Linux 4.13.16
[linux/fpc-iii.git] / kernel / futex.c
bloba6639b3463733caa99a6f662b69cfbc59a97a9b8
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
71 #include <asm/futex.h>
73 #include "locking/rtmutex_common.h"
76 * READ this before attempting to hack on futexes!
78 * Basic futex operation and ordering guarantees
79 * =============================================
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
131 * lock(hash_bucket(futex)); |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
152 * This yields the following case (where X:=waiters, Y:=futex):
154 * X = Y = 0
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
197 * Priority Inheritance state:
199 struct futex_pi_state {
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
204 struct list_head list;
207 * The PI object:
209 struct rt_mutex pi_mutex;
211 struct task_struct *owner;
212 atomic_t refcount;
214 union futex_key key;
215 } __randomize_layout;
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
239 struct futex_q {
240 struct plist_node list;
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
282 * Fault injections for futexes.
284 #ifdef CONFIG_FAIL_FUTEX
286 static struct {
287 struct fault_attr attr;
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
295 static int __init setup_fail_futex(char *str)
297 return setup_fault_attr(&fail_futex.attr, str);
299 __setup("fail_futex=", setup_fail_futex);
301 static bool should_fail_futex(bool fshared)
303 if (fail_futex.ignore_private && !fshared)
304 return false;
306 return should_fail(&fail_futex.attr, 1);
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
311 static int __init fail_futex_debugfs(void)
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
327 return 0;
330 late_initcall(fail_futex_debugfs);
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
334 #else
335 static inline bool should_fail_futex(bool fshared)
337 return false;
339 #endif /* CONFIG_FAIL_FUTEX */
341 static inline void futex_get_mm(union futex_key *key)
343 mmgrab(key->private.mm);
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
349 smp_mb__after_atomic();
353 * Reflects a new waiter being added to the waitqueue.
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
360 * Full barrier (A), see the ordering comment above.
362 smp_mb__after_atomic();
363 #endif
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
407 * Return 1 if two futex_keys are equal, 0 otherwise.
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
422 static void get_futex_key_refs(union futex_key *key)
424 if (!key->both.ptr)
425 return;
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
450 smp_mb(); /* explicit smp_mb(); (B) */
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
460 static void drop_futex_key_refs(union futex_key *key)
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
489 * Return: a negative error code or 0
491 * The key words are stored in @key on success.
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
497 * lock_page() might sleep, the caller should not hold a spinlock.
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
509 * The futex address must be "naturally" aligned.
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
541 err = get_user_pages_fast(address, 1, 1, &page);
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
550 if (err < 0)
551 return err;
552 else
553 err = 0;
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
605 if (shmem_swizzled)
606 goto again;
608 return -EFAULT;
612 * Private mappings are handled in a simple way.
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
621 if (PageAnon(page)) {
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
637 } else {
638 struct inode *inode;
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
651 rcu_read_lock();
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
657 goto again;
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
665 goto again;
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
680 if (!atomic_inc_not_zero(&inode->i_count)) {
681 rcu_read_unlock();
682 put_page(page);
684 goto again;
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
693 goto out;
696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 key->shared.inode = inode;
698 key->shared.pgoff = basepage_index(tail);
699 rcu_read_unlock();
702 out:
703 put_page(page);
704 return err;
707 static inline void put_futex_key(union futex_key *key)
709 drop_futex_key_refs(key);
713 * fault_in_user_writeable() - Fault in user address and verify RW access
714 * @uaddr: pointer to faulting user space address
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
719 * We have no generic implementation of a non-destructive write to the
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
724 static int fault_in_user_writeable(u32 __user *uaddr)
726 struct mm_struct *mm = current->mm;
727 int ret;
729 down_read(&mm->mmap_sem);
730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 FAULT_FLAG_WRITE, NULL);
732 up_read(&mm->mmap_sem);
734 return ret < 0 ? ret : 0;
738 * futex_top_waiter() - Return the highest priority waiter on a futex
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
742 * Must be called with the hb lock held.
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
747 struct futex_q *this;
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
753 return NULL;
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
759 int ret;
761 pagefault_disable();
762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 pagefault_enable();
765 return ret;
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
770 int ret;
772 pagefault_disable();
773 ret = __get_user(*dest, from);
774 pagefault_enable();
776 return ret ? -EFAULT : 0;
781 * PI code:
783 static int refill_pi_state_cache(void)
785 struct futex_pi_state *pi_state;
787 if (likely(current->pi_state_cache))
788 return 0;
790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
792 if (!pi_state)
793 return -ENOMEM;
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
799 pi_state->key = FUTEX_KEY_INIT;
801 current->pi_state_cache = pi_state;
803 return 0;
806 static struct futex_pi_state *alloc_pi_state(void)
808 struct futex_pi_state *pi_state = current->pi_state_cache;
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
813 return pi_state;
816 static void get_pi_state(struct futex_pi_state *pi_state)
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
825 static void put_pi_state(struct futex_pi_state *pi_state)
827 if (!pi_state)
828 return;
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
837 if (pi_state->owner) {
838 struct task_struct *owner;
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
851 if (current->pi_state_cache) {
852 kfree(pi_state);
853 } else {
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
866 * Look up the task based on what TID userspace gave us.
867 * We dont trust it.
869 static struct task_struct *futex_find_get_task(pid_t pid)
871 struct task_struct *p;
873 rcu_read_lock();
874 p = find_task_by_vpid(pid);
875 if (p)
876 get_task_struct(p);
878 rcu_read_unlock();
880 return p;
884 * This task is holding PI mutexes at exit time => bad.
885 * Kernel cleans up PI-state, but userspace is likely hosed.
886 * (Robust-futex cleanup is separate and might save the day for userspace.)
888 void exit_pi_state_list(struct task_struct *curr)
890 struct list_head *next, *head = &curr->pi_state_list;
891 struct futex_pi_state *pi_state;
892 struct futex_hash_bucket *hb;
893 union futex_key key = FUTEX_KEY_INIT;
895 if (!futex_cmpxchg_enabled)
896 return;
898 * We are a ZOMBIE and nobody can enqueue itself on
899 * pi_state_list anymore, but we have to be careful
900 * versus waiters unqueueing themselves:
902 raw_spin_lock_irq(&curr->pi_lock);
903 while (!list_empty(head)) {
904 next = head->next;
905 pi_state = list_entry(next, struct futex_pi_state, list);
906 key = pi_state->key;
907 hb = hash_futex(&key);
910 * We can race against put_pi_state() removing itself from the
911 * list (a waiter going away). put_pi_state() will first
912 * decrement the reference count and then modify the list, so
913 * its possible to see the list entry but fail this reference
914 * acquire.
916 * In that case; drop the locks to let put_pi_state() make
917 * progress and retry the loop.
919 if (!atomic_inc_not_zero(&pi_state->refcount)) {
920 raw_spin_unlock_irq(&curr->pi_lock);
921 cpu_relax();
922 raw_spin_lock_irq(&curr->pi_lock);
923 continue;
925 raw_spin_unlock_irq(&curr->pi_lock);
927 spin_lock(&hb->lock);
928 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
929 raw_spin_lock(&curr->pi_lock);
931 * We dropped the pi-lock, so re-check whether this
932 * task still owns the PI-state:
934 if (head->next != next) {
935 /* retain curr->pi_lock for the loop invariant */
936 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
937 spin_unlock(&hb->lock);
938 put_pi_state(pi_state);
939 continue;
942 WARN_ON(pi_state->owner != curr);
943 WARN_ON(list_empty(&pi_state->list));
944 list_del_init(&pi_state->list);
945 pi_state->owner = NULL;
947 raw_spin_unlock(&curr->pi_lock);
948 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
949 spin_unlock(&hb->lock);
951 rt_mutex_futex_unlock(&pi_state->pi_mutex);
952 put_pi_state(pi_state);
954 raw_spin_lock_irq(&curr->pi_lock);
956 raw_spin_unlock_irq(&curr->pi_lock);
960 * We need to check the following states:
962 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
964 * [1] NULL | --- | --- | 0 | 0/1 | Valid
965 * [2] NULL | --- | --- | >0 | 0/1 | Valid
967 * [3] Found | NULL | -- | Any | 0/1 | Invalid
969 * [4] Found | Found | NULL | 0 | 1 | Valid
970 * [5] Found | Found | NULL | >0 | 1 | Invalid
972 * [6] Found | Found | task | 0 | 1 | Valid
974 * [7] Found | Found | NULL | Any | 0 | Invalid
976 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
977 * [9] Found | Found | task | 0 | 0 | Invalid
978 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
980 * [1] Indicates that the kernel can acquire the futex atomically. We
981 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
983 * [2] Valid, if TID does not belong to a kernel thread. If no matching
984 * thread is found then it indicates that the owner TID has died.
986 * [3] Invalid. The waiter is queued on a non PI futex
988 * [4] Valid state after exit_robust_list(), which sets the user space
989 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
991 * [5] The user space value got manipulated between exit_robust_list()
992 * and exit_pi_state_list()
994 * [6] Valid state after exit_pi_state_list() which sets the new owner in
995 * the pi_state but cannot access the user space value.
997 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
999 * [8] Owner and user space value match
1001 * [9] There is no transient state which sets the user space TID to 0
1002 * except exit_robust_list(), but this is indicated by the
1003 * FUTEX_OWNER_DIED bit. See [4]
1005 * [10] There is no transient state which leaves owner and user space
1006 * TID out of sync.
1009 * Serialization and lifetime rules:
1011 * hb->lock:
1013 * hb -> futex_q, relation
1014 * futex_q -> pi_state, relation
1016 * (cannot be raw because hb can contain arbitrary amount
1017 * of futex_q's)
1019 * pi_mutex->wait_lock:
1021 * {uval, pi_state}
1023 * (and pi_mutex 'obviously')
1025 * p->pi_lock:
1027 * p->pi_state_list -> pi_state->list, relation
1029 * pi_state->refcount:
1031 * pi_state lifetime
1034 * Lock order:
1036 * hb->lock
1037 * pi_mutex->wait_lock
1038 * p->pi_lock
1043 * Validate that the existing waiter has a pi_state and sanity check
1044 * the pi_state against the user space value. If correct, attach to
1045 * it.
1047 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1048 struct futex_pi_state *pi_state,
1049 struct futex_pi_state **ps)
1051 pid_t pid = uval & FUTEX_TID_MASK;
1052 u32 uval2;
1053 int ret;
1056 * Userspace might have messed up non-PI and PI futexes [3]
1058 if (unlikely(!pi_state))
1059 return -EINVAL;
1062 * We get here with hb->lock held, and having found a
1063 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1064 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1065 * which in turn means that futex_lock_pi() still has a reference on
1066 * our pi_state.
1068 * The waiter holding a reference on @pi_state also protects against
1069 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1070 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1071 * free pi_state before we can take a reference ourselves.
1073 WARN_ON(!atomic_read(&pi_state->refcount));
1076 * Now that we have a pi_state, we can acquire wait_lock
1077 * and do the state validation.
1079 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1082 * Since {uval, pi_state} is serialized by wait_lock, and our current
1083 * uval was read without holding it, it can have changed. Verify it
1084 * still is what we expect it to be, otherwise retry the entire
1085 * operation.
1087 if (get_futex_value_locked(&uval2, uaddr))
1088 goto out_efault;
1090 if (uval != uval2)
1091 goto out_eagain;
1094 * Handle the owner died case:
1096 if (uval & FUTEX_OWNER_DIED) {
1098 * exit_pi_state_list sets owner to NULL and wakes the
1099 * topmost waiter. The task which acquires the
1100 * pi_state->rt_mutex will fixup owner.
1102 if (!pi_state->owner) {
1104 * No pi state owner, but the user space TID
1105 * is not 0. Inconsistent state. [5]
1107 if (pid)
1108 goto out_einval;
1110 * Take a ref on the state and return success. [4]
1112 goto out_attach;
1116 * If TID is 0, then either the dying owner has not
1117 * yet executed exit_pi_state_list() or some waiter
1118 * acquired the rtmutex in the pi state, but did not
1119 * yet fixup the TID in user space.
1121 * Take a ref on the state and return success. [6]
1123 if (!pid)
1124 goto out_attach;
1125 } else {
1127 * If the owner died bit is not set, then the pi_state
1128 * must have an owner. [7]
1130 if (!pi_state->owner)
1131 goto out_einval;
1135 * Bail out if user space manipulated the futex value. If pi
1136 * state exists then the owner TID must be the same as the
1137 * user space TID. [9/10]
1139 if (pid != task_pid_vnr(pi_state->owner))
1140 goto out_einval;
1142 out_attach:
1143 get_pi_state(pi_state);
1144 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1145 *ps = pi_state;
1146 return 0;
1148 out_einval:
1149 ret = -EINVAL;
1150 goto out_error;
1152 out_eagain:
1153 ret = -EAGAIN;
1154 goto out_error;
1156 out_efault:
1157 ret = -EFAULT;
1158 goto out_error;
1160 out_error:
1161 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1162 return ret;
1166 * Lookup the task for the TID provided from user space and attach to
1167 * it after doing proper sanity checks.
1169 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1170 struct futex_pi_state **ps)
1172 pid_t pid = uval & FUTEX_TID_MASK;
1173 struct futex_pi_state *pi_state;
1174 struct task_struct *p;
1177 * We are the first waiter - try to look up the real owner and attach
1178 * the new pi_state to it, but bail out when TID = 0 [1]
1180 if (!pid)
1181 return -ESRCH;
1182 p = futex_find_get_task(pid);
1183 if (!p)
1184 return -ESRCH;
1186 if (unlikely(p->flags & PF_KTHREAD)) {
1187 put_task_struct(p);
1188 return -EPERM;
1192 * We need to look at the task state flags to figure out,
1193 * whether the task is exiting. To protect against the do_exit
1194 * change of the task flags, we do this protected by
1195 * p->pi_lock:
1197 raw_spin_lock_irq(&p->pi_lock);
1198 if (unlikely(p->flags & PF_EXITING)) {
1200 * The task is on the way out. When PF_EXITPIDONE is
1201 * set, we know that the task has finished the
1202 * cleanup:
1204 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1206 raw_spin_unlock_irq(&p->pi_lock);
1207 put_task_struct(p);
1208 return ret;
1212 * No existing pi state. First waiter. [2]
1214 * This creates pi_state, we have hb->lock held, this means nothing can
1215 * observe this state, wait_lock is irrelevant.
1217 pi_state = alloc_pi_state();
1220 * Initialize the pi_mutex in locked state and make @p
1221 * the owner of it:
1223 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1225 /* Store the key for possible exit cleanups: */
1226 pi_state->key = *key;
1228 WARN_ON(!list_empty(&pi_state->list));
1229 list_add(&pi_state->list, &p->pi_state_list);
1231 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1232 * because there is no concurrency as the object is not published yet.
1234 pi_state->owner = p;
1235 raw_spin_unlock_irq(&p->pi_lock);
1237 put_task_struct(p);
1239 *ps = pi_state;
1241 return 0;
1244 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1245 struct futex_hash_bucket *hb,
1246 union futex_key *key, struct futex_pi_state **ps)
1248 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1251 * If there is a waiter on that futex, validate it and
1252 * attach to the pi_state when the validation succeeds.
1254 if (top_waiter)
1255 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1258 * We are the first waiter - try to look up the owner based on
1259 * @uval and attach to it.
1261 return attach_to_pi_owner(uval, key, ps);
1264 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1266 u32 uninitialized_var(curval);
1268 if (unlikely(should_fail_futex(true)))
1269 return -EFAULT;
1271 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1272 return -EFAULT;
1274 /* If user space value changed, let the caller retry */
1275 return curval != uval ? -EAGAIN : 0;
1279 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1280 * @uaddr: the pi futex user address
1281 * @hb: the pi futex hash bucket
1282 * @key: the futex key associated with uaddr and hb
1283 * @ps: the pi_state pointer where we store the result of the
1284 * lookup
1285 * @task: the task to perform the atomic lock work for. This will
1286 * be "current" except in the case of requeue pi.
1287 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1289 * Return:
1290 * - 0 - ready to wait;
1291 * - 1 - acquired the lock;
1292 * - <0 - error
1294 * The hb->lock and futex_key refs shall be held by the caller.
1296 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1297 union futex_key *key,
1298 struct futex_pi_state **ps,
1299 struct task_struct *task, int set_waiters)
1301 u32 uval, newval, vpid = task_pid_vnr(task);
1302 struct futex_q *top_waiter;
1303 int ret;
1306 * Read the user space value first so we can validate a few
1307 * things before proceeding further.
1309 if (get_futex_value_locked(&uval, uaddr))
1310 return -EFAULT;
1312 if (unlikely(should_fail_futex(true)))
1313 return -EFAULT;
1316 * Detect deadlocks.
1318 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1319 return -EDEADLK;
1321 if ((unlikely(should_fail_futex(true))))
1322 return -EDEADLK;
1325 * Lookup existing state first. If it exists, try to attach to
1326 * its pi_state.
1328 top_waiter = futex_top_waiter(hb, key);
1329 if (top_waiter)
1330 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1333 * No waiter and user TID is 0. We are here because the
1334 * waiters or the owner died bit is set or called from
1335 * requeue_cmp_pi or for whatever reason something took the
1336 * syscall.
1338 if (!(uval & FUTEX_TID_MASK)) {
1340 * We take over the futex. No other waiters and the user space
1341 * TID is 0. We preserve the owner died bit.
1343 newval = uval & FUTEX_OWNER_DIED;
1344 newval |= vpid;
1346 /* The futex requeue_pi code can enforce the waiters bit */
1347 if (set_waiters)
1348 newval |= FUTEX_WAITERS;
1350 ret = lock_pi_update_atomic(uaddr, uval, newval);
1351 /* If the take over worked, return 1 */
1352 return ret < 0 ? ret : 1;
1356 * First waiter. Set the waiters bit before attaching ourself to
1357 * the owner. If owner tries to unlock, it will be forced into
1358 * the kernel and blocked on hb->lock.
1360 newval = uval | FUTEX_WAITERS;
1361 ret = lock_pi_update_atomic(uaddr, uval, newval);
1362 if (ret)
1363 return ret;
1365 * If the update of the user space value succeeded, we try to
1366 * attach to the owner. If that fails, no harm done, we only
1367 * set the FUTEX_WAITERS bit in the user space variable.
1369 return attach_to_pi_owner(uval, key, ps);
1373 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1374 * @q: The futex_q to unqueue
1376 * The q->lock_ptr must not be NULL and must be held by the caller.
1378 static void __unqueue_futex(struct futex_q *q)
1380 struct futex_hash_bucket *hb;
1382 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1383 || WARN_ON(plist_node_empty(&q->list)))
1384 return;
1386 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1387 plist_del(&q->list, &hb->chain);
1388 hb_waiters_dec(hb);
1392 * The hash bucket lock must be held when this is called.
1393 * Afterwards, the futex_q must not be accessed. Callers
1394 * must ensure to later call wake_up_q() for the actual
1395 * wakeups to occur.
1397 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1399 struct task_struct *p = q->task;
1401 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1402 return;
1405 * Queue the task for later wakeup for after we've released
1406 * the hb->lock. wake_q_add() grabs reference to p.
1408 wake_q_add(wake_q, p);
1409 __unqueue_futex(q);
1411 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1412 * is written, without taking any locks. This is possible in the event
1413 * of a spurious wakeup, for example. A memory barrier is required here
1414 * to prevent the following store to lock_ptr from getting ahead of the
1415 * plist_del in __unqueue_futex().
1417 smp_store_release(&q->lock_ptr, NULL);
1421 * Caller must hold a reference on @pi_state.
1423 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1425 u32 uninitialized_var(curval), newval;
1426 struct task_struct *new_owner;
1427 bool postunlock = false;
1428 DEFINE_WAKE_Q(wake_q);
1429 int ret = 0;
1431 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1432 if (WARN_ON_ONCE(!new_owner)) {
1434 * As per the comment in futex_unlock_pi() this should not happen.
1436 * When this happens, give up our locks and try again, giving
1437 * the futex_lock_pi() instance time to complete, either by
1438 * waiting on the rtmutex or removing itself from the futex
1439 * queue.
1441 ret = -EAGAIN;
1442 goto out_unlock;
1446 * We pass it to the next owner. The WAITERS bit is always kept
1447 * enabled while there is PI state around. We cleanup the owner
1448 * died bit, because we are the owner.
1450 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1452 if (unlikely(should_fail_futex(true)))
1453 ret = -EFAULT;
1455 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1456 ret = -EFAULT;
1458 } else if (curval != uval) {
1460 * If a unconditional UNLOCK_PI operation (user space did not
1461 * try the TID->0 transition) raced with a waiter setting the
1462 * FUTEX_WAITERS flag between get_user() and locking the hash
1463 * bucket lock, retry the operation.
1465 if ((FUTEX_TID_MASK & curval) == uval)
1466 ret = -EAGAIN;
1467 else
1468 ret = -EINVAL;
1471 if (ret)
1472 goto out_unlock;
1475 * This is a point of no return; once we modify the uval there is no
1476 * going back and subsequent operations must not fail.
1479 raw_spin_lock(&pi_state->owner->pi_lock);
1480 WARN_ON(list_empty(&pi_state->list));
1481 list_del_init(&pi_state->list);
1482 raw_spin_unlock(&pi_state->owner->pi_lock);
1484 raw_spin_lock(&new_owner->pi_lock);
1485 WARN_ON(!list_empty(&pi_state->list));
1486 list_add(&pi_state->list, &new_owner->pi_state_list);
1487 pi_state->owner = new_owner;
1488 raw_spin_unlock(&new_owner->pi_lock);
1490 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1492 out_unlock:
1493 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1495 if (postunlock)
1496 rt_mutex_postunlock(&wake_q);
1498 return ret;
1502 * Express the locking dependencies for lockdep:
1504 static inline void
1505 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1507 if (hb1 <= hb2) {
1508 spin_lock(&hb1->lock);
1509 if (hb1 < hb2)
1510 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1511 } else { /* hb1 > hb2 */
1512 spin_lock(&hb2->lock);
1513 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1517 static inline void
1518 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1520 spin_unlock(&hb1->lock);
1521 if (hb1 != hb2)
1522 spin_unlock(&hb2->lock);
1526 * Wake up waiters matching bitset queued on this futex (uaddr).
1528 static int
1529 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1531 struct futex_hash_bucket *hb;
1532 struct futex_q *this, *next;
1533 union futex_key key = FUTEX_KEY_INIT;
1534 int ret;
1535 DEFINE_WAKE_Q(wake_q);
1537 if (!bitset)
1538 return -EINVAL;
1540 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1541 if (unlikely(ret != 0))
1542 goto out;
1544 hb = hash_futex(&key);
1546 /* Make sure we really have tasks to wakeup */
1547 if (!hb_waiters_pending(hb))
1548 goto out_put_key;
1550 spin_lock(&hb->lock);
1552 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1553 if (match_futex (&this->key, &key)) {
1554 if (this->pi_state || this->rt_waiter) {
1555 ret = -EINVAL;
1556 break;
1559 /* Check if one of the bits is set in both bitsets */
1560 if (!(this->bitset & bitset))
1561 continue;
1563 mark_wake_futex(&wake_q, this);
1564 if (++ret >= nr_wake)
1565 break;
1569 spin_unlock(&hb->lock);
1570 wake_up_q(&wake_q);
1571 out_put_key:
1572 put_futex_key(&key);
1573 out:
1574 return ret;
1578 * Wake up all waiters hashed on the physical page that is mapped
1579 * to this virtual address:
1581 static int
1582 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1583 int nr_wake, int nr_wake2, int op)
1585 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1586 struct futex_hash_bucket *hb1, *hb2;
1587 struct futex_q *this, *next;
1588 int ret, op_ret;
1589 DEFINE_WAKE_Q(wake_q);
1591 retry:
1592 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1593 if (unlikely(ret != 0))
1594 goto out;
1595 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1596 if (unlikely(ret != 0))
1597 goto out_put_key1;
1599 hb1 = hash_futex(&key1);
1600 hb2 = hash_futex(&key2);
1602 retry_private:
1603 double_lock_hb(hb1, hb2);
1604 op_ret = futex_atomic_op_inuser(op, uaddr2);
1605 if (unlikely(op_ret < 0)) {
1607 double_unlock_hb(hb1, hb2);
1609 #ifndef CONFIG_MMU
1611 * we don't get EFAULT from MMU faults if we don't have an MMU,
1612 * but we might get them from range checking
1614 ret = op_ret;
1615 goto out_put_keys;
1616 #endif
1618 if (unlikely(op_ret != -EFAULT)) {
1619 ret = op_ret;
1620 goto out_put_keys;
1623 ret = fault_in_user_writeable(uaddr2);
1624 if (ret)
1625 goto out_put_keys;
1627 if (!(flags & FLAGS_SHARED))
1628 goto retry_private;
1630 put_futex_key(&key2);
1631 put_futex_key(&key1);
1632 goto retry;
1635 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1636 if (match_futex (&this->key, &key1)) {
1637 if (this->pi_state || this->rt_waiter) {
1638 ret = -EINVAL;
1639 goto out_unlock;
1641 mark_wake_futex(&wake_q, this);
1642 if (++ret >= nr_wake)
1643 break;
1647 if (op_ret > 0) {
1648 op_ret = 0;
1649 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1650 if (match_futex (&this->key, &key2)) {
1651 if (this->pi_state || this->rt_waiter) {
1652 ret = -EINVAL;
1653 goto out_unlock;
1655 mark_wake_futex(&wake_q, this);
1656 if (++op_ret >= nr_wake2)
1657 break;
1660 ret += op_ret;
1663 out_unlock:
1664 double_unlock_hb(hb1, hb2);
1665 wake_up_q(&wake_q);
1666 out_put_keys:
1667 put_futex_key(&key2);
1668 out_put_key1:
1669 put_futex_key(&key1);
1670 out:
1671 return ret;
1675 * requeue_futex() - Requeue a futex_q from one hb to another
1676 * @q: the futex_q to requeue
1677 * @hb1: the source hash_bucket
1678 * @hb2: the target hash_bucket
1679 * @key2: the new key for the requeued futex_q
1681 static inline
1682 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1683 struct futex_hash_bucket *hb2, union futex_key *key2)
1687 * If key1 and key2 hash to the same bucket, no need to
1688 * requeue.
1690 if (likely(&hb1->chain != &hb2->chain)) {
1691 plist_del(&q->list, &hb1->chain);
1692 hb_waiters_dec(hb1);
1693 hb_waiters_inc(hb2);
1694 plist_add(&q->list, &hb2->chain);
1695 q->lock_ptr = &hb2->lock;
1697 get_futex_key_refs(key2);
1698 q->key = *key2;
1702 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1703 * @q: the futex_q
1704 * @key: the key of the requeue target futex
1705 * @hb: the hash_bucket of the requeue target futex
1707 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1708 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1709 * to the requeue target futex so the waiter can detect the wakeup on the right
1710 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1711 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1712 * to protect access to the pi_state to fixup the owner later. Must be called
1713 * with both q->lock_ptr and hb->lock held.
1715 static inline
1716 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1717 struct futex_hash_bucket *hb)
1719 get_futex_key_refs(key);
1720 q->key = *key;
1722 __unqueue_futex(q);
1724 WARN_ON(!q->rt_waiter);
1725 q->rt_waiter = NULL;
1727 q->lock_ptr = &hb->lock;
1729 wake_up_state(q->task, TASK_NORMAL);
1733 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1734 * @pifutex: the user address of the to futex
1735 * @hb1: the from futex hash bucket, must be locked by the caller
1736 * @hb2: the to futex hash bucket, must be locked by the caller
1737 * @key1: the from futex key
1738 * @key2: the to futex key
1739 * @ps: address to store the pi_state pointer
1740 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1742 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1743 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1744 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1745 * hb1 and hb2 must be held by the caller.
1747 * Return:
1748 * - 0 - failed to acquire the lock atomically;
1749 * - >0 - acquired the lock, return value is vpid of the top_waiter
1750 * - <0 - error
1752 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1753 struct futex_hash_bucket *hb1,
1754 struct futex_hash_bucket *hb2,
1755 union futex_key *key1, union futex_key *key2,
1756 struct futex_pi_state **ps, int set_waiters)
1758 struct futex_q *top_waiter = NULL;
1759 u32 curval;
1760 int ret, vpid;
1762 if (get_futex_value_locked(&curval, pifutex))
1763 return -EFAULT;
1765 if (unlikely(should_fail_futex(true)))
1766 return -EFAULT;
1769 * Find the top_waiter and determine if there are additional waiters.
1770 * If the caller intends to requeue more than 1 waiter to pifutex,
1771 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1772 * as we have means to handle the possible fault. If not, don't set
1773 * the bit unecessarily as it will force the subsequent unlock to enter
1774 * the kernel.
1776 top_waiter = futex_top_waiter(hb1, key1);
1778 /* There are no waiters, nothing for us to do. */
1779 if (!top_waiter)
1780 return 0;
1782 /* Ensure we requeue to the expected futex. */
1783 if (!match_futex(top_waiter->requeue_pi_key, key2))
1784 return -EINVAL;
1787 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1788 * the contended case or if set_waiters is 1. The pi_state is returned
1789 * in ps in contended cases.
1791 vpid = task_pid_vnr(top_waiter->task);
1792 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1793 set_waiters);
1794 if (ret == 1) {
1795 requeue_pi_wake_futex(top_waiter, key2, hb2);
1796 return vpid;
1798 return ret;
1802 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1803 * @uaddr1: source futex user address
1804 * @flags: futex flags (FLAGS_SHARED, etc.)
1805 * @uaddr2: target futex user address
1806 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1807 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1808 * @cmpval: @uaddr1 expected value (or %NULL)
1809 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1810 * pi futex (pi to pi requeue is not supported)
1812 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1813 * uaddr2 atomically on behalf of the top waiter.
1815 * Return:
1816 * - >=0 - on success, the number of tasks requeued or woken;
1817 * - <0 - on error
1819 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1820 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1821 u32 *cmpval, int requeue_pi)
1823 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1824 int drop_count = 0, task_count = 0, ret;
1825 struct futex_pi_state *pi_state = NULL;
1826 struct futex_hash_bucket *hb1, *hb2;
1827 struct futex_q *this, *next;
1828 DEFINE_WAKE_Q(wake_q);
1830 if (requeue_pi) {
1832 * Requeue PI only works on two distinct uaddrs. This
1833 * check is only valid for private futexes. See below.
1835 if (uaddr1 == uaddr2)
1836 return -EINVAL;
1839 * requeue_pi requires a pi_state, try to allocate it now
1840 * without any locks in case it fails.
1842 if (refill_pi_state_cache())
1843 return -ENOMEM;
1845 * requeue_pi must wake as many tasks as it can, up to nr_wake
1846 * + nr_requeue, since it acquires the rt_mutex prior to
1847 * returning to userspace, so as to not leave the rt_mutex with
1848 * waiters and no owner. However, second and third wake-ups
1849 * cannot be predicted as they involve race conditions with the
1850 * first wake and a fault while looking up the pi_state. Both
1851 * pthread_cond_signal() and pthread_cond_broadcast() should
1852 * use nr_wake=1.
1854 if (nr_wake != 1)
1855 return -EINVAL;
1858 retry:
1859 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1860 if (unlikely(ret != 0))
1861 goto out;
1862 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1863 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1864 if (unlikely(ret != 0))
1865 goto out_put_key1;
1868 * The check above which compares uaddrs is not sufficient for
1869 * shared futexes. We need to compare the keys:
1871 if (requeue_pi && match_futex(&key1, &key2)) {
1872 ret = -EINVAL;
1873 goto out_put_keys;
1876 hb1 = hash_futex(&key1);
1877 hb2 = hash_futex(&key2);
1879 retry_private:
1880 hb_waiters_inc(hb2);
1881 double_lock_hb(hb1, hb2);
1883 if (likely(cmpval != NULL)) {
1884 u32 curval;
1886 ret = get_futex_value_locked(&curval, uaddr1);
1888 if (unlikely(ret)) {
1889 double_unlock_hb(hb1, hb2);
1890 hb_waiters_dec(hb2);
1892 ret = get_user(curval, uaddr1);
1893 if (ret)
1894 goto out_put_keys;
1896 if (!(flags & FLAGS_SHARED))
1897 goto retry_private;
1899 put_futex_key(&key2);
1900 put_futex_key(&key1);
1901 goto retry;
1903 if (curval != *cmpval) {
1904 ret = -EAGAIN;
1905 goto out_unlock;
1909 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1911 * Attempt to acquire uaddr2 and wake the top waiter. If we
1912 * intend to requeue waiters, force setting the FUTEX_WAITERS
1913 * bit. We force this here where we are able to easily handle
1914 * faults rather in the requeue loop below.
1916 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1917 &key2, &pi_state, nr_requeue);
1920 * At this point the top_waiter has either taken uaddr2 or is
1921 * waiting on it. If the former, then the pi_state will not
1922 * exist yet, look it up one more time to ensure we have a
1923 * reference to it. If the lock was taken, ret contains the
1924 * vpid of the top waiter task.
1925 * If the lock was not taken, we have pi_state and an initial
1926 * refcount on it. In case of an error we have nothing.
1928 if (ret > 0) {
1929 WARN_ON(pi_state);
1930 drop_count++;
1931 task_count++;
1933 * If we acquired the lock, then the user space value
1934 * of uaddr2 should be vpid. It cannot be changed by
1935 * the top waiter as it is blocked on hb2 lock if it
1936 * tries to do so. If something fiddled with it behind
1937 * our back the pi state lookup might unearth it. So
1938 * we rather use the known value than rereading and
1939 * handing potential crap to lookup_pi_state.
1941 * If that call succeeds then we have pi_state and an
1942 * initial refcount on it.
1944 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1947 switch (ret) {
1948 case 0:
1949 /* We hold a reference on the pi state. */
1950 break;
1952 /* If the above failed, then pi_state is NULL */
1953 case -EFAULT:
1954 double_unlock_hb(hb1, hb2);
1955 hb_waiters_dec(hb2);
1956 put_futex_key(&key2);
1957 put_futex_key(&key1);
1958 ret = fault_in_user_writeable(uaddr2);
1959 if (!ret)
1960 goto retry;
1961 goto out;
1962 case -EAGAIN:
1964 * Two reasons for this:
1965 * - Owner is exiting and we just wait for the
1966 * exit to complete.
1967 * - The user space value changed.
1969 double_unlock_hb(hb1, hb2);
1970 hb_waiters_dec(hb2);
1971 put_futex_key(&key2);
1972 put_futex_key(&key1);
1973 cond_resched();
1974 goto retry;
1975 default:
1976 goto out_unlock;
1980 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1981 if (task_count - nr_wake >= nr_requeue)
1982 break;
1984 if (!match_futex(&this->key, &key1))
1985 continue;
1988 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1989 * be paired with each other and no other futex ops.
1991 * We should never be requeueing a futex_q with a pi_state,
1992 * which is awaiting a futex_unlock_pi().
1994 if ((requeue_pi && !this->rt_waiter) ||
1995 (!requeue_pi && this->rt_waiter) ||
1996 this->pi_state) {
1997 ret = -EINVAL;
1998 break;
2002 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2003 * lock, we already woke the top_waiter. If not, it will be
2004 * woken by futex_unlock_pi().
2006 if (++task_count <= nr_wake && !requeue_pi) {
2007 mark_wake_futex(&wake_q, this);
2008 continue;
2011 /* Ensure we requeue to the expected futex for requeue_pi. */
2012 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2013 ret = -EINVAL;
2014 break;
2018 * Requeue nr_requeue waiters and possibly one more in the case
2019 * of requeue_pi if we couldn't acquire the lock atomically.
2021 if (requeue_pi) {
2023 * Prepare the waiter to take the rt_mutex. Take a
2024 * refcount on the pi_state and store the pointer in
2025 * the futex_q object of the waiter.
2027 get_pi_state(pi_state);
2028 this->pi_state = pi_state;
2029 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2030 this->rt_waiter,
2031 this->task);
2032 if (ret == 1) {
2034 * We got the lock. We do neither drop the
2035 * refcount on pi_state nor clear
2036 * this->pi_state because the waiter needs the
2037 * pi_state for cleaning up the user space
2038 * value. It will drop the refcount after
2039 * doing so.
2041 requeue_pi_wake_futex(this, &key2, hb2);
2042 drop_count++;
2043 continue;
2044 } else if (ret) {
2046 * rt_mutex_start_proxy_lock() detected a
2047 * potential deadlock when we tried to queue
2048 * that waiter. Drop the pi_state reference
2049 * which we took above and remove the pointer
2050 * to the state from the waiters futex_q
2051 * object.
2053 this->pi_state = NULL;
2054 put_pi_state(pi_state);
2056 * We stop queueing more waiters and let user
2057 * space deal with the mess.
2059 break;
2062 requeue_futex(this, hb1, hb2, &key2);
2063 drop_count++;
2067 * We took an extra initial reference to the pi_state either
2068 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2069 * need to drop it here again.
2071 put_pi_state(pi_state);
2073 out_unlock:
2074 double_unlock_hb(hb1, hb2);
2075 wake_up_q(&wake_q);
2076 hb_waiters_dec(hb2);
2079 * drop_futex_key_refs() must be called outside the spinlocks. During
2080 * the requeue we moved futex_q's from the hash bucket at key1 to the
2081 * one at key2 and updated their key pointer. We no longer need to
2082 * hold the references to key1.
2084 while (--drop_count >= 0)
2085 drop_futex_key_refs(&key1);
2087 out_put_keys:
2088 put_futex_key(&key2);
2089 out_put_key1:
2090 put_futex_key(&key1);
2091 out:
2092 return ret ? ret : task_count;
2095 /* The key must be already stored in q->key. */
2096 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2097 __acquires(&hb->lock)
2099 struct futex_hash_bucket *hb;
2101 hb = hash_futex(&q->key);
2104 * Increment the counter before taking the lock so that
2105 * a potential waker won't miss a to-be-slept task that is
2106 * waiting for the spinlock. This is safe as all queue_lock()
2107 * users end up calling queue_me(). Similarly, for housekeeping,
2108 * decrement the counter at queue_unlock() when some error has
2109 * occurred and we don't end up adding the task to the list.
2111 hb_waiters_inc(hb);
2113 q->lock_ptr = &hb->lock;
2115 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2116 return hb;
2119 static inline void
2120 queue_unlock(struct futex_hash_bucket *hb)
2121 __releases(&hb->lock)
2123 spin_unlock(&hb->lock);
2124 hb_waiters_dec(hb);
2127 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2129 int prio;
2132 * The priority used to register this element is
2133 * - either the real thread-priority for the real-time threads
2134 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2135 * - or MAX_RT_PRIO for non-RT threads.
2136 * Thus, all RT-threads are woken first in priority order, and
2137 * the others are woken last, in FIFO order.
2139 prio = min(current->normal_prio, MAX_RT_PRIO);
2141 plist_node_init(&q->list, prio);
2142 plist_add(&q->list, &hb->chain);
2143 q->task = current;
2147 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2148 * @q: The futex_q to enqueue
2149 * @hb: The destination hash bucket
2151 * The hb->lock must be held by the caller, and is released here. A call to
2152 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2153 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2154 * or nothing if the unqueue is done as part of the wake process and the unqueue
2155 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2156 * an example).
2158 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2159 __releases(&hb->lock)
2161 __queue_me(q, hb);
2162 spin_unlock(&hb->lock);
2166 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2167 * @q: The futex_q to unqueue
2169 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2170 * be paired with exactly one earlier call to queue_me().
2172 * Return:
2173 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2174 * - 0 - if the futex_q was already removed by the waking thread
2176 static int unqueue_me(struct futex_q *q)
2178 spinlock_t *lock_ptr;
2179 int ret = 0;
2181 /* In the common case we don't take the spinlock, which is nice. */
2182 retry:
2184 * q->lock_ptr can change between this read and the following spin_lock.
2185 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2186 * optimizing lock_ptr out of the logic below.
2188 lock_ptr = READ_ONCE(q->lock_ptr);
2189 if (lock_ptr != NULL) {
2190 spin_lock(lock_ptr);
2192 * q->lock_ptr can change between reading it and
2193 * spin_lock(), causing us to take the wrong lock. This
2194 * corrects the race condition.
2196 * Reasoning goes like this: if we have the wrong lock,
2197 * q->lock_ptr must have changed (maybe several times)
2198 * between reading it and the spin_lock(). It can
2199 * change again after the spin_lock() but only if it was
2200 * already changed before the spin_lock(). It cannot,
2201 * however, change back to the original value. Therefore
2202 * we can detect whether we acquired the correct lock.
2204 if (unlikely(lock_ptr != q->lock_ptr)) {
2205 spin_unlock(lock_ptr);
2206 goto retry;
2208 __unqueue_futex(q);
2210 BUG_ON(q->pi_state);
2212 spin_unlock(lock_ptr);
2213 ret = 1;
2216 drop_futex_key_refs(&q->key);
2217 return ret;
2221 * PI futexes can not be requeued and must remove themself from the
2222 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2223 * and dropped here.
2225 static void unqueue_me_pi(struct futex_q *q)
2226 __releases(q->lock_ptr)
2228 __unqueue_futex(q);
2230 BUG_ON(!q->pi_state);
2231 put_pi_state(q->pi_state);
2232 q->pi_state = NULL;
2234 spin_unlock(q->lock_ptr);
2238 * Fixup the pi_state owner with the new owner.
2240 * Must be called with hash bucket lock held and mm->sem held for non
2241 * private futexes.
2243 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2244 struct task_struct *newowner)
2246 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2247 struct futex_pi_state *pi_state = q->pi_state;
2248 u32 uval, uninitialized_var(curval), newval;
2249 struct task_struct *oldowner;
2250 int ret;
2252 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2254 oldowner = pi_state->owner;
2255 /* Owner died? */
2256 if (!pi_state->owner)
2257 newtid |= FUTEX_OWNER_DIED;
2260 * We are here either because we stole the rtmutex from the
2261 * previous highest priority waiter or we are the highest priority
2262 * waiter but have failed to get the rtmutex the first time.
2264 * We have to replace the newowner TID in the user space variable.
2265 * This must be atomic as we have to preserve the owner died bit here.
2267 * Note: We write the user space value _before_ changing the pi_state
2268 * because we can fault here. Imagine swapped out pages or a fork
2269 * that marked all the anonymous memory readonly for cow.
2271 * Modifying pi_state _before_ the user space value would leave the
2272 * pi_state in an inconsistent state when we fault here, because we
2273 * need to drop the locks to handle the fault. This might be observed
2274 * in the PID check in lookup_pi_state.
2276 retry:
2277 if (get_futex_value_locked(&uval, uaddr))
2278 goto handle_fault;
2280 for (;;) {
2281 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2283 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2284 goto handle_fault;
2285 if (curval == uval)
2286 break;
2287 uval = curval;
2291 * We fixed up user space. Now we need to fix the pi_state
2292 * itself.
2294 if (pi_state->owner != NULL) {
2295 raw_spin_lock(&pi_state->owner->pi_lock);
2296 WARN_ON(list_empty(&pi_state->list));
2297 list_del_init(&pi_state->list);
2298 raw_spin_unlock(&pi_state->owner->pi_lock);
2301 pi_state->owner = newowner;
2303 raw_spin_lock(&newowner->pi_lock);
2304 WARN_ON(!list_empty(&pi_state->list));
2305 list_add(&pi_state->list, &newowner->pi_state_list);
2306 raw_spin_unlock(&newowner->pi_lock);
2307 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2309 return 0;
2312 * To handle the page fault we need to drop the locks here. That gives
2313 * the other task (either the highest priority waiter itself or the
2314 * task which stole the rtmutex) the chance to try the fixup of the
2315 * pi_state. So once we are back from handling the fault we need to
2316 * check the pi_state after reacquiring the locks and before trying to
2317 * do another fixup. When the fixup has been done already we simply
2318 * return.
2320 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2321 * drop hb->lock since the caller owns the hb -> futex_q relation.
2322 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2324 handle_fault:
2325 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2326 spin_unlock(q->lock_ptr);
2328 ret = fault_in_user_writeable(uaddr);
2330 spin_lock(q->lock_ptr);
2331 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2334 * Check if someone else fixed it for us:
2336 if (pi_state->owner != oldowner) {
2337 ret = 0;
2338 goto out_unlock;
2341 if (ret)
2342 goto out_unlock;
2344 goto retry;
2346 out_unlock:
2347 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2348 return ret;
2351 static long futex_wait_restart(struct restart_block *restart);
2354 * fixup_owner() - Post lock pi_state and corner case management
2355 * @uaddr: user address of the futex
2356 * @q: futex_q (contains pi_state and access to the rt_mutex)
2357 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2359 * After attempting to lock an rt_mutex, this function is called to cleanup
2360 * the pi_state owner as well as handle race conditions that may allow us to
2361 * acquire the lock. Must be called with the hb lock held.
2363 * Return:
2364 * - 1 - success, lock taken;
2365 * - 0 - success, lock not taken;
2366 * - <0 - on error (-EFAULT)
2368 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2370 int ret = 0;
2372 if (locked) {
2374 * Got the lock. We might not be the anticipated owner if we
2375 * did a lock-steal - fix up the PI-state in that case:
2377 * We can safely read pi_state->owner without holding wait_lock
2378 * because we now own the rt_mutex, only the owner will attempt
2379 * to change it.
2381 if (q->pi_state->owner != current)
2382 ret = fixup_pi_state_owner(uaddr, q, current);
2383 goto out;
2387 * Paranoia check. If we did not take the lock, then we should not be
2388 * the owner of the rt_mutex.
2390 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2391 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2392 "pi-state %p\n", ret,
2393 q->pi_state->pi_mutex.owner,
2394 q->pi_state->owner);
2397 out:
2398 return ret ? ret : locked;
2402 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2403 * @hb: the futex hash bucket, must be locked by the caller
2404 * @q: the futex_q to queue up on
2405 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2407 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2408 struct hrtimer_sleeper *timeout)
2411 * The task state is guaranteed to be set before another task can
2412 * wake it. set_current_state() is implemented using smp_store_mb() and
2413 * queue_me() calls spin_unlock() upon completion, both serializing
2414 * access to the hash list and forcing another memory barrier.
2416 set_current_state(TASK_INTERRUPTIBLE);
2417 queue_me(q, hb);
2419 /* Arm the timer */
2420 if (timeout)
2421 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2424 * If we have been removed from the hash list, then another task
2425 * has tried to wake us, and we can skip the call to schedule().
2427 if (likely(!plist_node_empty(&q->list))) {
2429 * If the timer has already expired, current will already be
2430 * flagged for rescheduling. Only call schedule if there
2431 * is no timeout, or if it has yet to expire.
2433 if (!timeout || timeout->task)
2434 freezable_schedule();
2436 __set_current_state(TASK_RUNNING);
2440 * futex_wait_setup() - Prepare to wait on a futex
2441 * @uaddr: the futex userspace address
2442 * @val: the expected value
2443 * @flags: futex flags (FLAGS_SHARED, etc.)
2444 * @q: the associated futex_q
2445 * @hb: storage for hash_bucket pointer to be returned to caller
2447 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2448 * compare it with the expected value. Handle atomic faults internally.
2449 * Return with the hb lock held and a q.key reference on success, and unlocked
2450 * with no q.key reference on failure.
2452 * Return:
2453 * - 0 - uaddr contains val and hb has been locked;
2454 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2456 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2457 struct futex_q *q, struct futex_hash_bucket **hb)
2459 u32 uval;
2460 int ret;
2463 * Access the page AFTER the hash-bucket is locked.
2464 * Order is important:
2466 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2467 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2469 * The basic logical guarantee of a futex is that it blocks ONLY
2470 * if cond(var) is known to be true at the time of blocking, for
2471 * any cond. If we locked the hash-bucket after testing *uaddr, that
2472 * would open a race condition where we could block indefinitely with
2473 * cond(var) false, which would violate the guarantee.
2475 * On the other hand, we insert q and release the hash-bucket only
2476 * after testing *uaddr. This guarantees that futex_wait() will NOT
2477 * absorb a wakeup if *uaddr does not match the desired values
2478 * while the syscall executes.
2480 retry:
2481 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2482 if (unlikely(ret != 0))
2483 return ret;
2485 retry_private:
2486 *hb = queue_lock(q);
2488 ret = get_futex_value_locked(&uval, uaddr);
2490 if (ret) {
2491 queue_unlock(*hb);
2493 ret = get_user(uval, uaddr);
2494 if (ret)
2495 goto out;
2497 if (!(flags & FLAGS_SHARED))
2498 goto retry_private;
2500 put_futex_key(&q->key);
2501 goto retry;
2504 if (uval != val) {
2505 queue_unlock(*hb);
2506 ret = -EWOULDBLOCK;
2509 out:
2510 if (ret)
2511 put_futex_key(&q->key);
2512 return ret;
2515 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2516 ktime_t *abs_time, u32 bitset)
2518 struct hrtimer_sleeper timeout, *to = NULL;
2519 struct restart_block *restart;
2520 struct futex_hash_bucket *hb;
2521 struct futex_q q = futex_q_init;
2522 int ret;
2524 if (!bitset)
2525 return -EINVAL;
2526 q.bitset = bitset;
2528 if (abs_time) {
2529 to = &timeout;
2531 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2532 CLOCK_REALTIME : CLOCK_MONOTONIC,
2533 HRTIMER_MODE_ABS);
2534 hrtimer_init_sleeper(to, current);
2535 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2536 current->timer_slack_ns);
2539 retry:
2541 * Prepare to wait on uaddr. On success, holds hb lock and increments
2542 * q.key refs.
2544 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2545 if (ret)
2546 goto out;
2548 /* queue_me and wait for wakeup, timeout, or a signal. */
2549 futex_wait_queue_me(hb, &q, to);
2551 /* If we were woken (and unqueued), we succeeded, whatever. */
2552 ret = 0;
2553 /* unqueue_me() drops q.key ref */
2554 if (!unqueue_me(&q))
2555 goto out;
2556 ret = -ETIMEDOUT;
2557 if (to && !to->task)
2558 goto out;
2561 * We expect signal_pending(current), but we might be the
2562 * victim of a spurious wakeup as well.
2564 if (!signal_pending(current))
2565 goto retry;
2567 ret = -ERESTARTSYS;
2568 if (!abs_time)
2569 goto out;
2571 restart = &current->restart_block;
2572 restart->fn = futex_wait_restart;
2573 restart->futex.uaddr = uaddr;
2574 restart->futex.val = val;
2575 restart->futex.time = *abs_time;
2576 restart->futex.bitset = bitset;
2577 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2579 ret = -ERESTART_RESTARTBLOCK;
2581 out:
2582 if (to) {
2583 hrtimer_cancel(&to->timer);
2584 destroy_hrtimer_on_stack(&to->timer);
2586 return ret;
2590 static long futex_wait_restart(struct restart_block *restart)
2592 u32 __user *uaddr = restart->futex.uaddr;
2593 ktime_t t, *tp = NULL;
2595 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2596 t = restart->futex.time;
2597 tp = &t;
2599 restart->fn = do_no_restart_syscall;
2601 return (long)futex_wait(uaddr, restart->futex.flags,
2602 restart->futex.val, tp, restart->futex.bitset);
2607 * Userspace tried a 0 -> TID atomic transition of the futex value
2608 * and failed. The kernel side here does the whole locking operation:
2609 * if there are waiters then it will block as a consequence of relying
2610 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2611 * a 0 value of the futex too.).
2613 * Also serves as futex trylock_pi()'ing, and due semantics.
2615 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2616 ktime_t *time, int trylock)
2618 struct hrtimer_sleeper timeout, *to = NULL;
2619 struct futex_pi_state *pi_state = NULL;
2620 struct rt_mutex_waiter rt_waiter;
2621 struct futex_hash_bucket *hb;
2622 struct futex_q q = futex_q_init;
2623 int res, ret;
2625 if (refill_pi_state_cache())
2626 return -ENOMEM;
2628 if (time) {
2629 to = &timeout;
2630 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2631 HRTIMER_MODE_ABS);
2632 hrtimer_init_sleeper(to, current);
2633 hrtimer_set_expires(&to->timer, *time);
2636 retry:
2637 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2638 if (unlikely(ret != 0))
2639 goto out;
2641 retry_private:
2642 hb = queue_lock(&q);
2644 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2645 if (unlikely(ret)) {
2647 * Atomic work succeeded and we got the lock,
2648 * or failed. Either way, we do _not_ block.
2650 switch (ret) {
2651 case 1:
2652 /* We got the lock. */
2653 ret = 0;
2654 goto out_unlock_put_key;
2655 case -EFAULT:
2656 goto uaddr_faulted;
2657 case -EAGAIN:
2659 * Two reasons for this:
2660 * - Task is exiting and we just wait for the
2661 * exit to complete.
2662 * - The user space value changed.
2664 queue_unlock(hb);
2665 put_futex_key(&q.key);
2666 cond_resched();
2667 goto retry;
2668 default:
2669 goto out_unlock_put_key;
2673 WARN_ON(!q.pi_state);
2676 * Only actually queue now that the atomic ops are done:
2678 __queue_me(&q, hb);
2680 if (trylock) {
2681 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2682 /* Fixup the trylock return value: */
2683 ret = ret ? 0 : -EWOULDBLOCK;
2684 goto no_block;
2687 rt_mutex_init_waiter(&rt_waiter);
2690 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2691 * hold it while doing rt_mutex_start_proxy(), because then it will
2692 * include hb->lock in the blocking chain, even through we'll not in
2693 * fact hold it while blocking. This will lead it to report -EDEADLK
2694 * and BUG when futex_unlock_pi() interleaves with this.
2696 * Therefore acquire wait_lock while holding hb->lock, but drop the
2697 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2698 * serializes against futex_unlock_pi() as that does the exact same
2699 * lock handoff sequence.
2701 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2702 spin_unlock(q.lock_ptr);
2703 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2704 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2706 if (ret) {
2707 if (ret == 1)
2708 ret = 0;
2710 spin_lock(q.lock_ptr);
2711 goto no_block;
2715 if (unlikely(to))
2716 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2718 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2720 spin_lock(q.lock_ptr);
2722 * If we failed to acquire the lock (signal/timeout), we must
2723 * first acquire the hb->lock before removing the lock from the
2724 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2725 * wait lists consistent.
2727 * In particular; it is important that futex_unlock_pi() can not
2728 * observe this inconsistency.
2730 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2731 ret = 0;
2733 no_block:
2735 * Fixup the pi_state owner and possibly acquire the lock if we
2736 * haven't already.
2738 res = fixup_owner(uaddr, &q, !ret);
2740 * If fixup_owner() returned an error, proprogate that. If it acquired
2741 * the lock, clear our -ETIMEDOUT or -EINTR.
2743 if (res)
2744 ret = (res < 0) ? res : 0;
2747 * If fixup_owner() faulted and was unable to handle the fault, unlock
2748 * it and return the fault to userspace.
2750 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2751 pi_state = q.pi_state;
2752 get_pi_state(pi_state);
2755 /* Unqueue and drop the lock */
2756 unqueue_me_pi(&q);
2758 if (pi_state) {
2759 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2760 put_pi_state(pi_state);
2763 goto out_put_key;
2765 out_unlock_put_key:
2766 queue_unlock(hb);
2768 out_put_key:
2769 put_futex_key(&q.key);
2770 out:
2771 if (to) {
2772 hrtimer_cancel(&to->timer);
2773 destroy_hrtimer_on_stack(&to->timer);
2775 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2777 uaddr_faulted:
2778 queue_unlock(hb);
2780 ret = fault_in_user_writeable(uaddr);
2781 if (ret)
2782 goto out_put_key;
2784 if (!(flags & FLAGS_SHARED))
2785 goto retry_private;
2787 put_futex_key(&q.key);
2788 goto retry;
2792 * Userspace attempted a TID -> 0 atomic transition, and failed.
2793 * This is the in-kernel slowpath: we look up the PI state (if any),
2794 * and do the rt-mutex unlock.
2796 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2798 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2799 union futex_key key = FUTEX_KEY_INIT;
2800 struct futex_hash_bucket *hb;
2801 struct futex_q *top_waiter;
2802 int ret;
2804 retry:
2805 if (get_user(uval, uaddr))
2806 return -EFAULT;
2808 * We release only a lock we actually own:
2810 if ((uval & FUTEX_TID_MASK) != vpid)
2811 return -EPERM;
2813 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2814 if (ret)
2815 return ret;
2817 hb = hash_futex(&key);
2818 spin_lock(&hb->lock);
2821 * Check waiters first. We do not trust user space values at
2822 * all and we at least want to know if user space fiddled
2823 * with the futex value instead of blindly unlocking.
2825 top_waiter = futex_top_waiter(hb, &key);
2826 if (top_waiter) {
2827 struct futex_pi_state *pi_state = top_waiter->pi_state;
2829 ret = -EINVAL;
2830 if (!pi_state)
2831 goto out_unlock;
2834 * If current does not own the pi_state then the futex is
2835 * inconsistent and user space fiddled with the futex value.
2837 if (pi_state->owner != current)
2838 goto out_unlock;
2840 get_pi_state(pi_state);
2842 * By taking wait_lock while still holding hb->lock, we ensure
2843 * there is no point where we hold neither; and therefore
2844 * wake_futex_pi() must observe a state consistent with what we
2845 * observed.
2847 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2848 spin_unlock(&hb->lock);
2850 /* drops pi_state->pi_mutex.wait_lock */
2851 ret = wake_futex_pi(uaddr, uval, pi_state);
2853 put_pi_state(pi_state);
2856 * Success, we're done! No tricky corner cases.
2858 if (!ret)
2859 goto out_putkey;
2861 * The atomic access to the futex value generated a
2862 * pagefault, so retry the user-access and the wakeup:
2864 if (ret == -EFAULT)
2865 goto pi_faulted;
2867 * A unconditional UNLOCK_PI op raced against a waiter
2868 * setting the FUTEX_WAITERS bit. Try again.
2870 if (ret == -EAGAIN) {
2871 put_futex_key(&key);
2872 goto retry;
2875 * wake_futex_pi has detected invalid state. Tell user
2876 * space.
2878 goto out_putkey;
2882 * We have no kernel internal state, i.e. no waiters in the
2883 * kernel. Waiters which are about to queue themselves are stuck
2884 * on hb->lock. So we can safely ignore them. We do neither
2885 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2886 * owner.
2888 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2889 spin_unlock(&hb->lock);
2890 goto pi_faulted;
2894 * If uval has changed, let user space handle it.
2896 ret = (curval == uval) ? 0 : -EAGAIN;
2898 out_unlock:
2899 spin_unlock(&hb->lock);
2900 out_putkey:
2901 put_futex_key(&key);
2902 return ret;
2904 pi_faulted:
2905 put_futex_key(&key);
2907 ret = fault_in_user_writeable(uaddr);
2908 if (!ret)
2909 goto retry;
2911 return ret;
2915 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2916 * @hb: the hash_bucket futex_q was original enqueued on
2917 * @q: the futex_q woken while waiting to be requeued
2918 * @key2: the futex_key of the requeue target futex
2919 * @timeout: the timeout associated with the wait (NULL if none)
2921 * Detect if the task was woken on the initial futex as opposed to the requeue
2922 * target futex. If so, determine if it was a timeout or a signal that caused
2923 * the wakeup and return the appropriate error code to the caller. Must be
2924 * called with the hb lock held.
2926 * Return:
2927 * - 0 = no early wakeup detected;
2928 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
2930 static inline
2931 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2932 struct futex_q *q, union futex_key *key2,
2933 struct hrtimer_sleeper *timeout)
2935 int ret = 0;
2938 * With the hb lock held, we avoid races while we process the wakeup.
2939 * We only need to hold hb (and not hb2) to ensure atomicity as the
2940 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2941 * It can't be requeued from uaddr2 to something else since we don't
2942 * support a PI aware source futex for requeue.
2944 if (!match_futex(&q->key, key2)) {
2945 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2947 * We were woken prior to requeue by a timeout or a signal.
2948 * Unqueue the futex_q and determine which it was.
2950 plist_del(&q->list, &hb->chain);
2951 hb_waiters_dec(hb);
2953 /* Handle spurious wakeups gracefully */
2954 ret = -EWOULDBLOCK;
2955 if (timeout && !timeout->task)
2956 ret = -ETIMEDOUT;
2957 else if (signal_pending(current))
2958 ret = -ERESTARTNOINTR;
2960 return ret;
2964 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2965 * @uaddr: the futex we initially wait on (non-pi)
2966 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2967 * the same type, no requeueing from private to shared, etc.
2968 * @val: the expected value of uaddr
2969 * @abs_time: absolute timeout
2970 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2971 * @uaddr2: the pi futex we will take prior to returning to user-space
2973 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2974 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2975 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2976 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2977 * without one, the pi logic would not know which task to boost/deboost, if
2978 * there was a need to.
2980 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2981 * via the following--
2982 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2983 * 2) wakeup on uaddr2 after a requeue
2984 * 3) signal
2985 * 4) timeout
2987 * If 3, cleanup and return -ERESTARTNOINTR.
2989 * If 2, we may then block on trying to take the rt_mutex and return via:
2990 * 5) successful lock
2991 * 6) signal
2992 * 7) timeout
2993 * 8) other lock acquisition failure
2995 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2997 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2999 * Return:
3000 * - 0 - On success;
3001 * - <0 - On error
3003 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3004 u32 val, ktime_t *abs_time, u32 bitset,
3005 u32 __user *uaddr2)
3007 struct hrtimer_sleeper timeout, *to = NULL;
3008 struct futex_pi_state *pi_state = NULL;
3009 struct rt_mutex_waiter rt_waiter;
3010 struct futex_hash_bucket *hb;
3011 union futex_key key2 = FUTEX_KEY_INIT;
3012 struct futex_q q = futex_q_init;
3013 int res, ret;
3015 if (uaddr == uaddr2)
3016 return -EINVAL;
3018 if (!bitset)
3019 return -EINVAL;
3021 if (abs_time) {
3022 to = &timeout;
3023 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3024 CLOCK_REALTIME : CLOCK_MONOTONIC,
3025 HRTIMER_MODE_ABS);
3026 hrtimer_init_sleeper(to, current);
3027 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3028 current->timer_slack_ns);
3032 * The waiter is allocated on our stack, manipulated by the requeue
3033 * code while we sleep on uaddr.
3035 rt_mutex_init_waiter(&rt_waiter);
3037 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3038 if (unlikely(ret != 0))
3039 goto out;
3041 q.bitset = bitset;
3042 q.rt_waiter = &rt_waiter;
3043 q.requeue_pi_key = &key2;
3046 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3047 * count.
3049 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3050 if (ret)
3051 goto out_key2;
3054 * The check above which compares uaddrs is not sufficient for
3055 * shared futexes. We need to compare the keys:
3057 if (match_futex(&q.key, &key2)) {
3058 queue_unlock(hb);
3059 ret = -EINVAL;
3060 goto out_put_keys;
3063 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3064 futex_wait_queue_me(hb, &q, to);
3066 spin_lock(&hb->lock);
3067 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3068 spin_unlock(&hb->lock);
3069 if (ret)
3070 goto out_put_keys;
3073 * In order for us to be here, we know our q.key == key2, and since
3074 * we took the hb->lock above, we also know that futex_requeue() has
3075 * completed and we no longer have to concern ourselves with a wakeup
3076 * race with the atomic proxy lock acquisition by the requeue code. The
3077 * futex_requeue dropped our key1 reference and incremented our key2
3078 * reference count.
3081 /* Check if the requeue code acquired the second futex for us. */
3082 if (!q.rt_waiter) {
3084 * Got the lock. We might not be the anticipated owner if we
3085 * did a lock-steal - fix up the PI-state in that case.
3087 if (q.pi_state && (q.pi_state->owner != current)) {
3088 spin_lock(q.lock_ptr);
3089 ret = fixup_pi_state_owner(uaddr2, &q, current);
3090 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3091 pi_state = q.pi_state;
3092 get_pi_state(pi_state);
3095 * Drop the reference to the pi state which
3096 * the requeue_pi() code acquired for us.
3098 put_pi_state(q.pi_state);
3099 spin_unlock(q.lock_ptr);
3101 } else {
3102 struct rt_mutex *pi_mutex;
3105 * We have been woken up by futex_unlock_pi(), a timeout, or a
3106 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3107 * the pi_state.
3109 WARN_ON(!q.pi_state);
3110 pi_mutex = &q.pi_state->pi_mutex;
3111 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3113 spin_lock(q.lock_ptr);
3114 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3115 ret = 0;
3117 debug_rt_mutex_free_waiter(&rt_waiter);
3119 * Fixup the pi_state owner and possibly acquire the lock if we
3120 * haven't already.
3122 res = fixup_owner(uaddr2, &q, !ret);
3124 * If fixup_owner() returned an error, proprogate that. If it
3125 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3127 if (res)
3128 ret = (res < 0) ? res : 0;
3131 * If fixup_pi_state_owner() faulted and was unable to handle
3132 * the fault, unlock the rt_mutex and return the fault to
3133 * userspace.
3135 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3136 pi_state = q.pi_state;
3137 get_pi_state(pi_state);
3140 /* Unqueue and drop the lock. */
3141 unqueue_me_pi(&q);
3144 if (pi_state) {
3145 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3146 put_pi_state(pi_state);
3149 if (ret == -EINTR) {
3151 * We've already been requeued, but cannot restart by calling
3152 * futex_lock_pi() directly. We could restart this syscall, but
3153 * it would detect that the user space "val" changed and return
3154 * -EWOULDBLOCK. Save the overhead of the restart and return
3155 * -EWOULDBLOCK directly.
3157 ret = -EWOULDBLOCK;
3160 out_put_keys:
3161 put_futex_key(&q.key);
3162 out_key2:
3163 put_futex_key(&key2);
3165 out:
3166 if (to) {
3167 hrtimer_cancel(&to->timer);
3168 destroy_hrtimer_on_stack(&to->timer);
3170 return ret;
3174 * Support for robust futexes: the kernel cleans up held futexes at
3175 * thread exit time.
3177 * Implementation: user-space maintains a per-thread list of locks it
3178 * is holding. Upon do_exit(), the kernel carefully walks this list,
3179 * and marks all locks that are owned by this thread with the
3180 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3181 * always manipulated with the lock held, so the list is private and
3182 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3183 * field, to allow the kernel to clean up if the thread dies after
3184 * acquiring the lock, but just before it could have added itself to
3185 * the list. There can only be one such pending lock.
3189 * sys_set_robust_list() - Set the robust-futex list head of a task
3190 * @head: pointer to the list-head
3191 * @len: length of the list-head, as userspace expects
3193 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3194 size_t, len)
3196 if (!futex_cmpxchg_enabled)
3197 return -ENOSYS;
3199 * The kernel knows only one size for now:
3201 if (unlikely(len != sizeof(*head)))
3202 return -EINVAL;
3204 current->robust_list = head;
3206 return 0;
3210 * sys_get_robust_list() - Get the robust-futex list head of a task
3211 * @pid: pid of the process [zero for current task]
3212 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3213 * @len_ptr: pointer to a length field, the kernel fills in the header size
3215 SYSCALL_DEFINE3(get_robust_list, int, pid,
3216 struct robust_list_head __user * __user *, head_ptr,
3217 size_t __user *, len_ptr)
3219 struct robust_list_head __user *head;
3220 unsigned long ret;
3221 struct task_struct *p;
3223 if (!futex_cmpxchg_enabled)
3224 return -ENOSYS;
3226 rcu_read_lock();
3228 ret = -ESRCH;
3229 if (!pid)
3230 p = current;
3231 else {
3232 p = find_task_by_vpid(pid);
3233 if (!p)
3234 goto err_unlock;
3237 ret = -EPERM;
3238 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3239 goto err_unlock;
3241 head = p->robust_list;
3242 rcu_read_unlock();
3244 if (put_user(sizeof(*head), len_ptr))
3245 return -EFAULT;
3246 return put_user(head, head_ptr);
3248 err_unlock:
3249 rcu_read_unlock();
3251 return ret;
3255 * Process a futex-list entry, check whether it's owned by the
3256 * dying task, and do notification if so:
3258 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3260 u32 uval, uninitialized_var(nval), mval;
3262 retry:
3263 if (get_user(uval, uaddr))
3264 return -1;
3266 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3268 * Ok, this dying thread is truly holding a futex
3269 * of interest. Set the OWNER_DIED bit atomically
3270 * via cmpxchg, and if the value had FUTEX_WAITERS
3271 * set, wake up a waiter (if any). (We have to do a
3272 * futex_wake() even if OWNER_DIED is already set -
3273 * to handle the rare but possible case of recursive
3274 * thread-death.) The rest of the cleanup is done in
3275 * userspace.
3277 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3279 * We are not holding a lock here, but we want to have
3280 * the pagefault_disable/enable() protection because
3281 * we want to handle the fault gracefully. If the
3282 * access fails we try to fault in the futex with R/W
3283 * verification via get_user_pages. get_user() above
3284 * does not guarantee R/W access. If that fails we
3285 * give up and leave the futex locked.
3287 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3288 if (fault_in_user_writeable(uaddr))
3289 return -1;
3290 goto retry;
3292 if (nval != uval)
3293 goto retry;
3296 * Wake robust non-PI futexes here. The wakeup of
3297 * PI futexes happens in exit_pi_state():
3299 if (!pi && (uval & FUTEX_WAITERS))
3300 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3302 return 0;
3306 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3308 static inline int fetch_robust_entry(struct robust_list __user **entry,
3309 struct robust_list __user * __user *head,
3310 unsigned int *pi)
3312 unsigned long uentry;
3314 if (get_user(uentry, (unsigned long __user *)head))
3315 return -EFAULT;
3317 *entry = (void __user *)(uentry & ~1UL);
3318 *pi = uentry & 1;
3320 return 0;
3324 * Walk curr->robust_list (very carefully, it's a userspace list!)
3325 * and mark any locks found there dead, and notify any waiters.
3327 * We silently return on any sign of list-walking problem.
3329 void exit_robust_list(struct task_struct *curr)
3331 struct robust_list_head __user *head = curr->robust_list;
3332 struct robust_list __user *entry, *next_entry, *pending;
3333 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3334 unsigned int uninitialized_var(next_pi);
3335 unsigned long futex_offset;
3336 int rc;
3338 if (!futex_cmpxchg_enabled)
3339 return;
3342 * Fetch the list head (which was registered earlier, via
3343 * sys_set_robust_list()):
3345 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3346 return;
3348 * Fetch the relative futex offset:
3350 if (get_user(futex_offset, &head->futex_offset))
3351 return;
3353 * Fetch any possibly pending lock-add first, and handle it
3354 * if it exists:
3356 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3357 return;
3359 next_entry = NULL; /* avoid warning with gcc */
3360 while (entry != &head->list) {
3362 * Fetch the next entry in the list before calling
3363 * handle_futex_death:
3365 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3367 * A pending lock might already be on the list, so
3368 * don't process it twice:
3370 if (entry != pending)
3371 if (handle_futex_death((void __user *)entry + futex_offset,
3372 curr, pi))
3373 return;
3374 if (rc)
3375 return;
3376 entry = next_entry;
3377 pi = next_pi;
3379 * Avoid excessively long or circular lists:
3381 if (!--limit)
3382 break;
3384 cond_resched();
3387 if (pending)
3388 handle_futex_death((void __user *)pending + futex_offset,
3389 curr, pip);
3392 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3393 u32 __user *uaddr2, u32 val2, u32 val3)
3395 int cmd = op & FUTEX_CMD_MASK;
3396 unsigned int flags = 0;
3398 if (!(op & FUTEX_PRIVATE_FLAG))
3399 flags |= FLAGS_SHARED;
3401 if (op & FUTEX_CLOCK_REALTIME) {
3402 flags |= FLAGS_CLOCKRT;
3403 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3404 cmd != FUTEX_WAIT_REQUEUE_PI)
3405 return -ENOSYS;
3408 switch (cmd) {
3409 case FUTEX_LOCK_PI:
3410 case FUTEX_UNLOCK_PI:
3411 case FUTEX_TRYLOCK_PI:
3412 case FUTEX_WAIT_REQUEUE_PI:
3413 case FUTEX_CMP_REQUEUE_PI:
3414 if (!futex_cmpxchg_enabled)
3415 return -ENOSYS;
3418 switch (cmd) {
3419 case FUTEX_WAIT:
3420 val3 = FUTEX_BITSET_MATCH_ANY;
3421 case FUTEX_WAIT_BITSET:
3422 return futex_wait(uaddr, flags, val, timeout, val3);
3423 case FUTEX_WAKE:
3424 val3 = FUTEX_BITSET_MATCH_ANY;
3425 case FUTEX_WAKE_BITSET:
3426 return futex_wake(uaddr, flags, val, val3);
3427 case FUTEX_REQUEUE:
3428 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3429 case FUTEX_CMP_REQUEUE:
3430 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3431 case FUTEX_WAKE_OP:
3432 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3433 case FUTEX_LOCK_PI:
3434 return futex_lock_pi(uaddr, flags, timeout, 0);
3435 case FUTEX_UNLOCK_PI:
3436 return futex_unlock_pi(uaddr, flags);
3437 case FUTEX_TRYLOCK_PI:
3438 return futex_lock_pi(uaddr, flags, NULL, 1);
3439 case FUTEX_WAIT_REQUEUE_PI:
3440 val3 = FUTEX_BITSET_MATCH_ANY;
3441 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3442 uaddr2);
3443 case FUTEX_CMP_REQUEUE_PI:
3444 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3446 return -ENOSYS;
3450 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3451 struct timespec __user *, utime, u32 __user *, uaddr2,
3452 u32, val3)
3454 struct timespec ts;
3455 ktime_t t, *tp = NULL;
3456 u32 val2 = 0;
3457 int cmd = op & FUTEX_CMD_MASK;
3459 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3460 cmd == FUTEX_WAIT_BITSET ||
3461 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3462 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3463 return -EFAULT;
3464 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3465 return -EFAULT;
3466 if (!timespec_valid(&ts))
3467 return -EINVAL;
3469 t = timespec_to_ktime(ts);
3470 if (cmd == FUTEX_WAIT)
3471 t = ktime_add_safe(ktime_get(), t);
3472 tp = &t;
3475 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3476 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3478 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3479 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3480 val2 = (u32) (unsigned long) utime;
3482 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3485 static void __init futex_detect_cmpxchg(void)
3487 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3488 u32 curval;
3491 * This will fail and we want it. Some arch implementations do
3492 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3493 * functionality. We want to know that before we call in any
3494 * of the complex code paths. Also we want to prevent
3495 * registration of robust lists in that case. NULL is
3496 * guaranteed to fault and we get -EFAULT on functional
3497 * implementation, the non-functional ones will return
3498 * -ENOSYS.
3500 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3501 futex_cmpxchg_enabled = 1;
3502 #endif
3505 static int __init futex_init(void)
3507 unsigned int futex_shift;
3508 unsigned long i;
3510 #if CONFIG_BASE_SMALL
3511 futex_hashsize = 16;
3512 #else
3513 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3514 #endif
3516 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3517 futex_hashsize, 0,
3518 futex_hashsize < 256 ? HASH_SMALL : 0,
3519 &futex_shift, NULL,
3520 futex_hashsize, futex_hashsize);
3521 futex_hashsize = 1UL << futex_shift;
3523 futex_detect_cmpxchg();
3525 for (i = 0; i < futex_hashsize; i++) {
3526 atomic_set(&futex_queues[i].waiters, 0);
3527 plist_head_init(&futex_queues[i].chain);
3528 spin_lock_init(&futex_queues[i].lock);
3531 return 0;
3533 core_initcall(futex_init);