4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/export.h>
47 #include <linux/init.h>
48 #include <linux/gfp.h>
49 #include <linux/memblock.h>
50 #include <linux/seq_file.h>
51 #include <linux/crash_dump.h>
52 #ifdef CONFIG_KEXEC_CORE
53 #include <linux/kexec.h>
56 #include <trace/events/xen.h>
58 #include <asm/pgtable.h>
59 #include <asm/tlbflush.h>
60 #include <asm/fixmap.h>
61 #include <asm/mmu_context.h>
62 #include <asm/setup.h>
63 #include <asm/paravirt.h>
64 #include <asm/e820/api.h>
65 #include <asm/linkage.h>
71 #include <asm/xen/hypercall.h>
72 #include <asm/xen/hypervisor.h>
76 #include <xen/interface/xen.h>
77 #include <xen/interface/hvm/hvm_op.h>
78 #include <xen/interface/version.h>
79 #include <xen/interface/memory.h>
80 #include <xen/hvc-console.h>
82 #include "multicalls.h"
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t
, level1_ident_pgt
, LEVEL1_IDENT_ENTRIES
);
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall
[PTRS_PER_PUD
] __page_aligned_bss
;
98 #endif /* CONFIG_X86_64 */
101 * Note about cr3 (pagetable base) values:
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
114 DEFINE_PER_CPU(unsigned long, xen_cr3
); /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3
); /* actual vcpu cr3 */
117 static phys_addr_t xen_pt_base
, xen_pt_size __initdata
;
120 * Just beyond the highest usermode address. STACK_TOP_MAX has a
121 * redzone above it, so round it up to a PGD boundary.
123 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125 void make_lowmem_page_readonly(void *vaddr
)
128 unsigned long address
= (unsigned long)vaddr
;
131 pte
= lookup_address(address
, &level
);
133 return; /* vaddr missing */
135 ptev
= pte_wrprotect(*pte
);
137 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
141 void make_lowmem_page_readwrite(void *vaddr
)
144 unsigned long address
= (unsigned long)vaddr
;
147 pte
= lookup_address(address
, &level
);
149 return; /* vaddr missing */
151 ptev
= pte_mkwrite(*pte
);
153 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
158 static bool xen_page_pinned(void *ptr
)
160 struct page
*page
= virt_to_page(ptr
);
162 return PagePinned(page
);
165 void xen_set_domain_pte(pte_t
*ptep
, pte_t pteval
, unsigned domid
)
167 struct multicall_space mcs
;
168 struct mmu_update
*u
;
170 trace_xen_mmu_set_domain_pte(ptep
, pteval
, domid
);
172 mcs
= xen_mc_entry(sizeof(*u
));
175 /* ptep might be kmapped when using 32-bit HIGHPTE */
176 u
->ptr
= virt_to_machine(ptep
).maddr
;
177 u
->val
= pte_val_ma(pteval
);
179 MULTI_mmu_update(mcs
.mc
, mcs
.args
, 1, NULL
, domid
);
181 xen_mc_issue(PARAVIRT_LAZY_MMU
);
183 EXPORT_SYMBOL_GPL(xen_set_domain_pte
);
185 static void xen_extend_mmu_update(const struct mmu_update
*update
)
187 struct multicall_space mcs
;
188 struct mmu_update
*u
;
190 mcs
= xen_mc_extend_args(__HYPERVISOR_mmu_update
, sizeof(*u
));
192 if (mcs
.mc
!= NULL
) {
195 mcs
= __xen_mc_entry(sizeof(*u
));
196 MULTI_mmu_update(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
203 static void xen_extend_mmuext_op(const struct mmuext_op
*op
)
205 struct multicall_space mcs
;
208 mcs
= xen_mc_extend_args(__HYPERVISOR_mmuext_op
, sizeof(*u
));
210 if (mcs
.mc
!= NULL
) {
213 mcs
= __xen_mc_entry(sizeof(*u
));
214 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
221 static void xen_set_pmd_hyper(pmd_t
*ptr
, pmd_t val
)
229 /* ptr may be ioremapped for 64-bit pagetable setup */
230 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
231 u
.val
= pmd_val_ma(val
);
232 xen_extend_mmu_update(&u
);
234 xen_mc_issue(PARAVIRT_LAZY_MMU
);
239 static void xen_set_pmd(pmd_t
*ptr
, pmd_t val
)
241 trace_xen_mmu_set_pmd(ptr
, val
);
243 /* If page is not pinned, we can just update the entry
245 if (!xen_page_pinned(ptr
)) {
250 xen_set_pmd_hyper(ptr
, val
);
254 * Associate a virtual page frame with a given physical page frame
255 * and protection flags for that frame.
257 void set_pte_mfn(unsigned long vaddr
, unsigned long mfn
, pgprot_t flags
)
259 set_pte_vaddr(vaddr
, mfn_pte(mfn
, flags
));
262 static bool xen_batched_set_pte(pte_t
*ptep
, pte_t pteval
)
266 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU
)
271 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
272 u
.val
= pte_val_ma(pteval
);
273 xen_extend_mmu_update(&u
);
275 xen_mc_issue(PARAVIRT_LAZY_MMU
);
280 static inline void __xen_set_pte(pte_t
*ptep
, pte_t pteval
)
282 if (!xen_batched_set_pte(ptep
, pteval
)) {
284 * Could call native_set_pte() here and trap and
285 * emulate the PTE write but with 32-bit guests this
286 * needs two traps (one for each of the two 32-bit
287 * words in the PTE) so do one hypercall directly
292 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
293 u
.val
= pte_val_ma(pteval
);
294 HYPERVISOR_mmu_update(&u
, 1, NULL
, DOMID_SELF
);
298 static void xen_set_pte(pte_t
*ptep
, pte_t pteval
)
300 trace_xen_mmu_set_pte(ptep
, pteval
);
301 __xen_set_pte(ptep
, pteval
);
304 static void xen_set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
305 pte_t
*ptep
, pte_t pteval
)
307 trace_xen_mmu_set_pte_at(mm
, addr
, ptep
, pteval
);
308 __xen_set_pte(ptep
, pteval
);
311 pte_t
xen_ptep_modify_prot_start(struct mm_struct
*mm
,
312 unsigned long addr
, pte_t
*ptep
)
314 /* Just return the pte as-is. We preserve the bits on commit */
315 trace_xen_mmu_ptep_modify_prot_start(mm
, addr
, ptep
, *ptep
);
319 void xen_ptep_modify_prot_commit(struct mm_struct
*mm
, unsigned long addr
,
320 pte_t
*ptep
, pte_t pte
)
324 trace_xen_mmu_ptep_modify_prot_commit(mm
, addr
, ptep
, pte
);
327 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_PT_UPDATE_PRESERVE_AD
;
328 u
.val
= pte_val_ma(pte
);
329 xen_extend_mmu_update(&u
);
331 xen_mc_issue(PARAVIRT_LAZY_MMU
);
334 /* Assume pteval_t is equivalent to all the other *val_t types. */
335 static pteval_t
pte_mfn_to_pfn(pteval_t val
)
337 if (val
& _PAGE_PRESENT
) {
338 unsigned long mfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
339 unsigned long pfn
= mfn_to_pfn(mfn
);
341 pteval_t flags
= val
& PTE_FLAGS_MASK
;
342 if (unlikely(pfn
== ~0))
343 val
= flags
& ~_PAGE_PRESENT
;
345 val
= ((pteval_t
)pfn
<< PAGE_SHIFT
) | flags
;
351 static pteval_t
pte_pfn_to_mfn(pteval_t val
)
353 if (val
& _PAGE_PRESENT
) {
354 unsigned long pfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
355 pteval_t flags
= val
& PTE_FLAGS_MASK
;
358 mfn
= __pfn_to_mfn(pfn
);
361 * If there's no mfn for the pfn, then just create an
362 * empty non-present pte. Unfortunately this loses
363 * information about the original pfn, so
364 * pte_mfn_to_pfn is asymmetric.
366 if (unlikely(mfn
== INVALID_P2M_ENTRY
)) {
370 mfn
&= ~(FOREIGN_FRAME_BIT
| IDENTITY_FRAME_BIT
);
371 val
= ((pteval_t
)mfn
<< PAGE_SHIFT
) | flags
;
377 __visible pteval_t
xen_pte_val(pte_t pte
)
379 pteval_t pteval
= pte
.pte
;
381 return pte_mfn_to_pfn(pteval
);
383 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val
);
385 __visible pgdval_t
xen_pgd_val(pgd_t pgd
)
387 return pte_mfn_to_pfn(pgd
.pgd
);
389 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val
);
391 __visible pte_t
xen_make_pte(pteval_t pte
)
393 pte
= pte_pfn_to_mfn(pte
);
395 return native_make_pte(pte
);
397 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte
);
399 __visible pgd_t
xen_make_pgd(pgdval_t pgd
)
401 pgd
= pte_pfn_to_mfn(pgd
);
402 return native_make_pgd(pgd
);
404 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd
);
406 __visible pmdval_t
xen_pmd_val(pmd_t pmd
)
408 return pte_mfn_to_pfn(pmd
.pmd
);
410 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val
);
412 static void xen_set_pud_hyper(pud_t
*ptr
, pud_t val
)
420 /* ptr may be ioremapped for 64-bit pagetable setup */
421 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
422 u
.val
= pud_val_ma(val
);
423 xen_extend_mmu_update(&u
);
425 xen_mc_issue(PARAVIRT_LAZY_MMU
);
430 static void xen_set_pud(pud_t
*ptr
, pud_t val
)
432 trace_xen_mmu_set_pud(ptr
, val
);
434 /* If page is not pinned, we can just update the entry
436 if (!xen_page_pinned(ptr
)) {
441 xen_set_pud_hyper(ptr
, val
);
444 #ifdef CONFIG_X86_PAE
445 static void xen_set_pte_atomic(pte_t
*ptep
, pte_t pte
)
447 trace_xen_mmu_set_pte_atomic(ptep
, pte
);
448 set_64bit((u64
*)ptep
, native_pte_val(pte
));
451 static void xen_pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
453 trace_xen_mmu_pte_clear(mm
, addr
, ptep
);
454 if (!xen_batched_set_pte(ptep
, native_make_pte(0)))
455 native_pte_clear(mm
, addr
, ptep
);
458 static void xen_pmd_clear(pmd_t
*pmdp
)
460 trace_xen_mmu_pmd_clear(pmdp
);
461 set_pmd(pmdp
, __pmd(0));
463 #endif /* CONFIG_X86_PAE */
465 __visible pmd_t
xen_make_pmd(pmdval_t pmd
)
467 pmd
= pte_pfn_to_mfn(pmd
);
468 return native_make_pmd(pmd
);
470 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd
);
472 #if CONFIG_PGTABLE_LEVELS == 4
473 __visible pudval_t
xen_pud_val(pud_t pud
)
475 return pte_mfn_to_pfn(pud
.pud
);
477 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val
);
479 __visible pud_t
xen_make_pud(pudval_t pud
)
481 pud
= pte_pfn_to_mfn(pud
);
483 return native_make_pud(pud
);
485 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud
);
487 static pgd_t
*xen_get_user_pgd(pgd_t
*pgd
)
489 pgd_t
*pgd_page
= (pgd_t
*)(((unsigned long)pgd
) & PAGE_MASK
);
490 unsigned offset
= pgd
- pgd_page
;
491 pgd_t
*user_ptr
= NULL
;
493 if (offset
< pgd_index(USER_LIMIT
)) {
494 struct page
*page
= virt_to_page(pgd_page
);
495 user_ptr
= (pgd_t
*)page
->private;
503 static void __xen_set_p4d_hyper(p4d_t
*ptr
, p4d_t val
)
507 u
.ptr
= virt_to_machine(ptr
).maddr
;
508 u
.val
= p4d_val_ma(val
);
509 xen_extend_mmu_update(&u
);
513 * Raw hypercall-based set_p4d, intended for in early boot before
514 * there's a page structure. This implies:
515 * 1. The only existing pagetable is the kernel's
516 * 2. It is always pinned
517 * 3. It has no user pagetable attached to it
519 static void __init
xen_set_p4d_hyper(p4d_t
*ptr
, p4d_t val
)
525 __xen_set_p4d_hyper(ptr
, val
);
527 xen_mc_issue(PARAVIRT_LAZY_MMU
);
532 static void xen_set_p4d(p4d_t
*ptr
, p4d_t val
)
534 pgd_t
*user_ptr
= xen_get_user_pgd((pgd_t
*)ptr
);
537 trace_xen_mmu_set_p4d(ptr
, (p4d_t
*)user_ptr
, val
);
539 /* If page is not pinned, we can just update the entry
541 if (!xen_page_pinned(ptr
)) {
544 WARN_ON(xen_page_pinned(user_ptr
));
545 pgd_val
.pgd
= p4d_val_ma(val
);
551 /* If it's pinned, then we can at least batch the kernel and
552 user updates together. */
555 __xen_set_p4d_hyper(ptr
, val
);
557 __xen_set_p4d_hyper((p4d_t
*)user_ptr
, val
);
559 xen_mc_issue(PARAVIRT_LAZY_MMU
);
561 #endif /* CONFIG_PGTABLE_LEVELS == 4 */
563 static int xen_pmd_walk(struct mm_struct
*mm
, pmd_t
*pmd
,
564 int (*func
)(struct mm_struct
*mm
, struct page
*, enum pt_level
),
565 bool last
, unsigned long limit
)
567 int i
, nr
, flush
= 0;
569 nr
= last
? pmd_index(limit
) + 1 : PTRS_PER_PMD
;
570 for (i
= 0; i
< nr
; i
++) {
571 if (!pmd_none(pmd
[i
]))
572 flush
|= (*func
)(mm
, pmd_page(pmd
[i
]), PT_PTE
);
577 static int xen_pud_walk(struct mm_struct
*mm
, pud_t
*pud
,
578 int (*func
)(struct mm_struct
*mm
, struct page
*, enum pt_level
),
579 bool last
, unsigned long limit
)
581 int i
, nr
, flush
= 0;
583 nr
= last
? pud_index(limit
) + 1 : PTRS_PER_PUD
;
584 for (i
= 0; i
< nr
; i
++) {
587 if (pud_none(pud
[i
]))
590 pmd
= pmd_offset(&pud
[i
], 0);
591 if (PTRS_PER_PMD
> 1)
592 flush
|= (*func
)(mm
, virt_to_page(pmd
), PT_PMD
);
593 flush
|= xen_pmd_walk(mm
, pmd
, func
,
594 last
&& i
== nr
- 1, limit
);
599 static int xen_p4d_walk(struct mm_struct
*mm
, p4d_t
*p4d
,
600 int (*func
)(struct mm_struct
*mm
, struct page
*, enum pt_level
),
601 bool last
, unsigned long limit
)
603 int i
, nr
, flush
= 0;
605 nr
= last
? p4d_index(limit
) + 1 : PTRS_PER_P4D
;
606 for (i
= 0; i
< nr
; i
++) {
609 if (p4d_none(p4d
[i
]))
612 pud
= pud_offset(&p4d
[i
], 0);
613 if (PTRS_PER_PUD
> 1)
614 flush
|= (*func
)(mm
, virt_to_page(pud
), PT_PUD
);
615 flush
|= xen_pud_walk(mm
, pud
, func
,
616 last
&& i
== nr
- 1, limit
);
622 * (Yet another) pagetable walker. This one is intended for pinning a
623 * pagetable. This means that it walks a pagetable and calls the
624 * callback function on each page it finds making up the page table,
625 * at every level. It walks the entire pagetable, but it only bothers
626 * pinning pte pages which are below limit. In the normal case this
627 * will be STACK_TOP_MAX, but at boot we need to pin up to
630 * For 32-bit the important bit is that we don't pin beyond there,
631 * because then we start getting into Xen's ptes.
633 * For 64-bit, we must skip the Xen hole in the middle of the address
634 * space, just after the big x86-64 virtual hole.
636 static int __xen_pgd_walk(struct mm_struct
*mm
, pgd_t
*pgd
,
637 int (*func
)(struct mm_struct
*mm
, struct page
*,
641 int i
, nr
, flush
= 0;
642 unsigned hole_low
, hole_high
;
644 /* The limit is the last byte to be touched */
646 BUG_ON(limit
>= FIXADDR_TOP
);
649 * 64-bit has a great big hole in the middle of the address
650 * space, which contains the Xen mappings. On 32-bit these
651 * will end up making a zero-sized hole and so is a no-op.
653 hole_low
= pgd_index(USER_LIMIT
);
654 hole_high
= pgd_index(PAGE_OFFSET
);
656 nr
= pgd_index(limit
) + 1;
657 for (i
= 0; i
< nr
; i
++) {
660 if (i
>= hole_low
&& i
< hole_high
)
663 if (pgd_none(pgd
[i
]))
666 p4d
= p4d_offset(&pgd
[i
], 0);
667 if (PTRS_PER_P4D
> 1)
668 flush
|= (*func
)(mm
, virt_to_page(p4d
), PT_P4D
);
669 flush
|= xen_p4d_walk(mm
, p4d
, func
, i
== nr
- 1, limit
);
672 /* Do the top level last, so that the callbacks can use it as
673 a cue to do final things like tlb flushes. */
674 flush
|= (*func
)(mm
, virt_to_page(pgd
), PT_PGD
);
679 static int xen_pgd_walk(struct mm_struct
*mm
,
680 int (*func
)(struct mm_struct
*mm
, struct page
*,
684 return __xen_pgd_walk(mm
, mm
->pgd
, func
, limit
);
687 /* If we're using split pte locks, then take the page's lock and
688 return a pointer to it. Otherwise return NULL. */
689 static spinlock_t
*xen_pte_lock(struct page
*page
, struct mm_struct
*mm
)
691 spinlock_t
*ptl
= NULL
;
693 #if USE_SPLIT_PTE_PTLOCKS
694 ptl
= ptlock_ptr(page
);
695 spin_lock_nest_lock(ptl
, &mm
->page_table_lock
);
701 static void xen_pte_unlock(void *v
)
707 static void xen_do_pin(unsigned level
, unsigned long pfn
)
712 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
714 xen_extend_mmuext_op(&op
);
717 static int xen_pin_page(struct mm_struct
*mm
, struct page
*page
,
720 unsigned pgfl
= TestSetPagePinned(page
);
724 flush
= 0; /* already pinned */
725 else if (PageHighMem(page
))
726 /* kmaps need flushing if we found an unpinned
730 void *pt
= lowmem_page_address(page
);
731 unsigned long pfn
= page_to_pfn(page
);
732 struct multicall_space mcs
= __xen_mc_entry(0);
738 * We need to hold the pagetable lock between the time
739 * we make the pagetable RO and when we actually pin
740 * it. If we don't, then other users may come in and
741 * attempt to update the pagetable by writing it,
742 * which will fail because the memory is RO but not
743 * pinned, so Xen won't do the trap'n'emulate.
745 * If we're using split pte locks, we can't hold the
746 * entire pagetable's worth of locks during the
747 * traverse, because we may wrap the preempt count (8
748 * bits). The solution is to mark RO and pin each PTE
749 * page while holding the lock. This means the number
750 * of locks we end up holding is never more than a
751 * batch size (~32 entries, at present).
753 * If we're not using split pte locks, we needn't pin
754 * the PTE pages independently, because we're
755 * protected by the overall pagetable lock.
759 ptl
= xen_pte_lock(page
, mm
);
761 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
762 pfn_pte(pfn
, PAGE_KERNEL_RO
),
763 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
766 xen_do_pin(MMUEXT_PIN_L1_TABLE
, pfn
);
768 /* Queue a deferred unlock for when this batch
770 xen_mc_callback(xen_pte_unlock
, ptl
);
777 /* This is called just after a mm has been created, but it has not
778 been used yet. We need to make sure that its pagetable is all
779 read-only, and can be pinned. */
780 static void __xen_pgd_pin(struct mm_struct
*mm
, pgd_t
*pgd
)
782 trace_xen_mmu_pgd_pin(mm
, pgd
);
786 if (__xen_pgd_walk(mm
, pgd
, xen_pin_page
, USER_LIMIT
)) {
787 /* re-enable interrupts for flushing */
797 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
799 xen_do_pin(MMUEXT_PIN_L4_TABLE
, PFN_DOWN(__pa(pgd
)));
802 xen_pin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
803 xen_do_pin(MMUEXT_PIN_L4_TABLE
,
804 PFN_DOWN(__pa(user_pgd
)));
807 #else /* CONFIG_X86_32 */
808 #ifdef CONFIG_X86_PAE
809 /* Need to make sure unshared kernel PMD is pinnable */
810 xen_pin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
813 xen_do_pin(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(__pa(pgd
)));
814 #endif /* CONFIG_X86_64 */
818 static void xen_pgd_pin(struct mm_struct
*mm
)
820 __xen_pgd_pin(mm
, mm
->pgd
);
824 * On save, we need to pin all pagetables to make sure they get their
825 * mfns turned into pfns. Search the list for any unpinned pgds and pin
826 * them (unpinned pgds are not currently in use, probably because the
827 * process is under construction or destruction).
829 * Expected to be called in stop_machine() ("equivalent to taking
830 * every spinlock in the system"), so the locking doesn't really
831 * matter all that much.
833 void xen_mm_pin_all(void)
837 spin_lock(&pgd_lock
);
839 list_for_each_entry(page
, &pgd_list
, lru
) {
840 if (!PagePinned(page
)) {
841 __xen_pgd_pin(&init_mm
, (pgd_t
*)page_address(page
));
842 SetPageSavePinned(page
);
846 spin_unlock(&pgd_lock
);
850 * The init_mm pagetable is really pinned as soon as its created, but
851 * that's before we have page structures to store the bits. So do all
852 * the book-keeping now.
854 static int __init
xen_mark_pinned(struct mm_struct
*mm
, struct page
*page
,
861 static void __init
xen_mark_init_mm_pinned(void)
863 xen_pgd_walk(&init_mm
, xen_mark_pinned
, FIXADDR_TOP
);
866 static int xen_unpin_page(struct mm_struct
*mm
, struct page
*page
,
869 unsigned pgfl
= TestClearPagePinned(page
);
871 if (pgfl
&& !PageHighMem(page
)) {
872 void *pt
= lowmem_page_address(page
);
873 unsigned long pfn
= page_to_pfn(page
);
874 spinlock_t
*ptl
= NULL
;
875 struct multicall_space mcs
;
878 * Do the converse to pin_page. If we're using split
879 * pte locks, we must be holding the lock for while
880 * the pte page is unpinned but still RO to prevent
881 * concurrent updates from seeing it in this
882 * partially-pinned state.
884 if (level
== PT_PTE
) {
885 ptl
= xen_pte_lock(page
, mm
);
888 xen_do_pin(MMUEXT_UNPIN_TABLE
, pfn
);
891 mcs
= __xen_mc_entry(0);
893 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
894 pfn_pte(pfn
, PAGE_KERNEL
),
895 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
898 /* unlock when batch completed */
899 xen_mc_callback(xen_pte_unlock
, ptl
);
903 return 0; /* never need to flush on unpin */
906 /* Release a pagetables pages back as normal RW */
907 static void __xen_pgd_unpin(struct mm_struct
*mm
, pgd_t
*pgd
)
909 trace_xen_mmu_pgd_unpin(mm
, pgd
);
913 xen_do_pin(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
917 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
920 xen_do_pin(MMUEXT_UNPIN_TABLE
,
921 PFN_DOWN(__pa(user_pgd
)));
922 xen_unpin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
927 #ifdef CONFIG_X86_PAE
928 /* Need to make sure unshared kernel PMD is unpinned */
929 xen_unpin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
933 __xen_pgd_walk(mm
, pgd
, xen_unpin_page
, USER_LIMIT
);
938 static void xen_pgd_unpin(struct mm_struct
*mm
)
940 __xen_pgd_unpin(mm
, mm
->pgd
);
944 * On resume, undo any pinning done at save, so that the rest of the
945 * kernel doesn't see any unexpected pinned pagetables.
947 void xen_mm_unpin_all(void)
951 spin_lock(&pgd_lock
);
953 list_for_each_entry(page
, &pgd_list
, lru
) {
954 if (PageSavePinned(page
)) {
955 BUG_ON(!PagePinned(page
));
956 __xen_pgd_unpin(&init_mm
, (pgd_t
*)page_address(page
));
957 ClearPageSavePinned(page
);
961 spin_unlock(&pgd_lock
);
964 static void xen_activate_mm(struct mm_struct
*prev
, struct mm_struct
*next
)
966 spin_lock(&next
->page_table_lock
);
968 spin_unlock(&next
->page_table_lock
);
971 static void xen_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*mm
)
973 spin_lock(&mm
->page_table_lock
);
975 spin_unlock(&mm
->page_table_lock
);
978 static void drop_mm_ref_this_cpu(void *info
)
980 struct mm_struct
*mm
= info
;
982 if (this_cpu_read(cpu_tlbstate
.loaded_mm
) == mm
)
983 leave_mm(smp_processor_id());
986 * If this cpu still has a stale cr3 reference, then make sure
987 * it has been flushed.
989 if (this_cpu_read(xen_current_cr3
) == __pa(mm
->pgd
))
995 * Another cpu may still have their %cr3 pointing at the pagetable, so
996 * we need to repoint it somewhere else before we can unpin it.
998 static void xen_drop_mm_ref(struct mm_struct
*mm
)
1003 drop_mm_ref_this_cpu(mm
);
1005 /* Get the "official" set of cpus referring to our pagetable. */
1006 if (!alloc_cpumask_var(&mask
, GFP_ATOMIC
)) {
1007 for_each_online_cpu(cpu
) {
1008 if (!cpumask_test_cpu(cpu
, mm_cpumask(mm
))
1009 && per_cpu(xen_current_cr3
, cpu
) != __pa(mm
->pgd
))
1011 smp_call_function_single(cpu
, drop_mm_ref_this_cpu
, mm
, 1);
1015 cpumask_copy(mask
, mm_cpumask(mm
));
1018 * It's possible that a vcpu may have a stale reference to our
1019 * cr3, because its in lazy mode, and it hasn't yet flushed
1020 * its set of pending hypercalls yet. In this case, we can
1021 * look at its actual current cr3 value, and force it to flush
1024 for_each_online_cpu(cpu
) {
1025 if (per_cpu(xen_current_cr3
, cpu
) == __pa(mm
->pgd
))
1026 cpumask_set_cpu(cpu
, mask
);
1029 smp_call_function_many(mask
, drop_mm_ref_this_cpu
, mm
, 1);
1030 free_cpumask_var(mask
);
1033 static void xen_drop_mm_ref(struct mm_struct
*mm
)
1035 drop_mm_ref_this_cpu(mm
);
1040 * While a process runs, Xen pins its pagetables, which means that the
1041 * hypervisor forces it to be read-only, and it controls all updates
1042 * to it. This means that all pagetable updates have to go via the
1043 * hypervisor, which is moderately expensive.
1045 * Since we're pulling the pagetable down, we switch to use init_mm,
1046 * unpin old process pagetable and mark it all read-write, which
1047 * allows further operations on it to be simple memory accesses.
1049 * The only subtle point is that another CPU may be still using the
1050 * pagetable because of lazy tlb flushing. This means we need need to
1051 * switch all CPUs off this pagetable before we can unpin it.
1053 static void xen_exit_mmap(struct mm_struct
*mm
)
1055 get_cpu(); /* make sure we don't move around */
1056 xen_drop_mm_ref(mm
);
1059 spin_lock(&mm
->page_table_lock
);
1061 /* pgd may not be pinned in the error exit path of execve */
1062 if (xen_page_pinned(mm
->pgd
))
1065 spin_unlock(&mm
->page_table_lock
);
1068 static void xen_post_allocator_init(void);
1070 static void __init
pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1072 struct mmuext_op op
;
1075 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
1076 if (HYPERVISOR_mmuext_op(&op
, 1, NULL
, DOMID_SELF
))
1080 #ifdef CONFIG_X86_64
1081 static void __init
xen_cleanhighmap(unsigned long vaddr
,
1082 unsigned long vaddr_end
)
1084 unsigned long kernel_end
= roundup((unsigned long)_brk_end
, PMD_SIZE
) - 1;
1085 pmd_t
*pmd
= level2_kernel_pgt
+ pmd_index(vaddr
);
1087 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1088 * We include the PMD passed in on _both_ boundaries. */
1089 for (; vaddr
<= vaddr_end
&& (pmd
< (level2_kernel_pgt
+ PTRS_PER_PMD
));
1090 pmd
++, vaddr
+= PMD_SIZE
) {
1093 if (vaddr
< (unsigned long) _text
|| vaddr
> kernel_end
)
1094 set_pmd(pmd
, __pmd(0));
1096 /* In case we did something silly, we should crash in this function
1097 * instead of somewhere later and be confusing. */
1102 * Make a page range writeable and free it.
1104 static void __init
xen_free_ro_pages(unsigned long paddr
, unsigned long size
)
1106 void *vaddr
= __va(paddr
);
1107 void *vaddr_end
= vaddr
+ size
;
1109 for (; vaddr
< vaddr_end
; vaddr
+= PAGE_SIZE
)
1110 make_lowmem_page_readwrite(vaddr
);
1112 memblock_free(paddr
, size
);
1115 static void __init
xen_cleanmfnmap_free_pgtbl(void *pgtbl
, bool unpin
)
1117 unsigned long pa
= __pa(pgtbl
) & PHYSICAL_PAGE_MASK
;
1120 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(pa
));
1121 ClearPagePinned(virt_to_page(__va(pa
)));
1122 xen_free_ro_pages(pa
, PAGE_SIZE
);
1125 static void __init
xen_cleanmfnmap_pmd(pmd_t
*pmd
, bool unpin
)
1131 if (pmd_large(*pmd
)) {
1132 pa
= pmd_val(*pmd
) & PHYSICAL_PAGE_MASK
;
1133 xen_free_ro_pages(pa
, PMD_SIZE
);
1137 pte_tbl
= pte_offset_kernel(pmd
, 0);
1138 for (i
= 0; i
< PTRS_PER_PTE
; i
++) {
1139 if (pte_none(pte_tbl
[i
]))
1141 pa
= pte_pfn(pte_tbl
[i
]) << PAGE_SHIFT
;
1142 xen_free_ro_pages(pa
, PAGE_SIZE
);
1144 set_pmd(pmd
, __pmd(0));
1145 xen_cleanmfnmap_free_pgtbl(pte_tbl
, unpin
);
1148 static void __init
xen_cleanmfnmap_pud(pud_t
*pud
, bool unpin
)
1154 if (pud_large(*pud
)) {
1155 pa
= pud_val(*pud
) & PHYSICAL_PAGE_MASK
;
1156 xen_free_ro_pages(pa
, PUD_SIZE
);
1160 pmd_tbl
= pmd_offset(pud
, 0);
1161 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
1162 if (pmd_none(pmd_tbl
[i
]))
1164 xen_cleanmfnmap_pmd(pmd_tbl
+ i
, unpin
);
1166 set_pud(pud
, __pud(0));
1167 xen_cleanmfnmap_free_pgtbl(pmd_tbl
, unpin
);
1170 static void __init
xen_cleanmfnmap_p4d(p4d_t
*p4d
, bool unpin
)
1176 if (p4d_large(*p4d
)) {
1177 pa
= p4d_val(*p4d
) & PHYSICAL_PAGE_MASK
;
1178 xen_free_ro_pages(pa
, P4D_SIZE
);
1182 pud_tbl
= pud_offset(p4d
, 0);
1183 for (i
= 0; i
< PTRS_PER_PUD
; i
++) {
1184 if (pud_none(pud_tbl
[i
]))
1186 xen_cleanmfnmap_pud(pud_tbl
+ i
, unpin
);
1188 set_p4d(p4d
, __p4d(0));
1189 xen_cleanmfnmap_free_pgtbl(pud_tbl
, unpin
);
1193 * Since it is well isolated we can (and since it is perhaps large we should)
1194 * also free the page tables mapping the initial P->M table.
1196 static void __init
xen_cleanmfnmap(unsigned long vaddr
)
1203 unpin
= (vaddr
== 2 * PGDIR_SIZE
);
1205 pgd
= pgd_offset_k(vaddr
);
1206 p4d
= p4d_offset(pgd
, 0);
1207 for (i
= 0; i
< PTRS_PER_P4D
; i
++) {
1208 if (p4d_none(p4d
[i
]))
1210 xen_cleanmfnmap_p4d(p4d
+ i
, unpin
);
1212 if (IS_ENABLED(CONFIG_X86_5LEVEL
)) {
1213 set_pgd(pgd
, __pgd(0));
1214 xen_cleanmfnmap_free_pgtbl(p4d
, unpin
);
1218 static void __init
xen_pagetable_p2m_free(void)
1223 size
= PAGE_ALIGN(xen_start_info
->nr_pages
* sizeof(unsigned long));
1225 /* No memory or already called. */
1226 if ((unsigned long)xen_p2m_addr
== xen_start_info
->mfn_list
)
1229 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1230 memset((void *)xen_start_info
->mfn_list
, 0xff, size
);
1232 addr
= xen_start_info
->mfn_list
;
1234 * We could be in __ka space.
1235 * We roundup to the PMD, which means that if anybody at this stage is
1236 * using the __ka address of xen_start_info or
1237 * xen_start_info->shared_info they are in going to crash. Fortunatly
1238 * we have already revectored in xen_setup_kernel_pagetable and in
1239 * xen_setup_shared_info.
1241 size
= roundup(size
, PMD_SIZE
);
1243 if (addr
>= __START_KERNEL_map
) {
1244 xen_cleanhighmap(addr
, addr
+ size
);
1245 size
= PAGE_ALIGN(xen_start_info
->nr_pages
*
1246 sizeof(unsigned long));
1247 memblock_free(__pa(addr
), size
);
1249 xen_cleanmfnmap(addr
);
1253 static void __init
xen_pagetable_cleanhighmap(void)
1258 /* At this stage, cleanup_highmap has already cleaned __ka space
1259 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1260 * the ramdisk). We continue on, erasing PMD entries that point to page
1261 * tables - do note that they are accessible at this stage via __va.
1262 * For good measure we also round up to the PMD - which means that if
1263 * anybody is using __ka address to the initial boot-stack - and try
1264 * to use it - they are going to crash. The xen_start_info has been
1265 * taken care of already in xen_setup_kernel_pagetable. */
1266 addr
= xen_start_info
->pt_base
;
1267 size
= roundup(xen_start_info
->nr_pt_frames
* PAGE_SIZE
, PMD_SIZE
);
1269 xen_cleanhighmap(addr
, addr
+ size
);
1270 xen_start_info
->pt_base
= (unsigned long)__va(__pa(xen_start_info
->pt_base
));
1272 /* This is superfluous and is not necessary, but you know what
1273 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1274 * anything at this stage. */
1275 xen_cleanhighmap(MODULES_VADDR
, roundup(MODULES_VADDR
, PUD_SIZE
) - 1);
1280 static void __init
xen_pagetable_p2m_setup(void)
1282 xen_vmalloc_p2m_tree();
1284 #ifdef CONFIG_X86_64
1285 xen_pagetable_p2m_free();
1287 xen_pagetable_cleanhighmap();
1289 /* And revector! Bye bye old array */
1290 xen_start_info
->mfn_list
= (unsigned long)xen_p2m_addr
;
1293 static void __init
xen_pagetable_init(void)
1296 xen_post_allocator_init();
1298 xen_pagetable_p2m_setup();
1300 /* Allocate and initialize top and mid mfn levels for p2m structure */
1301 xen_build_mfn_list_list();
1303 /* Remap memory freed due to conflicts with E820 map */
1306 xen_setup_shared_info();
1308 static void xen_write_cr2(unsigned long cr2
)
1310 this_cpu_read(xen_vcpu
)->arch
.cr2
= cr2
;
1313 static unsigned long xen_read_cr2(void)
1315 return this_cpu_read(xen_vcpu
)->arch
.cr2
;
1318 unsigned long xen_read_cr2_direct(void)
1320 return this_cpu_read(xen_vcpu_info
.arch
.cr2
);
1323 static void xen_flush_tlb(void)
1325 struct mmuext_op
*op
;
1326 struct multicall_space mcs
;
1328 trace_xen_mmu_flush_tlb(0);
1332 mcs
= xen_mc_entry(sizeof(*op
));
1335 op
->cmd
= MMUEXT_TLB_FLUSH_LOCAL
;
1336 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1338 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1343 static void xen_flush_tlb_single(unsigned long addr
)
1345 struct mmuext_op
*op
;
1346 struct multicall_space mcs
;
1348 trace_xen_mmu_flush_tlb_single(addr
);
1352 mcs
= xen_mc_entry(sizeof(*op
));
1354 op
->cmd
= MMUEXT_INVLPG_LOCAL
;
1355 op
->arg1
.linear_addr
= addr
& PAGE_MASK
;
1356 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1358 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1363 static void xen_flush_tlb_others(const struct cpumask
*cpus
,
1364 const struct flush_tlb_info
*info
)
1367 struct mmuext_op op
;
1369 DECLARE_BITMAP(mask
, num_processors
);
1371 DECLARE_BITMAP(mask
, NR_CPUS
);
1374 struct multicall_space mcs
;
1376 trace_xen_mmu_flush_tlb_others(cpus
, info
->mm
, info
->start
, info
->end
);
1378 if (cpumask_empty(cpus
))
1379 return; /* nothing to do */
1381 mcs
= xen_mc_entry(sizeof(*args
));
1383 args
->op
.arg2
.vcpumask
= to_cpumask(args
->mask
);
1385 /* Remove us, and any offline CPUS. */
1386 cpumask_and(to_cpumask(args
->mask
), cpus
, cpu_online_mask
);
1387 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args
->mask
));
1389 args
->op
.cmd
= MMUEXT_TLB_FLUSH_MULTI
;
1390 if (info
->end
!= TLB_FLUSH_ALL
&&
1391 (info
->end
- info
->start
) <= PAGE_SIZE
) {
1392 args
->op
.cmd
= MMUEXT_INVLPG_MULTI
;
1393 args
->op
.arg1
.linear_addr
= info
->start
;
1396 MULTI_mmuext_op(mcs
.mc
, &args
->op
, 1, NULL
, DOMID_SELF
);
1398 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1401 static unsigned long xen_read_cr3(void)
1403 return this_cpu_read(xen_cr3
);
1406 static void set_current_cr3(void *v
)
1408 this_cpu_write(xen_current_cr3
, (unsigned long)v
);
1411 static void __xen_write_cr3(bool kernel
, unsigned long cr3
)
1413 struct mmuext_op op
;
1416 trace_xen_mmu_write_cr3(kernel
, cr3
);
1419 mfn
= pfn_to_mfn(PFN_DOWN(cr3
));
1423 WARN_ON(mfn
== 0 && kernel
);
1425 op
.cmd
= kernel
? MMUEXT_NEW_BASEPTR
: MMUEXT_NEW_USER_BASEPTR
;
1428 xen_extend_mmuext_op(&op
);
1431 this_cpu_write(xen_cr3
, cr3
);
1433 /* Update xen_current_cr3 once the batch has actually
1435 xen_mc_callback(set_current_cr3
, (void *)cr3
);
1438 static void xen_write_cr3(unsigned long cr3
)
1440 BUG_ON(preemptible());
1442 xen_mc_batch(); /* disables interrupts */
1444 /* Update while interrupts are disabled, so its atomic with
1446 this_cpu_write(xen_cr3
, cr3
);
1448 __xen_write_cr3(true, cr3
);
1450 #ifdef CONFIG_X86_64
1452 pgd_t
*user_pgd
= xen_get_user_pgd(__va(cr3
));
1454 __xen_write_cr3(false, __pa(user_pgd
));
1456 __xen_write_cr3(false, 0);
1460 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
1463 #ifdef CONFIG_X86_64
1465 * At the start of the day - when Xen launches a guest, it has already
1466 * built pagetables for the guest. We diligently look over them
1467 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1468 * init_top_pgt and its friends. Then when we are happy we load
1469 * the new init_top_pgt - and continue on.
1471 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1472 * up the rest of the pagetables. When it has completed it loads the cr3.
1473 * N.B. that baremetal would start at 'start_kernel' (and the early
1474 * #PF handler would create bootstrap pagetables) - so we are running
1475 * with the same assumptions as what to do when write_cr3 is executed
1478 * Since there are no user-page tables at all, we have two variants
1479 * of xen_write_cr3 - the early bootup (this one), and the late one
1480 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1481 * the Linux kernel and user-space are both in ring 3 while the
1482 * hypervisor is in ring 0.
1484 static void __init
xen_write_cr3_init(unsigned long cr3
)
1486 BUG_ON(preemptible());
1488 xen_mc_batch(); /* disables interrupts */
1490 /* Update while interrupts are disabled, so its atomic with
1492 this_cpu_write(xen_cr3
, cr3
);
1494 __xen_write_cr3(true, cr3
);
1496 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
1500 static int xen_pgd_alloc(struct mm_struct
*mm
)
1502 pgd_t
*pgd
= mm
->pgd
;
1505 BUG_ON(PagePinned(virt_to_page(pgd
)));
1507 #ifdef CONFIG_X86_64
1509 struct page
*page
= virt_to_page(pgd
);
1512 BUG_ON(page
->private != 0);
1516 user_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
1517 page
->private = (unsigned long)user_pgd
;
1519 if (user_pgd
!= NULL
) {
1520 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1521 user_pgd
[pgd_index(VSYSCALL_ADDR
)] =
1522 __pgd(__pa(level3_user_vsyscall
) | _PAGE_TABLE
);
1527 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd
))));
1533 static void xen_pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
1535 #ifdef CONFIG_X86_64
1536 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
1539 free_page((unsigned long)user_pgd
);
1544 * Init-time set_pte while constructing initial pagetables, which
1545 * doesn't allow RO page table pages to be remapped RW.
1547 * If there is no MFN for this PFN then this page is initially
1548 * ballooned out so clear the PTE (as in decrease_reservation() in
1549 * drivers/xen/balloon.c).
1551 * Many of these PTE updates are done on unpinned and writable pages
1552 * and doing a hypercall for these is unnecessary and expensive. At
1553 * this point it is not possible to tell if a page is pinned or not,
1554 * so always write the PTE directly and rely on Xen trapping and
1555 * emulating any updates as necessary.
1557 __visible pte_t
xen_make_pte_init(pteval_t pte
)
1559 #ifdef CONFIG_X86_64
1563 * Pages belonging to the initial p2m list mapped outside the default
1564 * address range must be mapped read-only. This region contains the
1565 * page tables for mapping the p2m list, too, and page tables MUST be
1568 pfn
= (pte
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
1569 if (xen_start_info
->mfn_list
< __START_KERNEL_map
&&
1570 pfn
>= xen_start_info
->first_p2m_pfn
&&
1571 pfn
< xen_start_info
->first_p2m_pfn
+ xen_start_info
->nr_p2m_frames
)
1574 pte
= pte_pfn_to_mfn(pte
);
1575 return native_make_pte(pte
);
1577 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init
);
1579 static void __init
xen_set_pte_init(pte_t
*ptep
, pte_t pte
)
1581 #ifdef CONFIG_X86_32
1582 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1583 if (pte_mfn(pte
) != INVALID_P2M_ENTRY
1584 && pte_val_ma(*ptep
) & _PAGE_PRESENT
)
1585 pte
= __pte_ma(((pte_val_ma(*ptep
) & _PAGE_RW
) | ~_PAGE_RW
) &
1588 native_set_pte(ptep
, pte
);
1591 /* Early in boot, while setting up the initial pagetable, assume
1592 everything is pinned. */
1593 static void __init
xen_alloc_pte_init(struct mm_struct
*mm
, unsigned long pfn
)
1595 #ifdef CONFIG_FLATMEM
1596 BUG_ON(mem_map
); /* should only be used early */
1598 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1599 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1602 /* Used for pmd and pud */
1603 static void __init
xen_alloc_pmd_init(struct mm_struct
*mm
, unsigned long pfn
)
1605 #ifdef CONFIG_FLATMEM
1606 BUG_ON(mem_map
); /* should only be used early */
1608 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1611 /* Early release_pte assumes that all pts are pinned, since there's
1612 only init_mm and anything attached to that is pinned. */
1613 static void __init
xen_release_pte_init(unsigned long pfn
)
1615 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1616 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1619 static void __init
xen_release_pmd_init(unsigned long pfn
)
1621 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1624 static inline void __pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1626 struct multicall_space mcs
;
1627 struct mmuext_op
*op
;
1629 mcs
= __xen_mc_entry(sizeof(*op
));
1632 op
->arg1
.mfn
= pfn_to_mfn(pfn
);
1634 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
1637 static inline void __set_pfn_prot(unsigned long pfn
, pgprot_t prot
)
1639 struct multicall_space mcs
;
1640 unsigned long addr
= (unsigned long)__va(pfn
<< PAGE_SHIFT
);
1642 mcs
= __xen_mc_entry(0);
1643 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)addr
,
1644 pfn_pte(pfn
, prot
), 0);
1647 /* This needs to make sure the new pte page is pinned iff its being
1648 attached to a pinned pagetable. */
1649 static inline void xen_alloc_ptpage(struct mm_struct
*mm
, unsigned long pfn
,
1652 bool pinned
= PagePinned(virt_to_page(mm
->pgd
));
1654 trace_xen_mmu_alloc_ptpage(mm
, pfn
, level
, pinned
);
1657 struct page
*page
= pfn_to_page(pfn
);
1659 SetPagePinned(page
);
1661 if (!PageHighMem(page
)) {
1664 __set_pfn_prot(pfn
, PAGE_KERNEL_RO
);
1666 if (level
== PT_PTE
&& USE_SPLIT_PTE_PTLOCKS
)
1667 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1669 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1671 /* make sure there are no stray mappings of
1673 kmap_flush_unused();
1678 static void xen_alloc_pte(struct mm_struct
*mm
, unsigned long pfn
)
1680 xen_alloc_ptpage(mm
, pfn
, PT_PTE
);
1683 static void xen_alloc_pmd(struct mm_struct
*mm
, unsigned long pfn
)
1685 xen_alloc_ptpage(mm
, pfn
, PT_PMD
);
1688 /* This should never happen until we're OK to use struct page */
1689 static inline void xen_release_ptpage(unsigned long pfn
, unsigned level
)
1691 struct page
*page
= pfn_to_page(pfn
);
1692 bool pinned
= PagePinned(page
);
1694 trace_xen_mmu_release_ptpage(pfn
, level
, pinned
);
1697 if (!PageHighMem(page
)) {
1700 if (level
== PT_PTE
&& USE_SPLIT_PTE_PTLOCKS
)
1701 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1703 __set_pfn_prot(pfn
, PAGE_KERNEL
);
1705 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1707 ClearPagePinned(page
);
1711 static void xen_release_pte(unsigned long pfn
)
1713 xen_release_ptpage(pfn
, PT_PTE
);
1716 static void xen_release_pmd(unsigned long pfn
)
1718 xen_release_ptpage(pfn
, PT_PMD
);
1721 #if CONFIG_PGTABLE_LEVELS >= 4
1722 static void xen_alloc_pud(struct mm_struct
*mm
, unsigned long pfn
)
1724 xen_alloc_ptpage(mm
, pfn
, PT_PUD
);
1727 static void xen_release_pud(unsigned long pfn
)
1729 xen_release_ptpage(pfn
, PT_PUD
);
1733 void __init
xen_reserve_top(void)
1735 #ifdef CONFIG_X86_32
1736 unsigned long top
= HYPERVISOR_VIRT_START
;
1737 struct xen_platform_parameters pp
;
1739 if (HYPERVISOR_xen_version(XENVER_platform_parameters
, &pp
) == 0)
1740 top
= pp
.virt_start
;
1742 reserve_top_address(-top
);
1743 #endif /* CONFIG_X86_32 */
1747 * Like __va(), but returns address in the kernel mapping (which is
1748 * all we have until the physical memory mapping has been set up.
1750 static void * __init
__ka(phys_addr_t paddr
)
1752 #ifdef CONFIG_X86_64
1753 return (void *)(paddr
+ __START_KERNEL_map
);
1759 /* Convert a machine address to physical address */
1760 static unsigned long __init
m2p(phys_addr_t maddr
)
1764 maddr
&= PTE_PFN_MASK
;
1765 paddr
= mfn_to_pfn(maddr
>> PAGE_SHIFT
) << PAGE_SHIFT
;
1770 /* Convert a machine address to kernel virtual */
1771 static void * __init
m2v(phys_addr_t maddr
)
1773 return __ka(m2p(maddr
));
1776 /* Set the page permissions on an identity-mapped pages */
1777 static void __init
set_page_prot_flags(void *addr
, pgprot_t prot
,
1778 unsigned long flags
)
1780 unsigned long pfn
= __pa(addr
) >> PAGE_SHIFT
;
1781 pte_t pte
= pfn_pte(pfn
, prot
);
1783 if (HYPERVISOR_update_va_mapping((unsigned long)addr
, pte
, flags
))
1786 static void __init
set_page_prot(void *addr
, pgprot_t prot
)
1788 return set_page_prot_flags(addr
, prot
, UVMF_NONE
);
1790 #ifdef CONFIG_X86_32
1791 static void __init
xen_map_identity_early(pmd_t
*pmd
, unsigned long max_pfn
)
1793 unsigned pmdidx
, pteidx
;
1797 level1_ident_pgt
= extend_brk(sizeof(pte_t
) * LEVEL1_IDENT_ENTRIES
,
1802 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
&& pfn
< max_pfn
; pmdidx
++) {
1805 /* Reuse or allocate a page of ptes */
1806 if (pmd_present(pmd
[pmdidx
]))
1807 pte_page
= m2v(pmd
[pmdidx
].pmd
);
1809 /* Check for free pte pages */
1810 if (ident_pte
== LEVEL1_IDENT_ENTRIES
)
1813 pte_page
= &level1_ident_pgt
[ident_pte
];
1814 ident_pte
+= PTRS_PER_PTE
;
1816 pmd
[pmdidx
] = __pmd(__pa(pte_page
) | _PAGE_TABLE
);
1819 /* Install mappings */
1820 for (pteidx
= 0; pteidx
< PTRS_PER_PTE
; pteidx
++, pfn
++) {
1823 if (pfn
> max_pfn_mapped
)
1824 max_pfn_mapped
= pfn
;
1826 if (!pte_none(pte_page
[pteidx
]))
1829 pte
= pfn_pte(pfn
, PAGE_KERNEL_EXEC
);
1830 pte_page
[pteidx
] = pte
;
1834 for (pteidx
= 0; pteidx
< ident_pte
; pteidx
+= PTRS_PER_PTE
)
1835 set_page_prot(&level1_ident_pgt
[pteidx
], PAGE_KERNEL_RO
);
1837 set_page_prot(pmd
, PAGE_KERNEL_RO
);
1840 void __init
xen_setup_machphys_mapping(void)
1842 struct xen_machphys_mapping mapping
;
1844 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping
, &mapping
) == 0) {
1845 machine_to_phys_mapping
= (unsigned long *)mapping
.v_start
;
1846 machine_to_phys_nr
= mapping
.max_mfn
+ 1;
1848 machine_to_phys_nr
= MACH2PHYS_NR_ENTRIES
;
1850 #ifdef CONFIG_X86_32
1851 WARN_ON((machine_to_phys_mapping
+ (machine_to_phys_nr
- 1))
1852 < machine_to_phys_mapping
);
1856 #ifdef CONFIG_X86_64
1857 static void __init
convert_pfn_mfn(void *v
)
1862 /* All levels are converted the same way, so just treat them
1864 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
1865 pte
[i
] = xen_make_pte(pte
[i
].pte
);
1867 static void __init
check_pt_base(unsigned long *pt_base
, unsigned long *pt_end
,
1870 if (*pt_base
== PFN_DOWN(__pa(addr
))) {
1871 set_page_prot_flags((void *)addr
, PAGE_KERNEL
, UVMF_INVLPG
);
1872 clear_page((void *)addr
);
1875 if (*pt_end
== PFN_DOWN(__pa(addr
))) {
1876 set_page_prot_flags((void *)addr
, PAGE_KERNEL
, UVMF_INVLPG
);
1877 clear_page((void *)addr
);
1882 * Set up the initial kernel pagetable.
1884 * We can construct this by grafting the Xen provided pagetable into
1885 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1886 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1887 * kernel has a physical mapping to start with - but that's enough to
1888 * get __va working. We need to fill in the rest of the physical
1889 * mapping once some sort of allocator has been set up.
1891 void __init
xen_setup_kernel_pagetable(pgd_t
*pgd
, unsigned long max_pfn
)
1895 unsigned long addr
[3];
1896 unsigned long pt_base
, pt_end
;
1899 /* max_pfn_mapped is the last pfn mapped in the initial memory
1900 * mappings. Considering that on Xen after the kernel mappings we
1901 * have the mappings of some pages that don't exist in pfn space, we
1902 * set max_pfn_mapped to the last real pfn mapped. */
1903 if (xen_start_info
->mfn_list
< __START_KERNEL_map
)
1904 max_pfn_mapped
= xen_start_info
->first_p2m_pfn
;
1906 max_pfn_mapped
= PFN_DOWN(__pa(xen_start_info
->mfn_list
));
1908 pt_base
= PFN_DOWN(__pa(xen_start_info
->pt_base
));
1909 pt_end
= pt_base
+ xen_start_info
->nr_pt_frames
;
1911 /* Zap identity mapping */
1912 init_top_pgt
[0] = __pgd(0);
1914 /* Pre-constructed entries are in pfn, so convert to mfn */
1915 /* L4[272] -> level3_ident_pgt */
1916 /* L4[511] -> level3_kernel_pgt */
1917 convert_pfn_mfn(init_top_pgt
);
1919 /* L3_i[0] -> level2_ident_pgt */
1920 convert_pfn_mfn(level3_ident_pgt
);
1921 /* L3_k[510] -> level2_kernel_pgt */
1922 /* L3_k[511] -> level2_fixmap_pgt */
1923 convert_pfn_mfn(level3_kernel_pgt
);
1925 /* L3_k[511][506] -> level1_fixmap_pgt */
1926 convert_pfn_mfn(level2_fixmap_pgt
);
1928 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1929 l3
= m2v(pgd
[pgd_index(__START_KERNEL_map
)].pgd
);
1930 l2
= m2v(l3
[pud_index(__START_KERNEL_map
)].pud
);
1932 addr
[0] = (unsigned long)pgd
;
1933 addr
[1] = (unsigned long)l3
;
1934 addr
[2] = (unsigned long)l2
;
1935 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1936 * Both L4[272][0] and L4[511][510] have entries that point to the same
1937 * L2 (PMD) tables. Meaning that if you modify it in __va space
1938 * it will be also modified in the __ka space! (But if you just
1939 * modify the PMD table to point to other PTE's or none, then you
1940 * are OK - which is what cleanup_highmap does) */
1941 copy_page(level2_ident_pgt
, l2
);
1942 /* Graft it onto L4[511][510] */
1943 copy_page(level2_kernel_pgt
, l2
);
1945 /* Copy the initial P->M table mappings if necessary. */
1946 i
= pgd_index(xen_start_info
->mfn_list
);
1947 if (i
&& i
< pgd_index(__START_KERNEL_map
))
1948 init_top_pgt
[i
] = ((pgd_t
*)xen_start_info
->pt_base
)[i
];
1950 /* Make pagetable pieces RO */
1951 set_page_prot(init_top_pgt
, PAGE_KERNEL_RO
);
1952 set_page_prot(level3_ident_pgt
, PAGE_KERNEL_RO
);
1953 set_page_prot(level3_kernel_pgt
, PAGE_KERNEL_RO
);
1954 set_page_prot(level3_user_vsyscall
, PAGE_KERNEL_RO
);
1955 set_page_prot(level2_ident_pgt
, PAGE_KERNEL_RO
);
1956 set_page_prot(level2_kernel_pgt
, PAGE_KERNEL_RO
);
1957 set_page_prot(level2_fixmap_pgt
, PAGE_KERNEL_RO
);
1958 set_page_prot(level1_fixmap_pgt
, PAGE_KERNEL_RO
);
1960 /* Pin down new L4 */
1961 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE
,
1962 PFN_DOWN(__pa_symbol(init_top_pgt
)));
1964 /* Unpin Xen-provided one */
1965 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
1968 * At this stage there can be no user pgd, and no page structure to
1969 * attach it to, so make sure we just set kernel pgd.
1972 __xen_write_cr3(true, __pa(init_top_pgt
));
1973 xen_mc_issue(PARAVIRT_LAZY_CPU
);
1975 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1976 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1977 * the initial domain. For guests using the toolstack, they are in:
1978 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1979 * rip out the [L4] (pgd), but for guests we shave off three pages.
1981 for (i
= 0; i
< ARRAY_SIZE(addr
); i
++)
1982 check_pt_base(&pt_base
, &pt_end
, addr
[i
]);
1984 /* Our (by three pages) smaller Xen pagetable that we are using */
1985 xen_pt_base
= PFN_PHYS(pt_base
);
1986 xen_pt_size
= (pt_end
- pt_base
) * PAGE_SIZE
;
1987 memblock_reserve(xen_pt_base
, xen_pt_size
);
1989 /* Revector the xen_start_info */
1990 xen_start_info
= (struct start_info
*)__va(__pa(xen_start_info
));
1994 * Read a value from a physical address.
1996 static unsigned long __init
xen_read_phys_ulong(phys_addr_t addr
)
1998 unsigned long *vaddr
;
2001 vaddr
= early_memremap_ro(addr
, sizeof(val
));
2003 early_memunmap(vaddr
, sizeof(val
));
2008 * Translate a virtual address to a physical one without relying on mapped
2009 * page tables. Don't rely on big pages being aligned in (guest) physical
2012 static phys_addr_t __init
xen_early_virt_to_phys(unsigned long vaddr
)
2021 pgd
= native_make_pgd(xen_read_phys_ulong(pa
+ pgd_index(vaddr
) *
2023 if (!pgd_present(pgd
))
2026 pa
= pgd_val(pgd
) & PTE_PFN_MASK
;
2027 pud
= native_make_pud(xen_read_phys_ulong(pa
+ pud_index(vaddr
) *
2029 if (!pud_present(pud
))
2031 pa
= pud_val(pud
) & PTE_PFN_MASK
;
2033 return pa
+ (vaddr
& ~PUD_MASK
);
2035 pmd
= native_make_pmd(xen_read_phys_ulong(pa
+ pmd_index(vaddr
) *
2037 if (!pmd_present(pmd
))
2039 pa
= pmd_val(pmd
) & PTE_PFN_MASK
;
2041 return pa
+ (vaddr
& ~PMD_MASK
);
2043 pte
= native_make_pte(xen_read_phys_ulong(pa
+ pte_index(vaddr
) *
2045 if (!pte_present(pte
))
2047 pa
= pte_pfn(pte
) << PAGE_SHIFT
;
2049 return pa
| (vaddr
& ~PAGE_MASK
);
2053 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2056 void __init
xen_relocate_p2m(void)
2058 phys_addr_t size
, new_area
, pt_phys
, pmd_phys
, pud_phys
, p4d_phys
;
2059 unsigned long p2m_pfn
, p2m_pfn_end
, n_frames
, pfn
, pfn_end
;
2060 int n_pte
, n_pt
, n_pmd
, n_pud
, n_p4d
, idx_pte
, idx_pt
, idx_pmd
, idx_pud
, idx_p4d
;
2066 unsigned long *new_p2m
;
2069 size
= PAGE_ALIGN(xen_start_info
->nr_pages
* sizeof(unsigned long));
2070 n_pte
= roundup(size
, PAGE_SIZE
) >> PAGE_SHIFT
;
2071 n_pt
= roundup(size
, PMD_SIZE
) >> PMD_SHIFT
;
2072 n_pmd
= roundup(size
, PUD_SIZE
) >> PUD_SHIFT
;
2073 n_pud
= roundup(size
, P4D_SIZE
) >> P4D_SHIFT
;
2074 if (PTRS_PER_P4D
> 1)
2075 n_p4d
= roundup(size
, PGDIR_SIZE
) >> PGDIR_SHIFT
;
2078 n_frames
= n_pte
+ n_pt
+ n_pmd
+ n_pud
+ n_p4d
;
2080 new_area
= xen_find_free_area(PFN_PHYS(n_frames
));
2082 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2087 * Setup the page tables for addressing the new p2m list.
2088 * We have asked the hypervisor to map the p2m list at the user address
2089 * PUD_SIZE. It may have done so, or it may have used a kernel space
2090 * address depending on the Xen version.
2091 * To avoid any possible virtual address collision, just use
2092 * 2 * PUD_SIZE for the new area.
2094 p4d_phys
= new_area
;
2095 pud_phys
= p4d_phys
+ PFN_PHYS(n_p4d
);
2096 pmd_phys
= pud_phys
+ PFN_PHYS(n_pud
);
2097 pt_phys
= pmd_phys
+ PFN_PHYS(n_pmd
);
2098 p2m_pfn
= PFN_DOWN(pt_phys
) + n_pt
;
2100 pgd
= __va(read_cr3_pa());
2101 new_p2m
= (unsigned long *)(2 * PGDIR_SIZE
);
2106 p4d
= early_memremap(p4d_phys
, PAGE_SIZE
);
2108 n_pud
= min(save_pud
, PTRS_PER_P4D
);
2110 for (idx_pud
= 0; idx_pud
< n_pud
; idx_pud
++) {
2111 pud
= early_memremap(pud_phys
, PAGE_SIZE
);
2113 for (idx_pmd
= 0; idx_pmd
< min(n_pmd
, PTRS_PER_PUD
);
2115 pmd
= early_memremap(pmd_phys
, PAGE_SIZE
);
2117 for (idx_pt
= 0; idx_pt
< min(n_pt
, PTRS_PER_PMD
);
2119 pt
= early_memremap(pt_phys
, PAGE_SIZE
);
2122 idx_pte
< min(n_pte
, PTRS_PER_PTE
);
2124 set_pte(pt
+ idx_pte
,
2125 pfn_pte(p2m_pfn
, PAGE_KERNEL
));
2128 n_pte
-= PTRS_PER_PTE
;
2129 early_memunmap(pt
, PAGE_SIZE
);
2130 make_lowmem_page_readonly(__va(pt_phys
));
2131 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
,
2133 set_pmd(pmd
+ idx_pt
,
2134 __pmd(_PAGE_TABLE
| pt_phys
));
2135 pt_phys
+= PAGE_SIZE
;
2137 n_pt
-= PTRS_PER_PMD
;
2138 early_memunmap(pmd
, PAGE_SIZE
);
2139 make_lowmem_page_readonly(__va(pmd_phys
));
2140 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE
,
2141 PFN_DOWN(pmd_phys
));
2142 set_pud(pud
+ idx_pmd
, __pud(_PAGE_TABLE
| pmd_phys
));
2143 pmd_phys
+= PAGE_SIZE
;
2145 n_pmd
-= PTRS_PER_PUD
;
2146 early_memunmap(pud
, PAGE_SIZE
);
2147 make_lowmem_page_readonly(__va(pud_phys
));
2148 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(pud_phys
));
2150 set_p4d(p4d
+ idx_pud
, __p4d(_PAGE_TABLE
| pud_phys
));
2152 set_pgd(pgd
+ 2 + idx_pud
, __pgd(_PAGE_TABLE
| pud_phys
));
2153 pud_phys
+= PAGE_SIZE
;
2156 save_pud
-= PTRS_PER_P4D
;
2157 early_memunmap(p4d
, PAGE_SIZE
);
2158 make_lowmem_page_readonly(__va(p4d_phys
));
2159 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE
, PFN_DOWN(p4d_phys
));
2160 set_pgd(pgd
+ 2 + idx_p4d
, __pgd(_PAGE_TABLE
| p4d_phys
));
2161 p4d_phys
+= PAGE_SIZE
;
2163 } while (++idx_p4d
< n_p4d
);
2165 /* Now copy the old p2m info to the new area. */
2166 memcpy(new_p2m
, xen_p2m_addr
, size
);
2167 xen_p2m_addr
= new_p2m
;
2169 /* Release the old p2m list and set new list info. */
2170 p2m_pfn
= PFN_DOWN(xen_early_virt_to_phys(xen_start_info
->mfn_list
));
2172 p2m_pfn_end
= p2m_pfn
+ PFN_DOWN(size
);
2174 if (xen_start_info
->mfn_list
< __START_KERNEL_map
) {
2175 pfn
= xen_start_info
->first_p2m_pfn
;
2176 pfn_end
= xen_start_info
->first_p2m_pfn
+
2177 xen_start_info
->nr_p2m_frames
;
2178 set_pgd(pgd
+ 1, __pgd(0));
2181 pfn_end
= p2m_pfn_end
;
2184 memblock_free(PFN_PHYS(pfn
), PAGE_SIZE
* (pfn_end
- pfn
));
2185 while (pfn
< pfn_end
) {
2186 if (pfn
== p2m_pfn
) {
2190 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
2194 xen_start_info
->mfn_list
= (unsigned long)xen_p2m_addr
;
2195 xen_start_info
->first_p2m_pfn
= PFN_DOWN(new_area
);
2196 xen_start_info
->nr_p2m_frames
= n_frames
;
2199 #else /* !CONFIG_X86_64 */
2200 static RESERVE_BRK_ARRAY(pmd_t
, initial_kernel_pmd
, PTRS_PER_PMD
);
2201 static RESERVE_BRK_ARRAY(pmd_t
, swapper_kernel_pmd
, PTRS_PER_PMD
);
2203 static void __init
xen_write_cr3_init(unsigned long cr3
)
2205 unsigned long pfn
= PFN_DOWN(__pa(swapper_pg_dir
));
2207 BUG_ON(read_cr3_pa() != __pa(initial_page_table
));
2208 BUG_ON(cr3
!= __pa(swapper_pg_dir
));
2211 * We are switching to swapper_pg_dir for the first time (from
2212 * initial_page_table) and therefore need to mark that page
2213 * read-only and then pin it.
2215 * Xen disallows sharing of kernel PMDs for PAE
2216 * guests. Therefore we must copy the kernel PMD from
2217 * initial_page_table into a new kernel PMD to be used in
2220 swapper_kernel_pmd
=
2221 extend_brk(sizeof(pmd_t
) * PTRS_PER_PMD
, PAGE_SIZE
);
2222 copy_page(swapper_kernel_pmd
, initial_kernel_pmd
);
2223 swapper_pg_dir
[KERNEL_PGD_BOUNDARY
] =
2224 __pgd(__pa(swapper_kernel_pmd
) | _PAGE_PRESENT
);
2225 set_page_prot(swapper_kernel_pmd
, PAGE_KERNEL_RO
);
2227 set_page_prot(swapper_pg_dir
, PAGE_KERNEL_RO
);
2229 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, pfn
);
2231 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
,
2232 PFN_DOWN(__pa(initial_page_table
)));
2233 set_page_prot(initial_page_table
, PAGE_KERNEL
);
2234 set_page_prot(initial_kernel_pmd
, PAGE_KERNEL
);
2236 pv_mmu_ops
.write_cr3
= &xen_write_cr3
;
2240 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2241 * not the first page table in the page table pool.
2242 * Iterate through the initial page tables to find the real page table base.
2244 static phys_addr_t
xen_find_pt_base(pmd_t
*pmd
)
2246 phys_addr_t pt_base
, paddr
;
2249 pt_base
= min(__pa(xen_start_info
->pt_base
), __pa(pmd
));
2251 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
; pmdidx
++)
2252 if (pmd_present(pmd
[pmdidx
]) && !pmd_large(pmd
[pmdidx
])) {
2253 paddr
= m2p(pmd
[pmdidx
].pmd
);
2254 pt_base
= min(pt_base
, paddr
);
2260 void __init
xen_setup_kernel_pagetable(pgd_t
*pgd
, unsigned long max_pfn
)
2264 kernel_pmd
= m2v(pgd
[KERNEL_PGD_BOUNDARY
].pgd
);
2266 xen_pt_base
= xen_find_pt_base(kernel_pmd
);
2267 xen_pt_size
= xen_start_info
->nr_pt_frames
* PAGE_SIZE
;
2269 initial_kernel_pmd
=
2270 extend_brk(sizeof(pmd_t
) * PTRS_PER_PMD
, PAGE_SIZE
);
2272 max_pfn_mapped
= PFN_DOWN(xen_pt_base
+ xen_pt_size
+ 512 * 1024);
2274 copy_page(initial_kernel_pmd
, kernel_pmd
);
2276 xen_map_identity_early(initial_kernel_pmd
, max_pfn
);
2278 copy_page(initial_page_table
, pgd
);
2279 initial_page_table
[KERNEL_PGD_BOUNDARY
] =
2280 __pgd(__pa(initial_kernel_pmd
) | _PAGE_PRESENT
);
2282 set_page_prot(initial_kernel_pmd
, PAGE_KERNEL_RO
);
2283 set_page_prot(initial_page_table
, PAGE_KERNEL_RO
);
2284 set_page_prot(empty_zero_page
, PAGE_KERNEL_RO
);
2286 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
2288 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
,
2289 PFN_DOWN(__pa(initial_page_table
)));
2290 xen_write_cr3(__pa(initial_page_table
));
2292 memblock_reserve(xen_pt_base
, xen_pt_size
);
2294 #endif /* CONFIG_X86_64 */
2296 void __init
xen_reserve_special_pages(void)
2300 memblock_reserve(__pa(xen_start_info
), PAGE_SIZE
);
2301 if (xen_start_info
->store_mfn
) {
2302 paddr
= PFN_PHYS(mfn_to_pfn(xen_start_info
->store_mfn
));
2303 memblock_reserve(paddr
, PAGE_SIZE
);
2305 if (!xen_initial_domain()) {
2306 paddr
= PFN_PHYS(mfn_to_pfn(xen_start_info
->console
.domU
.mfn
));
2307 memblock_reserve(paddr
, PAGE_SIZE
);
2311 void __init
xen_pt_check_e820(void)
2313 if (xen_is_e820_reserved(xen_pt_base
, xen_pt_size
)) {
2314 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2319 static unsigned char dummy_mapping
[PAGE_SIZE
] __page_aligned_bss
;
2321 static void xen_set_fixmap(unsigned idx
, phys_addr_t phys
, pgprot_t prot
)
2325 phys
>>= PAGE_SHIFT
;
2328 case FIX_BTMAP_END
... FIX_BTMAP_BEGIN
:
2330 #ifdef CONFIG_X86_32
2332 # ifdef CONFIG_HIGHMEM
2333 case FIX_KMAP_BEGIN
... FIX_KMAP_END
:
2335 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2338 case FIX_TEXT_POKE0
:
2339 case FIX_TEXT_POKE1
:
2340 case FIX_GDT_REMAP_BEGIN
... FIX_GDT_REMAP_END
:
2341 /* All local page mappings */
2342 pte
= pfn_pte(phys
, prot
);
2345 #ifdef CONFIG_X86_LOCAL_APIC
2346 case FIX_APIC_BASE
: /* maps dummy local APIC */
2347 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2351 #ifdef CONFIG_X86_IO_APIC
2352 case FIX_IO_APIC_BASE_0
... FIX_IO_APIC_BASE_END
:
2354 * We just don't map the IO APIC - all access is via
2355 * hypercalls. Keep the address in the pte for reference.
2357 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2361 case FIX_PARAVIRT_BOOTMAP
:
2362 /* This is an MFN, but it isn't an IO mapping from the
2364 pte
= mfn_pte(phys
, prot
);
2368 /* By default, set_fixmap is used for hardware mappings */
2369 pte
= mfn_pte(phys
, prot
);
2373 __native_set_fixmap(idx
, pte
);
2375 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2376 /* Replicate changes to map the vsyscall page into the user
2377 pagetable vsyscall mapping. */
2378 if (idx
== VSYSCALL_PAGE
) {
2379 unsigned long vaddr
= __fix_to_virt(idx
);
2380 set_pte_vaddr_pud(level3_user_vsyscall
, vaddr
, pte
);
2385 static void __init
xen_post_allocator_init(void)
2387 pv_mmu_ops
.set_pte
= xen_set_pte
;
2388 pv_mmu_ops
.set_pmd
= xen_set_pmd
;
2389 pv_mmu_ops
.set_pud
= xen_set_pud
;
2390 #if CONFIG_PGTABLE_LEVELS >= 4
2391 pv_mmu_ops
.set_p4d
= xen_set_p4d
;
2394 /* This will work as long as patching hasn't happened yet
2395 (which it hasn't) */
2396 pv_mmu_ops
.alloc_pte
= xen_alloc_pte
;
2397 pv_mmu_ops
.alloc_pmd
= xen_alloc_pmd
;
2398 pv_mmu_ops
.release_pte
= xen_release_pte
;
2399 pv_mmu_ops
.release_pmd
= xen_release_pmd
;
2400 #if CONFIG_PGTABLE_LEVELS >= 4
2401 pv_mmu_ops
.alloc_pud
= xen_alloc_pud
;
2402 pv_mmu_ops
.release_pud
= xen_release_pud
;
2404 pv_mmu_ops
.make_pte
= PV_CALLEE_SAVE(xen_make_pte
);
2406 #ifdef CONFIG_X86_64
2407 pv_mmu_ops
.write_cr3
= &xen_write_cr3
;
2408 SetPagePinned(virt_to_page(level3_user_vsyscall
));
2410 xen_mark_init_mm_pinned();
2413 static void xen_leave_lazy_mmu(void)
2417 paravirt_leave_lazy_mmu();
2421 static const struct pv_mmu_ops xen_mmu_ops __initconst
= {
2422 .read_cr2
= xen_read_cr2
,
2423 .write_cr2
= xen_write_cr2
,
2425 .read_cr3
= xen_read_cr3
,
2426 .write_cr3
= xen_write_cr3_init
,
2428 .flush_tlb_user
= xen_flush_tlb
,
2429 .flush_tlb_kernel
= xen_flush_tlb
,
2430 .flush_tlb_single
= xen_flush_tlb_single
,
2431 .flush_tlb_others
= xen_flush_tlb_others
,
2433 .pte_update
= paravirt_nop
,
2435 .pgd_alloc
= xen_pgd_alloc
,
2436 .pgd_free
= xen_pgd_free
,
2438 .alloc_pte
= xen_alloc_pte_init
,
2439 .release_pte
= xen_release_pte_init
,
2440 .alloc_pmd
= xen_alloc_pmd_init
,
2441 .release_pmd
= xen_release_pmd_init
,
2443 .set_pte
= xen_set_pte_init
,
2444 .set_pte_at
= xen_set_pte_at
,
2445 .set_pmd
= xen_set_pmd_hyper
,
2447 .ptep_modify_prot_start
= __ptep_modify_prot_start
,
2448 .ptep_modify_prot_commit
= __ptep_modify_prot_commit
,
2450 .pte_val
= PV_CALLEE_SAVE(xen_pte_val
),
2451 .pgd_val
= PV_CALLEE_SAVE(xen_pgd_val
),
2453 .make_pte
= PV_CALLEE_SAVE(xen_make_pte_init
),
2454 .make_pgd
= PV_CALLEE_SAVE(xen_make_pgd
),
2456 #ifdef CONFIG_X86_PAE
2457 .set_pte_atomic
= xen_set_pte_atomic
,
2458 .pte_clear
= xen_pte_clear
,
2459 .pmd_clear
= xen_pmd_clear
,
2460 #endif /* CONFIG_X86_PAE */
2461 .set_pud
= xen_set_pud_hyper
,
2463 .make_pmd
= PV_CALLEE_SAVE(xen_make_pmd
),
2464 .pmd_val
= PV_CALLEE_SAVE(xen_pmd_val
),
2466 #if CONFIG_PGTABLE_LEVELS >= 4
2467 .pud_val
= PV_CALLEE_SAVE(xen_pud_val
),
2468 .make_pud
= PV_CALLEE_SAVE(xen_make_pud
),
2469 .set_p4d
= xen_set_p4d_hyper
,
2471 .alloc_pud
= xen_alloc_pmd_init
,
2472 .release_pud
= xen_release_pmd_init
,
2473 #endif /* CONFIG_PGTABLE_LEVELS == 4 */
2475 .activate_mm
= xen_activate_mm
,
2476 .dup_mmap
= xen_dup_mmap
,
2477 .exit_mmap
= xen_exit_mmap
,
2480 .enter
= paravirt_enter_lazy_mmu
,
2481 .leave
= xen_leave_lazy_mmu
,
2482 .flush
= paravirt_flush_lazy_mmu
,
2485 .set_fixmap
= xen_set_fixmap
,
2488 void __init
xen_init_mmu_ops(void)
2490 x86_init
.paging
.pagetable_init
= xen_pagetable_init
;
2492 pv_mmu_ops
= xen_mmu_ops
;
2494 memset(dummy_mapping
, 0xff, PAGE_SIZE
);
2497 /* Protected by xen_reservation_lock. */
2498 #define MAX_CONTIG_ORDER 9 /* 2MB */
2499 static unsigned long discontig_frames
[1<<MAX_CONTIG_ORDER
];
2501 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2502 static void xen_zap_pfn_range(unsigned long vaddr
, unsigned int order
,
2503 unsigned long *in_frames
,
2504 unsigned long *out_frames
)
2507 struct multicall_space mcs
;
2510 for (i
= 0; i
< (1UL<<order
); i
++, vaddr
+= PAGE_SIZE
) {
2511 mcs
= __xen_mc_entry(0);
2514 in_frames
[i
] = virt_to_mfn(vaddr
);
2516 MULTI_update_va_mapping(mcs
.mc
, vaddr
, VOID_PTE
, 0);
2517 __set_phys_to_machine(virt_to_pfn(vaddr
), INVALID_P2M_ENTRY
);
2520 out_frames
[i
] = virt_to_pfn(vaddr
);
2526 * Update the pfn-to-mfn mappings for a virtual address range, either to
2527 * point to an array of mfns, or contiguously from a single starting
2530 static void xen_remap_exchanged_ptes(unsigned long vaddr
, int order
,
2531 unsigned long *mfns
,
2532 unsigned long first_mfn
)
2539 limit
= 1u << order
;
2540 for (i
= 0; i
< limit
; i
++, vaddr
+= PAGE_SIZE
) {
2541 struct multicall_space mcs
;
2544 mcs
= __xen_mc_entry(0);
2548 mfn
= first_mfn
+ i
;
2550 if (i
< (limit
- 1))
2554 flags
= UVMF_INVLPG
| UVMF_ALL
;
2556 flags
= UVMF_TLB_FLUSH
| UVMF_ALL
;
2559 MULTI_update_va_mapping(mcs
.mc
, vaddr
,
2560 mfn_pte(mfn
, PAGE_KERNEL
), flags
);
2562 set_phys_to_machine(virt_to_pfn(vaddr
), mfn
);
2569 * Perform the hypercall to exchange a region of our pfns to point to
2570 * memory with the required contiguous alignment. Takes the pfns as
2571 * input, and populates mfns as output.
2573 * Returns a success code indicating whether the hypervisor was able to
2574 * satisfy the request or not.
2576 static int xen_exchange_memory(unsigned long extents_in
, unsigned int order_in
,
2577 unsigned long *pfns_in
,
2578 unsigned long extents_out
,
2579 unsigned int order_out
,
2580 unsigned long *mfns_out
,
2581 unsigned int address_bits
)
2586 struct xen_memory_exchange exchange
= {
2588 .nr_extents
= extents_in
,
2589 .extent_order
= order_in
,
2590 .extent_start
= pfns_in
,
2594 .nr_extents
= extents_out
,
2595 .extent_order
= order_out
,
2596 .extent_start
= mfns_out
,
2597 .address_bits
= address_bits
,
2602 BUG_ON(extents_in
<< order_in
!= extents_out
<< order_out
);
2604 rc
= HYPERVISOR_memory_op(XENMEM_exchange
, &exchange
);
2605 success
= (exchange
.nr_exchanged
== extents_in
);
2607 BUG_ON(!success
&& ((exchange
.nr_exchanged
!= 0) || (rc
== 0)));
2608 BUG_ON(success
&& (rc
!= 0));
2613 int xen_create_contiguous_region(phys_addr_t pstart
, unsigned int order
,
2614 unsigned int address_bits
,
2615 dma_addr_t
*dma_handle
)
2617 unsigned long *in_frames
= discontig_frames
, out_frame
;
2618 unsigned long flags
;
2620 unsigned long vstart
= (unsigned long)phys_to_virt(pstart
);
2623 * Currently an auto-translated guest will not perform I/O, nor will
2624 * it require PAE page directories below 4GB. Therefore any calls to
2625 * this function are redundant and can be ignored.
2628 if (unlikely(order
> MAX_CONTIG_ORDER
))
2631 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2633 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2635 /* 1. Zap current PTEs, remembering MFNs. */
2636 xen_zap_pfn_range(vstart
, order
, in_frames
, NULL
);
2638 /* 2. Get a new contiguous memory extent. */
2639 out_frame
= virt_to_pfn(vstart
);
2640 success
= xen_exchange_memory(1UL << order
, 0, in_frames
,
2641 1, order
, &out_frame
,
2644 /* 3. Map the new extent in place of old pages. */
2646 xen_remap_exchanged_ptes(vstart
, order
, NULL
, out_frame
);
2648 xen_remap_exchanged_ptes(vstart
, order
, in_frames
, 0);
2650 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2652 *dma_handle
= virt_to_machine(vstart
).maddr
;
2653 return success
? 0 : -ENOMEM
;
2655 EXPORT_SYMBOL_GPL(xen_create_contiguous_region
);
2657 void xen_destroy_contiguous_region(phys_addr_t pstart
, unsigned int order
)
2659 unsigned long *out_frames
= discontig_frames
, in_frame
;
2660 unsigned long flags
;
2662 unsigned long vstart
;
2664 if (unlikely(order
> MAX_CONTIG_ORDER
))
2667 vstart
= (unsigned long)phys_to_virt(pstart
);
2668 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2670 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2672 /* 1. Find start MFN of contiguous extent. */
2673 in_frame
= virt_to_mfn(vstart
);
2675 /* 2. Zap current PTEs. */
2676 xen_zap_pfn_range(vstart
, order
, NULL
, out_frames
);
2678 /* 3. Do the exchange for non-contiguous MFNs. */
2679 success
= xen_exchange_memory(1, order
, &in_frame
, 1UL << order
,
2682 /* 4. Map new pages in place of old pages. */
2684 xen_remap_exchanged_ptes(vstart
, order
, out_frames
, 0);
2686 xen_remap_exchanged_ptes(vstart
, order
, NULL
, in_frame
);
2688 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2690 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region
);
2692 #ifdef CONFIG_KEXEC_CORE
2693 phys_addr_t
paddr_vmcoreinfo_note(void)
2695 if (xen_pv_domain())
2696 return virt_to_machine(vmcoreinfo_note
).maddr
;
2698 return __pa(vmcoreinfo_note
);
2700 #endif /* CONFIG_KEXEC_CORE */