trap for L2, and what we want to
10301 * trap. Note that CR0.TS also needs updating - we do this later.
10303 update_exception_bitmap(vcpu
);
10304 vcpu
->arch
.cr0_guest_owned_bits
&= ~vmcs12
->cr0_guest_host_mask
;
10305 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
10307 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10308 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10309 * bits are further modified by vmx_set_efer() below.
10311 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
10313 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10314 * emulated by vmx_set_efer(), below.
10316 vm_entry_controls_init(vmx
,
10317 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_LOAD_IA32_EFER
&
10318 ~VM_ENTRY_IA32E_MODE
) |
10319 (vmcs_config
.vmentry_ctrl
& ~VM_ENTRY_IA32E_MODE
));
10321 if (from_vmentry
&&
10322 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PAT
)) {
10323 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->guest_ia32_pat
);
10324 vcpu
->arch
.pat
= vmcs12
->guest_ia32_pat
;
10325 } else if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
10326 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
10329 set_cr4_guest_host_mask(vmx
);
10331 if (from_vmentry
&&
10332 vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
)
10333 vmcs_write64(GUEST_BNDCFGS
, vmcs12
->guest_bndcfgs
);
10335 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
)
10336 vmcs_write64(TSC_OFFSET
,
10337 vcpu
->arch
.tsc_offset
+ vmcs12
->tsc_offset
);
10339 vmcs_write64(TSC_OFFSET
, vcpu
->arch
.tsc_offset
);
10340 if (kvm_has_tsc_control
)
10341 decache_tsc_multiplier(vmx
);
10345 * There is no direct mapping between vpid02 and vpid12, the
10346 * vpid02 is per-vCPU for L0 and reused while the value of
10347 * vpid12 is changed w/ one invvpid during nested vmentry.
10348 * The vpid12 is allocated by L1 for L2, so it will not
10349 * influence global bitmap(for vpid01 and vpid02 allocation)
10350 * even if spawn a lot of nested vCPUs.
10352 if (nested_cpu_has_vpid(vmcs12
) && vmx
->nested
.vpid02
) {
10353 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->nested
.vpid02
);
10354 if (vmcs12
->virtual_processor_id
!= vmx
->nested
.last_vpid
) {
10355 vmx
->nested
.last_vpid
= vmcs12
->virtual_processor_id
;
10356 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->nested
.vpid02
);
10359 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
10360 vmx_flush_tlb(vcpu
);
10367 * Conceptually we want to copy the PML address and index from
10368 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10369 * since we always flush the log on each vmexit, this happens
10370 * to be equivalent to simply resetting the fields in vmcs02.
10372 ASSERT(vmx
->pml_pg
);
10373 vmcs_write64(PML_ADDRESS
, page_to_phys(vmx
->pml_pg
));
10374 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
10377 if (nested_cpu_has_ept(vmcs12
)) {
10378 if (nested_ept_init_mmu_context(vcpu
)) {
10379 *entry_failure_code
= ENTRY_FAIL_DEFAULT
;
10382 } else if (nested_cpu_has2(vmcs12
,
10383 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
10384 vmx_flush_tlb_ept_only(vcpu
);
10388 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10389 * bits which we consider mandatory enabled.
10390 * The CR0_READ_SHADOW is what L2 should have expected to read given
10391 * the specifications by L1; It's not enough to take
10392 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10393 * have more bits than L1 expected.
10395 vmx_set_cr0(vcpu
, vmcs12
->guest_cr0
);
10396 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
10398 vmx_set_cr4(vcpu
, vmcs12
->guest_cr4
);
10399 vmcs_writel(CR4_READ_SHADOW
, nested_read_cr4(vmcs12
));
10401 if (from_vmentry
&&
10402 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
))
10403 vcpu
->arch
.efer
= vmcs12
->guest_ia32_efer
;
10404 else if (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
)
10405 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
10407 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
10408 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10409 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
10411 /* Shadow page tables on either EPT or shadow page tables. */
10412 if (nested_vmx_load_cr3(vcpu
, vmcs12
->guest_cr3
, nested_cpu_has_ept(vmcs12
),
10413 entry_failure_code
))
10417 vcpu
->arch
.walk_mmu
->inject_page_fault
= vmx_inject_page_fault_nested
;
10420 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10423 vmcs_write64(GUEST_PDPTR0
, vmcs12
->guest_pdptr0
);
10424 vmcs_write64(GUEST_PDPTR1
, vmcs12
->guest_pdptr1
);
10425 vmcs_write64(GUEST_PDPTR2
, vmcs12
->guest_pdptr2
);
10426 vmcs_write64(GUEST_PDPTR3
, vmcs12
->guest_pdptr3
);
10429 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->guest_rsp
);
10430 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->guest_rip
);
10434 static int check_vmentry_prereqs(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
10436 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10438 if (vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_ACTIVE
&&
10439 vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_HLT
)
10440 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10442 if (nested_vmx_check_io_bitmap_controls(vcpu
, vmcs12
))
10443 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10445 if (nested_vmx_check_msr_bitmap_controls(vcpu
, vmcs12
))
10446 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10448 if (nested_vmx_check_apicv_controls(vcpu
, vmcs12
))
10449 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10451 if (nested_vmx_check_msr_switch_controls(vcpu
, vmcs12
))
10452 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10454 if (nested_vmx_check_pml_controls(vcpu
, vmcs12
))
10455 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10457 if (!vmx_control_verify(vmcs12
->cpu_based_vm_exec_control
,
10458 vmx
->nested
.nested_vmx_procbased_ctls_low
,
10459 vmx
->nested
.nested_vmx_procbased_ctls_high
) ||
10460 (nested_cpu_has(vmcs12
, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
10461 !vmx_control_verify(vmcs12
->secondary_vm_exec_control
,
10462 vmx
->nested
.nested_vmx_secondary_ctls_low
,
10463 vmx
->nested
.nested_vmx_secondary_ctls_high
)) ||
10464 !vmx_control_verify(vmcs12
->pin_based_vm_exec_control
,
10465 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
10466 vmx
->nested
.nested_vmx_pinbased_ctls_high
) ||
10467 !vmx_control_verify(vmcs12
->vm_exit_controls
,
10468 vmx
->nested
.nested_vmx_exit_ctls_low
,
10469 vmx
->nested
.nested_vmx_exit_ctls_high
) ||
10470 !vmx_control_verify(vmcs12
->vm_entry_controls
,
10471 vmx
->nested
.nested_vmx_entry_ctls_low
,
10472 vmx
->nested
.nested_vmx_entry_ctls_high
))
10473 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10475 if (vmcs12
->cr3_target_count
> nested_cpu_vmx_misc_cr3_count(vcpu
))
10476 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10478 if (!nested_host_cr0_valid(vcpu
, vmcs12
->host_cr0
) ||
10479 !nested_host_cr4_valid(vcpu
, vmcs12
->host_cr4
) ||
10480 !nested_cr3_valid(vcpu
, vmcs12
->host_cr3
))
10481 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD
;
10486 static int check_vmentry_postreqs(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
10491 *exit_qual
= ENTRY_FAIL_DEFAULT
;
10493 if (!nested_guest_cr0_valid(vcpu
, vmcs12
->guest_cr0
) ||
10494 !nested_guest_cr4_valid(vcpu
, vmcs12
->guest_cr4
))
10497 if (!nested_cpu_has2(vmcs12
, SECONDARY_EXEC_SHADOW_VMCS
) &&
10498 vmcs12
->vmcs_link_pointer
!= -1ull) {
10499 *exit_qual
= ENTRY_FAIL_VMCS_LINK_PTR
;
10504 * If the load IA32_EFER VM-entry control is 1, the following checks
10505 * are performed on the field for the IA32_EFER MSR:
10506 * - Bits reserved in the IA32_EFER MSR must be 0.
10507 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10508 * the IA-32e mode guest VM-exit control. It must also be identical
10509 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10512 if (to_vmx(vcpu
)->nested
.nested_run_pending
&&
10513 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
)) {
10514 ia32e
= (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
) != 0;
10515 if (!kvm_valid_efer(vcpu
, vmcs12
->guest_ia32_efer
) ||
10516 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LMA
) ||
10517 ((vmcs12
->guest_cr0
& X86_CR0_PG
) &&
10518 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LME
)))
10523 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10524 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10525 * the values of the LMA and LME bits in the field must each be that of
10526 * the host address-space size VM-exit control.
10528 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
) {
10529 ia32e
= (vmcs12
->vm_exit_controls
&
10530 VM_EXIT_HOST_ADDR_SPACE_SIZE
) != 0;
10531 if (!kvm_valid_efer(vcpu
, vmcs12
->host_ia32_efer
) ||
10532 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LMA
) ||
10533 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LME
))
10540 static int enter_vmx_non_root_mode(struct kvm_vcpu
*vcpu
, bool from_vmentry
)
10542 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10543 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
10544 struct loaded_vmcs
*vmcs02
;
10548 vmcs02
= nested_get_current_vmcs02(vmx
);
10552 enter_guest_mode(vcpu
);
10554 if (!(vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
))
10555 vmx
->nested
.vmcs01_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
10557 vmx_switch_vmcs(vcpu
, vmcs02
);
10558 vmx_segment_cache_clear(vmx
);
10560 if (prepare_vmcs02(vcpu
, vmcs12
, from_vmentry
, &exit_qual
)) {
10561 leave_guest_mode(vcpu
);
10562 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
10563 nested_vmx_entry_failure(vcpu
, vmcs12
,
10564 EXIT_REASON_INVALID_STATE
, exit_qual
);
10568 nested_get_vmcs12_pages(vcpu
, vmcs12
);
10570 msr_entry_idx
= nested_vmx_load_msr(vcpu
,
10571 vmcs12
->vm_entry_msr_load_addr
,
10572 vmcs12
->vm_entry_msr_load_count
);
10573 if (msr_entry_idx
) {
10574 leave_guest_mode(vcpu
);
10575 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
10576 nested_vmx_entry_failure(vcpu
, vmcs12
,
10577 EXIT_REASON_MSR_LOAD_FAIL
, msr_entry_idx
);
10582 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10583 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10584 * returned as far as L1 is concerned. It will only return (and set
10585 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10591 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10592 * for running an L2 nested guest.
10594 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
)
10596 struct vmcs12
*vmcs12
;
10597 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10598 u32 interrupt_shadow
= vmx_get_interrupt_shadow(vcpu
);
10602 if (!nested_vmx_check_permission(vcpu
))
10605 if (!nested_vmx_check_vmcs12(vcpu
))
10608 vmcs12
= get_vmcs12(vcpu
);
10610 if (enable_shadow_vmcs
)
10611 copy_shadow_to_vmcs12(vmx
);
10614 * The nested entry process starts with enforcing various prerequisites
10615 * on vmcs12 as required by the Intel SDM, and act appropriately when
10616 * they fail: As the SDM explains, some conditions should cause the
10617 * instruction to fail, while others will cause the instruction to seem
10618 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10619 * To speed up the normal (success) code path, we should avoid checking
10620 * for misconfigurations which will anyway be caught by the processor
10621 * when using the merged vmcs02.
10623 if (interrupt_shadow
& KVM_X86_SHADOW_INT_MOV_SS
) {
10624 nested_vmx_failValid(vcpu
,
10625 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS
);
10629 if (vmcs12
->launch_state
== launch
) {
10630 nested_vmx_failValid(vcpu
,
10631 launch
? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10632 : VMXERR_VMRESUME_NONLAUNCHED_VMCS
);
10636 ret
= check_vmentry_prereqs(vcpu
, vmcs12
);
10638 nested_vmx_failValid(vcpu
, ret
);
10643 * After this point, the trap flag no longer triggers a singlestep trap
10644 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10645 * This is not 100% correct; for performance reasons, we delegate most
10646 * of the checks on host state to the processor. If those fail,
10647 * the singlestep trap is missed.
10649 skip_emulated_instruction(vcpu
);
10651 ret
= check_vmentry_postreqs(vcpu
, vmcs12
, &exit_qual
);
10653 nested_vmx_entry_failure(vcpu
, vmcs12
,
10654 EXIT_REASON_INVALID_STATE
, exit_qual
);
10659 * We're finally done with prerequisite checking, and can start with
10660 * the nested entry.
10663 ret
= enter_vmx_non_root_mode(vcpu
, true);
10667 if (vmcs12
->guest_activity_state
== GUEST_ACTIVITY_HLT
)
10668 return kvm_vcpu_halt(vcpu
);
10670 vmx
->nested
.nested_run_pending
= 1;
10675 return kvm_skip_emulated_instruction(vcpu
);
10679 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10680 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10681 * This function returns the new value we should put in vmcs12.guest_cr0.
10682 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10683 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10684 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10685 * didn't trap the bit, because if L1 did, so would L0).
10686 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10687 * been modified by L2, and L1 knows it. So just leave the old value of
10688 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10689 * isn't relevant, because if L0 traps this bit it can set it to anything.
10690 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10691 * changed these bits, and therefore they need to be updated, but L0
10692 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10693 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10695 static inline unsigned long
10696 vmcs12_guest_cr0(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
10699 /*1*/ (vmcs_readl(GUEST_CR0
) & vcpu
->arch
.cr0_guest_owned_bits
) |
10700 /*2*/ (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
) |
10701 /*3*/ (vmcs_readl(CR0_READ_SHADOW
) & ~(vmcs12
->cr0_guest_host_mask
|
10702 vcpu
->arch
.cr0_guest_owned_bits
));
10705 static inline unsigned long
10706 vmcs12_guest_cr4(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
10709 /*1*/ (vmcs_readl(GUEST_CR4
) & vcpu
->arch
.cr4_guest_owned_bits
) |
10710 /*2*/ (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
) |
10711 /*3*/ (vmcs_readl(CR4_READ_SHADOW
) & ~(vmcs12
->cr4_guest_host_mask
|
10712 vcpu
->arch
.cr4_guest_owned_bits
));
10715 static void vmcs12_save_pending_event(struct kvm_vcpu
*vcpu
,
10716 struct vmcs12
*vmcs12
)
10721 if (vcpu
->arch
.exception
.pending
&& vcpu
->arch
.exception
.reinject
) {
10722 nr
= vcpu
->arch
.exception
.nr
;
10723 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
10725 if (kvm_exception_is_soft(nr
)) {
10726 vmcs12
->vm_exit_instruction_len
=
10727 vcpu
->arch
.event_exit_inst_len
;
10728 idt_vectoring
|= INTR_TYPE_SOFT_EXCEPTION
;
10730 idt_vectoring
|= INTR_TYPE_HARD_EXCEPTION
;
10732 if (vcpu
->arch
.exception
.has_error_code
) {
10733 idt_vectoring
|= VECTORING_INFO_DELIVER_CODE_MASK
;
10734 vmcs12
->idt_vectoring_error_code
=
10735 vcpu
->arch
.exception
.error_code
;
10738 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
10739 } else if (vcpu
->arch
.nmi_injected
) {
10740 vmcs12
->idt_vectoring_info_field
=
10741 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
;
10742 } else if (vcpu
->arch
.interrupt
.pending
) {
10743 nr
= vcpu
->arch
.interrupt
.nr
;
10744 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
10746 if (vcpu
->arch
.interrupt
.soft
) {
10747 idt_vectoring
|= INTR_TYPE_SOFT_INTR
;
10748 vmcs12
->vm_entry_instruction_len
=
10749 vcpu
->arch
.event_exit_inst_len
;
10751 idt_vectoring
|= INTR_TYPE_EXT_INTR
;
10753 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
10757 static int vmx_check_nested_events(struct kvm_vcpu
*vcpu
, bool external_intr
)
10759 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10761 if (vcpu
->arch
.exception
.pending
||
10762 vcpu
->arch
.nmi_injected
||
10763 vcpu
->arch
.interrupt
.pending
)
10766 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu
)) &&
10767 vmx
->nested
.preemption_timer_expired
) {
10768 if (vmx
->nested
.nested_run_pending
)
10770 nested_vmx_vmexit(vcpu
, EXIT_REASON_PREEMPTION_TIMER
, 0, 0);
10774 if (vcpu
->arch
.nmi_pending
&& nested_exit_on_nmi(vcpu
)) {
10775 if (vmx
->nested
.nested_run_pending
)
10777 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
,
10778 NMI_VECTOR
| INTR_TYPE_NMI_INTR
|
10779 INTR_INFO_VALID_MASK
, 0);
10781 * The NMI-triggered VM exit counts as injection:
10782 * clear this one and block further NMIs.
10784 vcpu
->arch
.nmi_pending
= 0;
10785 vmx_set_nmi_mask(vcpu
, true);
10789 if ((kvm_cpu_has_interrupt(vcpu
) || external_intr
) &&
10790 nested_exit_on_intr(vcpu
)) {
10791 if (vmx
->nested
.nested_run_pending
)
10793 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXTERNAL_INTERRUPT
, 0, 0);
10797 vmx_complete_nested_posted_interrupt(vcpu
);
10801 static u32
vmx_get_preemption_timer_value(struct kvm_vcpu
*vcpu
)
10803 ktime_t remaining
=
10804 hrtimer_get_remaining(&to_vmx(vcpu
)->nested
.preemption_timer
);
10807 if (ktime_to_ns(remaining
) <= 0)
10810 value
= ktime_to_ns(remaining
) * vcpu
->arch
.virtual_tsc_khz
;
10811 do_div(value
, 1000000);
10812 return value
>> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
10816 * Update the guest state fields of vmcs12 to reflect changes that
10817 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10818 * VM-entry controls is also updated, since this is really a guest
10821 static void sync_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
10823 vmcs12
->guest_cr0
= vmcs12_guest_cr0(vcpu
, vmcs12
);
10824 vmcs12
->guest_cr4
= vmcs12_guest_cr4(vcpu
, vmcs12
);
10826 vmcs12
->guest_rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
10827 vmcs12
->guest_rip
= kvm_register_read(vcpu
, VCPU_REGS_RIP
);
10828 vmcs12
->guest_rflags
= vmcs_readl(GUEST_RFLAGS
);
10830 vmcs12
->guest_es_selector
= vmcs_read16(GUEST_ES_SELECTOR
);
10831 vmcs12
->guest_cs_selector
= vmcs_read16(GUEST_CS_SELECTOR
);
10832 vmcs12
->guest_ss_selector
= vmcs_read16(GUEST_SS_SELECTOR
);
10833 vmcs12
->guest_ds_selector
= vmcs_read16(GUEST_DS_SELECTOR
);
10834 vmcs12
->guest_fs_selector
= vmcs_read16(GUEST_FS_SELECTOR
);
10835 vmcs12
->guest_gs_selector
= vmcs_read16(GUEST_GS_SELECTOR
);
10836 vmcs12
->guest_ldtr_selector
= vmcs_read16(GUEST_LDTR_SELECTOR
);
10837 vmcs12
->guest_tr_selector
= vmcs_read16(GUEST_TR_SELECTOR
);
10838 vmcs12
->guest_es_limit
= vmcs_read32(GUEST_ES_LIMIT
);
10839 vmcs12
->guest_cs_limit
= vmcs_read32(GUEST_CS_LIMIT
);
10840 vmcs12
->guest_ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
10841 vmcs12
->guest_ds_limit
= vmcs_read32(GUEST_DS_LIMIT
);
10842 vmcs12
->guest_fs_limit
= vmcs_read32(GUEST_FS_LIMIT
);
10843 vmcs12
->guest_gs_limit
= vmcs_read32(GUEST_GS_LIMIT
);
10844 vmcs12
->guest_ldtr_limit
= vmcs_read32(GUEST_LDTR_LIMIT
);
10845 vmcs12
->guest_tr_limit
= vmcs_read32(GUEST_TR_LIMIT
);
10846 vmcs12
->guest_gdtr_limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
10847 vmcs12
->guest_idtr_limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
10848 vmcs12
->guest_es_ar_bytes
= vmcs_read32(GUEST_ES_AR_BYTES
);
10849 vmcs12
->guest_cs_ar_bytes
= vmcs_read32(GUEST_CS_AR_BYTES
);
10850 vmcs12
->guest_ss_ar_bytes
= vmcs_read32(GUEST_SS_AR_BYTES
);
10851 vmcs12
->guest_ds_ar_bytes
= vmcs_read32(GUEST_DS_AR_BYTES
);
10852 vmcs12
->guest_fs_ar_bytes
= vmcs_read32(GUEST_FS_AR_BYTES
);
10853 vmcs12
->guest_gs_ar_bytes
= vmcs_read32(GUEST_GS_AR_BYTES
);
10854 vmcs12
->guest_ldtr_ar_bytes
= vmcs_read32(GUEST_LDTR_AR_BYTES
);
10855 vmcs12
->guest_tr_ar_bytes
= vmcs_read32(GUEST_TR_AR_BYTES
);
10856 vmcs12
->guest_es_base
= vmcs_readl(GUEST_ES_BASE
);
10857 vmcs12
->guest_cs_base
= vmcs_readl(GUEST_CS_BASE
);
10858 vmcs12
->guest_ss_base
= vmcs_readl(GUEST_SS_BASE
);
10859 vmcs12
->guest_ds_base
= vmcs_readl(GUEST_DS_BASE
);
10860 vmcs12
->guest_fs_base
= vmcs_readl(GUEST_FS_BASE
);
10861 vmcs12
->guest_gs_base
= vmcs_readl(GUEST_GS_BASE
);
10862 vmcs12
->guest_ldtr_base
= vmcs_readl(GUEST_LDTR_BASE
);
10863 vmcs12
->guest_tr_base
= vmcs_readl(GUEST_TR_BASE
);
10864 vmcs12
->guest_gdtr_base
= vmcs_readl(GUEST_GDTR_BASE
);
10865 vmcs12
->guest_idtr_base
= vmcs_readl(GUEST_IDTR_BASE
);
10867 vmcs12
->guest_interruptibility_info
=
10868 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
10869 vmcs12
->guest_pending_dbg_exceptions
=
10870 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
);
10871 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
10872 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_HLT
;
10874 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_ACTIVE
;
10876 if (nested_cpu_has_preemption_timer(vmcs12
)) {
10877 if (vmcs12
->vm_exit_controls
&
10878 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
)
10879 vmcs12
->vmx_preemption_timer_value
=
10880 vmx_get_preemption_timer_value(vcpu
);
10881 hrtimer_cancel(&to_vmx(vcpu
)->nested
.preemption_timer
);
10885 * In some cases (usually, nested EPT), L2 is allowed to change its
10886 * own CR3 without exiting. If it has changed it, we must keep it.
10887 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10888 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10890 * Additionally, restore L2's PDPTR to vmcs12.
10893 vmcs12
->guest_cr3
= vmcs_readl(GUEST_CR3
);
10894 vmcs12
->guest_pdptr0
= vmcs_read64(GUEST_PDPTR0
);
10895 vmcs12
->guest_pdptr1
= vmcs_read64(GUEST_PDPTR1
);
10896 vmcs12
->guest_pdptr2
= vmcs_read64(GUEST_PDPTR2
);
10897 vmcs12
->guest_pdptr3
= vmcs_read64(GUEST_PDPTR3
);
10900 vmcs12
->guest_linear_address
= vmcs_readl(GUEST_LINEAR_ADDRESS
);
10902 if (nested_cpu_has_vid(vmcs12
))
10903 vmcs12
->guest_intr_status
= vmcs_read16(GUEST_INTR_STATUS
);
10905 vmcs12
->vm_entry_controls
=
10906 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_IA32E_MODE
) |
10907 (vm_entry_controls_get(to_vmx(vcpu
)) & VM_ENTRY_IA32E_MODE
);
10909 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_DEBUG_CONTROLS
) {
10910 kvm_get_dr(vcpu
, 7, (unsigned long *)&vmcs12
->guest_dr7
);
10911 vmcs12
->guest_ia32_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
10914 /* TODO: These cannot have changed unless we have MSR bitmaps and
10915 * the relevant bit asks not to trap the change */
10916 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_PAT
)
10917 vmcs12
->guest_ia32_pat
= vmcs_read64(GUEST_IA32_PAT
);
10918 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_EFER
)
10919 vmcs12
->guest_ia32_efer
= vcpu
->arch
.efer
;
10920 vmcs12
->guest_sysenter_cs
= vmcs_read32(GUEST_SYSENTER_CS
);
10921 vmcs12
->guest_sysenter_esp
= vmcs_readl(GUEST_SYSENTER_ESP
);
10922 vmcs12
->guest_sysenter_eip
= vmcs_readl(GUEST_SYSENTER_EIP
);
10923 if (kvm_mpx_supported())
10924 vmcs12
->guest_bndcfgs
= vmcs_read64(GUEST_BNDCFGS
);
10928 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10929 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10930 * and this function updates it to reflect the changes to the guest state while
10931 * L2 was running (and perhaps made some exits which were handled directly by L0
10932 * without going back to L1), and to reflect the exit reason.
10933 * Note that we do not have to copy here all VMCS fields, just those that
10934 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10935 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10936 * which already writes to vmcs12 directly.
10938 static void prepare_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
10939 u32 exit_reason
, u32 exit_intr_info
,
10940 unsigned long exit_qualification
)
10942 /* update guest state fields: */
10943 sync_vmcs12(vcpu
, vmcs12
);
10945 /* update exit information fields: */
10947 vmcs12
->vm_exit_reason
= exit_reason
;
10948 vmcs12
->exit_qualification
= exit_qualification
;
10949 vmcs12
->vm_exit_intr_info
= exit_intr_info
;
10951 vmcs12
->idt_vectoring_info_field
= 0;
10952 vmcs12
->vm_exit_instruction_len
= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
10953 vmcs12
->vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
10955 if (!(vmcs12
->vm_exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
)) {
10956 vmcs12
->launch_state
= 1;
10958 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10959 * instead of reading the real value. */
10960 vmcs12
->vm_entry_intr_info_field
&= ~INTR_INFO_VALID_MASK
;
10963 * Transfer the event that L0 or L1 may wanted to inject into
10964 * L2 to IDT_VECTORING_INFO_FIELD.
10966 vmcs12_save_pending_event(vcpu
, vmcs12
);
10970 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10971 * preserved above and would only end up incorrectly in L1.
10973 vcpu
->arch
.nmi_injected
= false;
10974 kvm_clear_exception_queue(vcpu
);
10975 kvm_clear_interrupt_queue(vcpu
);
10979 * A part of what we need to when the nested L2 guest exits and we want to
10980 * run its L1 parent, is to reset L1's guest state to the host state specified
10982 * This function is to be called not only on normal nested exit, but also on
10983 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10984 * Failures During or After Loading Guest State").
10985 * This function should be called when the active VMCS is L1's (vmcs01).
10987 static void load_vmcs12_host_state(struct kvm_vcpu
*vcpu
,
10988 struct vmcs12
*vmcs12
)
10990 struct kvm_segment seg
;
10991 u32 entry_failure_code
;
10993 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
)
10994 vcpu
->arch
.efer
= vmcs12
->host_ia32_efer
;
10995 else if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
10996 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
10998 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
10999 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
11001 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->host_rsp
);
11002 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->host_rip
);
11003 vmx_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
11005 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
11006 * actually changed, because vmx_set_cr0 refers to efer set above.
11008 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11009 * (KVM doesn't change it);
11011 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
11012 vmx_set_cr0(vcpu
, vmcs12
->host_cr0
);
11014 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
11015 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
11016 vmx_set_cr4(vcpu
, vmcs12
->host_cr4
);
11018 nested_ept_uninit_mmu_context(vcpu
);
11021 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11022 * couldn't have changed.
11024 if (nested_vmx_load_cr3(vcpu
, vmcs12
->host_cr3
, false, &entry_failure_code
))
11025 nested_vmx_abort(vcpu
, VMX_ABORT_LOAD_HOST_PDPTE_FAIL
);
11028 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
11032 * Trivially support vpid by letting L2s share their parent
11033 * L1's vpid. TODO: move to a more elaborate solution, giving
11034 * each L2 its own vpid and exposing the vpid feature to L1.
11036 vmx_flush_tlb(vcpu
);
11038 /* Restore posted intr vector. */
11039 if (nested_cpu_has_posted_intr(vmcs12
))
11040 vmcs_write16(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
11042 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->host_ia32_sysenter_cs
);
11043 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->host_ia32_sysenter_esp
);
11044 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->host_ia32_sysenter_eip
);
11045 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->host_idtr_base
);
11046 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->host_gdtr_base
);
11048 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11049 if (vmcs12
->vm_exit_controls
& VM_EXIT_CLEAR_BNDCFGS
)
11050 vmcs_write64(GUEST_BNDCFGS
, 0);
11052 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PAT
) {
11053 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->host_ia32_pat
);
11054 vcpu
->arch
.pat
= vmcs12
->host_ia32_pat
;
11056 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
11057 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL
,
11058 vmcs12
->host_ia32_perf_global_ctrl
);
11060 /* Set L1 segment info according to Intel SDM
11061 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11062 seg
= (struct kvm_segment
) {
11064 .limit
= 0xFFFFFFFF,
11065 .selector
= vmcs12
->host_cs_selector
,
11071 if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
11075 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_CS
);
11076 seg
= (struct kvm_segment
) {
11078 .limit
= 0xFFFFFFFF,
11085 seg
.selector
= vmcs12
->host_ds_selector
;
11086 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_DS
);
11087 seg
.selector
= vmcs12
->host_es_selector
;
11088 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_ES
);
11089 seg
.selector
= vmcs12
->host_ss_selector
;
11090 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_SS
);
11091 seg
.selector
= vmcs12
->host_fs_selector
;
11092 seg
.base
= vmcs12
->host_fs_base
;
11093 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_FS
);
11094 seg
.selector
= vmcs12
->host_gs_selector
;
11095 seg
.base
= vmcs12
->host_gs_base
;
11096 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_GS
);
11097 seg
= (struct kvm_segment
) {
11098 .base
= vmcs12
->host_tr_base
,
11100 .selector
= vmcs12
->host_tr_selector
,
11104 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_TR
);
11106 kvm_set_dr(vcpu
, 7, 0x400);
11107 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
11109 if (cpu_has_vmx_msr_bitmap())
11110 vmx_set_msr_bitmap(vcpu
);
11112 if (nested_vmx_load_msr(vcpu
, vmcs12
->vm_exit_msr_load_addr
,
11113 vmcs12
->vm_exit_msr_load_count
))
11114 nested_vmx_abort(vcpu
, VMX_ABORT_LOAD_HOST_MSR_FAIL
);
11118 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11119 * and modify vmcs12 to make it see what it would expect to see there if
11120 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11122 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
11123 u32 exit_intr_info
,
11124 unsigned long exit_qualification
)
11126 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11127 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
11128 u32 vm_inst_error
= 0;
11130 /* trying to cancel vmlaunch/vmresume is a bug */
11131 WARN_ON_ONCE(vmx
->nested
.nested_run_pending
);
11133 leave_guest_mode(vcpu
);
11134 prepare_vmcs12(vcpu
, vmcs12
, exit_reason
, exit_intr_info
,
11135 exit_qualification
);
11137 if (nested_vmx_store_msr(vcpu
, vmcs12
->vm_exit_msr_store_addr
,
11138 vmcs12
->vm_exit_msr_store_count
))
11139 nested_vmx_abort(vcpu
, VMX_ABORT_SAVE_GUEST_MSR_FAIL
);
11141 if (unlikely(vmx
->fail
))
11142 vm_inst_error
= vmcs_read32(VM_INSTRUCTION_ERROR
);
11144 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
11147 * TODO: SDM says that with acknowledge interrupt on exit, bit 31 of
11148 * the VM-exit interrupt information (valid interrupt) is always set to
11149 * 1 on EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't need
11150 * kvm_cpu_has_interrupt(). See the commit message for details.
11152 if (nested_exit_intr_ack_set(vcpu
) &&
11153 exit_reason
== EXIT_REASON_EXTERNAL_INTERRUPT
&&
11154 kvm_cpu_has_interrupt(vcpu
)) {
11155 int irq
= kvm_cpu_get_interrupt(vcpu
);
11157 vmcs12
->vm_exit_intr_info
= irq
|
11158 INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
;
11161 trace_kvm_nested_vmexit_inject(vmcs12
->vm_exit_reason
,
11162 vmcs12
->exit_qualification
,
11163 vmcs12
->idt_vectoring_info_field
,
11164 vmcs12
->vm_exit_intr_info
,
11165 vmcs12
->vm_exit_intr_error_code
,
11168 vm_entry_controls_reset_shadow(vmx
);
11169 vm_exit_controls_reset_shadow(vmx
);
11170 vmx_segment_cache_clear(vmx
);
11172 /* if no vmcs02 cache requested, remove the one we used */
11173 if (VMCS02_POOL_SIZE
== 0)
11174 nested_free_vmcs02(vmx
, vmx
->nested
.current_vmptr
);
11176 load_vmcs12_host_state(vcpu
, vmcs12
);
11178 /* Update any VMCS fields that might have changed while L2 ran */
11179 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, vmx
->msr_autoload
.nr
);
11180 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, vmx
->msr_autoload
.nr
);
11181 vmcs_write64(TSC_OFFSET
, vcpu
->arch
.tsc_offset
);
11182 if (vmx
->hv_deadline_tsc
== -1)
11183 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL
,
11184 PIN_BASED_VMX_PREEMPTION_TIMER
);
11186 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL
,
11187 PIN_BASED_VMX_PREEMPTION_TIMER
);
11188 if (kvm_has_tsc_control
)
11189 decache_tsc_multiplier(vmx
);
11191 if (vmx
->nested
.change_vmcs01_virtual_x2apic_mode
) {
11192 vmx
->nested
.change_vmcs01_virtual_x2apic_mode
= false;
11193 vmx_set_virtual_x2apic_mode(vcpu
,
11194 vcpu
->arch
.apic_base
& X2APIC_ENABLE
);
11195 } else if (!nested_cpu_has_ept(vmcs12
) &&
11196 nested_cpu_has2(vmcs12
,
11197 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
11198 vmx_flush_tlb_ept_only(vcpu
);
11201 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11204 /* Unpin physical memory we referred to in vmcs02 */
11205 if (vmx
->nested
.apic_access_page
) {
11206 nested_release_page(vmx
->nested
.apic_access_page
);
11207 vmx
->nested
.apic_access_page
= NULL
;
11209 if (vmx
->nested
.virtual_apic_page
) {
11210 nested_release_page(vmx
->nested
.virtual_apic_page
);
11211 vmx
->nested
.virtual_apic_page
= NULL
;
11213 if (vmx
->nested
.pi_desc_page
) {
11214 kunmap(vmx
->nested
.pi_desc_page
);
11215 nested_release_page(vmx
->nested
.pi_desc_page
);
11216 vmx
->nested
.pi_desc_page
= NULL
;
11217 vmx
->nested
.pi_desc
= NULL
;
11221 * We are now running in L2, mmu_notifier will force to reload the
11222 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11224 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
11227 * Exiting from L2 to L1, we're now back to L1 which thinks it just
11228 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11229 * success or failure flag accordingly.
11231 if (unlikely(vmx
->fail
)) {
11233 nested_vmx_failValid(vcpu
, vm_inst_error
);
11235 nested_vmx_succeed(vcpu
);
11236 if (enable_shadow_vmcs
)
11237 vmx
->nested
.sync_shadow_vmcs
= true;
11239 /* in case we halted in L2 */
11240 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
11244 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11246 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
)
11248 if (is_guest_mode(vcpu
)) {
11249 to_vmx(vcpu
)->nested
.nested_run_pending
= 0;
11250 nested_vmx_vmexit(vcpu
, -1, 0, 0);
11252 free_nested(to_vmx(vcpu
));
11256 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11257 * 23.7 "VM-entry failures during or after loading guest state" (this also
11258 * lists the acceptable exit-reason and exit-qualification parameters).
11259 * It should only be called before L2 actually succeeded to run, and when
11260 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11262 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
11263 struct vmcs12
*vmcs12
,
11264 u32 reason
, unsigned long qualification
)
11266 load_vmcs12_host_state(vcpu
, vmcs12
);
11267 vmcs12
->vm_exit_reason
= reason
| VMX_EXIT_REASONS_FAILED_VMENTRY
;
11268 vmcs12
->exit_qualification
= qualification
;
11269 nested_vmx_succeed(vcpu
);
11270 if (enable_shadow_vmcs
)
11271 to_vmx(vcpu
)->nested
.sync_shadow_vmcs
= true;
11274 static int vmx_check_intercept(struct kvm_vcpu
*vcpu
,
11275 struct x86_instruction_info
*info
,
11276 enum x86_intercept_stage stage
)
11278 return X86EMUL_CONTINUE
;
11281 #ifdef CONFIG_X86_64
11282 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11283 static inline int u64_shl_div_u64(u64 a
, unsigned int shift
,
11284 u64 divisor
, u64
*result
)
11286 u64 low
= a
<< shift
, high
= a
>> (64 - shift
);
11288 /* To avoid the overflow on divq */
11289 if (high
>= divisor
)
11292 /* Low hold the result, high hold rem which is discarded */
11293 asm("divq %2\n\t" : "=a" (low
), "=d" (high
) :
11294 "rm" (divisor
), "0" (low
), "1" (high
));
11300 static int vmx_set_hv_timer(struct kvm_vcpu
*vcpu
, u64 guest_deadline_tsc
)
11302 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11303 u64 tscl
= rdtsc();
11304 u64 guest_tscl
= kvm_read_l1_tsc(vcpu
, tscl
);
11305 u64 delta_tsc
= max(guest_deadline_tsc
, guest_tscl
) - guest_tscl
;
11307 /* Convert to host delta tsc if tsc scaling is enabled */
11308 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
&&
11309 u64_shl_div_u64(delta_tsc
,
11310 kvm_tsc_scaling_ratio_frac_bits
,
11311 vcpu
->arch
.tsc_scaling_ratio
,
11316 * If the delta tsc can't fit in the 32 bit after the multi shift,
11317 * we can't use the preemption timer.
11318 * It's possible that it fits on later vmentries, but checking
11319 * on every vmentry is costly so we just use an hrtimer.
11321 if (delta_tsc
>> (cpu_preemption_timer_multi
+ 32))
11324 vmx
->hv_deadline_tsc
= tscl
+ delta_tsc
;
11325 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL
,
11326 PIN_BASED_VMX_PREEMPTION_TIMER
);
11328 return delta_tsc
== 0;
11331 static void vmx_cancel_hv_timer(struct kvm_vcpu
*vcpu
)
11333 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11334 vmx
->hv_deadline_tsc
= -1;
11335 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL
,
11336 PIN_BASED_VMX_PREEMPTION_TIMER
);
11340 static void vmx_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
11343 shrink_ple_window(vcpu
);
11346 static void vmx_slot_enable_log_dirty(struct kvm
*kvm
,
11347 struct kvm_memory_slot
*slot
)
11349 kvm_mmu_slot_leaf_clear_dirty(kvm
, slot
);
11350 kvm_mmu_slot_largepage_remove_write_access(kvm
, slot
);
11353 static void vmx_slot_disable_log_dirty(struct kvm
*kvm
,
11354 struct kvm_memory_slot
*slot
)
11356 kvm_mmu_slot_set_dirty(kvm
, slot
);
11359 static void vmx_flush_log_dirty(struct kvm
*kvm
)
11361 kvm_flush_pml_buffers(kvm
);
11364 static int vmx_write_pml_buffer(struct kvm_vcpu
*vcpu
)
11366 struct vmcs12
*vmcs12
;
11367 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11369 struct page
*page
= NULL
;
11372 if (is_guest_mode(vcpu
)) {
11373 WARN_ON_ONCE(vmx
->nested
.pml_full
);
11376 * Check if PML is enabled for the nested guest.
11377 * Whether eptp bit 6 is set is already checked
11378 * as part of A/D emulation.
11380 vmcs12
= get_vmcs12(vcpu
);
11381 if (!nested_cpu_has_pml(vmcs12
))
11384 if (vmcs12
->guest_pml_index
>= PML_ENTITY_NUM
) {
11385 vmx
->nested
.pml_full
= true;
11389 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
) & ~0xFFFull
;
11391 page
= nested_get_page(vcpu
, vmcs12
->pml_address
);
11395 pml_address
= kmap(page
);
11396 pml_address
[vmcs12
->guest_pml_index
--] = gpa
;
11398 nested_release_page_clean(page
);
11404 static void vmx_enable_log_dirty_pt_masked(struct kvm
*kvm
,
11405 struct kvm_memory_slot
*memslot
,
11406 gfn_t offset
, unsigned long mask
)
11408 kvm_mmu_clear_dirty_pt_masked(kvm
, memslot
, offset
, mask
);
11411 static void __pi_post_block(struct kvm_vcpu
*vcpu
)
11413 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
11414 struct pi_desc old
, new;
11418 old
.control
= new.control
= pi_desc
->control
;
11419 WARN(old
.nv
!= POSTED_INTR_WAKEUP_VECTOR
,
11420 "Wakeup handler not enabled while the VCPU is blocked\n");
11422 dest
= cpu_physical_id(vcpu
->cpu
);
11424 if (x2apic_enabled())
11427 new.ndst
= (dest
<< 8) & 0xFF00;
11429 /* set 'NV' to 'notification vector' */
11430 new.nv
= POSTED_INTR_VECTOR
;
11431 } while (cmpxchg64(&pi_desc
->control
, old
.control
,
11432 new.control
) != old
.control
);
11434 if (!WARN_ON_ONCE(vcpu
->pre_pcpu
== -1)) {
11435 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock
, vcpu
->pre_pcpu
));
11436 list_del(&vcpu
->blocked_vcpu_list
);
11437 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock
, vcpu
->pre_pcpu
));
11438 vcpu
->pre_pcpu
= -1;
11443 * This routine does the following things for vCPU which is going
11444 * to be blocked if VT-d PI is enabled.
11445 * - Store the vCPU to the wakeup list, so when interrupts happen
11446 * we can find the right vCPU to wake up.
11447 * - Change the Posted-interrupt descriptor as below:
11448 * 'NDST' <-- vcpu->pre_pcpu
11449 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11450 * - If 'ON' is set during this process, which means at least one
11451 * interrupt is posted for this vCPU, we cannot block it, in
11452 * this case, return 1, otherwise, return 0.
11455 static int pi_pre_block(struct kvm_vcpu
*vcpu
)
11458 struct pi_desc old
, new;
11459 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
11461 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
11462 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
11463 !kvm_vcpu_apicv_active(vcpu
))
11466 WARN_ON(irqs_disabled());
11467 local_irq_disable();
11468 if (!WARN_ON_ONCE(vcpu
->pre_pcpu
!= -1)) {
11469 vcpu
->pre_pcpu
= vcpu
->cpu
;
11470 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock
, vcpu
->pre_pcpu
));
11471 list_add_tail(&vcpu
->blocked_vcpu_list
,
11472 &per_cpu(blocked_vcpu_on_cpu
,
11474 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock
, vcpu
->pre_pcpu
));
11478 old
.control
= new.control
= pi_desc
->control
;
11480 WARN((pi_desc
->sn
== 1),
11481 "Warning: SN field of posted-interrupts "
11482 "is set before blocking\n");
11485 * Since vCPU can be preempted during this process,
11486 * vcpu->cpu could be different with pre_pcpu, we
11487 * need to set pre_pcpu as the destination of wakeup
11488 * notification event, then we can find the right vCPU
11489 * to wakeup in wakeup handler if interrupts happen
11490 * when the vCPU is in blocked state.
11492 dest
= cpu_physical_id(vcpu
->pre_pcpu
);
11494 if (x2apic_enabled())
11497 new.ndst
= (dest
<< 8) & 0xFF00;
11499 /* set 'NV' to 'wakeup vector' */
11500 new.nv
= POSTED_INTR_WAKEUP_VECTOR
;
11501 } while (cmpxchg64(&pi_desc
->control
, old
.control
,
11502 new.control
) != old
.control
);
11504 /* We should not block the vCPU if an interrupt is posted for it. */
11505 if (pi_test_on(pi_desc
) == 1)
11506 __pi_post_block(vcpu
);
11508 local_irq_enable();
11509 return (vcpu
->pre_pcpu
== -1);
11512 static int vmx_pre_block(struct kvm_vcpu
*vcpu
)
11514 if (pi_pre_block(vcpu
))
11517 if (kvm_lapic_hv_timer_in_use(vcpu
))
11518 kvm_lapic_switch_to_sw_timer(vcpu
);
11523 static void pi_post_block(struct kvm_vcpu
*vcpu
)
11525 if (vcpu
->pre_pcpu
== -1)
11528 WARN_ON(irqs_disabled());
11529 local_irq_disable();
11530 __pi_post_block(vcpu
);
11531 local_irq_enable();
11534 static void vmx_post_block(struct kvm_vcpu
*vcpu
)
11536 if (kvm_x86_ops
->set_hv_timer
)
11537 kvm_lapic_switch_to_hv_timer(vcpu
);
11539 pi_post_block(vcpu
);
11543 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11546 * @host_irq: host irq of the interrupt
11547 * @guest_irq: gsi of the interrupt
11548 * @set: set or unset PI
11549 * returns 0 on success, < 0 on failure
11551 static int vmx_update_pi_irte(struct kvm
*kvm
, unsigned int host_irq
,
11552 uint32_t guest_irq
, bool set
)
11554 struct kvm_kernel_irq_routing_entry
*e
;
11555 struct kvm_irq_routing_table
*irq_rt
;
11556 struct kvm_lapic_irq irq
;
11557 struct kvm_vcpu
*vcpu
;
11558 struct vcpu_data vcpu_info
;
11561 if (!kvm_arch_has_assigned_device(kvm
) ||
11562 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
11563 !kvm_vcpu_apicv_active(kvm
->vcpus
[0]))
11566 idx
= srcu_read_lock(&kvm
->irq_srcu
);
11567 irq_rt
= srcu_dereference(kvm
->irq_routing
, &kvm
->irq_srcu
);
11568 if (guest_irq
>= irq_rt
->nr_rt_entries
||
11569 hlist_empty(&irq_rt
->map
[guest_irq
])) {
11570 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11571 guest_irq
, irq_rt
->nr_rt_entries
);
11575 hlist_for_each_entry(e
, &irq_rt
->map
[guest_irq
], link
) {
11576 if (e
->type
!= KVM_IRQ_ROUTING_MSI
)
11579 * VT-d PI cannot support posting multicast/broadcast
11580 * interrupts to a vCPU, we still use interrupt remapping
11581 * for these kind of interrupts.
11583 * For lowest-priority interrupts, we only support
11584 * those with single CPU as the destination, e.g. user
11585 * configures the interrupts via /proc/irq or uses
11586 * irqbalance to make the interrupts single-CPU.
11588 * We will support full lowest-priority interrupt later.
11591 kvm_set_msi_irq(kvm
, e
, &irq
);
11592 if (!kvm_intr_is_single_vcpu(kvm
, &irq
, &vcpu
)) {
11594 * Make sure the IRTE is in remapped mode if
11595 * we don't handle it in posted mode.
11597 ret
= irq_set_vcpu_affinity(host_irq
, NULL
);
11600 "failed to back to remapped mode, irq: %u\n",
11608 vcpu_info
.pi_desc_addr
= __pa(vcpu_to_pi_desc(vcpu
));
11609 vcpu_info
.vector
= irq
.vector
;
11611 trace_kvm_pi_irte_update(vcpu
->vcpu_id
, host_irq
, e
->gsi
,
11612 vcpu_info
.vector
, vcpu_info
.pi_desc_addr
, set
);
11615 ret
= irq_set_vcpu_affinity(host_irq
, &vcpu_info
);
11617 ret
= irq_set_vcpu_affinity(host_irq
, NULL
);
11620 printk(KERN_INFO
"%s: failed to update PI IRTE\n",
11628 srcu_read_unlock(&kvm
->irq_srcu
, idx
);
11632 static void vmx_setup_mce(struct kvm_vcpu
*vcpu
)
11634 if (vcpu
->arch
.mcg_cap
& MCG_LMCE_P
)
11635 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
|=
11636 FEATURE_CONTROL_LMCE
;
11638 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
&=
11639 ~FEATURE_CONTROL_LMCE
;
11642 static struct kvm_x86_ops vmx_x86_ops __ro_after_init
= {
11643 .cpu_has_kvm_support
= cpu_has_kvm_support
,
11644 .disabled_by_bios
= vmx_disabled_by_bios
,
11645 .hardware_setup
= hardware_setup
,
11646 .hardware_unsetup
= hardware_unsetup
,
11647 .check_processor_compatibility
= vmx_check_processor_compat
,
11648 .hardware_enable
= hardware_enable
,
11649 .hardware_disable
= hardware_disable
,
11650 .cpu_has_accelerated_tpr
= report_flexpriority
,
11651 .cpu_has_high_real_mode_segbase
= vmx_has_high_real_mode_segbase
,
11653 .vcpu_create
= vmx_create_vcpu
,
11654 .vcpu_free
= vmx_free_vcpu
,
11655 .vcpu_reset
= vmx_vcpu_reset
,
11657 .prepare_guest_switch
= vmx_save_host_state
,
11658 .vcpu_load
= vmx_vcpu_load
,
11659 .vcpu_put
= vmx_vcpu_put
,
11661 .update_bp_intercept
= update_exception_bitmap
,
11662 .get_msr
= vmx_get_msr
,
11663 .set_msr
= vmx_set_msr
,
11664 .get_segment_base
= vmx_get_segment_base
,
11665 .get_segment
= vmx_get_segment
,
11666 .set_segment
= vmx_set_segment
,
11667 .get_cpl
= vmx_get_cpl
,
11668 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
11669 .decache_cr0_guest_bits
= vmx_decache_cr0_guest_bits
,
11670 .decache_cr3
= vmx_decache_cr3
,
11671 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
11672 .set_cr0
= vmx_set_cr0
,
11673 .set_cr3
= vmx_set_cr3
,
11674 .set_cr4
= vmx_set_cr4
,
11675 .set_efer
= vmx_set_efer
,
11676 .get_idt
= vmx_get_idt
,
11677 .set_idt
= vmx_set_idt
,
11678 .get_gdt
= vmx_get_gdt
,
11679 .set_gdt
= vmx_set_gdt
,
11680 .get_dr6
= vmx_get_dr6
,
11681 .set_dr6
= vmx_set_dr6
,
11682 .set_dr7
= vmx_set_dr7
,
11683 .sync_dirty_debug_regs
= vmx_sync_dirty_debug_regs
,
11684 .cache_reg
= vmx_cache_reg
,
11685 .get_rflags
= vmx_get_rflags
,
11686 .set_rflags
= vmx_set_rflags
,
11688 .tlb_flush
= vmx_flush_tlb
,
11690 .run
= vmx_vcpu_run
,
11691 .handle_exit
= vmx_handle_exit
,
11692 .skip_emulated_instruction
= skip_emulated_instruction
,
11693 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
11694 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
11695 .patch_hypercall
= vmx_patch_hypercall
,
11696 .set_irq
= vmx_inject_irq
,
11697 .set_nmi
= vmx_inject_nmi
,
11698 .queue_exception
= vmx_queue_exception
,
11699 .cancel_injection
= vmx_cancel_injection
,
11700 .interrupt_allowed
= vmx_interrupt_allowed
,
11701 .nmi_allowed
= vmx_nmi_allowed
,
11702 .get_nmi_mask
= vmx_get_nmi_mask
,
11703 .set_nmi_mask
= vmx_set_nmi_mask
,
11704 .enable_nmi_window
= enable_nmi_window
,
11705 .enable_irq_window
= enable_irq_window
,
11706 .update_cr8_intercept
= update_cr8_intercept
,
11707 .set_virtual_x2apic_mode
= vmx_set_virtual_x2apic_mode
,
11708 .set_apic_access_page_addr
= vmx_set_apic_access_page_addr
,
11709 .get_enable_apicv
= vmx_get_enable_apicv
,
11710 .refresh_apicv_exec_ctrl
= vmx_refresh_apicv_exec_ctrl
,
11711 .load_eoi_exitmap
= vmx_load_eoi_exitmap
,
11712 .apicv_post_state_restore
= vmx_apicv_post_state_restore
,
11713 .hwapic_irr_update
= vmx_hwapic_irr_update
,
11714 .hwapic_isr_update
= vmx_hwapic_isr_update
,
11715 .sync_pir_to_irr
= vmx_sync_pir_to_irr
,
11716 .deliver_posted_interrupt
= vmx_deliver_posted_interrupt
,
11718 .set_tss_addr
= vmx_set_tss_addr
,
11719 .get_tdp_level
= get_ept_level
,
11720 .get_mt_mask
= vmx_get_mt_mask
,
11722 .get_exit_info
= vmx_get_exit_info
,
11724 .get_lpage_level
= vmx_get_lpage_level
,
11726 .cpuid_update
= vmx_cpuid_update
,
11728 .rdtscp_supported
= vmx_rdtscp_supported
,
11729 .invpcid_supported
= vmx_invpcid_supported
,
11731 .set_supported_cpuid
= vmx_set_supported_cpuid
,
11733 .has_wbinvd_exit
= cpu_has_vmx_wbinvd_exit
,
11735 .write_tsc_offset
= vmx_write_tsc_offset
,
11737 .set_tdp_cr3
= vmx_set_cr3
,
11739 .check_intercept
= vmx_check_intercept
,
11740 .handle_external_intr
= vmx_handle_external_intr
,
11741 .mpx_supported
= vmx_mpx_supported
,
11742 .xsaves_supported
= vmx_xsaves_supported
,
11744 .check_nested_events
= vmx_check_nested_events
,
11746 .sched_in
= vmx_sched_in
,
11748 .slot_enable_log_dirty
= vmx_slot_enable_log_dirty
,
11749 .slot_disable_log_dirty
= vmx_slot_disable_log_dirty
,
11750 .flush_log_dirty
= vmx_flush_log_dirty
,
11751 .enable_log_dirty_pt_masked
= vmx_enable_log_dirty_pt_masked
,
11752 .write_log_dirty
= vmx_write_pml_buffer
,
11754 .pre_block
= vmx_pre_block
,
11755 .post_block
= vmx_post_block
,
11757 .pmu_ops
= &intel_pmu_ops
,
11759 .update_pi_irte
= vmx_update_pi_irte
,
11761 #ifdef CONFIG_X86_64
11762 .set_hv_timer
= vmx_set_hv_timer
,
11763 .cancel_hv_timer
= vmx_cancel_hv_timer
,
11766 .setup_mce
= vmx_setup_mce
,
11769 static int __init
vmx_init(void)
11771 int r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
),
11772 __alignof__(struct vcpu_vmx
), THIS_MODULE
);
11776 #ifdef CONFIG_KEXEC_CORE
11777 rcu_assign_pointer(crash_vmclear_loaded_vmcss
,
11778 crash_vmclear_local_loaded_vmcss
);
11784 static void __exit
vmx_exit(void)
11786 #ifdef CONFIG_KEXEC_CORE
11787 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss
, NULL
);
11794 module_init(vmx_init
)
11795 module_exit(vmx_exit
)