Linux 4.13.16
[linux/fpc-iii.git] / kernel / pid.c
blob020dedbdf066bccbc370cba20be8dc7dbc914629
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41 #include <linux/sched/task.h>
43 #define pid_hashfn(nr, ns) \
44 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
45 static struct hlist_head *pid_hash;
46 static unsigned int pidhash_shift = 4;
47 struct pid init_struct_pid = INIT_STRUCT_PID;
49 int pid_max = PID_MAX_DEFAULT;
51 #define RESERVED_PIDS 300
53 int pid_max_min = RESERVED_PIDS + 1;
54 int pid_max_max = PID_MAX_LIMIT;
56 static inline int mk_pid(struct pid_namespace *pid_ns,
57 struct pidmap *map, int off)
59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
62 #define find_next_offset(map, off) \
63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
66 * PID-map pages start out as NULL, they get allocated upon
67 * first use and are never deallocated. This way a low pid_max
68 * value does not cause lots of bitmaps to be allocated, but
69 * the scheme scales to up to 4 million PIDs, runtime.
71 struct pid_namespace init_pid_ns = {
72 .kref = KREF_INIT(2),
73 .pidmap = {
74 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
76 .last_pid = 0,
77 .nr_hashed = PIDNS_HASH_ADDING,
78 .level = 0,
79 .child_reaper = &init_task,
80 .user_ns = &init_user_ns,
81 .ns.inum = PROC_PID_INIT_INO,
82 #ifdef CONFIG_PID_NS
83 .ns.ops = &pidns_operations,
84 #endif
86 EXPORT_SYMBOL_GPL(init_pid_ns);
89 * Note: disable interrupts while the pidmap_lock is held as an
90 * interrupt might come in and do read_lock(&tasklist_lock).
92 * If we don't disable interrupts there is a nasty deadlock between
93 * detach_pid()->free_pid() and another cpu that does
94 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
95 * read_lock(&tasklist_lock);
97 * After we clean up the tasklist_lock and know there are no
98 * irq handlers that take it we can leave the interrupts enabled.
99 * For now it is easier to be safe than to prove it can't happen.
102 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
104 static void free_pidmap(struct upid *upid)
106 int nr = upid->nr;
107 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
108 int offset = nr & BITS_PER_PAGE_MASK;
110 clear_bit(offset, map->page);
111 atomic_inc(&map->nr_free);
115 * If we started walking pids at 'base', is 'a' seen before 'b'?
117 static int pid_before(int base, int a, int b)
120 * This is the same as saying
122 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
123 * and that mapping orders 'a' and 'b' with respect to 'base'.
125 return (unsigned)(a - base) < (unsigned)(b - base);
129 * We might be racing with someone else trying to set pid_ns->last_pid
130 * at the pid allocation time (there's also a sysctl for this, but racing
131 * with this one is OK, see comment in kernel/pid_namespace.c about it).
132 * We want the winner to have the "later" value, because if the
133 * "earlier" value prevails, then a pid may get reused immediately.
135 * Since pids rollover, it is not sufficient to just pick the bigger
136 * value. We have to consider where we started counting from.
138 * 'base' is the value of pid_ns->last_pid that we observed when
139 * we started looking for a pid.
141 * 'pid' is the pid that we eventually found.
143 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
145 int prev;
146 int last_write = base;
147 do {
148 prev = last_write;
149 last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
150 } while ((prev != last_write) && (pid_before(base, last_write, pid)));
153 static int alloc_pidmap(struct pid_namespace *pid_ns)
155 int i, offset, max_scan, pid, last = pid_ns->last_pid;
156 struct pidmap *map;
158 pid = last + 1;
159 if (pid >= pid_max)
160 pid = RESERVED_PIDS;
161 offset = pid & BITS_PER_PAGE_MASK;
162 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
164 * If last_pid points into the middle of the map->page we
165 * want to scan this bitmap block twice, the second time
166 * we start with offset == 0 (or RESERVED_PIDS).
168 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
169 for (i = 0; i <= max_scan; ++i) {
170 if (unlikely(!map->page)) {
171 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
173 * Free the page if someone raced with us
174 * installing it:
176 spin_lock_irq(&pidmap_lock);
177 if (!map->page) {
178 map->page = page;
179 page = NULL;
181 spin_unlock_irq(&pidmap_lock);
182 kfree(page);
183 if (unlikely(!map->page))
184 return -ENOMEM;
186 if (likely(atomic_read(&map->nr_free))) {
187 for ( ; ; ) {
188 if (!test_and_set_bit(offset, map->page)) {
189 atomic_dec(&map->nr_free);
190 set_last_pid(pid_ns, last, pid);
191 return pid;
193 offset = find_next_offset(map, offset);
194 if (offset >= BITS_PER_PAGE)
195 break;
196 pid = mk_pid(pid_ns, map, offset);
197 if (pid >= pid_max)
198 break;
201 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
202 ++map;
203 offset = 0;
204 } else {
205 map = &pid_ns->pidmap[0];
206 offset = RESERVED_PIDS;
207 if (unlikely(last == offset))
208 break;
210 pid = mk_pid(pid_ns, map, offset);
212 return -EAGAIN;
215 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
217 int offset;
218 struct pidmap *map, *end;
220 if (last >= PID_MAX_LIMIT)
221 return -1;
223 offset = (last + 1) & BITS_PER_PAGE_MASK;
224 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
225 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
226 for (; map < end; map++, offset = 0) {
227 if (unlikely(!map->page))
228 continue;
229 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
230 if (offset < BITS_PER_PAGE)
231 return mk_pid(pid_ns, map, offset);
233 return -1;
236 void put_pid(struct pid *pid)
238 struct pid_namespace *ns;
240 if (!pid)
241 return;
243 ns = pid->numbers[pid->level].ns;
244 if ((atomic_read(&pid->count) == 1) ||
245 atomic_dec_and_test(&pid->count)) {
246 kmem_cache_free(ns->pid_cachep, pid);
247 put_pid_ns(ns);
250 EXPORT_SYMBOL_GPL(put_pid);
252 static void delayed_put_pid(struct rcu_head *rhp)
254 struct pid *pid = container_of(rhp, struct pid, rcu);
255 put_pid(pid);
258 void free_pid(struct pid *pid)
260 /* We can be called with write_lock_irq(&tasklist_lock) held */
261 int i;
262 unsigned long flags;
264 spin_lock_irqsave(&pidmap_lock, flags);
265 for (i = 0; i <= pid->level; i++) {
266 struct upid *upid = pid->numbers + i;
267 struct pid_namespace *ns = upid->ns;
268 hlist_del_rcu(&upid->pid_chain);
269 switch(--ns->nr_hashed) {
270 case 2:
271 case 1:
272 /* When all that is left in the pid namespace
273 * is the reaper wake up the reaper. The reaper
274 * may be sleeping in zap_pid_ns_processes().
276 wake_up_process(ns->child_reaper);
277 break;
278 case PIDNS_HASH_ADDING:
279 /* Handle a fork failure of the first process */
280 WARN_ON(ns->child_reaper);
281 ns->nr_hashed = 0;
282 /* fall through */
283 case 0:
284 schedule_work(&ns->proc_work);
285 break;
288 spin_unlock_irqrestore(&pidmap_lock, flags);
290 for (i = 0; i <= pid->level; i++)
291 free_pidmap(pid->numbers + i);
293 call_rcu(&pid->rcu, delayed_put_pid);
296 struct pid *alloc_pid(struct pid_namespace *ns)
298 struct pid *pid;
299 enum pid_type type;
300 int i, nr;
301 struct pid_namespace *tmp;
302 struct upid *upid;
303 int retval = -ENOMEM;
305 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
306 if (!pid)
307 return ERR_PTR(retval);
309 tmp = ns;
310 pid->level = ns->level;
311 for (i = ns->level; i >= 0; i--) {
312 nr = alloc_pidmap(tmp);
313 if (nr < 0) {
314 retval = nr;
315 goto out_free;
318 pid->numbers[i].nr = nr;
319 pid->numbers[i].ns = tmp;
320 tmp = tmp->parent;
323 if (unlikely(is_child_reaper(pid))) {
324 if (pid_ns_prepare_proc(ns)) {
325 disable_pid_allocation(ns);
326 goto out_free;
330 get_pid_ns(ns);
331 atomic_set(&pid->count, 1);
332 for (type = 0; type < PIDTYPE_MAX; ++type)
333 INIT_HLIST_HEAD(&pid->tasks[type]);
335 upid = pid->numbers + ns->level;
336 spin_lock_irq(&pidmap_lock);
337 if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
338 goto out_unlock;
339 for ( ; upid >= pid->numbers; --upid) {
340 hlist_add_head_rcu(&upid->pid_chain,
341 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
342 upid->ns->nr_hashed++;
344 spin_unlock_irq(&pidmap_lock);
346 return pid;
348 out_unlock:
349 spin_unlock_irq(&pidmap_lock);
350 put_pid_ns(ns);
352 out_free:
353 while (++i <= ns->level)
354 free_pidmap(pid->numbers + i);
356 kmem_cache_free(ns->pid_cachep, pid);
357 return ERR_PTR(retval);
360 void disable_pid_allocation(struct pid_namespace *ns)
362 spin_lock_irq(&pidmap_lock);
363 ns->nr_hashed &= ~PIDNS_HASH_ADDING;
364 spin_unlock_irq(&pidmap_lock);
367 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
369 struct upid *pnr;
371 hlist_for_each_entry_rcu(pnr,
372 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
373 if (pnr->nr == nr && pnr->ns == ns)
374 return container_of(pnr, struct pid,
375 numbers[ns->level]);
377 return NULL;
379 EXPORT_SYMBOL_GPL(find_pid_ns);
381 struct pid *find_vpid(int nr)
383 return find_pid_ns(nr, task_active_pid_ns(current));
385 EXPORT_SYMBOL_GPL(find_vpid);
388 * attach_pid() must be called with the tasklist_lock write-held.
390 void attach_pid(struct task_struct *task, enum pid_type type)
392 struct pid_link *link = &task->pids[type];
393 hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
396 static void __change_pid(struct task_struct *task, enum pid_type type,
397 struct pid *new)
399 struct pid_link *link;
400 struct pid *pid;
401 int tmp;
403 link = &task->pids[type];
404 pid = link->pid;
406 hlist_del_rcu(&link->node);
407 link->pid = new;
409 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
410 if (!hlist_empty(&pid->tasks[tmp]))
411 return;
413 free_pid(pid);
416 void detach_pid(struct task_struct *task, enum pid_type type)
418 __change_pid(task, type, NULL);
421 void change_pid(struct task_struct *task, enum pid_type type,
422 struct pid *pid)
424 __change_pid(task, type, pid);
425 attach_pid(task, type);
428 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
429 void transfer_pid(struct task_struct *old, struct task_struct *new,
430 enum pid_type type)
432 new->pids[type].pid = old->pids[type].pid;
433 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
436 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
438 struct task_struct *result = NULL;
439 if (pid) {
440 struct hlist_node *first;
441 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
442 lockdep_tasklist_lock_is_held());
443 if (first)
444 result = hlist_entry(first, struct task_struct, pids[(type)].node);
446 return result;
448 EXPORT_SYMBOL(pid_task);
451 * Must be called under rcu_read_lock().
453 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
455 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
456 "find_task_by_pid_ns() needs rcu_read_lock() protection");
457 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
460 struct task_struct *find_task_by_vpid(pid_t vnr)
462 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
465 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
467 struct pid *pid;
468 rcu_read_lock();
469 if (type != PIDTYPE_PID)
470 task = task->group_leader;
471 pid = get_pid(rcu_dereference(task->pids[type].pid));
472 rcu_read_unlock();
473 return pid;
475 EXPORT_SYMBOL_GPL(get_task_pid);
477 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
479 struct task_struct *result;
480 rcu_read_lock();
481 result = pid_task(pid, type);
482 if (result)
483 get_task_struct(result);
484 rcu_read_unlock();
485 return result;
487 EXPORT_SYMBOL_GPL(get_pid_task);
489 struct pid *find_get_pid(pid_t nr)
491 struct pid *pid;
493 rcu_read_lock();
494 pid = get_pid(find_vpid(nr));
495 rcu_read_unlock();
497 return pid;
499 EXPORT_SYMBOL_GPL(find_get_pid);
501 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
503 struct upid *upid;
504 pid_t nr = 0;
506 if (pid && ns->level <= pid->level) {
507 upid = &pid->numbers[ns->level];
508 if (upid->ns == ns)
509 nr = upid->nr;
511 return nr;
513 EXPORT_SYMBOL_GPL(pid_nr_ns);
515 pid_t pid_vnr(struct pid *pid)
517 return pid_nr_ns(pid, task_active_pid_ns(current));
519 EXPORT_SYMBOL_GPL(pid_vnr);
521 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
522 struct pid_namespace *ns)
524 pid_t nr = 0;
526 rcu_read_lock();
527 if (!ns)
528 ns = task_active_pid_ns(current);
529 if (likely(pid_alive(task))) {
530 if (type != PIDTYPE_PID) {
531 if (type == __PIDTYPE_TGID)
532 type = PIDTYPE_PID;
533 task = task->group_leader;
535 nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
537 rcu_read_unlock();
539 return nr;
541 EXPORT_SYMBOL(__task_pid_nr_ns);
543 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
545 return ns_of_pid(task_pid(tsk));
547 EXPORT_SYMBOL_GPL(task_active_pid_ns);
550 * Used by proc to find the first pid that is greater than or equal to nr.
552 * If there is a pid at nr this function is exactly the same as find_pid_ns.
554 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
556 struct pid *pid;
558 do {
559 pid = find_pid_ns(nr, ns);
560 if (pid)
561 break;
562 nr = next_pidmap(ns, nr);
563 } while (nr > 0);
565 return pid;
569 * The pid hash table is scaled according to the amount of memory in the
570 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
571 * more.
573 void __init pidhash_init(void)
575 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
576 HASH_EARLY | HASH_SMALL | HASH_ZERO,
577 &pidhash_shift, NULL,
578 0, 4096);
581 void __init pidmap_init(void)
583 /* Verify no one has done anything silly: */
584 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
586 /* bump default and minimum pid_max based on number of cpus */
587 pid_max = min(pid_max_max, max_t(int, pid_max,
588 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
589 pid_max_min = max_t(int, pid_max_min,
590 PIDS_PER_CPU_MIN * num_possible_cpus());
591 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
593 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
594 /* Reserve PID 0. We never call free_pidmap(0) */
595 set_bit(0, init_pid_ns.pidmap[0].page);
596 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
598 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
599 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);