Linux 4.13.16
[linux/fpc-iii.git] / kernel / cgroup / cgroup.c
blob6d60aafbe8c1b5d4313d999b222318118a06fbcd
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <net/sock.h>
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/cgroup.h>
62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
63 MAX_CFTYPE_NAME + 2)
66 * cgroup_mutex is the master lock. Any modification to cgroup or its
67 * hierarchy must be performed while holding it.
69 * css_set_lock protects task->cgroups pointer, the list of css_set
70 * objects, and the chain of tasks off each css_set.
72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
73 * cgroup.h can use them for lockdep annotations.
75 DEFINE_MUTEX(cgroup_mutex);
76 DEFINE_SPINLOCK(css_set_lock);
78 #ifdef CONFIG_PROVE_RCU
79 EXPORT_SYMBOL_GPL(cgroup_mutex);
80 EXPORT_SYMBOL_GPL(css_set_lock);
81 #endif
84 * Protects cgroup_idr and css_idr so that IDs can be released without
85 * grabbing cgroup_mutex.
87 static DEFINE_SPINLOCK(cgroup_idr_lock);
90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
91 * against file removal/re-creation across css hiding.
93 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
97 #define cgroup_assert_mutex_or_rcu_locked() \
98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
99 !lockdep_is_held(&cgroup_mutex), \
100 "cgroup_mutex or RCU read lock required");
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
108 static struct workqueue_struct *cgroup_destroy_wq;
110 /* generate an array of cgroup subsystem pointers */
111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
112 struct cgroup_subsys *cgroup_subsys[] = {
113 #include <linux/cgroup_subsys.h>
115 #undef SUBSYS
117 /* array of cgroup subsystem names */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
119 static const char *cgroup_subsys_name[] = {
120 #include <linux/cgroup_subsys.h>
122 #undef SUBSYS
124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
125 #define SUBSYS(_x) \
126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
130 #include <linux/cgroup_subsys.h>
131 #undef SUBSYS
133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
134 static struct static_key_true *cgroup_subsys_enabled_key[] = {
135 #include <linux/cgroup_subsys.h>
137 #undef SUBSYS
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
141 #include <linux/cgroup_subsys.h>
143 #undef SUBSYS
146 * The default hierarchy, reserved for the subsystems that are otherwise
147 * unattached - it never has more than a single cgroup, and all tasks are
148 * part of that cgroup.
150 struct cgroup_root cgrp_dfl_root;
151 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
154 * The default hierarchy always exists but is hidden until mounted for the
155 * first time. This is for backward compatibility.
157 static bool cgrp_dfl_visible;
159 /* some controllers are not supported in the default hierarchy */
160 static u16 cgrp_dfl_inhibit_ss_mask;
162 /* some controllers are implicitly enabled on the default hierarchy */
163 static u16 cgrp_dfl_implicit_ss_mask;
165 /* The list of hierarchy roots */
166 LIST_HEAD(cgroup_roots);
167 static int cgroup_root_count;
169 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
170 static DEFINE_IDR(cgroup_hierarchy_idr);
173 * Assign a monotonically increasing serial number to csses. It guarantees
174 * cgroups with bigger numbers are newer than those with smaller numbers.
175 * Also, as csses are always appended to the parent's ->children list, it
176 * guarantees that sibling csses are always sorted in the ascending serial
177 * number order on the list. Protected by cgroup_mutex.
179 static u64 css_serial_nr_next = 1;
182 * These bitmasks identify subsystems with specific features to avoid
183 * having to do iterative checks repeatedly.
185 static u16 have_fork_callback __read_mostly;
186 static u16 have_exit_callback __read_mostly;
187 static u16 have_free_callback __read_mostly;
188 static u16 have_canfork_callback __read_mostly;
190 /* cgroup namespace for init task */
191 struct cgroup_namespace init_cgroup_ns = {
192 .count = REFCOUNT_INIT(2),
193 .user_ns = &init_user_ns,
194 .ns.ops = &cgroupns_operations,
195 .ns.inum = PROC_CGROUP_INIT_INO,
196 .root_cset = &init_css_set,
199 static struct file_system_type cgroup2_fs_type;
200 static struct cftype cgroup_base_files[];
202 static int cgroup_apply_control(struct cgroup *cgrp);
203 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
204 static void css_task_iter_advance(struct css_task_iter *it);
205 static int cgroup_destroy_locked(struct cgroup *cgrp);
206 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
207 struct cgroup_subsys *ss);
208 static void css_release(struct percpu_ref *ref);
209 static void kill_css(struct cgroup_subsys_state *css);
210 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
211 struct cgroup *cgrp, struct cftype cfts[],
212 bool is_add);
215 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
216 * @ssid: subsys ID of interest
218 * cgroup_subsys_enabled() can only be used with literal subsys names which
219 * is fine for individual subsystems but unsuitable for cgroup core. This
220 * is slower static_key_enabled() based test indexed by @ssid.
222 bool cgroup_ssid_enabled(int ssid)
224 if (CGROUP_SUBSYS_COUNT == 0)
225 return false;
227 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
231 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
232 * @cgrp: the cgroup of interest
234 * The default hierarchy is the v2 interface of cgroup and this function
235 * can be used to test whether a cgroup is on the default hierarchy for
236 * cases where a subsystem should behave differnetly depending on the
237 * interface version.
239 * The set of behaviors which change on the default hierarchy are still
240 * being determined and the mount option is prefixed with __DEVEL__.
242 * List of changed behaviors:
244 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
245 * and "name" are disallowed.
247 * - When mounting an existing superblock, mount options should match.
249 * - Remount is disallowed.
251 * - rename(2) is disallowed.
253 * - "tasks" is removed. Everything should be at process granularity. Use
254 * "cgroup.procs" instead.
256 * - "cgroup.procs" is not sorted. pids will be unique unless they got
257 * recycled inbetween reads.
259 * - "release_agent" and "notify_on_release" are removed. Replacement
260 * notification mechanism will be implemented.
262 * - "cgroup.clone_children" is removed.
264 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
265 * and its descendants contain no task; otherwise, 1. The file also
266 * generates kernfs notification which can be monitored through poll and
267 * [di]notify when the value of the file changes.
269 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
270 * take masks of ancestors with non-empty cpus/mems, instead of being
271 * moved to an ancestor.
273 * - cpuset: a task can be moved into an empty cpuset, and again it takes
274 * masks of ancestors.
276 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
277 * is not created.
279 * - blkcg: blk-throttle becomes properly hierarchical.
281 * - debug: disallowed on the default hierarchy.
283 bool cgroup_on_dfl(const struct cgroup *cgrp)
285 return cgrp->root == &cgrp_dfl_root;
288 /* IDR wrappers which synchronize using cgroup_idr_lock */
289 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
290 gfp_t gfp_mask)
292 int ret;
294 idr_preload(gfp_mask);
295 spin_lock_bh(&cgroup_idr_lock);
296 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
297 spin_unlock_bh(&cgroup_idr_lock);
298 idr_preload_end();
299 return ret;
302 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
304 void *ret;
306 spin_lock_bh(&cgroup_idr_lock);
307 ret = idr_replace(idr, ptr, id);
308 spin_unlock_bh(&cgroup_idr_lock);
309 return ret;
312 static void cgroup_idr_remove(struct idr *idr, int id)
314 spin_lock_bh(&cgroup_idr_lock);
315 idr_remove(idr, id);
316 spin_unlock_bh(&cgroup_idr_lock);
319 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
321 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
323 if (parent_css)
324 return container_of(parent_css, struct cgroup, self);
325 return NULL;
328 /* subsystems visibly enabled on a cgroup */
329 static u16 cgroup_control(struct cgroup *cgrp)
331 struct cgroup *parent = cgroup_parent(cgrp);
332 u16 root_ss_mask = cgrp->root->subsys_mask;
334 if (parent)
335 return parent->subtree_control;
337 if (cgroup_on_dfl(cgrp))
338 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
339 cgrp_dfl_implicit_ss_mask);
340 return root_ss_mask;
343 /* subsystems enabled on a cgroup */
344 static u16 cgroup_ss_mask(struct cgroup *cgrp)
346 struct cgroup *parent = cgroup_parent(cgrp);
348 if (parent)
349 return parent->subtree_ss_mask;
351 return cgrp->root->subsys_mask;
355 * cgroup_css - obtain a cgroup's css for the specified subsystem
356 * @cgrp: the cgroup of interest
357 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
359 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
360 * function must be called either under cgroup_mutex or rcu_read_lock() and
361 * the caller is responsible for pinning the returned css if it wants to
362 * keep accessing it outside the said locks. This function may return
363 * %NULL if @cgrp doesn't have @subsys_id enabled.
365 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
366 struct cgroup_subsys *ss)
368 if (ss)
369 return rcu_dereference_check(cgrp->subsys[ss->id],
370 lockdep_is_held(&cgroup_mutex));
371 else
372 return &cgrp->self;
376 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
377 * @cgrp: the cgroup of interest
378 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
380 * Similar to cgroup_css() but returns the effective css, which is defined
381 * as the matching css of the nearest ancestor including self which has @ss
382 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
383 * function is guaranteed to return non-NULL css.
385 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
386 struct cgroup_subsys *ss)
388 lockdep_assert_held(&cgroup_mutex);
390 if (!ss)
391 return &cgrp->self;
394 * This function is used while updating css associations and thus
395 * can't test the csses directly. Test ss_mask.
397 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
398 cgrp = cgroup_parent(cgrp);
399 if (!cgrp)
400 return NULL;
403 return cgroup_css(cgrp, ss);
407 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
408 * @cgrp: the cgroup of interest
409 * @ss: the subsystem of interest
411 * Find and get the effective css of @cgrp for @ss. The effective css is
412 * defined as the matching css of the nearest ancestor including self which
413 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
414 * the root css is returned, so this function always returns a valid css.
415 * The returned css must be put using css_put().
417 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
418 struct cgroup_subsys *ss)
420 struct cgroup_subsys_state *css;
422 rcu_read_lock();
424 do {
425 css = cgroup_css(cgrp, ss);
427 if (css && css_tryget_online(css))
428 goto out_unlock;
429 cgrp = cgroup_parent(cgrp);
430 } while (cgrp);
432 css = init_css_set.subsys[ss->id];
433 css_get(css);
434 out_unlock:
435 rcu_read_unlock();
436 return css;
439 static void __maybe_unused cgroup_get(struct cgroup *cgrp)
441 css_get(&cgrp->self);
444 static void cgroup_get_live(struct cgroup *cgrp)
446 WARN_ON_ONCE(cgroup_is_dead(cgrp));
447 css_get(&cgrp->self);
450 static bool cgroup_tryget(struct cgroup *cgrp)
452 return css_tryget(&cgrp->self);
455 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
457 struct cgroup *cgrp = of->kn->parent->priv;
458 struct cftype *cft = of_cft(of);
461 * This is open and unprotected implementation of cgroup_css().
462 * seq_css() is only called from a kernfs file operation which has
463 * an active reference on the file. Because all the subsystem
464 * files are drained before a css is disassociated with a cgroup,
465 * the matching css from the cgroup's subsys table is guaranteed to
466 * be and stay valid until the enclosing operation is complete.
468 if (cft->ss)
469 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
470 else
471 return &cgrp->self;
473 EXPORT_SYMBOL_GPL(of_css);
476 * for_each_css - iterate all css's of a cgroup
477 * @css: the iteration cursor
478 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
479 * @cgrp: the target cgroup to iterate css's of
481 * Should be called under cgroup_[tree_]mutex.
483 #define for_each_css(css, ssid, cgrp) \
484 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
485 if (!((css) = rcu_dereference_check( \
486 (cgrp)->subsys[(ssid)], \
487 lockdep_is_held(&cgroup_mutex)))) { } \
488 else
491 * for_each_e_css - iterate all effective css's of a cgroup
492 * @css: the iteration cursor
493 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
494 * @cgrp: the target cgroup to iterate css's of
496 * Should be called under cgroup_[tree_]mutex.
498 #define for_each_e_css(css, ssid, cgrp) \
499 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
500 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
502 else
505 * do_each_subsys_mask - filter for_each_subsys with a bitmask
506 * @ss: the iteration cursor
507 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
508 * @ss_mask: the bitmask
510 * The block will only run for cases where the ssid-th bit (1 << ssid) of
511 * @ss_mask is set.
513 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
514 unsigned long __ss_mask = (ss_mask); \
515 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
516 (ssid) = 0; \
517 break; \
519 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
520 (ss) = cgroup_subsys[ssid]; \
523 #define while_each_subsys_mask() \
526 } while (false)
528 /* iterate over child cgrps, lock should be held throughout iteration */
529 #define cgroup_for_each_live_child(child, cgrp) \
530 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
531 if (({ lockdep_assert_held(&cgroup_mutex); \
532 cgroup_is_dead(child); })) \
534 else
536 /* walk live descendants in preorder */
537 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
538 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
539 if (({ lockdep_assert_held(&cgroup_mutex); \
540 (dsct) = (d_css)->cgroup; \
541 cgroup_is_dead(dsct); })) \
543 else
545 /* walk live descendants in postorder */
546 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
547 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
548 if (({ lockdep_assert_held(&cgroup_mutex); \
549 (dsct) = (d_css)->cgroup; \
550 cgroup_is_dead(dsct); })) \
552 else
555 * The default css_set - used by init and its children prior to any
556 * hierarchies being mounted. It contains a pointer to the root state
557 * for each subsystem. Also used to anchor the list of css_sets. Not
558 * reference-counted, to improve performance when child cgroups
559 * haven't been created.
561 struct css_set init_css_set = {
562 .refcount = REFCOUNT_INIT(1),
563 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
564 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
565 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
566 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
567 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
568 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
571 static int css_set_count = 1; /* 1 for init_css_set */
574 * css_set_populated - does a css_set contain any tasks?
575 * @cset: target css_set
577 * css_set_populated() should be the same as !!cset->nr_tasks at steady
578 * state. However, css_set_populated() can be called while a task is being
579 * added to or removed from the linked list before the nr_tasks is
580 * properly updated. Hence, we can't just look at ->nr_tasks here.
582 static bool css_set_populated(struct css_set *cset)
584 lockdep_assert_held(&css_set_lock);
586 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
590 * cgroup_update_populated - updated populated count of a cgroup
591 * @cgrp: the target cgroup
592 * @populated: inc or dec populated count
594 * One of the css_sets associated with @cgrp is either getting its first
595 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
596 * count is propagated towards root so that a given cgroup's populated_cnt
597 * is zero iff the cgroup and all its descendants don't contain any tasks.
599 * @cgrp's interface file "cgroup.populated" is zero if
600 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
601 * changes from or to zero, userland is notified that the content of the
602 * interface file has changed. This can be used to detect when @cgrp and
603 * its descendants become populated or empty.
605 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
607 lockdep_assert_held(&css_set_lock);
609 do {
610 bool trigger;
612 if (populated)
613 trigger = !cgrp->populated_cnt++;
614 else
615 trigger = !--cgrp->populated_cnt;
617 if (!trigger)
618 break;
620 cgroup1_check_for_release(cgrp);
621 cgroup_file_notify(&cgrp->events_file);
623 cgrp = cgroup_parent(cgrp);
624 } while (cgrp);
628 * css_set_update_populated - update populated state of a css_set
629 * @cset: target css_set
630 * @populated: whether @cset is populated or depopulated
632 * @cset is either getting the first task or losing the last. Update the
633 * ->populated_cnt of all associated cgroups accordingly.
635 static void css_set_update_populated(struct css_set *cset, bool populated)
637 struct cgrp_cset_link *link;
639 lockdep_assert_held(&css_set_lock);
641 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
642 cgroup_update_populated(link->cgrp, populated);
646 * css_set_move_task - move a task from one css_set to another
647 * @task: task being moved
648 * @from_cset: css_set @task currently belongs to (may be NULL)
649 * @to_cset: new css_set @task is being moved to (may be NULL)
650 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
652 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
653 * css_set, @from_cset can be NULL. If @task is being disassociated
654 * instead of moved, @to_cset can be NULL.
656 * This function automatically handles populated_cnt updates and
657 * css_task_iter adjustments but the caller is responsible for managing
658 * @from_cset and @to_cset's reference counts.
660 static void css_set_move_task(struct task_struct *task,
661 struct css_set *from_cset, struct css_set *to_cset,
662 bool use_mg_tasks)
664 lockdep_assert_held(&css_set_lock);
666 if (to_cset && !css_set_populated(to_cset))
667 css_set_update_populated(to_cset, true);
669 if (from_cset) {
670 struct css_task_iter *it, *pos;
672 WARN_ON_ONCE(list_empty(&task->cg_list));
675 * @task is leaving, advance task iterators which are
676 * pointing to it so that they can resume at the next
677 * position. Advancing an iterator might remove it from
678 * the list, use safe walk. See css_task_iter_advance*()
679 * for details.
681 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
682 iters_node)
683 if (it->task_pos == &task->cg_list)
684 css_task_iter_advance(it);
686 list_del_init(&task->cg_list);
687 if (!css_set_populated(from_cset))
688 css_set_update_populated(from_cset, false);
689 } else {
690 WARN_ON_ONCE(!list_empty(&task->cg_list));
693 if (to_cset) {
695 * We are synchronized through cgroup_threadgroup_rwsem
696 * against PF_EXITING setting such that we can't race
697 * against cgroup_exit() changing the css_set to
698 * init_css_set and dropping the old one.
700 WARN_ON_ONCE(task->flags & PF_EXITING);
702 rcu_assign_pointer(task->cgroups, to_cset);
703 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
704 &to_cset->tasks);
709 * hash table for cgroup groups. This improves the performance to find
710 * an existing css_set. This hash doesn't (currently) take into
711 * account cgroups in empty hierarchies.
713 #define CSS_SET_HASH_BITS 7
714 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
716 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
718 unsigned long key = 0UL;
719 struct cgroup_subsys *ss;
720 int i;
722 for_each_subsys(ss, i)
723 key += (unsigned long)css[i];
724 key = (key >> 16) ^ key;
726 return key;
729 void put_css_set_locked(struct css_set *cset)
731 struct cgrp_cset_link *link, *tmp_link;
732 struct cgroup_subsys *ss;
733 int ssid;
735 lockdep_assert_held(&css_set_lock);
737 if (!refcount_dec_and_test(&cset->refcount))
738 return;
740 /* This css_set is dead. unlink it and release cgroup and css refs */
741 for_each_subsys(ss, ssid) {
742 list_del(&cset->e_cset_node[ssid]);
743 css_put(cset->subsys[ssid]);
745 hash_del(&cset->hlist);
746 css_set_count--;
748 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
749 list_del(&link->cset_link);
750 list_del(&link->cgrp_link);
751 if (cgroup_parent(link->cgrp))
752 cgroup_put(link->cgrp);
753 kfree(link);
756 kfree_rcu(cset, rcu_head);
760 * compare_css_sets - helper function for find_existing_css_set().
761 * @cset: candidate css_set being tested
762 * @old_cset: existing css_set for a task
763 * @new_cgrp: cgroup that's being entered by the task
764 * @template: desired set of css pointers in css_set (pre-calculated)
766 * Returns true if "cset" matches "old_cset" except for the hierarchy
767 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
769 static bool compare_css_sets(struct css_set *cset,
770 struct css_set *old_cset,
771 struct cgroup *new_cgrp,
772 struct cgroup_subsys_state *template[])
774 struct list_head *l1, *l2;
777 * On the default hierarchy, there can be csets which are
778 * associated with the same set of cgroups but different csses.
779 * Let's first ensure that csses match.
781 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
782 return false;
785 * Compare cgroup pointers in order to distinguish between
786 * different cgroups in hierarchies. As different cgroups may
787 * share the same effective css, this comparison is always
788 * necessary.
790 l1 = &cset->cgrp_links;
791 l2 = &old_cset->cgrp_links;
792 while (1) {
793 struct cgrp_cset_link *link1, *link2;
794 struct cgroup *cgrp1, *cgrp2;
796 l1 = l1->next;
797 l2 = l2->next;
798 /* See if we reached the end - both lists are equal length. */
799 if (l1 == &cset->cgrp_links) {
800 BUG_ON(l2 != &old_cset->cgrp_links);
801 break;
802 } else {
803 BUG_ON(l2 == &old_cset->cgrp_links);
805 /* Locate the cgroups associated with these links. */
806 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
807 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
808 cgrp1 = link1->cgrp;
809 cgrp2 = link2->cgrp;
810 /* Hierarchies should be linked in the same order. */
811 BUG_ON(cgrp1->root != cgrp2->root);
814 * If this hierarchy is the hierarchy of the cgroup
815 * that's changing, then we need to check that this
816 * css_set points to the new cgroup; if it's any other
817 * hierarchy, then this css_set should point to the
818 * same cgroup as the old css_set.
820 if (cgrp1->root == new_cgrp->root) {
821 if (cgrp1 != new_cgrp)
822 return false;
823 } else {
824 if (cgrp1 != cgrp2)
825 return false;
828 return true;
832 * find_existing_css_set - init css array and find the matching css_set
833 * @old_cset: the css_set that we're using before the cgroup transition
834 * @cgrp: the cgroup that we're moving into
835 * @template: out param for the new set of csses, should be clear on entry
837 static struct css_set *find_existing_css_set(struct css_set *old_cset,
838 struct cgroup *cgrp,
839 struct cgroup_subsys_state *template[])
841 struct cgroup_root *root = cgrp->root;
842 struct cgroup_subsys *ss;
843 struct css_set *cset;
844 unsigned long key;
845 int i;
848 * Build the set of subsystem state objects that we want to see in the
849 * new css_set. while subsystems can change globally, the entries here
850 * won't change, so no need for locking.
852 for_each_subsys(ss, i) {
853 if (root->subsys_mask & (1UL << i)) {
855 * @ss is in this hierarchy, so we want the
856 * effective css from @cgrp.
858 template[i] = cgroup_e_css(cgrp, ss);
859 } else {
861 * @ss is not in this hierarchy, so we don't want
862 * to change the css.
864 template[i] = old_cset->subsys[i];
868 key = css_set_hash(template);
869 hash_for_each_possible(css_set_table, cset, hlist, key) {
870 if (!compare_css_sets(cset, old_cset, cgrp, template))
871 continue;
873 /* This css_set matches what we need */
874 return cset;
877 /* No existing cgroup group matched */
878 return NULL;
881 static void free_cgrp_cset_links(struct list_head *links_to_free)
883 struct cgrp_cset_link *link, *tmp_link;
885 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
886 list_del(&link->cset_link);
887 kfree(link);
892 * allocate_cgrp_cset_links - allocate cgrp_cset_links
893 * @count: the number of links to allocate
894 * @tmp_links: list_head the allocated links are put on
896 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
897 * through ->cset_link. Returns 0 on success or -errno.
899 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
901 struct cgrp_cset_link *link;
902 int i;
904 INIT_LIST_HEAD(tmp_links);
906 for (i = 0; i < count; i++) {
907 link = kzalloc(sizeof(*link), GFP_KERNEL);
908 if (!link) {
909 free_cgrp_cset_links(tmp_links);
910 return -ENOMEM;
912 list_add(&link->cset_link, tmp_links);
914 return 0;
918 * link_css_set - a helper function to link a css_set to a cgroup
919 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
920 * @cset: the css_set to be linked
921 * @cgrp: the destination cgroup
923 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
924 struct cgroup *cgrp)
926 struct cgrp_cset_link *link;
928 BUG_ON(list_empty(tmp_links));
930 if (cgroup_on_dfl(cgrp))
931 cset->dfl_cgrp = cgrp;
933 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
934 link->cset = cset;
935 link->cgrp = cgrp;
938 * Always add links to the tail of the lists so that the lists are
939 * in choronological order.
941 list_move_tail(&link->cset_link, &cgrp->cset_links);
942 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
944 if (cgroup_parent(cgrp))
945 cgroup_get_live(cgrp);
949 * find_css_set - return a new css_set with one cgroup updated
950 * @old_cset: the baseline css_set
951 * @cgrp: the cgroup to be updated
953 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
954 * substituted into the appropriate hierarchy.
956 static struct css_set *find_css_set(struct css_set *old_cset,
957 struct cgroup *cgrp)
959 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
960 struct css_set *cset;
961 struct list_head tmp_links;
962 struct cgrp_cset_link *link;
963 struct cgroup_subsys *ss;
964 unsigned long key;
965 int ssid;
967 lockdep_assert_held(&cgroup_mutex);
969 /* First see if we already have a cgroup group that matches
970 * the desired set */
971 spin_lock_irq(&css_set_lock);
972 cset = find_existing_css_set(old_cset, cgrp, template);
973 if (cset)
974 get_css_set(cset);
975 spin_unlock_irq(&css_set_lock);
977 if (cset)
978 return cset;
980 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
981 if (!cset)
982 return NULL;
984 /* Allocate all the cgrp_cset_link objects that we'll need */
985 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
986 kfree(cset);
987 return NULL;
990 refcount_set(&cset->refcount, 1);
991 INIT_LIST_HEAD(&cset->tasks);
992 INIT_LIST_HEAD(&cset->mg_tasks);
993 INIT_LIST_HEAD(&cset->task_iters);
994 INIT_HLIST_NODE(&cset->hlist);
995 INIT_LIST_HEAD(&cset->cgrp_links);
996 INIT_LIST_HEAD(&cset->mg_preload_node);
997 INIT_LIST_HEAD(&cset->mg_node);
999 /* Copy the set of subsystem state objects generated in
1000 * find_existing_css_set() */
1001 memcpy(cset->subsys, template, sizeof(cset->subsys));
1003 spin_lock_irq(&css_set_lock);
1004 /* Add reference counts and links from the new css_set. */
1005 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1006 struct cgroup *c = link->cgrp;
1008 if (c->root == cgrp->root)
1009 c = cgrp;
1010 link_css_set(&tmp_links, cset, c);
1013 BUG_ON(!list_empty(&tmp_links));
1015 css_set_count++;
1017 /* Add @cset to the hash table */
1018 key = css_set_hash(cset->subsys);
1019 hash_add(css_set_table, &cset->hlist, key);
1021 for_each_subsys(ss, ssid) {
1022 struct cgroup_subsys_state *css = cset->subsys[ssid];
1024 list_add_tail(&cset->e_cset_node[ssid],
1025 &css->cgroup->e_csets[ssid]);
1026 css_get(css);
1029 spin_unlock_irq(&css_set_lock);
1031 return cset;
1034 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1036 struct cgroup *root_cgrp = kf_root->kn->priv;
1038 return root_cgrp->root;
1041 static int cgroup_init_root_id(struct cgroup_root *root)
1043 int id;
1045 lockdep_assert_held(&cgroup_mutex);
1047 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1048 if (id < 0)
1049 return id;
1051 root->hierarchy_id = id;
1052 return 0;
1055 static void cgroup_exit_root_id(struct cgroup_root *root)
1057 lockdep_assert_held(&cgroup_mutex);
1059 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1062 void cgroup_free_root(struct cgroup_root *root)
1064 if (root) {
1065 idr_destroy(&root->cgroup_idr);
1066 kfree(root);
1070 static void cgroup_destroy_root(struct cgroup_root *root)
1072 struct cgroup *cgrp = &root->cgrp;
1073 struct cgrp_cset_link *link, *tmp_link;
1075 trace_cgroup_destroy_root(root);
1077 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1079 BUG_ON(atomic_read(&root->nr_cgrps));
1080 BUG_ON(!list_empty(&cgrp->self.children));
1082 /* Rebind all subsystems back to the default hierarchy */
1083 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1086 * Release all the links from cset_links to this hierarchy's
1087 * root cgroup
1089 spin_lock_irq(&css_set_lock);
1091 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1092 list_del(&link->cset_link);
1093 list_del(&link->cgrp_link);
1094 kfree(link);
1097 spin_unlock_irq(&css_set_lock);
1099 if (!list_empty(&root->root_list)) {
1100 list_del(&root->root_list);
1101 cgroup_root_count--;
1104 cgroup_exit_root_id(root);
1106 mutex_unlock(&cgroup_mutex);
1108 kernfs_destroy_root(root->kf_root);
1109 cgroup_free_root(root);
1113 * look up cgroup associated with current task's cgroup namespace on the
1114 * specified hierarchy
1116 static struct cgroup *
1117 current_cgns_cgroup_from_root(struct cgroup_root *root)
1119 struct cgroup *res = NULL;
1120 struct css_set *cset;
1122 lockdep_assert_held(&css_set_lock);
1124 rcu_read_lock();
1126 cset = current->nsproxy->cgroup_ns->root_cset;
1127 if (cset == &init_css_set) {
1128 res = &root->cgrp;
1129 } else {
1130 struct cgrp_cset_link *link;
1132 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1133 struct cgroup *c = link->cgrp;
1135 if (c->root == root) {
1136 res = c;
1137 break;
1141 rcu_read_unlock();
1143 BUG_ON(!res);
1144 return res;
1147 /* look up cgroup associated with given css_set on the specified hierarchy */
1148 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1149 struct cgroup_root *root)
1151 struct cgroup *res = NULL;
1153 lockdep_assert_held(&cgroup_mutex);
1154 lockdep_assert_held(&css_set_lock);
1156 if (cset == &init_css_set) {
1157 res = &root->cgrp;
1158 } else {
1159 struct cgrp_cset_link *link;
1161 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1162 struct cgroup *c = link->cgrp;
1164 if (c->root == root) {
1165 res = c;
1166 break;
1171 BUG_ON(!res);
1172 return res;
1176 * Return the cgroup for "task" from the given hierarchy. Must be
1177 * called with cgroup_mutex and css_set_lock held.
1179 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1180 struct cgroup_root *root)
1183 * No need to lock the task - since we hold cgroup_mutex the
1184 * task can't change groups, so the only thing that can happen
1185 * is that it exits and its css is set back to init_css_set.
1187 return cset_cgroup_from_root(task_css_set(task), root);
1191 * A task must hold cgroup_mutex to modify cgroups.
1193 * Any task can increment and decrement the count field without lock.
1194 * So in general, code holding cgroup_mutex can't rely on the count
1195 * field not changing. However, if the count goes to zero, then only
1196 * cgroup_attach_task() can increment it again. Because a count of zero
1197 * means that no tasks are currently attached, therefore there is no
1198 * way a task attached to that cgroup can fork (the other way to
1199 * increment the count). So code holding cgroup_mutex can safely
1200 * assume that if the count is zero, it will stay zero. Similarly, if
1201 * a task holds cgroup_mutex on a cgroup with zero count, it
1202 * knows that the cgroup won't be removed, as cgroup_rmdir()
1203 * needs that mutex.
1205 * A cgroup can only be deleted if both its 'count' of using tasks
1206 * is zero, and its list of 'children' cgroups is empty. Since all
1207 * tasks in the system use _some_ cgroup, and since there is always at
1208 * least one task in the system (init, pid == 1), therefore, root cgroup
1209 * always has either children cgroups and/or using tasks. So we don't
1210 * need a special hack to ensure that root cgroup cannot be deleted.
1212 * P.S. One more locking exception. RCU is used to guard the
1213 * update of a tasks cgroup pointer by cgroup_attach_task()
1216 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1218 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1219 char *buf)
1221 struct cgroup_subsys *ss = cft->ss;
1223 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1224 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1225 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1226 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1227 cft->name);
1228 else
1229 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1230 return buf;
1234 * cgroup_file_mode - deduce file mode of a control file
1235 * @cft: the control file in question
1237 * S_IRUGO for read, S_IWUSR for write.
1239 static umode_t cgroup_file_mode(const struct cftype *cft)
1241 umode_t mode = 0;
1243 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1244 mode |= S_IRUGO;
1246 if (cft->write_u64 || cft->write_s64 || cft->write) {
1247 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1248 mode |= S_IWUGO;
1249 else
1250 mode |= S_IWUSR;
1253 return mode;
1257 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1258 * @subtree_control: the new subtree_control mask to consider
1259 * @this_ss_mask: available subsystems
1261 * On the default hierarchy, a subsystem may request other subsystems to be
1262 * enabled together through its ->depends_on mask. In such cases, more
1263 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1265 * This function calculates which subsystems need to be enabled if
1266 * @subtree_control is to be applied while restricted to @this_ss_mask.
1268 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1270 u16 cur_ss_mask = subtree_control;
1271 struct cgroup_subsys *ss;
1272 int ssid;
1274 lockdep_assert_held(&cgroup_mutex);
1276 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1278 while (true) {
1279 u16 new_ss_mask = cur_ss_mask;
1281 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1282 new_ss_mask |= ss->depends_on;
1283 } while_each_subsys_mask();
1286 * Mask out subsystems which aren't available. This can
1287 * happen only if some depended-upon subsystems were bound
1288 * to non-default hierarchies.
1290 new_ss_mask &= this_ss_mask;
1292 if (new_ss_mask == cur_ss_mask)
1293 break;
1294 cur_ss_mask = new_ss_mask;
1297 return cur_ss_mask;
1301 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1302 * @kn: the kernfs_node being serviced
1304 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1305 * the method finishes if locking succeeded. Note that once this function
1306 * returns the cgroup returned by cgroup_kn_lock_live() may become
1307 * inaccessible any time. If the caller intends to continue to access the
1308 * cgroup, it should pin it before invoking this function.
1310 void cgroup_kn_unlock(struct kernfs_node *kn)
1312 struct cgroup *cgrp;
1314 if (kernfs_type(kn) == KERNFS_DIR)
1315 cgrp = kn->priv;
1316 else
1317 cgrp = kn->parent->priv;
1319 mutex_unlock(&cgroup_mutex);
1321 kernfs_unbreak_active_protection(kn);
1322 cgroup_put(cgrp);
1326 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1327 * @kn: the kernfs_node being serviced
1328 * @drain_offline: perform offline draining on the cgroup
1330 * This helper is to be used by a cgroup kernfs method currently servicing
1331 * @kn. It breaks the active protection, performs cgroup locking and
1332 * verifies that the associated cgroup is alive. Returns the cgroup if
1333 * alive; otherwise, %NULL. A successful return should be undone by a
1334 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1335 * cgroup is drained of offlining csses before return.
1337 * Any cgroup kernfs method implementation which requires locking the
1338 * associated cgroup should use this helper. It avoids nesting cgroup
1339 * locking under kernfs active protection and allows all kernfs operations
1340 * including self-removal.
1342 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1344 struct cgroup *cgrp;
1346 if (kernfs_type(kn) == KERNFS_DIR)
1347 cgrp = kn->priv;
1348 else
1349 cgrp = kn->parent->priv;
1352 * We're gonna grab cgroup_mutex which nests outside kernfs
1353 * active_ref. cgroup liveliness check alone provides enough
1354 * protection against removal. Ensure @cgrp stays accessible and
1355 * break the active_ref protection.
1357 if (!cgroup_tryget(cgrp))
1358 return NULL;
1359 kernfs_break_active_protection(kn);
1361 if (drain_offline)
1362 cgroup_lock_and_drain_offline(cgrp);
1363 else
1364 mutex_lock(&cgroup_mutex);
1366 if (!cgroup_is_dead(cgrp))
1367 return cgrp;
1369 cgroup_kn_unlock(kn);
1370 return NULL;
1373 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1375 char name[CGROUP_FILE_NAME_MAX];
1377 lockdep_assert_held(&cgroup_mutex);
1379 if (cft->file_offset) {
1380 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1381 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1383 spin_lock_irq(&cgroup_file_kn_lock);
1384 cfile->kn = NULL;
1385 spin_unlock_irq(&cgroup_file_kn_lock);
1388 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1392 * css_clear_dir - remove subsys files in a cgroup directory
1393 * @css: taget css
1395 static void css_clear_dir(struct cgroup_subsys_state *css)
1397 struct cgroup *cgrp = css->cgroup;
1398 struct cftype *cfts;
1400 if (!(css->flags & CSS_VISIBLE))
1401 return;
1403 css->flags &= ~CSS_VISIBLE;
1405 list_for_each_entry(cfts, &css->ss->cfts, node)
1406 cgroup_addrm_files(css, cgrp, cfts, false);
1410 * css_populate_dir - create subsys files in a cgroup directory
1411 * @css: target css
1413 * On failure, no file is added.
1415 static int css_populate_dir(struct cgroup_subsys_state *css)
1417 struct cgroup *cgrp = css->cgroup;
1418 struct cftype *cfts, *failed_cfts;
1419 int ret;
1421 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1422 return 0;
1424 if (!css->ss) {
1425 if (cgroup_on_dfl(cgrp))
1426 cfts = cgroup_base_files;
1427 else
1428 cfts = cgroup1_base_files;
1430 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1433 list_for_each_entry(cfts, &css->ss->cfts, node) {
1434 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1435 if (ret < 0) {
1436 failed_cfts = cfts;
1437 goto err;
1441 css->flags |= CSS_VISIBLE;
1443 return 0;
1444 err:
1445 list_for_each_entry(cfts, &css->ss->cfts, node) {
1446 if (cfts == failed_cfts)
1447 break;
1448 cgroup_addrm_files(css, cgrp, cfts, false);
1450 return ret;
1453 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1455 struct cgroup *dcgrp = &dst_root->cgrp;
1456 struct cgroup_subsys *ss;
1457 int ssid, i, ret;
1459 lockdep_assert_held(&cgroup_mutex);
1461 do_each_subsys_mask(ss, ssid, ss_mask) {
1463 * If @ss has non-root csses attached to it, can't move.
1464 * If @ss is an implicit controller, it is exempt from this
1465 * rule and can be stolen.
1467 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1468 !ss->implicit_on_dfl)
1469 return -EBUSY;
1471 /* can't move between two non-dummy roots either */
1472 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1473 return -EBUSY;
1474 } while_each_subsys_mask();
1476 do_each_subsys_mask(ss, ssid, ss_mask) {
1477 struct cgroup_root *src_root = ss->root;
1478 struct cgroup *scgrp = &src_root->cgrp;
1479 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1480 struct css_set *cset;
1482 WARN_ON(!css || cgroup_css(dcgrp, ss));
1484 /* disable from the source */
1485 src_root->subsys_mask &= ~(1 << ssid);
1486 WARN_ON(cgroup_apply_control(scgrp));
1487 cgroup_finalize_control(scgrp, 0);
1489 /* rebind */
1490 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1491 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1492 ss->root = dst_root;
1493 css->cgroup = dcgrp;
1495 spin_lock_irq(&css_set_lock);
1496 hash_for_each(css_set_table, i, cset, hlist)
1497 list_move_tail(&cset->e_cset_node[ss->id],
1498 &dcgrp->e_csets[ss->id]);
1499 spin_unlock_irq(&css_set_lock);
1501 /* default hierarchy doesn't enable controllers by default */
1502 dst_root->subsys_mask |= 1 << ssid;
1503 if (dst_root == &cgrp_dfl_root) {
1504 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1505 } else {
1506 dcgrp->subtree_control |= 1 << ssid;
1507 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1510 ret = cgroup_apply_control(dcgrp);
1511 if (ret)
1512 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1513 ss->name, ret);
1515 if (ss->bind)
1516 ss->bind(css);
1517 } while_each_subsys_mask();
1519 kernfs_activate(dcgrp->kn);
1520 return 0;
1523 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1524 struct kernfs_root *kf_root)
1526 int len = 0;
1527 char *buf = NULL;
1528 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1529 struct cgroup *ns_cgroup;
1531 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1532 if (!buf)
1533 return -ENOMEM;
1535 spin_lock_irq(&css_set_lock);
1536 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1537 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1538 spin_unlock_irq(&css_set_lock);
1540 if (len >= PATH_MAX)
1541 len = -ERANGE;
1542 else if (len > 0) {
1543 seq_escape(sf, buf, " \t\n\\");
1544 len = 0;
1546 kfree(buf);
1547 return len;
1550 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1552 char *token;
1554 *root_flags = 0;
1556 if (!data)
1557 return 0;
1559 while ((token = strsep(&data, ",")) != NULL) {
1560 if (!strcmp(token, "nsdelegate")) {
1561 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1562 continue;
1565 pr_err("cgroup2: unknown option \"%s\"\n", token);
1566 return -EINVAL;
1569 return 0;
1572 static void apply_cgroup_root_flags(unsigned int root_flags)
1574 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1575 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1576 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1577 else
1578 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1582 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1584 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1585 seq_puts(seq, ",nsdelegate");
1586 return 0;
1589 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1591 unsigned int root_flags;
1592 int ret;
1594 ret = parse_cgroup_root_flags(data, &root_flags);
1595 if (ret)
1596 return ret;
1598 apply_cgroup_root_flags(root_flags);
1599 return 0;
1603 * To reduce the fork() overhead for systems that are not actually using
1604 * their cgroups capability, we don't maintain the lists running through
1605 * each css_set to its tasks until we see the list actually used - in other
1606 * words after the first mount.
1608 static bool use_task_css_set_links __read_mostly;
1610 static void cgroup_enable_task_cg_lists(void)
1612 struct task_struct *p, *g;
1614 spin_lock_irq(&css_set_lock);
1616 if (use_task_css_set_links)
1617 goto out_unlock;
1619 use_task_css_set_links = true;
1622 * We need tasklist_lock because RCU is not safe against
1623 * while_each_thread(). Besides, a forking task that has passed
1624 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1625 * is not guaranteed to have its child immediately visible in the
1626 * tasklist if we walk through it with RCU.
1628 read_lock(&tasklist_lock);
1629 do_each_thread(g, p) {
1630 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1631 task_css_set(p) != &init_css_set);
1634 * We should check if the process is exiting, otherwise
1635 * it will race with cgroup_exit() in that the list
1636 * entry won't be deleted though the process has exited.
1637 * Do it while holding siglock so that we don't end up
1638 * racing against cgroup_exit().
1640 * Interrupts were already disabled while acquiring
1641 * the css_set_lock, so we do not need to disable it
1642 * again when acquiring the sighand->siglock here.
1644 spin_lock(&p->sighand->siglock);
1645 if (!(p->flags & PF_EXITING)) {
1646 struct css_set *cset = task_css_set(p);
1648 if (!css_set_populated(cset))
1649 css_set_update_populated(cset, true);
1650 list_add_tail(&p->cg_list, &cset->tasks);
1651 get_css_set(cset);
1652 cset->nr_tasks++;
1654 spin_unlock(&p->sighand->siglock);
1655 } while_each_thread(g, p);
1656 read_unlock(&tasklist_lock);
1657 out_unlock:
1658 spin_unlock_irq(&css_set_lock);
1661 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1663 struct cgroup_subsys *ss;
1664 int ssid;
1666 INIT_LIST_HEAD(&cgrp->self.sibling);
1667 INIT_LIST_HEAD(&cgrp->self.children);
1668 INIT_LIST_HEAD(&cgrp->cset_links);
1669 INIT_LIST_HEAD(&cgrp->pidlists);
1670 mutex_init(&cgrp->pidlist_mutex);
1671 cgrp->self.cgroup = cgrp;
1672 cgrp->self.flags |= CSS_ONLINE;
1674 for_each_subsys(ss, ssid)
1675 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1677 init_waitqueue_head(&cgrp->offline_waitq);
1678 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1681 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1683 struct cgroup *cgrp = &root->cgrp;
1685 INIT_LIST_HEAD(&root->root_list);
1686 atomic_set(&root->nr_cgrps, 1);
1687 cgrp->root = root;
1688 init_cgroup_housekeeping(cgrp);
1689 idr_init(&root->cgroup_idr);
1691 root->flags = opts->flags;
1692 if (opts->release_agent)
1693 strcpy(root->release_agent_path, opts->release_agent);
1694 if (opts->name)
1695 strcpy(root->name, opts->name);
1696 if (opts->cpuset_clone_children)
1697 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1700 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1702 LIST_HEAD(tmp_links);
1703 struct cgroup *root_cgrp = &root->cgrp;
1704 struct kernfs_syscall_ops *kf_sops;
1705 struct css_set *cset;
1706 int i, ret;
1708 lockdep_assert_held(&cgroup_mutex);
1710 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1711 if (ret < 0)
1712 goto out;
1713 root_cgrp->id = ret;
1714 root_cgrp->ancestor_ids[0] = ret;
1716 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1717 ref_flags, GFP_KERNEL);
1718 if (ret)
1719 goto out;
1722 * We're accessing css_set_count without locking css_set_lock here,
1723 * but that's OK - it can only be increased by someone holding
1724 * cgroup_lock, and that's us. Later rebinding may disable
1725 * controllers on the default hierarchy and thus create new csets,
1726 * which can't be more than the existing ones. Allocate 2x.
1728 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1729 if (ret)
1730 goto cancel_ref;
1732 ret = cgroup_init_root_id(root);
1733 if (ret)
1734 goto cancel_ref;
1736 kf_sops = root == &cgrp_dfl_root ?
1737 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1739 root->kf_root = kernfs_create_root(kf_sops,
1740 KERNFS_ROOT_CREATE_DEACTIVATED,
1741 root_cgrp);
1742 if (IS_ERR(root->kf_root)) {
1743 ret = PTR_ERR(root->kf_root);
1744 goto exit_root_id;
1746 root_cgrp->kn = root->kf_root->kn;
1748 ret = css_populate_dir(&root_cgrp->self);
1749 if (ret)
1750 goto destroy_root;
1752 ret = rebind_subsystems(root, ss_mask);
1753 if (ret)
1754 goto destroy_root;
1756 trace_cgroup_setup_root(root);
1759 * There must be no failure case after here, since rebinding takes
1760 * care of subsystems' refcounts, which are explicitly dropped in
1761 * the failure exit path.
1763 list_add(&root->root_list, &cgroup_roots);
1764 cgroup_root_count++;
1767 * Link the root cgroup in this hierarchy into all the css_set
1768 * objects.
1770 spin_lock_irq(&css_set_lock);
1771 hash_for_each(css_set_table, i, cset, hlist) {
1772 link_css_set(&tmp_links, cset, root_cgrp);
1773 if (css_set_populated(cset))
1774 cgroup_update_populated(root_cgrp, true);
1776 spin_unlock_irq(&css_set_lock);
1778 BUG_ON(!list_empty(&root_cgrp->self.children));
1779 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1781 kernfs_activate(root_cgrp->kn);
1782 ret = 0;
1783 goto out;
1785 destroy_root:
1786 kernfs_destroy_root(root->kf_root);
1787 root->kf_root = NULL;
1788 exit_root_id:
1789 cgroup_exit_root_id(root);
1790 cancel_ref:
1791 percpu_ref_exit(&root_cgrp->self.refcnt);
1792 out:
1793 free_cgrp_cset_links(&tmp_links);
1794 return ret;
1797 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1798 struct cgroup_root *root, unsigned long magic,
1799 struct cgroup_namespace *ns)
1801 struct dentry *dentry;
1802 bool new_sb;
1804 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
1807 * In non-init cgroup namespace, instead of root cgroup's dentry,
1808 * we return the dentry corresponding to the cgroupns->root_cgrp.
1810 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1811 struct dentry *nsdentry;
1812 struct cgroup *cgrp;
1814 mutex_lock(&cgroup_mutex);
1815 spin_lock_irq(&css_set_lock);
1817 cgrp = cset_cgroup_from_root(ns->root_cset, root);
1819 spin_unlock_irq(&css_set_lock);
1820 mutex_unlock(&cgroup_mutex);
1822 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
1823 dput(dentry);
1824 dentry = nsdentry;
1827 if (IS_ERR(dentry) || !new_sb)
1828 cgroup_put(&root->cgrp);
1830 return dentry;
1833 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1834 int flags, const char *unused_dev_name,
1835 void *data)
1837 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
1838 struct dentry *dentry;
1839 int ret;
1841 get_cgroup_ns(ns);
1843 /* Check if the caller has permission to mount. */
1844 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
1845 put_cgroup_ns(ns);
1846 return ERR_PTR(-EPERM);
1850 * The first time anyone tries to mount a cgroup, enable the list
1851 * linking each css_set to its tasks and fix up all existing tasks.
1853 if (!use_task_css_set_links)
1854 cgroup_enable_task_cg_lists();
1856 if (fs_type == &cgroup2_fs_type) {
1857 unsigned int root_flags;
1859 ret = parse_cgroup_root_flags(data, &root_flags);
1860 if (ret) {
1861 put_cgroup_ns(ns);
1862 return ERR_PTR(ret);
1865 cgrp_dfl_visible = true;
1866 cgroup_get_live(&cgrp_dfl_root.cgrp);
1868 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
1869 CGROUP2_SUPER_MAGIC, ns);
1870 if (!IS_ERR(dentry))
1871 apply_cgroup_root_flags(root_flags);
1872 } else {
1873 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
1874 CGROUP_SUPER_MAGIC, ns);
1877 put_cgroup_ns(ns);
1878 return dentry;
1881 static void cgroup_kill_sb(struct super_block *sb)
1883 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1884 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1887 * If @root doesn't have any mounts or children, start killing it.
1888 * This prevents new mounts by disabling percpu_ref_tryget_live().
1889 * cgroup_mount() may wait for @root's release.
1891 * And don't kill the default root.
1893 if (!list_empty(&root->cgrp.self.children) ||
1894 root == &cgrp_dfl_root)
1895 cgroup_put(&root->cgrp);
1896 else
1897 percpu_ref_kill(&root->cgrp.self.refcnt);
1899 kernfs_kill_sb(sb);
1902 struct file_system_type cgroup_fs_type = {
1903 .name = "cgroup",
1904 .mount = cgroup_mount,
1905 .kill_sb = cgroup_kill_sb,
1906 .fs_flags = FS_USERNS_MOUNT,
1909 static struct file_system_type cgroup2_fs_type = {
1910 .name = "cgroup2",
1911 .mount = cgroup_mount,
1912 .kill_sb = cgroup_kill_sb,
1913 .fs_flags = FS_USERNS_MOUNT,
1916 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
1917 struct cgroup_namespace *ns)
1919 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
1921 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
1924 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
1925 struct cgroup_namespace *ns)
1927 int ret;
1929 mutex_lock(&cgroup_mutex);
1930 spin_lock_irq(&css_set_lock);
1932 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
1934 spin_unlock_irq(&css_set_lock);
1935 mutex_unlock(&cgroup_mutex);
1937 return ret;
1939 EXPORT_SYMBOL_GPL(cgroup_path_ns);
1942 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1943 * @task: target task
1944 * @buf: the buffer to write the path into
1945 * @buflen: the length of the buffer
1947 * Determine @task's cgroup on the first (the one with the lowest non-zero
1948 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1949 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1950 * cgroup controller callbacks.
1952 * Return value is the same as kernfs_path().
1954 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1956 struct cgroup_root *root;
1957 struct cgroup *cgrp;
1958 int hierarchy_id = 1;
1959 int ret;
1961 mutex_lock(&cgroup_mutex);
1962 spin_lock_irq(&css_set_lock);
1964 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1966 if (root) {
1967 cgrp = task_cgroup_from_root(task, root);
1968 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
1969 } else {
1970 /* if no hierarchy exists, everyone is in "/" */
1971 ret = strlcpy(buf, "/", buflen);
1974 spin_unlock_irq(&css_set_lock);
1975 mutex_unlock(&cgroup_mutex);
1976 return ret;
1978 EXPORT_SYMBOL_GPL(task_cgroup_path);
1981 * cgroup_migrate_add_task - add a migration target task to a migration context
1982 * @task: target task
1983 * @mgctx: target migration context
1985 * Add @task, which is a migration target, to @mgctx->tset. This function
1986 * becomes noop if @task doesn't need to be migrated. @task's css_set
1987 * should have been added as a migration source and @task->cg_list will be
1988 * moved from the css_set's tasks list to mg_tasks one.
1990 static void cgroup_migrate_add_task(struct task_struct *task,
1991 struct cgroup_mgctx *mgctx)
1993 struct css_set *cset;
1995 lockdep_assert_held(&css_set_lock);
1997 /* @task either already exited or can't exit until the end */
1998 if (task->flags & PF_EXITING)
1999 return;
2001 /* leave @task alone if post_fork() hasn't linked it yet */
2002 if (list_empty(&task->cg_list))
2003 return;
2005 cset = task_css_set(task);
2006 if (!cset->mg_src_cgrp)
2007 return;
2009 mgctx->tset.nr_tasks++;
2011 list_move_tail(&task->cg_list, &cset->mg_tasks);
2012 if (list_empty(&cset->mg_node))
2013 list_add_tail(&cset->mg_node,
2014 &mgctx->tset.src_csets);
2015 if (list_empty(&cset->mg_dst_cset->mg_node))
2016 list_add_tail(&cset->mg_dst_cset->mg_node,
2017 &mgctx->tset.dst_csets);
2021 * cgroup_taskset_first - reset taskset and return the first task
2022 * @tset: taskset of interest
2023 * @dst_cssp: output variable for the destination css
2025 * @tset iteration is initialized and the first task is returned.
2027 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2028 struct cgroup_subsys_state **dst_cssp)
2030 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2031 tset->cur_task = NULL;
2033 return cgroup_taskset_next(tset, dst_cssp);
2037 * cgroup_taskset_next - iterate to the next task in taskset
2038 * @tset: taskset of interest
2039 * @dst_cssp: output variable for the destination css
2041 * Return the next task in @tset. Iteration must have been initialized
2042 * with cgroup_taskset_first().
2044 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2045 struct cgroup_subsys_state **dst_cssp)
2047 struct css_set *cset = tset->cur_cset;
2048 struct task_struct *task = tset->cur_task;
2050 while (&cset->mg_node != tset->csets) {
2051 if (!task)
2052 task = list_first_entry(&cset->mg_tasks,
2053 struct task_struct, cg_list);
2054 else
2055 task = list_next_entry(task, cg_list);
2057 if (&task->cg_list != &cset->mg_tasks) {
2058 tset->cur_cset = cset;
2059 tset->cur_task = task;
2062 * This function may be called both before and
2063 * after cgroup_taskset_migrate(). The two cases
2064 * can be distinguished by looking at whether @cset
2065 * has its ->mg_dst_cset set.
2067 if (cset->mg_dst_cset)
2068 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2069 else
2070 *dst_cssp = cset->subsys[tset->ssid];
2072 return task;
2075 cset = list_next_entry(cset, mg_node);
2076 task = NULL;
2079 return NULL;
2083 * cgroup_taskset_migrate - migrate a taskset
2084 * @mgctx: migration context
2086 * Migrate tasks in @mgctx as setup by migration preparation functions.
2087 * This function fails iff one of the ->can_attach callbacks fails and
2088 * guarantees that either all or none of the tasks in @mgctx are migrated.
2089 * @mgctx is consumed regardless of success.
2091 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2093 struct cgroup_taskset *tset = &mgctx->tset;
2094 struct cgroup_subsys *ss;
2095 struct task_struct *task, *tmp_task;
2096 struct css_set *cset, *tmp_cset;
2097 int ssid, failed_ssid, ret;
2099 /* check that we can legitimately attach to the cgroup */
2100 if (tset->nr_tasks) {
2101 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2102 if (ss->can_attach) {
2103 tset->ssid = ssid;
2104 ret = ss->can_attach(tset);
2105 if (ret) {
2106 failed_ssid = ssid;
2107 goto out_cancel_attach;
2110 } while_each_subsys_mask();
2114 * Now that we're guaranteed success, proceed to move all tasks to
2115 * the new cgroup. There are no failure cases after here, so this
2116 * is the commit point.
2118 spin_lock_irq(&css_set_lock);
2119 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2120 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2121 struct css_set *from_cset = task_css_set(task);
2122 struct css_set *to_cset = cset->mg_dst_cset;
2124 get_css_set(to_cset);
2125 to_cset->nr_tasks++;
2126 css_set_move_task(task, from_cset, to_cset, true);
2127 put_css_set_locked(from_cset);
2128 from_cset->nr_tasks--;
2131 spin_unlock_irq(&css_set_lock);
2134 * Migration is committed, all target tasks are now on dst_csets.
2135 * Nothing is sensitive to fork() after this point. Notify
2136 * controllers that migration is complete.
2138 tset->csets = &tset->dst_csets;
2140 if (tset->nr_tasks) {
2141 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2142 if (ss->attach) {
2143 tset->ssid = ssid;
2144 ss->attach(tset);
2146 } while_each_subsys_mask();
2149 ret = 0;
2150 goto out_release_tset;
2152 out_cancel_attach:
2153 if (tset->nr_tasks) {
2154 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2155 if (ssid == failed_ssid)
2156 break;
2157 if (ss->cancel_attach) {
2158 tset->ssid = ssid;
2159 ss->cancel_attach(tset);
2161 } while_each_subsys_mask();
2163 out_release_tset:
2164 spin_lock_irq(&css_set_lock);
2165 list_splice_init(&tset->dst_csets, &tset->src_csets);
2166 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2167 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2168 list_del_init(&cset->mg_node);
2170 spin_unlock_irq(&css_set_lock);
2173 * Re-initialize the cgroup_taskset structure in case it is reused
2174 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2175 * iteration.
2177 tset->nr_tasks = 0;
2178 tset->csets = &tset->src_csets;
2179 return ret;
2183 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2184 * @dst_cgrp: destination cgroup to test
2186 * On the default hierarchy, except for the root, subtree_control must be
2187 * zero for migration destination cgroups with tasks so that child cgroups
2188 * don't compete against tasks.
2190 bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2192 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2193 !dst_cgrp->subtree_control;
2197 * cgroup_migrate_finish - cleanup after attach
2198 * @mgctx: migration context
2200 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2201 * those functions for details.
2203 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2205 LIST_HEAD(preloaded);
2206 struct css_set *cset, *tmp_cset;
2208 lockdep_assert_held(&cgroup_mutex);
2210 spin_lock_irq(&css_set_lock);
2212 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2213 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2215 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2216 cset->mg_src_cgrp = NULL;
2217 cset->mg_dst_cgrp = NULL;
2218 cset->mg_dst_cset = NULL;
2219 list_del_init(&cset->mg_preload_node);
2220 put_css_set_locked(cset);
2223 spin_unlock_irq(&css_set_lock);
2227 * cgroup_migrate_add_src - add a migration source css_set
2228 * @src_cset: the source css_set to add
2229 * @dst_cgrp: the destination cgroup
2230 * @mgctx: migration context
2232 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2233 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2234 * up by cgroup_migrate_finish().
2236 * This function may be called without holding cgroup_threadgroup_rwsem
2237 * even if the target is a process. Threads may be created and destroyed
2238 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2239 * into play and the preloaded css_sets are guaranteed to cover all
2240 * migrations.
2242 void cgroup_migrate_add_src(struct css_set *src_cset,
2243 struct cgroup *dst_cgrp,
2244 struct cgroup_mgctx *mgctx)
2246 struct cgroup *src_cgrp;
2248 lockdep_assert_held(&cgroup_mutex);
2249 lockdep_assert_held(&css_set_lock);
2252 * If ->dead, @src_set is associated with one or more dead cgroups
2253 * and doesn't contain any migratable tasks. Ignore it early so
2254 * that the rest of migration path doesn't get confused by it.
2256 if (src_cset->dead)
2257 return;
2259 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2261 if (!list_empty(&src_cset->mg_preload_node))
2262 return;
2264 WARN_ON(src_cset->mg_src_cgrp);
2265 WARN_ON(src_cset->mg_dst_cgrp);
2266 WARN_ON(!list_empty(&src_cset->mg_tasks));
2267 WARN_ON(!list_empty(&src_cset->mg_node));
2269 src_cset->mg_src_cgrp = src_cgrp;
2270 src_cset->mg_dst_cgrp = dst_cgrp;
2271 get_css_set(src_cset);
2272 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2276 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2277 * @mgctx: migration context
2279 * Tasks are about to be moved and all the source css_sets have been
2280 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2281 * pins all destination css_sets, links each to its source, and append them
2282 * to @mgctx->preloaded_dst_csets.
2284 * This function must be called after cgroup_migrate_add_src() has been
2285 * called on each migration source css_set. After migration is performed
2286 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2287 * @mgctx.
2289 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2291 struct css_set *src_cset, *tmp_cset;
2293 lockdep_assert_held(&cgroup_mutex);
2295 /* look up the dst cset for each src cset and link it to src */
2296 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2297 mg_preload_node) {
2298 struct css_set *dst_cset;
2299 struct cgroup_subsys *ss;
2300 int ssid;
2302 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2303 if (!dst_cset)
2304 goto err;
2306 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2309 * If src cset equals dst, it's noop. Drop the src.
2310 * cgroup_migrate() will skip the cset too. Note that we
2311 * can't handle src == dst as some nodes are used by both.
2313 if (src_cset == dst_cset) {
2314 src_cset->mg_src_cgrp = NULL;
2315 src_cset->mg_dst_cgrp = NULL;
2316 list_del_init(&src_cset->mg_preload_node);
2317 put_css_set(src_cset);
2318 put_css_set(dst_cset);
2319 continue;
2322 src_cset->mg_dst_cset = dst_cset;
2324 if (list_empty(&dst_cset->mg_preload_node))
2325 list_add_tail(&dst_cset->mg_preload_node,
2326 &mgctx->preloaded_dst_csets);
2327 else
2328 put_css_set(dst_cset);
2330 for_each_subsys(ss, ssid)
2331 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2332 mgctx->ss_mask |= 1 << ssid;
2335 return 0;
2336 err:
2337 cgroup_migrate_finish(mgctx);
2338 return -ENOMEM;
2342 * cgroup_migrate - migrate a process or task to a cgroup
2343 * @leader: the leader of the process or the task to migrate
2344 * @threadgroup: whether @leader points to the whole process or a single task
2345 * @mgctx: migration context
2347 * Migrate a process or task denoted by @leader. If migrating a process,
2348 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2349 * responsible for invoking cgroup_migrate_add_src() and
2350 * cgroup_migrate_prepare_dst() on the targets before invoking this
2351 * function and following up with cgroup_migrate_finish().
2353 * As long as a controller's ->can_attach() doesn't fail, this function is
2354 * guaranteed to succeed. This means that, excluding ->can_attach()
2355 * failure, when migrating multiple targets, the success or failure can be
2356 * decided for all targets by invoking group_migrate_prepare_dst() before
2357 * actually starting migrating.
2359 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2360 struct cgroup_mgctx *mgctx)
2362 struct task_struct *task;
2365 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2366 * already PF_EXITING could be freed from underneath us unless we
2367 * take an rcu_read_lock.
2369 spin_lock_irq(&css_set_lock);
2370 rcu_read_lock();
2371 task = leader;
2372 do {
2373 cgroup_migrate_add_task(task, mgctx);
2374 if (!threadgroup)
2375 break;
2376 } while_each_thread(leader, task);
2377 rcu_read_unlock();
2378 spin_unlock_irq(&css_set_lock);
2380 return cgroup_migrate_execute(mgctx);
2384 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2385 * @dst_cgrp: the cgroup to attach to
2386 * @leader: the task or the leader of the threadgroup to be attached
2387 * @threadgroup: attach the whole threadgroup?
2389 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2391 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2392 bool threadgroup)
2394 DEFINE_CGROUP_MGCTX(mgctx);
2395 struct task_struct *task;
2396 int ret;
2398 if (!cgroup_may_migrate_to(dst_cgrp))
2399 return -EBUSY;
2401 /* look up all src csets */
2402 spin_lock_irq(&css_set_lock);
2403 rcu_read_lock();
2404 task = leader;
2405 do {
2406 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2407 if (!threadgroup)
2408 break;
2409 } while_each_thread(leader, task);
2410 rcu_read_unlock();
2411 spin_unlock_irq(&css_set_lock);
2413 /* prepare dst csets and commit */
2414 ret = cgroup_migrate_prepare_dst(&mgctx);
2415 if (!ret)
2416 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2418 cgroup_migrate_finish(&mgctx);
2420 if (!ret)
2421 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2423 return ret;
2426 static int cgroup_procs_write_permission(struct task_struct *task,
2427 struct cgroup *dst_cgrp,
2428 struct kernfs_open_file *of)
2430 struct super_block *sb = of->file->f_path.dentry->d_sb;
2431 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2432 struct cgroup *root_cgrp = ns->root_cset->dfl_cgrp;
2433 struct cgroup *src_cgrp, *com_cgrp;
2434 struct inode *inode;
2435 int ret;
2437 if (!cgroup_on_dfl(dst_cgrp)) {
2438 const struct cred *cred = current_cred();
2439 const struct cred *tcred = get_task_cred(task);
2442 * even if we're attaching all tasks in the thread group,
2443 * we only need to check permissions on one of them.
2445 if (uid_eq(cred->euid, GLOBAL_ROOT_UID) ||
2446 uid_eq(cred->euid, tcred->uid) ||
2447 uid_eq(cred->euid, tcred->suid))
2448 ret = 0;
2449 else
2450 ret = -EACCES;
2452 put_cred(tcred);
2453 return ret;
2456 /* find the source cgroup */
2457 spin_lock_irq(&css_set_lock);
2458 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2459 spin_unlock_irq(&css_set_lock);
2461 /* and the common ancestor */
2462 com_cgrp = src_cgrp;
2463 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
2464 com_cgrp = cgroup_parent(com_cgrp);
2466 /* %current should be authorized to migrate to the common ancestor */
2467 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
2468 if (!inode)
2469 return -ENOMEM;
2471 ret = inode_permission(inode, MAY_WRITE);
2472 iput(inode);
2473 if (ret)
2474 return ret;
2477 * If namespaces are delegation boundaries, %current must be able
2478 * to see both source and destination cgroups from its namespace.
2480 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
2481 (!cgroup_is_descendant(src_cgrp, root_cgrp) ||
2482 !cgroup_is_descendant(dst_cgrp, root_cgrp)))
2483 return -ENOENT;
2485 return 0;
2489 * Find the task_struct of the task to attach by vpid and pass it along to the
2490 * function to attach either it or all tasks in its threadgroup. Will lock
2491 * cgroup_mutex and threadgroup.
2493 ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2494 size_t nbytes, loff_t off, bool threadgroup)
2496 struct task_struct *tsk;
2497 struct cgroup_subsys *ss;
2498 struct cgroup *cgrp;
2499 pid_t pid;
2500 int ssid, ret;
2502 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2503 return -EINVAL;
2505 cgrp = cgroup_kn_lock_live(of->kn, false);
2506 if (!cgrp)
2507 return -ENODEV;
2509 percpu_down_write(&cgroup_threadgroup_rwsem);
2510 rcu_read_lock();
2511 if (pid) {
2512 tsk = find_task_by_vpid(pid);
2513 if (!tsk) {
2514 ret = -ESRCH;
2515 goto out_unlock_rcu;
2517 } else {
2518 tsk = current;
2521 if (threadgroup)
2522 tsk = tsk->group_leader;
2525 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2526 * If userland migrates such a kthread to a non-root cgroup, it can
2527 * become trapped in a cpuset, or RT kthread may be born in a
2528 * cgroup with no rt_runtime allocated. Just say no.
2530 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2531 ret = -EINVAL;
2532 goto out_unlock_rcu;
2535 get_task_struct(tsk);
2536 rcu_read_unlock();
2538 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2539 if (!ret)
2540 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2542 put_task_struct(tsk);
2543 goto out_unlock_threadgroup;
2545 out_unlock_rcu:
2546 rcu_read_unlock();
2547 out_unlock_threadgroup:
2548 percpu_up_write(&cgroup_threadgroup_rwsem);
2549 for_each_subsys(ss, ssid)
2550 if (ss->post_attach)
2551 ss->post_attach();
2552 cgroup_kn_unlock(of->kn);
2553 return ret ?: nbytes;
2556 ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
2557 loff_t off)
2559 return __cgroup_procs_write(of, buf, nbytes, off, true);
2562 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2564 struct cgroup_subsys *ss;
2565 bool printed = false;
2566 int ssid;
2568 do_each_subsys_mask(ss, ssid, ss_mask) {
2569 if (printed)
2570 seq_putc(seq, ' ');
2571 seq_printf(seq, "%s", ss->name);
2572 printed = true;
2573 } while_each_subsys_mask();
2574 if (printed)
2575 seq_putc(seq, '\n');
2578 /* show controllers which are enabled from the parent */
2579 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2581 struct cgroup *cgrp = seq_css(seq)->cgroup;
2583 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2584 return 0;
2587 /* show controllers which are enabled for a given cgroup's children */
2588 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2590 struct cgroup *cgrp = seq_css(seq)->cgroup;
2592 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2593 return 0;
2597 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2598 * @cgrp: root of the subtree to update csses for
2600 * @cgrp's control masks have changed and its subtree's css associations
2601 * need to be updated accordingly. This function looks up all css_sets
2602 * which are attached to the subtree, creates the matching updated css_sets
2603 * and migrates the tasks to the new ones.
2605 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2607 DEFINE_CGROUP_MGCTX(mgctx);
2608 struct cgroup_subsys_state *d_css;
2609 struct cgroup *dsct;
2610 struct css_set *src_cset;
2611 int ret;
2613 lockdep_assert_held(&cgroup_mutex);
2615 percpu_down_write(&cgroup_threadgroup_rwsem);
2617 /* look up all csses currently attached to @cgrp's subtree */
2618 spin_lock_irq(&css_set_lock);
2619 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2620 struct cgrp_cset_link *link;
2622 list_for_each_entry(link, &dsct->cset_links, cset_link)
2623 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2625 spin_unlock_irq(&css_set_lock);
2627 /* NULL dst indicates self on default hierarchy */
2628 ret = cgroup_migrate_prepare_dst(&mgctx);
2629 if (ret)
2630 goto out_finish;
2632 spin_lock_irq(&css_set_lock);
2633 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2634 struct task_struct *task, *ntask;
2636 /* all tasks in src_csets need to be migrated */
2637 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2638 cgroup_migrate_add_task(task, &mgctx);
2640 spin_unlock_irq(&css_set_lock);
2642 ret = cgroup_migrate_execute(&mgctx);
2643 out_finish:
2644 cgroup_migrate_finish(&mgctx);
2645 percpu_up_write(&cgroup_threadgroup_rwsem);
2646 return ret;
2650 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2651 * @cgrp: root of the target subtree
2653 * Because css offlining is asynchronous, userland may try to re-enable a
2654 * controller while the previous css is still around. This function grabs
2655 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2657 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2658 __acquires(&cgroup_mutex)
2660 struct cgroup *dsct;
2661 struct cgroup_subsys_state *d_css;
2662 struct cgroup_subsys *ss;
2663 int ssid;
2665 restart:
2666 mutex_lock(&cgroup_mutex);
2668 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2669 for_each_subsys(ss, ssid) {
2670 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2671 DEFINE_WAIT(wait);
2673 if (!css || !percpu_ref_is_dying(&css->refcnt))
2674 continue;
2676 cgroup_get_live(dsct);
2677 prepare_to_wait(&dsct->offline_waitq, &wait,
2678 TASK_UNINTERRUPTIBLE);
2680 mutex_unlock(&cgroup_mutex);
2681 schedule();
2682 finish_wait(&dsct->offline_waitq, &wait);
2684 cgroup_put(dsct);
2685 goto restart;
2691 * cgroup_save_control - save control masks of a subtree
2692 * @cgrp: root of the target subtree
2694 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2695 * prefixed fields for @cgrp's subtree including @cgrp itself.
2697 static void cgroup_save_control(struct cgroup *cgrp)
2699 struct cgroup *dsct;
2700 struct cgroup_subsys_state *d_css;
2702 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2703 dsct->old_subtree_control = dsct->subtree_control;
2704 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2709 * cgroup_propagate_control - refresh control masks of a subtree
2710 * @cgrp: root of the target subtree
2712 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2713 * ->subtree_control and propagate controller availability through the
2714 * subtree so that descendants don't have unavailable controllers enabled.
2716 static void cgroup_propagate_control(struct cgroup *cgrp)
2718 struct cgroup *dsct;
2719 struct cgroup_subsys_state *d_css;
2721 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2722 dsct->subtree_control &= cgroup_control(dsct);
2723 dsct->subtree_ss_mask =
2724 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2725 cgroup_ss_mask(dsct));
2730 * cgroup_restore_control - restore control masks of a subtree
2731 * @cgrp: root of the target subtree
2733 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2734 * prefixed fields for @cgrp's subtree including @cgrp itself.
2736 static void cgroup_restore_control(struct cgroup *cgrp)
2738 struct cgroup *dsct;
2739 struct cgroup_subsys_state *d_css;
2741 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2742 dsct->subtree_control = dsct->old_subtree_control;
2743 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2747 static bool css_visible(struct cgroup_subsys_state *css)
2749 struct cgroup_subsys *ss = css->ss;
2750 struct cgroup *cgrp = css->cgroup;
2752 if (cgroup_control(cgrp) & (1 << ss->id))
2753 return true;
2754 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2755 return false;
2756 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2760 * cgroup_apply_control_enable - enable or show csses according to control
2761 * @cgrp: root of the target subtree
2763 * Walk @cgrp's subtree and create new csses or make the existing ones
2764 * visible. A css is created invisible if it's being implicitly enabled
2765 * through dependency. An invisible css is made visible when the userland
2766 * explicitly enables it.
2768 * Returns 0 on success, -errno on failure. On failure, csses which have
2769 * been processed already aren't cleaned up. The caller is responsible for
2770 * cleaning up with cgroup_apply_control_disable().
2772 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2774 struct cgroup *dsct;
2775 struct cgroup_subsys_state *d_css;
2776 struct cgroup_subsys *ss;
2777 int ssid, ret;
2779 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2780 for_each_subsys(ss, ssid) {
2781 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2783 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2785 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2786 continue;
2788 if (!css) {
2789 css = css_create(dsct, ss);
2790 if (IS_ERR(css))
2791 return PTR_ERR(css);
2794 if (css_visible(css)) {
2795 ret = css_populate_dir(css);
2796 if (ret)
2797 return ret;
2802 return 0;
2806 * cgroup_apply_control_disable - kill or hide csses according to control
2807 * @cgrp: root of the target subtree
2809 * Walk @cgrp's subtree and kill and hide csses so that they match
2810 * cgroup_ss_mask() and cgroup_visible_mask().
2812 * A css is hidden when the userland requests it to be disabled while other
2813 * subsystems are still depending on it. The css must not actively control
2814 * resources and be in the vanilla state if it's made visible again later.
2815 * Controllers which may be depended upon should provide ->css_reset() for
2816 * this purpose.
2818 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2820 struct cgroup *dsct;
2821 struct cgroup_subsys_state *d_css;
2822 struct cgroup_subsys *ss;
2823 int ssid;
2825 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2826 for_each_subsys(ss, ssid) {
2827 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2829 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2831 if (!css)
2832 continue;
2834 if (css->parent &&
2835 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2836 kill_css(css);
2837 } else if (!css_visible(css)) {
2838 css_clear_dir(css);
2839 if (ss->css_reset)
2840 ss->css_reset(css);
2847 * cgroup_apply_control - apply control mask updates to the subtree
2848 * @cgrp: root of the target subtree
2850 * subsystems can be enabled and disabled in a subtree using the following
2851 * steps.
2853 * 1. Call cgroup_save_control() to stash the current state.
2854 * 2. Update ->subtree_control masks in the subtree as desired.
2855 * 3. Call cgroup_apply_control() to apply the changes.
2856 * 4. Optionally perform other related operations.
2857 * 5. Call cgroup_finalize_control() to finish up.
2859 * This function implements step 3 and propagates the mask changes
2860 * throughout @cgrp's subtree, updates csses accordingly and perform
2861 * process migrations.
2863 static int cgroup_apply_control(struct cgroup *cgrp)
2865 int ret;
2867 cgroup_propagate_control(cgrp);
2869 ret = cgroup_apply_control_enable(cgrp);
2870 if (ret)
2871 return ret;
2874 * At this point, cgroup_e_css() results reflect the new csses
2875 * making the following cgroup_update_dfl_csses() properly update
2876 * css associations of all tasks in the subtree.
2878 ret = cgroup_update_dfl_csses(cgrp);
2879 if (ret)
2880 return ret;
2882 return 0;
2886 * cgroup_finalize_control - finalize control mask update
2887 * @cgrp: root of the target subtree
2888 * @ret: the result of the update
2890 * Finalize control mask update. See cgroup_apply_control() for more info.
2892 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
2894 if (ret) {
2895 cgroup_restore_control(cgrp);
2896 cgroup_propagate_control(cgrp);
2899 cgroup_apply_control_disable(cgrp);
2902 /* change the enabled child controllers for a cgroup in the default hierarchy */
2903 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2904 char *buf, size_t nbytes,
2905 loff_t off)
2907 u16 enable = 0, disable = 0;
2908 struct cgroup *cgrp, *child;
2909 struct cgroup_subsys *ss;
2910 char *tok;
2911 int ssid, ret;
2914 * Parse input - space separated list of subsystem names prefixed
2915 * with either + or -.
2917 buf = strstrip(buf);
2918 while ((tok = strsep(&buf, " "))) {
2919 if (tok[0] == '\0')
2920 continue;
2921 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
2922 if (!cgroup_ssid_enabled(ssid) ||
2923 strcmp(tok + 1, ss->name))
2924 continue;
2926 if (*tok == '+') {
2927 enable |= 1 << ssid;
2928 disable &= ~(1 << ssid);
2929 } else if (*tok == '-') {
2930 disable |= 1 << ssid;
2931 enable &= ~(1 << ssid);
2932 } else {
2933 return -EINVAL;
2935 break;
2936 } while_each_subsys_mask();
2937 if (ssid == CGROUP_SUBSYS_COUNT)
2938 return -EINVAL;
2941 cgrp = cgroup_kn_lock_live(of->kn, true);
2942 if (!cgrp)
2943 return -ENODEV;
2945 for_each_subsys(ss, ssid) {
2946 if (enable & (1 << ssid)) {
2947 if (cgrp->subtree_control & (1 << ssid)) {
2948 enable &= ~(1 << ssid);
2949 continue;
2952 if (!(cgroup_control(cgrp) & (1 << ssid))) {
2953 ret = -ENOENT;
2954 goto out_unlock;
2956 } else if (disable & (1 << ssid)) {
2957 if (!(cgrp->subtree_control & (1 << ssid))) {
2958 disable &= ~(1 << ssid);
2959 continue;
2962 /* a child has it enabled? */
2963 cgroup_for_each_live_child(child, cgrp) {
2964 if (child->subtree_control & (1 << ssid)) {
2965 ret = -EBUSY;
2966 goto out_unlock;
2972 if (!enable && !disable) {
2973 ret = 0;
2974 goto out_unlock;
2978 * Except for the root, subtree_control must be zero for a cgroup
2979 * with tasks so that child cgroups don't compete against tasks.
2981 if (enable && cgroup_parent(cgrp)) {
2982 struct cgrp_cset_link *link;
2985 * Because namespaces pin csets too, @cgrp->cset_links
2986 * might not be empty even when @cgrp is empty. Walk and
2987 * verify each cset.
2989 spin_lock_irq(&css_set_lock);
2991 ret = 0;
2992 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
2993 if (css_set_populated(link->cset)) {
2994 ret = -EBUSY;
2995 break;
2999 spin_unlock_irq(&css_set_lock);
3001 if (ret)
3002 goto out_unlock;
3005 /* save and update control masks and prepare csses */
3006 cgroup_save_control(cgrp);
3008 cgrp->subtree_control |= enable;
3009 cgrp->subtree_control &= ~disable;
3011 ret = cgroup_apply_control(cgrp);
3012 cgroup_finalize_control(cgrp, ret);
3013 if (ret)
3014 goto out_unlock;
3016 kernfs_activate(cgrp->kn);
3017 out_unlock:
3018 cgroup_kn_unlock(of->kn);
3019 return ret ?: nbytes;
3022 static int cgroup_events_show(struct seq_file *seq, void *v)
3024 seq_printf(seq, "populated %d\n",
3025 cgroup_is_populated(seq_css(seq)->cgroup));
3026 return 0;
3029 static int cgroup_file_open(struct kernfs_open_file *of)
3031 struct cftype *cft = of->kn->priv;
3033 if (cft->open)
3034 return cft->open(of);
3035 return 0;
3038 static void cgroup_file_release(struct kernfs_open_file *of)
3040 struct cftype *cft = of->kn->priv;
3042 if (cft->release)
3043 cft->release(of);
3046 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3047 size_t nbytes, loff_t off)
3049 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3050 struct cgroup *cgrp = of->kn->parent->priv;
3051 struct cftype *cft = of->kn->priv;
3052 struct cgroup_subsys_state *css;
3053 int ret;
3056 * If namespaces are delegation boundaries, disallow writes to
3057 * files in an non-init namespace root from inside the namespace
3058 * except for the files explicitly marked delegatable -
3059 * cgroup.procs and cgroup.subtree_control.
3061 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3062 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3063 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3064 return -EPERM;
3066 if (cft->write)
3067 return cft->write(of, buf, nbytes, off);
3070 * kernfs guarantees that a file isn't deleted with operations in
3071 * flight, which means that the matching css is and stays alive and
3072 * doesn't need to be pinned. The RCU locking is not necessary
3073 * either. It's just for the convenience of using cgroup_css().
3075 rcu_read_lock();
3076 css = cgroup_css(cgrp, cft->ss);
3077 rcu_read_unlock();
3079 if (cft->write_u64) {
3080 unsigned long long v;
3081 ret = kstrtoull(buf, 0, &v);
3082 if (!ret)
3083 ret = cft->write_u64(css, cft, v);
3084 } else if (cft->write_s64) {
3085 long long v;
3086 ret = kstrtoll(buf, 0, &v);
3087 if (!ret)
3088 ret = cft->write_s64(css, cft, v);
3089 } else {
3090 ret = -EINVAL;
3093 return ret ?: nbytes;
3096 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3098 return seq_cft(seq)->seq_start(seq, ppos);
3101 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3103 return seq_cft(seq)->seq_next(seq, v, ppos);
3106 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3108 if (seq_cft(seq)->seq_stop)
3109 seq_cft(seq)->seq_stop(seq, v);
3112 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3114 struct cftype *cft = seq_cft(m);
3115 struct cgroup_subsys_state *css = seq_css(m);
3117 if (cft->seq_show)
3118 return cft->seq_show(m, arg);
3120 if (cft->read_u64)
3121 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3122 else if (cft->read_s64)
3123 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3124 else
3125 return -EINVAL;
3126 return 0;
3129 static struct kernfs_ops cgroup_kf_single_ops = {
3130 .atomic_write_len = PAGE_SIZE,
3131 .open = cgroup_file_open,
3132 .release = cgroup_file_release,
3133 .write = cgroup_file_write,
3134 .seq_show = cgroup_seqfile_show,
3137 static struct kernfs_ops cgroup_kf_ops = {
3138 .atomic_write_len = PAGE_SIZE,
3139 .open = cgroup_file_open,
3140 .release = cgroup_file_release,
3141 .write = cgroup_file_write,
3142 .seq_start = cgroup_seqfile_start,
3143 .seq_next = cgroup_seqfile_next,
3144 .seq_stop = cgroup_seqfile_stop,
3145 .seq_show = cgroup_seqfile_show,
3148 /* set uid and gid of cgroup dirs and files to that of the creator */
3149 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3151 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3152 .ia_uid = current_fsuid(),
3153 .ia_gid = current_fsgid(), };
3155 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3156 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3157 return 0;
3159 return kernfs_setattr(kn, &iattr);
3162 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3163 struct cftype *cft)
3165 char name[CGROUP_FILE_NAME_MAX];
3166 struct kernfs_node *kn;
3167 struct lock_class_key *key = NULL;
3168 int ret;
3170 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3171 key = &cft->lockdep_key;
3172 #endif
3173 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3174 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3175 NULL, key);
3176 if (IS_ERR(kn))
3177 return PTR_ERR(kn);
3179 ret = cgroup_kn_set_ugid(kn);
3180 if (ret) {
3181 kernfs_remove(kn);
3182 return ret;
3185 if (cft->file_offset) {
3186 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3188 spin_lock_irq(&cgroup_file_kn_lock);
3189 cfile->kn = kn;
3190 spin_unlock_irq(&cgroup_file_kn_lock);
3193 return 0;
3197 * cgroup_addrm_files - add or remove files to a cgroup directory
3198 * @css: the target css
3199 * @cgrp: the target cgroup (usually css->cgroup)
3200 * @cfts: array of cftypes to be added
3201 * @is_add: whether to add or remove
3203 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3204 * For removals, this function never fails.
3206 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3207 struct cgroup *cgrp, struct cftype cfts[],
3208 bool is_add)
3210 struct cftype *cft, *cft_end = NULL;
3211 int ret = 0;
3213 lockdep_assert_held(&cgroup_mutex);
3215 restart:
3216 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3217 /* does cft->flags tell us to skip this file on @cgrp? */
3218 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3219 continue;
3220 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3221 continue;
3222 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3223 continue;
3224 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3225 continue;
3227 if (is_add) {
3228 ret = cgroup_add_file(css, cgrp, cft);
3229 if (ret) {
3230 pr_warn("%s: failed to add %s, err=%d\n",
3231 __func__, cft->name, ret);
3232 cft_end = cft;
3233 is_add = false;
3234 goto restart;
3236 } else {
3237 cgroup_rm_file(cgrp, cft);
3240 return ret;
3243 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3245 LIST_HEAD(pending);
3246 struct cgroup_subsys *ss = cfts[0].ss;
3247 struct cgroup *root = &ss->root->cgrp;
3248 struct cgroup_subsys_state *css;
3249 int ret = 0;
3251 lockdep_assert_held(&cgroup_mutex);
3253 /* add/rm files for all cgroups created before */
3254 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3255 struct cgroup *cgrp = css->cgroup;
3257 if (!(css->flags & CSS_VISIBLE))
3258 continue;
3260 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3261 if (ret)
3262 break;
3265 if (is_add && !ret)
3266 kernfs_activate(root->kn);
3267 return ret;
3270 static void cgroup_exit_cftypes(struct cftype *cfts)
3272 struct cftype *cft;
3274 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3275 /* free copy for custom atomic_write_len, see init_cftypes() */
3276 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3277 kfree(cft->kf_ops);
3278 cft->kf_ops = NULL;
3279 cft->ss = NULL;
3281 /* revert flags set by cgroup core while adding @cfts */
3282 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3286 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3288 struct cftype *cft;
3290 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3291 struct kernfs_ops *kf_ops;
3293 WARN_ON(cft->ss || cft->kf_ops);
3295 if (cft->seq_start)
3296 kf_ops = &cgroup_kf_ops;
3297 else
3298 kf_ops = &cgroup_kf_single_ops;
3301 * Ugh... if @cft wants a custom max_write_len, we need to
3302 * make a copy of kf_ops to set its atomic_write_len.
3304 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3305 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3306 if (!kf_ops) {
3307 cgroup_exit_cftypes(cfts);
3308 return -ENOMEM;
3310 kf_ops->atomic_write_len = cft->max_write_len;
3313 cft->kf_ops = kf_ops;
3314 cft->ss = ss;
3317 return 0;
3320 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3322 lockdep_assert_held(&cgroup_mutex);
3324 if (!cfts || !cfts[0].ss)
3325 return -ENOENT;
3327 list_del(&cfts->node);
3328 cgroup_apply_cftypes(cfts, false);
3329 cgroup_exit_cftypes(cfts);
3330 return 0;
3334 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3335 * @cfts: zero-length name terminated array of cftypes
3337 * Unregister @cfts. Files described by @cfts are removed from all
3338 * existing cgroups and all future cgroups won't have them either. This
3339 * function can be called anytime whether @cfts' subsys is attached or not.
3341 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3342 * registered.
3344 int cgroup_rm_cftypes(struct cftype *cfts)
3346 int ret;
3348 mutex_lock(&cgroup_mutex);
3349 ret = cgroup_rm_cftypes_locked(cfts);
3350 mutex_unlock(&cgroup_mutex);
3351 return ret;
3355 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3356 * @ss: target cgroup subsystem
3357 * @cfts: zero-length name terminated array of cftypes
3359 * Register @cfts to @ss. Files described by @cfts are created for all
3360 * existing cgroups to which @ss is attached and all future cgroups will
3361 * have them too. This function can be called anytime whether @ss is
3362 * attached or not.
3364 * Returns 0 on successful registration, -errno on failure. Note that this
3365 * function currently returns 0 as long as @cfts registration is successful
3366 * even if some file creation attempts on existing cgroups fail.
3368 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3370 int ret;
3372 if (!cgroup_ssid_enabled(ss->id))
3373 return 0;
3375 if (!cfts || cfts[0].name[0] == '\0')
3376 return 0;
3378 ret = cgroup_init_cftypes(ss, cfts);
3379 if (ret)
3380 return ret;
3382 mutex_lock(&cgroup_mutex);
3384 list_add_tail(&cfts->node, &ss->cfts);
3385 ret = cgroup_apply_cftypes(cfts, true);
3386 if (ret)
3387 cgroup_rm_cftypes_locked(cfts);
3389 mutex_unlock(&cgroup_mutex);
3390 return ret;
3394 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3395 * @ss: target cgroup subsystem
3396 * @cfts: zero-length name terminated array of cftypes
3398 * Similar to cgroup_add_cftypes() but the added files are only used for
3399 * the default hierarchy.
3401 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3403 struct cftype *cft;
3405 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3406 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3407 return cgroup_add_cftypes(ss, cfts);
3411 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3412 * @ss: target cgroup subsystem
3413 * @cfts: zero-length name terminated array of cftypes
3415 * Similar to cgroup_add_cftypes() but the added files are only used for
3416 * the legacy hierarchies.
3418 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3420 struct cftype *cft;
3422 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3423 cft->flags |= __CFTYPE_NOT_ON_DFL;
3424 return cgroup_add_cftypes(ss, cfts);
3428 * cgroup_file_notify - generate a file modified event for a cgroup_file
3429 * @cfile: target cgroup_file
3431 * @cfile must have been obtained by setting cftype->file_offset.
3433 void cgroup_file_notify(struct cgroup_file *cfile)
3435 unsigned long flags;
3437 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3438 if (cfile->kn)
3439 kernfs_notify(cfile->kn);
3440 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3444 * css_next_child - find the next child of a given css
3445 * @pos: the current position (%NULL to initiate traversal)
3446 * @parent: css whose children to walk
3448 * This function returns the next child of @parent and should be called
3449 * under either cgroup_mutex or RCU read lock. The only requirement is
3450 * that @parent and @pos are accessible. The next sibling is guaranteed to
3451 * be returned regardless of their states.
3453 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3454 * css which finished ->css_online() is guaranteed to be visible in the
3455 * future iterations and will stay visible until the last reference is put.
3456 * A css which hasn't finished ->css_online() or already finished
3457 * ->css_offline() may show up during traversal. It's each subsystem's
3458 * responsibility to synchronize against on/offlining.
3460 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3461 struct cgroup_subsys_state *parent)
3463 struct cgroup_subsys_state *next;
3465 cgroup_assert_mutex_or_rcu_locked();
3468 * @pos could already have been unlinked from the sibling list.
3469 * Once a cgroup is removed, its ->sibling.next is no longer
3470 * updated when its next sibling changes. CSS_RELEASED is set when
3471 * @pos is taken off list, at which time its next pointer is valid,
3472 * and, as releases are serialized, the one pointed to by the next
3473 * pointer is guaranteed to not have started release yet. This
3474 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3475 * critical section, the one pointed to by its next pointer is
3476 * guaranteed to not have finished its RCU grace period even if we
3477 * have dropped rcu_read_lock() inbetween iterations.
3479 * If @pos has CSS_RELEASED set, its next pointer can't be
3480 * dereferenced; however, as each css is given a monotonically
3481 * increasing unique serial number and always appended to the
3482 * sibling list, the next one can be found by walking the parent's
3483 * children until the first css with higher serial number than
3484 * @pos's. While this path can be slower, it happens iff iteration
3485 * races against release and the race window is very small.
3487 if (!pos) {
3488 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3489 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3490 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3491 } else {
3492 list_for_each_entry_rcu(next, &parent->children, sibling)
3493 if (next->serial_nr > pos->serial_nr)
3494 break;
3498 * @next, if not pointing to the head, can be dereferenced and is
3499 * the next sibling.
3501 if (&next->sibling != &parent->children)
3502 return next;
3503 return NULL;
3507 * css_next_descendant_pre - find the next descendant for pre-order walk
3508 * @pos: the current position (%NULL to initiate traversal)
3509 * @root: css whose descendants to walk
3511 * To be used by css_for_each_descendant_pre(). Find the next descendant
3512 * to visit for pre-order traversal of @root's descendants. @root is
3513 * included in the iteration and the first node to be visited.
3515 * While this function requires cgroup_mutex or RCU read locking, it
3516 * doesn't require the whole traversal to be contained in a single critical
3517 * section. This function will return the correct next descendant as long
3518 * as both @pos and @root are accessible and @pos is a descendant of @root.
3520 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3521 * css which finished ->css_online() is guaranteed to be visible in the
3522 * future iterations and will stay visible until the last reference is put.
3523 * A css which hasn't finished ->css_online() or already finished
3524 * ->css_offline() may show up during traversal. It's each subsystem's
3525 * responsibility to synchronize against on/offlining.
3527 struct cgroup_subsys_state *
3528 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3529 struct cgroup_subsys_state *root)
3531 struct cgroup_subsys_state *next;
3533 cgroup_assert_mutex_or_rcu_locked();
3535 /* if first iteration, visit @root */
3536 if (!pos)
3537 return root;
3539 /* visit the first child if exists */
3540 next = css_next_child(NULL, pos);
3541 if (next)
3542 return next;
3544 /* no child, visit my or the closest ancestor's next sibling */
3545 while (pos != root) {
3546 next = css_next_child(pos, pos->parent);
3547 if (next)
3548 return next;
3549 pos = pos->parent;
3552 return NULL;
3556 * css_rightmost_descendant - return the rightmost descendant of a css
3557 * @pos: css of interest
3559 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3560 * is returned. This can be used during pre-order traversal to skip
3561 * subtree of @pos.
3563 * While this function requires cgroup_mutex or RCU read locking, it
3564 * doesn't require the whole traversal to be contained in a single critical
3565 * section. This function will return the correct rightmost descendant as
3566 * long as @pos is accessible.
3568 struct cgroup_subsys_state *
3569 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3571 struct cgroup_subsys_state *last, *tmp;
3573 cgroup_assert_mutex_or_rcu_locked();
3575 do {
3576 last = pos;
3577 /* ->prev isn't RCU safe, walk ->next till the end */
3578 pos = NULL;
3579 css_for_each_child(tmp, last)
3580 pos = tmp;
3581 } while (pos);
3583 return last;
3586 static struct cgroup_subsys_state *
3587 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3589 struct cgroup_subsys_state *last;
3591 do {
3592 last = pos;
3593 pos = css_next_child(NULL, pos);
3594 } while (pos);
3596 return last;
3600 * css_next_descendant_post - find the next descendant for post-order walk
3601 * @pos: the current position (%NULL to initiate traversal)
3602 * @root: css whose descendants to walk
3604 * To be used by css_for_each_descendant_post(). Find the next descendant
3605 * to visit for post-order traversal of @root's descendants. @root is
3606 * included in the iteration and the last node to be visited.
3608 * While this function requires cgroup_mutex or RCU read locking, it
3609 * doesn't require the whole traversal to be contained in a single critical
3610 * section. This function will return the correct next descendant as long
3611 * as both @pos and @cgroup are accessible and @pos is a descendant of
3612 * @cgroup.
3614 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3615 * css which finished ->css_online() is guaranteed to be visible in the
3616 * future iterations and will stay visible until the last reference is put.
3617 * A css which hasn't finished ->css_online() or already finished
3618 * ->css_offline() may show up during traversal. It's each subsystem's
3619 * responsibility to synchronize against on/offlining.
3621 struct cgroup_subsys_state *
3622 css_next_descendant_post(struct cgroup_subsys_state *pos,
3623 struct cgroup_subsys_state *root)
3625 struct cgroup_subsys_state *next;
3627 cgroup_assert_mutex_or_rcu_locked();
3629 /* if first iteration, visit leftmost descendant which may be @root */
3630 if (!pos)
3631 return css_leftmost_descendant(root);
3633 /* if we visited @root, we're done */
3634 if (pos == root)
3635 return NULL;
3637 /* if there's an unvisited sibling, visit its leftmost descendant */
3638 next = css_next_child(pos, pos->parent);
3639 if (next)
3640 return css_leftmost_descendant(next);
3642 /* no sibling left, visit parent */
3643 return pos->parent;
3647 * css_has_online_children - does a css have online children
3648 * @css: the target css
3650 * Returns %true if @css has any online children; otherwise, %false. This
3651 * function can be called from any context but the caller is responsible
3652 * for synchronizing against on/offlining as necessary.
3654 bool css_has_online_children(struct cgroup_subsys_state *css)
3656 struct cgroup_subsys_state *child;
3657 bool ret = false;
3659 rcu_read_lock();
3660 css_for_each_child(child, css) {
3661 if (child->flags & CSS_ONLINE) {
3662 ret = true;
3663 break;
3666 rcu_read_unlock();
3667 return ret;
3671 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3672 * @it: the iterator to advance
3674 * Advance @it to the next css_set to walk.
3676 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3678 struct list_head *l = it->cset_pos;
3679 struct cgrp_cset_link *link;
3680 struct css_set *cset;
3682 lockdep_assert_held(&css_set_lock);
3684 /* Advance to the next non-empty css_set */
3685 do {
3686 l = l->next;
3687 if (l == it->cset_head) {
3688 it->cset_pos = NULL;
3689 it->task_pos = NULL;
3690 return;
3693 if (it->ss) {
3694 cset = container_of(l, struct css_set,
3695 e_cset_node[it->ss->id]);
3696 } else {
3697 link = list_entry(l, struct cgrp_cset_link, cset_link);
3698 cset = link->cset;
3700 } while (!css_set_populated(cset));
3702 it->cset_pos = l;
3704 if (!list_empty(&cset->tasks))
3705 it->task_pos = cset->tasks.next;
3706 else
3707 it->task_pos = cset->mg_tasks.next;
3709 it->tasks_head = &cset->tasks;
3710 it->mg_tasks_head = &cset->mg_tasks;
3713 * We don't keep css_sets locked across iteration steps and thus
3714 * need to take steps to ensure that iteration can be resumed after
3715 * the lock is re-acquired. Iteration is performed at two levels -
3716 * css_sets and tasks in them.
3718 * Once created, a css_set never leaves its cgroup lists, so a
3719 * pinned css_set is guaranteed to stay put and we can resume
3720 * iteration afterwards.
3722 * Tasks may leave @cset across iteration steps. This is resolved
3723 * by registering each iterator with the css_set currently being
3724 * walked and making css_set_move_task() advance iterators whose
3725 * next task is leaving.
3727 if (it->cur_cset) {
3728 list_del(&it->iters_node);
3729 put_css_set_locked(it->cur_cset);
3731 get_css_set(cset);
3732 it->cur_cset = cset;
3733 list_add(&it->iters_node, &cset->task_iters);
3736 static void css_task_iter_advance(struct css_task_iter *it)
3738 struct list_head *l = it->task_pos;
3740 lockdep_assert_held(&css_set_lock);
3741 WARN_ON_ONCE(!l);
3744 * Advance iterator to find next entry. cset->tasks is consumed
3745 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3746 * next cset.
3748 l = l->next;
3750 if (l == it->tasks_head)
3751 l = it->mg_tasks_head->next;
3753 if (l == it->mg_tasks_head)
3754 css_task_iter_advance_css_set(it);
3755 else
3756 it->task_pos = l;
3760 * css_task_iter_start - initiate task iteration
3761 * @css: the css to walk tasks of
3762 * @it: the task iterator to use
3764 * Initiate iteration through the tasks of @css. The caller can call
3765 * css_task_iter_next() to walk through the tasks until the function
3766 * returns NULL. On completion of iteration, css_task_iter_end() must be
3767 * called.
3769 void css_task_iter_start(struct cgroup_subsys_state *css,
3770 struct css_task_iter *it)
3772 /* no one should try to iterate before mounting cgroups */
3773 WARN_ON_ONCE(!use_task_css_set_links);
3775 memset(it, 0, sizeof(*it));
3777 spin_lock_irq(&css_set_lock);
3779 it->ss = css->ss;
3781 if (it->ss)
3782 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3783 else
3784 it->cset_pos = &css->cgroup->cset_links;
3786 it->cset_head = it->cset_pos;
3788 css_task_iter_advance_css_set(it);
3790 spin_unlock_irq(&css_set_lock);
3794 * css_task_iter_next - return the next task for the iterator
3795 * @it: the task iterator being iterated
3797 * The "next" function for task iteration. @it should have been
3798 * initialized via css_task_iter_start(). Returns NULL when the iteration
3799 * reaches the end.
3801 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3803 if (it->cur_task) {
3804 put_task_struct(it->cur_task);
3805 it->cur_task = NULL;
3808 spin_lock_irq(&css_set_lock);
3810 if (it->task_pos) {
3811 it->cur_task = list_entry(it->task_pos, struct task_struct,
3812 cg_list);
3813 get_task_struct(it->cur_task);
3814 css_task_iter_advance(it);
3817 spin_unlock_irq(&css_set_lock);
3819 return it->cur_task;
3823 * css_task_iter_end - finish task iteration
3824 * @it: the task iterator to finish
3826 * Finish task iteration started by css_task_iter_start().
3828 void css_task_iter_end(struct css_task_iter *it)
3830 if (it->cur_cset) {
3831 spin_lock_irq(&css_set_lock);
3832 list_del(&it->iters_node);
3833 put_css_set_locked(it->cur_cset);
3834 spin_unlock_irq(&css_set_lock);
3837 if (it->cur_task)
3838 put_task_struct(it->cur_task);
3841 static void cgroup_procs_release(struct kernfs_open_file *of)
3843 if (of->priv) {
3844 css_task_iter_end(of->priv);
3845 kfree(of->priv);
3849 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
3851 struct kernfs_open_file *of = s->private;
3852 struct css_task_iter *it = of->priv;
3853 struct task_struct *task;
3855 do {
3856 task = css_task_iter_next(it);
3857 } while (task && !thread_group_leader(task));
3859 return task;
3862 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
3864 struct kernfs_open_file *of = s->private;
3865 struct cgroup *cgrp = seq_css(s)->cgroup;
3866 struct css_task_iter *it = of->priv;
3869 * When a seq_file is seeked, it's always traversed sequentially
3870 * from position 0, so we can simply keep iterating on !0 *pos.
3872 if (!it) {
3873 if (WARN_ON_ONCE((*pos)++))
3874 return ERR_PTR(-EINVAL);
3876 it = kzalloc(sizeof(*it), GFP_KERNEL);
3877 if (!it)
3878 return ERR_PTR(-ENOMEM);
3879 of->priv = it;
3880 css_task_iter_start(&cgrp->self, it);
3881 } else if (!(*pos)++) {
3882 css_task_iter_end(it);
3883 css_task_iter_start(&cgrp->self, it);
3886 return cgroup_procs_next(s, NULL, NULL);
3889 static int cgroup_procs_show(struct seq_file *s, void *v)
3891 seq_printf(s, "%d\n", task_tgid_vnr(v));
3892 return 0;
3895 /* cgroup core interface files for the default hierarchy */
3896 static struct cftype cgroup_base_files[] = {
3898 .name = "cgroup.procs",
3899 .flags = CFTYPE_NS_DELEGATABLE,
3900 .file_offset = offsetof(struct cgroup, procs_file),
3901 .release = cgroup_procs_release,
3902 .seq_start = cgroup_procs_start,
3903 .seq_next = cgroup_procs_next,
3904 .seq_show = cgroup_procs_show,
3905 .write = cgroup_procs_write,
3908 .name = "cgroup.controllers",
3909 .seq_show = cgroup_controllers_show,
3912 .name = "cgroup.subtree_control",
3913 .flags = CFTYPE_NS_DELEGATABLE,
3914 .seq_show = cgroup_subtree_control_show,
3915 .write = cgroup_subtree_control_write,
3918 .name = "cgroup.events",
3919 .flags = CFTYPE_NOT_ON_ROOT,
3920 .file_offset = offsetof(struct cgroup, events_file),
3921 .seq_show = cgroup_events_show,
3923 { } /* terminate */
3927 * css destruction is four-stage process.
3929 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3930 * Implemented in kill_css().
3932 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3933 * and thus css_tryget_online() is guaranteed to fail, the css can be
3934 * offlined by invoking offline_css(). After offlining, the base ref is
3935 * put. Implemented in css_killed_work_fn().
3937 * 3. When the percpu_ref reaches zero, the only possible remaining
3938 * accessors are inside RCU read sections. css_release() schedules the
3939 * RCU callback.
3941 * 4. After the grace period, the css can be freed. Implemented in
3942 * css_free_work_fn().
3944 * It is actually hairier because both step 2 and 4 require process context
3945 * and thus involve punting to css->destroy_work adding two additional
3946 * steps to the already complex sequence.
3948 static void css_free_work_fn(struct work_struct *work)
3950 struct cgroup_subsys_state *css =
3951 container_of(work, struct cgroup_subsys_state, destroy_work);
3952 struct cgroup_subsys *ss = css->ss;
3953 struct cgroup *cgrp = css->cgroup;
3955 percpu_ref_exit(&css->refcnt);
3957 if (ss) {
3958 /* css free path */
3959 struct cgroup_subsys_state *parent = css->parent;
3960 int id = css->id;
3962 ss->css_free(css);
3963 cgroup_idr_remove(&ss->css_idr, id);
3964 cgroup_put(cgrp);
3966 if (parent)
3967 css_put(parent);
3968 } else {
3969 /* cgroup free path */
3970 atomic_dec(&cgrp->root->nr_cgrps);
3971 cgroup1_pidlist_destroy_all(cgrp);
3972 cancel_work_sync(&cgrp->release_agent_work);
3974 if (cgroup_parent(cgrp)) {
3976 * We get a ref to the parent, and put the ref when
3977 * this cgroup is being freed, so it's guaranteed
3978 * that the parent won't be destroyed before its
3979 * children.
3981 cgroup_put(cgroup_parent(cgrp));
3982 kernfs_put(cgrp->kn);
3983 kfree(cgrp);
3984 } else {
3986 * This is root cgroup's refcnt reaching zero,
3987 * which indicates that the root should be
3988 * released.
3990 cgroup_destroy_root(cgrp->root);
3995 static void css_free_rcu_fn(struct rcu_head *rcu_head)
3997 struct cgroup_subsys_state *css =
3998 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4000 INIT_WORK(&css->destroy_work, css_free_work_fn);
4001 queue_work(cgroup_destroy_wq, &css->destroy_work);
4004 static void css_release_work_fn(struct work_struct *work)
4006 struct cgroup_subsys_state *css =
4007 container_of(work, struct cgroup_subsys_state, destroy_work);
4008 struct cgroup_subsys *ss = css->ss;
4009 struct cgroup *cgrp = css->cgroup;
4011 mutex_lock(&cgroup_mutex);
4013 css->flags |= CSS_RELEASED;
4014 list_del_rcu(&css->sibling);
4016 if (ss) {
4017 /* css release path */
4018 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4019 if (ss->css_released)
4020 ss->css_released(css);
4021 } else {
4022 /* cgroup release path */
4023 trace_cgroup_release(cgrp);
4025 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4026 cgrp->id = -1;
4029 * There are two control paths which try to determine
4030 * cgroup from dentry without going through kernfs -
4031 * cgroupstats_build() and css_tryget_online_from_dir().
4032 * Those are supported by RCU protecting clearing of
4033 * cgrp->kn->priv backpointer.
4035 if (cgrp->kn)
4036 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4037 NULL);
4039 cgroup_bpf_put(cgrp);
4042 mutex_unlock(&cgroup_mutex);
4044 call_rcu(&css->rcu_head, css_free_rcu_fn);
4047 static void css_release(struct percpu_ref *ref)
4049 struct cgroup_subsys_state *css =
4050 container_of(ref, struct cgroup_subsys_state, refcnt);
4052 INIT_WORK(&css->destroy_work, css_release_work_fn);
4053 queue_work(cgroup_destroy_wq, &css->destroy_work);
4056 static void init_and_link_css(struct cgroup_subsys_state *css,
4057 struct cgroup_subsys *ss, struct cgroup *cgrp)
4059 lockdep_assert_held(&cgroup_mutex);
4061 cgroup_get_live(cgrp);
4063 memset(css, 0, sizeof(*css));
4064 css->cgroup = cgrp;
4065 css->ss = ss;
4066 css->id = -1;
4067 INIT_LIST_HEAD(&css->sibling);
4068 INIT_LIST_HEAD(&css->children);
4069 css->serial_nr = css_serial_nr_next++;
4070 atomic_set(&css->online_cnt, 0);
4072 if (cgroup_parent(cgrp)) {
4073 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4074 css_get(css->parent);
4077 BUG_ON(cgroup_css(cgrp, ss));
4080 /* invoke ->css_online() on a new CSS and mark it online if successful */
4081 static int online_css(struct cgroup_subsys_state *css)
4083 struct cgroup_subsys *ss = css->ss;
4084 int ret = 0;
4086 lockdep_assert_held(&cgroup_mutex);
4088 if (ss->css_online)
4089 ret = ss->css_online(css);
4090 if (!ret) {
4091 css->flags |= CSS_ONLINE;
4092 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4094 atomic_inc(&css->online_cnt);
4095 if (css->parent)
4096 atomic_inc(&css->parent->online_cnt);
4098 return ret;
4101 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4102 static void offline_css(struct cgroup_subsys_state *css)
4104 struct cgroup_subsys *ss = css->ss;
4106 lockdep_assert_held(&cgroup_mutex);
4108 if (!(css->flags & CSS_ONLINE))
4109 return;
4111 if (ss->css_reset)
4112 ss->css_reset(css);
4114 if (ss->css_offline)
4115 ss->css_offline(css);
4117 css->flags &= ~CSS_ONLINE;
4118 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4120 wake_up_all(&css->cgroup->offline_waitq);
4124 * css_create - create a cgroup_subsys_state
4125 * @cgrp: the cgroup new css will be associated with
4126 * @ss: the subsys of new css
4128 * Create a new css associated with @cgrp - @ss pair. On success, the new
4129 * css is online and installed in @cgrp. This function doesn't create the
4130 * interface files. Returns 0 on success, -errno on failure.
4132 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4133 struct cgroup_subsys *ss)
4135 struct cgroup *parent = cgroup_parent(cgrp);
4136 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4137 struct cgroup_subsys_state *css;
4138 int err;
4140 lockdep_assert_held(&cgroup_mutex);
4142 css = ss->css_alloc(parent_css);
4143 if (!css)
4144 css = ERR_PTR(-ENOMEM);
4145 if (IS_ERR(css))
4146 return css;
4148 init_and_link_css(css, ss, cgrp);
4150 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4151 if (err)
4152 goto err_free_css;
4154 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4155 if (err < 0)
4156 goto err_free_css;
4157 css->id = err;
4159 /* @css is ready to be brought online now, make it visible */
4160 list_add_tail_rcu(&css->sibling, &parent_css->children);
4161 cgroup_idr_replace(&ss->css_idr, css, css->id);
4163 err = online_css(css);
4164 if (err)
4165 goto err_list_del;
4167 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4168 cgroup_parent(parent)) {
4169 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4170 current->comm, current->pid, ss->name);
4171 if (!strcmp(ss->name, "memory"))
4172 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4173 ss->warned_broken_hierarchy = true;
4176 return css;
4178 err_list_del:
4179 list_del_rcu(&css->sibling);
4180 err_free_css:
4181 call_rcu(&css->rcu_head, css_free_rcu_fn);
4182 return ERR_PTR(err);
4186 * The returned cgroup is fully initialized including its control mask, but
4187 * it isn't associated with its kernfs_node and doesn't have the control
4188 * mask applied.
4190 static struct cgroup *cgroup_create(struct cgroup *parent)
4192 struct cgroup_root *root = parent->root;
4193 struct cgroup *cgrp, *tcgrp;
4194 int level = parent->level + 1;
4195 int ret;
4197 /* allocate the cgroup and its ID, 0 is reserved for the root */
4198 cgrp = kzalloc(sizeof(*cgrp) +
4199 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4200 if (!cgrp)
4201 return ERR_PTR(-ENOMEM);
4203 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4204 if (ret)
4205 goto out_free_cgrp;
4208 * Temporarily set the pointer to NULL, so idr_find() won't return
4209 * a half-baked cgroup.
4211 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4212 if (cgrp->id < 0) {
4213 ret = -ENOMEM;
4214 goto out_cancel_ref;
4217 init_cgroup_housekeeping(cgrp);
4219 cgrp->self.parent = &parent->self;
4220 cgrp->root = root;
4221 cgrp->level = level;
4223 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4224 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4226 if (notify_on_release(parent))
4227 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4229 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4230 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4232 cgrp->self.serial_nr = css_serial_nr_next++;
4234 /* allocation complete, commit to creation */
4235 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4236 atomic_inc(&root->nr_cgrps);
4237 cgroup_get_live(parent);
4240 * @cgrp is now fully operational. If something fails after this
4241 * point, it'll be released via the normal destruction path.
4243 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4246 * On the default hierarchy, a child doesn't automatically inherit
4247 * subtree_control from the parent. Each is configured manually.
4249 if (!cgroup_on_dfl(cgrp))
4250 cgrp->subtree_control = cgroup_control(cgrp);
4252 if (parent)
4253 cgroup_bpf_inherit(cgrp, parent);
4255 cgroup_propagate_control(cgrp);
4257 return cgrp;
4259 out_cancel_ref:
4260 percpu_ref_exit(&cgrp->self.refcnt);
4261 out_free_cgrp:
4262 kfree(cgrp);
4263 return ERR_PTR(ret);
4266 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4268 struct cgroup *parent, *cgrp;
4269 struct kernfs_node *kn;
4270 int ret;
4272 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4273 if (strchr(name, '\n'))
4274 return -EINVAL;
4276 parent = cgroup_kn_lock_live(parent_kn, false);
4277 if (!parent)
4278 return -ENODEV;
4280 cgrp = cgroup_create(parent);
4281 if (IS_ERR(cgrp)) {
4282 ret = PTR_ERR(cgrp);
4283 goto out_unlock;
4286 /* create the directory */
4287 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4288 if (IS_ERR(kn)) {
4289 ret = PTR_ERR(kn);
4290 goto out_destroy;
4292 cgrp->kn = kn;
4295 * This extra ref will be put in cgroup_free_fn() and guarantees
4296 * that @cgrp->kn is always accessible.
4298 kernfs_get(kn);
4300 ret = cgroup_kn_set_ugid(kn);
4301 if (ret)
4302 goto out_destroy;
4304 ret = css_populate_dir(&cgrp->self);
4305 if (ret)
4306 goto out_destroy;
4308 ret = cgroup_apply_control_enable(cgrp);
4309 if (ret)
4310 goto out_destroy;
4312 trace_cgroup_mkdir(cgrp);
4314 /* let's create and online css's */
4315 kernfs_activate(kn);
4317 ret = 0;
4318 goto out_unlock;
4320 out_destroy:
4321 cgroup_destroy_locked(cgrp);
4322 out_unlock:
4323 cgroup_kn_unlock(parent_kn);
4324 return ret;
4328 * This is called when the refcnt of a css is confirmed to be killed.
4329 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4330 * initate destruction and put the css ref from kill_css().
4332 static void css_killed_work_fn(struct work_struct *work)
4334 struct cgroup_subsys_state *css =
4335 container_of(work, struct cgroup_subsys_state, destroy_work);
4337 mutex_lock(&cgroup_mutex);
4339 do {
4340 offline_css(css);
4341 css_put(css);
4342 /* @css can't go away while we're holding cgroup_mutex */
4343 css = css->parent;
4344 } while (css && atomic_dec_and_test(&css->online_cnt));
4346 mutex_unlock(&cgroup_mutex);
4349 /* css kill confirmation processing requires process context, bounce */
4350 static void css_killed_ref_fn(struct percpu_ref *ref)
4352 struct cgroup_subsys_state *css =
4353 container_of(ref, struct cgroup_subsys_state, refcnt);
4355 if (atomic_dec_and_test(&css->online_cnt)) {
4356 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4357 queue_work(cgroup_destroy_wq, &css->destroy_work);
4362 * kill_css - destroy a css
4363 * @css: css to destroy
4365 * This function initiates destruction of @css by removing cgroup interface
4366 * files and putting its base reference. ->css_offline() will be invoked
4367 * asynchronously once css_tryget_online() is guaranteed to fail and when
4368 * the reference count reaches zero, @css will be released.
4370 static void kill_css(struct cgroup_subsys_state *css)
4372 lockdep_assert_held(&cgroup_mutex);
4374 if (css->flags & CSS_DYING)
4375 return;
4377 css->flags |= CSS_DYING;
4380 * This must happen before css is disassociated with its cgroup.
4381 * See seq_css() for details.
4383 css_clear_dir(css);
4386 * Killing would put the base ref, but we need to keep it alive
4387 * until after ->css_offline().
4389 css_get(css);
4392 * cgroup core guarantees that, by the time ->css_offline() is
4393 * invoked, no new css reference will be given out via
4394 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4395 * proceed to offlining css's because percpu_ref_kill() doesn't
4396 * guarantee that the ref is seen as killed on all CPUs on return.
4398 * Use percpu_ref_kill_and_confirm() to get notifications as each
4399 * css is confirmed to be seen as killed on all CPUs.
4401 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4405 * cgroup_destroy_locked - the first stage of cgroup destruction
4406 * @cgrp: cgroup to be destroyed
4408 * css's make use of percpu refcnts whose killing latency shouldn't be
4409 * exposed to userland and are RCU protected. Also, cgroup core needs to
4410 * guarantee that css_tryget_online() won't succeed by the time
4411 * ->css_offline() is invoked. To satisfy all the requirements,
4412 * destruction is implemented in the following two steps.
4414 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4415 * userland visible parts and start killing the percpu refcnts of
4416 * css's. Set up so that the next stage will be kicked off once all
4417 * the percpu refcnts are confirmed to be killed.
4419 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4420 * rest of destruction. Once all cgroup references are gone, the
4421 * cgroup is RCU-freed.
4423 * This function implements s1. After this step, @cgrp is gone as far as
4424 * the userland is concerned and a new cgroup with the same name may be
4425 * created. As cgroup doesn't care about the names internally, this
4426 * doesn't cause any problem.
4428 static int cgroup_destroy_locked(struct cgroup *cgrp)
4429 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4431 struct cgroup_subsys_state *css;
4432 struct cgrp_cset_link *link;
4433 int ssid;
4435 lockdep_assert_held(&cgroup_mutex);
4438 * Only migration can raise populated from zero and we're already
4439 * holding cgroup_mutex.
4441 if (cgroup_is_populated(cgrp))
4442 return -EBUSY;
4445 * Make sure there's no live children. We can't test emptiness of
4446 * ->self.children as dead children linger on it while being
4447 * drained; otherwise, "rmdir parent/child parent" may fail.
4449 if (css_has_online_children(&cgrp->self))
4450 return -EBUSY;
4453 * Mark @cgrp and the associated csets dead. The former prevents
4454 * further task migration and child creation by disabling
4455 * cgroup_lock_live_group(). The latter makes the csets ignored by
4456 * the migration path.
4458 cgrp->self.flags &= ~CSS_ONLINE;
4460 spin_lock_irq(&css_set_lock);
4461 list_for_each_entry(link, &cgrp->cset_links, cset_link)
4462 link->cset->dead = true;
4463 spin_unlock_irq(&css_set_lock);
4465 /* initiate massacre of all css's */
4466 for_each_css(css, ssid, cgrp)
4467 kill_css(css);
4470 * Remove @cgrp directory along with the base files. @cgrp has an
4471 * extra ref on its kn.
4473 kernfs_remove(cgrp->kn);
4475 cgroup1_check_for_release(cgroup_parent(cgrp));
4477 /* put the base reference */
4478 percpu_ref_kill(&cgrp->self.refcnt);
4480 return 0;
4483 int cgroup_rmdir(struct kernfs_node *kn)
4485 struct cgroup *cgrp;
4486 int ret = 0;
4488 cgrp = cgroup_kn_lock_live(kn, false);
4489 if (!cgrp)
4490 return 0;
4492 ret = cgroup_destroy_locked(cgrp);
4494 if (!ret)
4495 trace_cgroup_rmdir(cgrp);
4497 cgroup_kn_unlock(kn);
4498 return ret;
4501 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4502 .show_options = cgroup_show_options,
4503 .remount_fs = cgroup_remount,
4504 .mkdir = cgroup_mkdir,
4505 .rmdir = cgroup_rmdir,
4506 .show_path = cgroup_show_path,
4509 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4511 struct cgroup_subsys_state *css;
4513 pr_debug("Initializing cgroup subsys %s\n", ss->name);
4515 mutex_lock(&cgroup_mutex);
4517 idr_init(&ss->css_idr);
4518 INIT_LIST_HEAD(&ss->cfts);
4520 /* Create the root cgroup state for this subsystem */
4521 ss->root = &cgrp_dfl_root;
4522 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4523 /* We don't handle early failures gracefully */
4524 BUG_ON(IS_ERR(css));
4525 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4528 * Root csses are never destroyed and we can't initialize
4529 * percpu_ref during early init. Disable refcnting.
4531 css->flags |= CSS_NO_REF;
4533 if (early) {
4534 /* allocation can't be done safely during early init */
4535 css->id = 1;
4536 } else {
4537 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4538 BUG_ON(css->id < 0);
4541 /* Update the init_css_set to contain a subsys
4542 * pointer to this state - since the subsystem is
4543 * newly registered, all tasks and hence the
4544 * init_css_set is in the subsystem's root cgroup. */
4545 init_css_set.subsys[ss->id] = css;
4547 have_fork_callback |= (bool)ss->fork << ss->id;
4548 have_exit_callback |= (bool)ss->exit << ss->id;
4549 have_free_callback |= (bool)ss->free << ss->id;
4550 have_canfork_callback |= (bool)ss->can_fork << ss->id;
4552 /* At system boot, before all subsystems have been
4553 * registered, no tasks have been forked, so we don't
4554 * need to invoke fork callbacks here. */
4555 BUG_ON(!list_empty(&init_task.tasks));
4557 BUG_ON(online_css(css));
4559 mutex_unlock(&cgroup_mutex);
4563 * cgroup_init_early - cgroup initialization at system boot
4565 * Initialize cgroups at system boot, and initialize any
4566 * subsystems that request early init.
4568 int __init cgroup_init_early(void)
4570 static struct cgroup_sb_opts __initdata opts;
4571 struct cgroup_subsys *ss;
4572 int i;
4574 init_cgroup_root(&cgrp_dfl_root, &opts);
4575 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4577 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4579 for_each_subsys(ss, i) {
4580 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4581 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
4582 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4583 ss->id, ss->name);
4584 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4585 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4587 ss->id = i;
4588 ss->name = cgroup_subsys_name[i];
4589 if (!ss->legacy_name)
4590 ss->legacy_name = cgroup_subsys_name[i];
4592 if (ss->early_init)
4593 cgroup_init_subsys(ss, true);
4595 return 0;
4598 static u16 cgroup_disable_mask __initdata;
4601 * cgroup_init - cgroup initialization
4603 * Register cgroup filesystem and /proc file, and initialize
4604 * any subsystems that didn't request early init.
4606 int __init cgroup_init(void)
4608 struct cgroup_subsys *ss;
4609 int ssid;
4611 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
4612 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
4613 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
4614 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
4617 * The latency of the synchronize_sched() is too high for cgroups,
4618 * avoid it at the cost of forcing all readers into the slow path.
4620 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
4622 get_user_ns(init_cgroup_ns.user_ns);
4624 mutex_lock(&cgroup_mutex);
4627 * Add init_css_set to the hash table so that dfl_root can link to
4628 * it during init.
4630 hash_add(css_set_table, &init_css_set.hlist,
4631 css_set_hash(init_css_set.subsys));
4633 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
4635 mutex_unlock(&cgroup_mutex);
4637 for_each_subsys(ss, ssid) {
4638 if (ss->early_init) {
4639 struct cgroup_subsys_state *css =
4640 init_css_set.subsys[ss->id];
4642 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4643 GFP_KERNEL);
4644 BUG_ON(css->id < 0);
4645 } else {
4646 cgroup_init_subsys(ss, false);
4649 list_add_tail(&init_css_set.e_cset_node[ssid],
4650 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4653 * Setting dfl_root subsys_mask needs to consider the
4654 * disabled flag and cftype registration needs kmalloc,
4655 * both of which aren't available during early_init.
4657 if (cgroup_disable_mask & (1 << ssid)) {
4658 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
4659 printk(KERN_INFO "Disabling %s control group subsystem\n",
4660 ss->name);
4661 continue;
4664 if (cgroup1_ssid_disabled(ssid))
4665 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
4666 ss->name);
4668 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4670 if (ss->implicit_on_dfl)
4671 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
4672 else if (!ss->dfl_cftypes)
4673 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
4675 if (ss->dfl_cftypes == ss->legacy_cftypes) {
4676 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
4677 } else {
4678 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
4679 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
4682 if (ss->bind)
4683 ss->bind(init_css_set.subsys[ssid]);
4685 mutex_lock(&cgroup_mutex);
4686 css_populate_dir(init_css_set.subsys[ssid]);
4687 mutex_unlock(&cgroup_mutex);
4690 /* init_css_set.subsys[] has been updated, re-hash */
4691 hash_del(&init_css_set.hlist);
4692 hash_add(css_set_table, &init_css_set.hlist,
4693 css_set_hash(init_css_set.subsys));
4695 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
4696 WARN_ON(register_filesystem(&cgroup_fs_type));
4697 WARN_ON(register_filesystem(&cgroup2_fs_type));
4698 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
4700 return 0;
4703 static int __init cgroup_wq_init(void)
4706 * There isn't much point in executing destruction path in
4707 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4708 * Use 1 for @max_active.
4710 * We would prefer to do this in cgroup_init() above, but that
4711 * is called before init_workqueues(): so leave this until after.
4713 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4714 BUG_ON(!cgroup_destroy_wq);
4715 return 0;
4717 core_initcall(cgroup_wq_init);
4720 * proc_cgroup_show()
4721 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4722 * - Used for /proc/<pid>/cgroup.
4724 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
4725 struct pid *pid, struct task_struct *tsk)
4727 char *buf;
4728 int retval;
4729 struct cgroup_root *root;
4731 retval = -ENOMEM;
4732 buf = kmalloc(PATH_MAX, GFP_KERNEL);
4733 if (!buf)
4734 goto out;
4736 mutex_lock(&cgroup_mutex);
4737 spin_lock_irq(&css_set_lock);
4739 for_each_root(root) {
4740 struct cgroup_subsys *ss;
4741 struct cgroup *cgrp;
4742 int ssid, count = 0;
4744 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
4745 continue;
4747 seq_printf(m, "%d:", root->hierarchy_id);
4748 if (root != &cgrp_dfl_root)
4749 for_each_subsys(ss, ssid)
4750 if (root->subsys_mask & (1 << ssid))
4751 seq_printf(m, "%s%s", count++ ? "," : "",
4752 ss->legacy_name);
4753 if (strlen(root->name))
4754 seq_printf(m, "%sname=%s", count ? "," : "",
4755 root->name);
4756 seq_putc(m, ':');
4758 cgrp = task_cgroup_from_root(tsk, root);
4761 * On traditional hierarchies, all zombie tasks show up as
4762 * belonging to the root cgroup. On the default hierarchy,
4763 * while a zombie doesn't show up in "cgroup.procs" and
4764 * thus can't be migrated, its /proc/PID/cgroup keeps
4765 * reporting the cgroup it belonged to before exiting. If
4766 * the cgroup is removed before the zombie is reaped,
4767 * " (deleted)" is appended to the cgroup path.
4769 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
4770 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
4771 current->nsproxy->cgroup_ns);
4772 if (retval >= PATH_MAX)
4773 retval = -ENAMETOOLONG;
4774 if (retval < 0)
4775 goto out_unlock;
4777 seq_puts(m, buf);
4778 } else {
4779 seq_puts(m, "/");
4782 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
4783 seq_puts(m, " (deleted)\n");
4784 else
4785 seq_putc(m, '\n');
4788 retval = 0;
4789 out_unlock:
4790 spin_unlock_irq(&css_set_lock);
4791 mutex_unlock(&cgroup_mutex);
4792 kfree(buf);
4793 out:
4794 return retval;
4798 * cgroup_fork - initialize cgroup related fields during copy_process()
4799 * @child: pointer to task_struct of forking parent process.
4801 * A task is associated with the init_css_set until cgroup_post_fork()
4802 * attaches it to the parent's css_set. Empty cg_list indicates that
4803 * @child isn't holding reference to its css_set.
4805 void cgroup_fork(struct task_struct *child)
4807 RCU_INIT_POINTER(child->cgroups, &init_css_set);
4808 INIT_LIST_HEAD(&child->cg_list);
4812 * cgroup_can_fork - called on a new task before the process is exposed
4813 * @child: the task in question.
4815 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
4816 * returns an error, the fork aborts with that error code. This allows for
4817 * a cgroup subsystem to conditionally allow or deny new forks.
4819 int cgroup_can_fork(struct task_struct *child)
4821 struct cgroup_subsys *ss;
4822 int i, j, ret;
4824 do_each_subsys_mask(ss, i, have_canfork_callback) {
4825 ret = ss->can_fork(child);
4826 if (ret)
4827 goto out_revert;
4828 } while_each_subsys_mask();
4830 return 0;
4832 out_revert:
4833 for_each_subsys(ss, j) {
4834 if (j >= i)
4835 break;
4836 if (ss->cancel_fork)
4837 ss->cancel_fork(child);
4840 return ret;
4844 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
4845 * @child: the task in question
4847 * This calls the cancel_fork() callbacks if a fork failed *after*
4848 * cgroup_can_fork() succeded.
4850 void cgroup_cancel_fork(struct task_struct *child)
4852 struct cgroup_subsys *ss;
4853 int i;
4855 for_each_subsys(ss, i)
4856 if (ss->cancel_fork)
4857 ss->cancel_fork(child);
4861 * cgroup_post_fork - called on a new task after adding it to the task list
4862 * @child: the task in question
4864 * Adds the task to the list running through its css_set if necessary and
4865 * call the subsystem fork() callbacks. Has to be after the task is
4866 * visible on the task list in case we race with the first call to
4867 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
4868 * list.
4870 void cgroup_post_fork(struct task_struct *child)
4872 struct cgroup_subsys *ss;
4873 int i;
4876 * This may race against cgroup_enable_task_cg_lists(). As that
4877 * function sets use_task_css_set_links before grabbing
4878 * tasklist_lock and we just went through tasklist_lock to add
4879 * @child, it's guaranteed that either we see the set
4880 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4881 * @child during its iteration.
4883 * If we won the race, @child is associated with %current's
4884 * css_set. Grabbing css_set_lock guarantees both that the
4885 * association is stable, and, on completion of the parent's
4886 * migration, @child is visible in the source of migration or
4887 * already in the destination cgroup. This guarantee is necessary
4888 * when implementing operations which need to migrate all tasks of
4889 * a cgroup to another.
4891 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
4892 * will remain in init_css_set. This is safe because all tasks are
4893 * in the init_css_set before cg_links is enabled and there's no
4894 * operation which transfers all tasks out of init_css_set.
4896 if (use_task_css_set_links) {
4897 struct css_set *cset;
4899 spin_lock_irq(&css_set_lock);
4900 cset = task_css_set(current);
4901 if (list_empty(&child->cg_list)) {
4902 get_css_set(cset);
4903 cset->nr_tasks++;
4904 css_set_move_task(child, NULL, cset, false);
4906 spin_unlock_irq(&css_set_lock);
4910 * Call ss->fork(). This must happen after @child is linked on
4911 * css_set; otherwise, @child might change state between ->fork()
4912 * and addition to css_set.
4914 do_each_subsys_mask(ss, i, have_fork_callback) {
4915 ss->fork(child);
4916 } while_each_subsys_mask();
4920 * cgroup_exit - detach cgroup from exiting task
4921 * @tsk: pointer to task_struct of exiting process
4923 * Description: Detach cgroup from @tsk and release it.
4925 * Note that cgroups marked notify_on_release force every task in
4926 * them to take the global cgroup_mutex mutex when exiting.
4927 * This could impact scaling on very large systems. Be reluctant to
4928 * use notify_on_release cgroups where very high task exit scaling
4929 * is required on large systems.
4931 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4932 * call cgroup_exit() while the task is still competent to handle
4933 * notify_on_release(), then leave the task attached to the root cgroup in
4934 * each hierarchy for the remainder of its exit. No need to bother with
4935 * init_css_set refcnting. init_css_set never goes away and we can't race
4936 * with migration path - PF_EXITING is visible to migration path.
4938 void cgroup_exit(struct task_struct *tsk)
4940 struct cgroup_subsys *ss;
4941 struct css_set *cset;
4942 int i;
4945 * Unlink from @tsk from its css_set. As migration path can't race
4946 * with us, we can check css_set and cg_list without synchronization.
4948 cset = task_css_set(tsk);
4950 if (!list_empty(&tsk->cg_list)) {
4951 spin_lock_irq(&css_set_lock);
4952 css_set_move_task(tsk, cset, NULL, false);
4953 cset->nr_tasks--;
4954 spin_unlock_irq(&css_set_lock);
4955 } else {
4956 get_css_set(cset);
4959 /* see cgroup_post_fork() for details */
4960 do_each_subsys_mask(ss, i, have_exit_callback) {
4961 ss->exit(tsk);
4962 } while_each_subsys_mask();
4965 void cgroup_free(struct task_struct *task)
4967 struct css_set *cset = task_css_set(task);
4968 struct cgroup_subsys *ss;
4969 int ssid;
4971 do_each_subsys_mask(ss, ssid, have_free_callback) {
4972 ss->free(task);
4973 } while_each_subsys_mask();
4975 put_css_set(cset);
4978 static int __init cgroup_disable(char *str)
4980 struct cgroup_subsys *ss;
4981 char *token;
4982 int i;
4984 while ((token = strsep(&str, ",")) != NULL) {
4985 if (!*token)
4986 continue;
4988 for_each_subsys(ss, i) {
4989 if (strcmp(token, ss->name) &&
4990 strcmp(token, ss->legacy_name))
4991 continue;
4992 cgroup_disable_mask |= 1 << i;
4995 return 1;
4997 __setup("cgroup_disable=", cgroup_disable);
5000 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5001 * @dentry: directory dentry of interest
5002 * @ss: subsystem of interest
5004 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5005 * to get the corresponding css and return it. If such css doesn't exist
5006 * or can't be pinned, an ERR_PTR value is returned.
5008 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5009 struct cgroup_subsys *ss)
5011 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5012 struct file_system_type *s_type = dentry->d_sb->s_type;
5013 struct cgroup_subsys_state *css = NULL;
5014 struct cgroup *cgrp;
5016 /* is @dentry a cgroup dir? */
5017 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5018 !kn || kernfs_type(kn) != KERNFS_DIR)
5019 return ERR_PTR(-EBADF);
5021 rcu_read_lock();
5024 * This path doesn't originate from kernfs and @kn could already
5025 * have been or be removed at any point. @kn->priv is RCU
5026 * protected for this access. See css_release_work_fn() for details.
5028 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5029 if (cgrp)
5030 css = cgroup_css(cgrp, ss);
5032 if (!css || !css_tryget_online(css))
5033 css = ERR_PTR(-ENOENT);
5035 rcu_read_unlock();
5036 return css;
5040 * css_from_id - lookup css by id
5041 * @id: the cgroup id
5042 * @ss: cgroup subsys to be looked into
5044 * Returns the css if there's valid one with @id, otherwise returns NULL.
5045 * Should be called under rcu_read_lock().
5047 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5049 WARN_ON_ONCE(!rcu_read_lock_held());
5050 return idr_find(&ss->css_idr, id);
5054 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5055 * @path: path on the default hierarchy
5057 * Find the cgroup at @path on the default hierarchy, increment its
5058 * reference count and return it. Returns pointer to the found cgroup on
5059 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5060 * if @path points to a non-directory.
5062 struct cgroup *cgroup_get_from_path(const char *path)
5064 struct kernfs_node *kn;
5065 struct cgroup *cgrp;
5067 mutex_lock(&cgroup_mutex);
5069 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5070 if (kn) {
5071 if (kernfs_type(kn) == KERNFS_DIR) {
5072 cgrp = kn->priv;
5073 cgroup_get_live(cgrp);
5074 } else {
5075 cgrp = ERR_PTR(-ENOTDIR);
5077 kernfs_put(kn);
5078 } else {
5079 cgrp = ERR_PTR(-ENOENT);
5082 mutex_unlock(&cgroup_mutex);
5083 return cgrp;
5085 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5088 * cgroup_get_from_fd - get a cgroup pointer from a fd
5089 * @fd: fd obtained by open(cgroup2_dir)
5091 * Find the cgroup from a fd which should be obtained
5092 * by opening a cgroup directory. Returns a pointer to the
5093 * cgroup on success. ERR_PTR is returned if the cgroup
5094 * cannot be found.
5096 struct cgroup *cgroup_get_from_fd(int fd)
5098 struct cgroup_subsys_state *css;
5099 struct cgroup *cgrp;
5100 struct file *f;
5102 f = fget_raw(fd);
5103 if (!f)
5104 return ERR_PTR(-EBADF);
5106 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5107 fput(f);
5108 if (IS_ERR(css))
5109 return ERR_CAST(css);
5111 cgrp = css->cgroup;
5112 if (!cgroup_on_dfl(cgrp)) {
5113 cgroup_put(cgrp);
5114 return ERR_PTR(-EBADF);
5117 return cgrp;
5119 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5122 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5123 * definition in cgroup-defs.h.
5125 #ifdef CONFIG_SOCK_CGROUP_DATA
5127 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5129 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5130 static bool cgroup_sk_alloc_disabled __read_mostly;
5132 void cgroup_sk_alloc_disable(void)
5134 if (cgroup_sk_alloc_disabled)
5135 return;
5136 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5137 cgroup_sk_alloc_disabled = true;
5140 #else
5142 #define cgroup_sk_alloc_disabled false
5144 #endif
5146 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5148 if (cgroup_sk_alloc_disabled)
5149 return;
5151 /* Socket clone path */
5152 if (skcd->val) {
5154 * We might be cloning a socket which is left in an empty
5155 * cgroup and the cgroup might have already been rmdir'd.
5156 * Don't use cgroup_get_live().
5158 cgroup_get(sock_cgroup_ptr(skcd));
5159 return;
5162 rcu_read_lock();
5164 while (true) {
5165 struct css_set *cset;
5167 cset = task_css_set(current);
5168 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5169 skcd->val = (unsigned long)cset->dfl_cgrp;
5170 break;
5172 cpu_relax();
5175 rcu_read_unlock();
5178 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5180 cgroup_put(sock_cgroup_ptr(skcd));
5183 #endif /* CONFIG_SOCK_CGROUP_DATA */
5185 #ifdef CONFIG_CGROUP_BPF
5186 int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog,
5187 enum bpf_attach_type type, bool overridable)
5189 struct cgroup *parent = cgroup_parent(cgrp);
5190 int ret;
5192 mutex_lock(&cgroup_mutex);
5193 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable);
5194 mutex_unlock(&cgroup_mutex);
5195 return ret;
5197 #endif /* CONFIG_CGROUP_BPF */