2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <uapi/linux/sched/types.h>
33 #include "../time/tick-internal.h"
35 #ifdef CONFIG_RCU_BOOST
37 #include "../locking/rtmutex_common.h"
40 * Control variables for per-CPU and per-rcu_node kthreads. These
41 * handle all flavors of RCU.
43 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
46 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
48 #else /* #ifdef CONFIG_RCU_BOOST */
51 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
52 * all uses are in dead code. Provide a definition to keep the compiler
53 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
54 * This probably needs to be excluded from -rt builds.
56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
58 #endif /* #else #ifdef CONFIG_RCU_BOOST */
60 #ifdef CONFIG_RCU_NOCB_CPU
61 static cpumask_var_t rcu_nocb_mask
; /* CPUs to have callbacks offloaded. */
62 static bool have_rcu_nocb_mask
; /* Was rcu_nocb_mask allocated? */
63 static bool __read_mostly rcu_nocb_poll
; /* Offload kthread are to poll. */
64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
67 * Check the RCU kernel configuration parameters and print informative
68 * messages about anything out of the ordinary.
70 static void __init
rcu_bootup_announce_oddness(void)
72 if (IS_ENABLED(CONFIG_RCU_TRACE
))
73 pr_info("\tRCU event tracing is enabled.\n");
74 if ((IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 64) ||
75 (!IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 32))
76 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
79 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
80 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ
))
81 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
82 if (IS_ENABLED(CONFIG_PROVE_RCU
))
83 pr_info("\tRCU lockdep checking is enabled.\n");
84 if (RCU_NUM_LVLS
>= 4)
85 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 if (RCU_FANOUT_LEAF
!= 16)
87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 if (rcu_fanout_leaf
!= RCU_FANOUT_LEAF
)
90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf
);
91 if (nr_cpu_ids
!= NR_CPUS
)
92 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS
, nr_cpu_ids
);
93 #ifdef CONFIG_RCU_BOOST
94 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio
, CONFIG_RCU_BOOST_DELAY
);
96 if (blimit
!= DEFAULT_RCU_BLIMIT
)
97 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit
);
98 if (qhimark
!= DEFAULT_RCU_QHIMARK
)
99 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark
);
100 if (qlowmark
!= DEFAULT_RCU_QLOMARK
)
101 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark
);
102 if (jiffies_till_first_fqs
!= ULONG_MAX
)
103 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs
);
104 if (jiffies_till_next_fqs
!= ULONG_MAX
)
105 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs
);
106 if (rcu_kick_kthreads
)
107 pr_info("\tKick kthreads if too-long grace period.\n");
108 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD
))
109 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
110 if (gp_preinit_delay
)
111 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay
);
113 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay
);
114 if (gp_cleanup_delay
)
115 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay
);
116 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
))
117 pr_info("\tRCU debug extended QS entry/exit.\n");
118 rcupdate_announce_bootup_oddness();
121 #ifdef CONFIG_PREEMPT_RCU
123 RCU_STATE_INITIALIZER(rcu_preempt
, 'p', call_rcu
);
124 static struct rcu_state
*const rcu_state_p
= &rcu_preempt_state
;
125 static struct rcu_data __percpu
*const rcu_data_p
= &rcu_preempt_data
;
127 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
131 * Tell them what RCU they are running.
133 static void __init
rcu_bootup_announce(void)
135 pr_info("Preemptible hierarchical RCU implementation.\n");
136 rcu_bootup_announce_oddness();
139 /* Flags for rcu_preempt_ctxt_queue() decision table. */
140 #define RCU_GP_TASKS 0x8
141 #define RCU_EXP_TASKS 0x4
142 #define RCU_GP_BLKD 0x2
143 #define RCU_EXP_BLKD 0x1
146 * Queues a task preempted within an RCU-preempt read-side critical
147 * section into the appropriate location within the ->blkd_tasks list,
148 * depending on the states of any ongoing normal and expedited grace
149 * periods. The ->gp_tasks pointer indicates which element the normal
150 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
151 * indicates which element the expedited grace period is waiting on (again,
152 * NULL if none). If a grace period is waiting on a given element in the
153 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
154 * adding a task to the tail of the list blocks any grace period that is
155 * already waiting on one of the elements. In contrast, adding a task
156 * to the head of the list won't block any grace period that is already
157 * waiting on one of the elements.
159 * This queuing is imprecise, and can sometimes make an ongoing grace
160 * period wait for a task that is not strictly speaking blocking it.
161 * Given the choice, we needlessly block a normal grace period rather than
162 * blocking an expedited grace period.
164 * Note that an endless sequence of expedited grace periods still cannot
165 * indefinitely postpone a normal grace period. Eventually, all of the
166 * fixed number of preempted tasks blocking the normal grace period that are
167 * not also blocking the expedited grace period will resume and complete
168 * their RCU read-side critical sections. At that point, the ->gp_tasks
169 * pointer will equal the ->exp_tasks pointer, at which point the end of
170 * the corresponding expedited grace period will also be the end of the
171 * normal grace period.
173 static void rcu_preempt_ctxt_queue(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
174 __releases(rnp
->lock
) /* But leaves rrupts disabled. */
176 int blkd_state
= (rnp
->gp_tasks
? RCU_GP_TASKS
: 0) +
177 (rnp
->exp_tasks
? RCU_EXP_TASKS
: 0) +
178 (rnp
->qsmask
& rdp
->grpmask
? RCU_GP_BLKD
: 0) +
179 (rnp
->expmask
& rdp
->grpmask
? RCU_EXP_BLKD
: 0);
180 struct task_struct
*t
= current
;
182 lockdep_assert_held(&rnp
->lock
);
185 * Decide where to queue the newly blocked task. In theory,
186 * this could be an if-statement. In practice, when I tried
187 * that, it was quite messy.
189 switch (blkd_state
) {
192 case RCU_EXP_TASKS
+ RCU_GP_BLKD
:
194 case RCU_GP_TASKS
+ RCU_EXP_TASKS
:
197 * Blocking neither GP, or first task blocking the normal
198 * GP but not blocking the already-waiting expedited GP.
199 * Queue at the head of the list to avoid unnecessarily
200 * blocking the already-waiting GPs.
202 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
207 case RCU_GP_BLKD
+ RCU_EXP_BLKD
:
208 case RCU_GP_TASKS
+ RCU_EXP_BLKD
:
209 case RCU_GP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
210 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
213 * First task arriving that blocks either GP, or first task
214 * arriving that blocks the expedited GP (with the normal
215 * GP already waiting), or a task arriving that blocks
216 * both GPs with both GPs already waiting. Queue at the
217 * tail of the list to avoid any GP waiting on any of the
218 * already queued tasks that are not blocking it.
220 list_add_tail(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
223 case RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
224 case RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
225 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
228 * Second or subsequent task blocking the expedited GP.
229 * The task either does not block the normal GP, or is the
230 * first task blocking the normal GP. Queue just after
231 * the first task blocking the expedited GP.
233 list_add(&t
->rcu_node_entry
, rnp
->exp_tasks
);
236 case RCU_GP_TASKS
+ RCU_GP_BLKD
:
237 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
:
240 * Second or subsequent task blocking the normal GP.
241 * The task does not block the expedited GP. Queue just
242 * after the first task blocking the normal GP.
244 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
);
249 /* Yet another exercise in excessive paranoia. */
255 * We have now queued the task. If it was the first one to
256 * block either grace period, update the ->gp_tasks and/or
257 * ->exp_tasks pointers, respectively, to reference the newly
260 if (!rnp
->gp_tasks
&& (blkd_state
& RCU_GP_BLKD
))
261 rnp
->gp_tasks
= &t
->rcu_node_entry
;
262 if (!rnp
->exp_tasks
&& (blkd_state
& RCU_EXP_BLKD
))
263 rnp
->exp_tasks
= &t
->rcu_node_entry
;
264 raw_spin_unlock_rcu_node(rnp
); /* interrupts remain disabled. */
267 * Report the quiescent state for the expedited GP. This expedited
268 * GP should not be able to end until we report, so there should be
269 * no need to check for a subsequent expedited GP. (Though we are
270 * still in a quiescent state in any case.)
272 if (blkd_state
& RCU_EXP_BLKD
&&
273 t
->rcu_read_unlock_special
.b
.exp_need_qs
) {
274 t
->rcu_read_unlock_special
.b
.exp_need_qs
= false;
275 rcu_report_exp_rdp(rdp
->rsp
, rdp
, true);
277 WARN_ON_ONCE(t
->rcu_read_unlock_special
.b
.exp_need_qs
);
282 * Record a preemptible-RCU quiescent state for the specified CPU. Note
283 * that this just means that the task currently running on the CPU is
284 * not in a quiescent state. There might be any number of tasks blocked
285 * while in an RCU read-side critical section.
287 * As with the other rcu_*_qs() functions, callers to this function
288 * must disable preemption.
290 static void rcu_preempt_qs(void)
292 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
293 if (__this_cpu_read(rcu_data_p
->cpu_no_qs
.s
)) {
294 trace_rcu_grace_period(TPS("rcu_preempt"),
295 __this_cpu_read(rcu_data_p
->gpnum
),
297 __this_cpu_write(rcu_data_p
->cpu_no_qs
.b
.norm
, false);
298 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
299 current
->rcu_read_unlock_special
.b
.need_qs
= false;
304 * We have entered the scheduler, and the current task might soon be
305 * context-switched away from. If this task is in an RCU read-side
306 * critical section, we will no longer be able to rely on the CPU to
307 * record that fact, so we enqueue the task on the blkd_tasks list.
308 * The task will dequeue itself when it exits the outermost enclosing
309 * RCU read-side critical section. Therefore, the current grace period
310 * cannot be permitted to complete until the blkd_tasks list entries
311 * predating the current grace period drain, in other words, until
312 * rnp->gp_tasks becomes NULL.
314 * Caller must disable interrupts.
316 static void rcu_preempt_note_context_switch(bool preempt
)
318 struct task_struct
*t
= current
;
319 struct rcu_data
*rdp
;
320 struct rcu_node
*rnp
;
322 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_preempt_note_context_switch() invoked with interrupts enabled!!!\n");
323 WARN_ON_ONCE(!preempt
&& t
->rcu_read_lock_nesting
> 0);
324 if (t
->rcu_read_lock_nesting
> 0 &&
325 !t
->rcu_read_unlock_special
.b
.blocked
) {
327 /* Possibly blocking in an RCU read-side critical section. */
328 rdp
= this_cpu_ptr(rcu_state_p
->rda
);
330 raw_spin_lock_rcu_node(rnp
);
331 t
->rcu_read_unlock_special
.b
.blocked
= true;
332 t
->rcu_blocked_node
= rnp
;
335 * Verify the CPU's sanity, trace the preemption, and
336 * then queue the task as required based on the states
337 * of any ongoing and expedited grace periods.
339 WARN_ON_ONCE((rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) == 0);
340 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
341 trace_rcu_preempt_task(rdp
->rsp
->name
,
343 (rnp
->qsmask
& rdp
->grpmask
)
346 rcu_preempt_ctxt_queue(rnp
, rdp
);
347 } else if (t
->rcu_read_lock_nesting
< 0 &&
348 t
->rcu_read_unlock_special
.s
) {
351 * Complete exit from RCU read-side critical section on
352 * behalf of preempted instance of __rcu_read_unlock().
354 rcu_read_unlock_special(t
);
358 * Either we were not in an RCU read-side critical section to
359 * begin with, or we have now recorded that critical section
360 * globally. Either way, we can now note a quiescent state
361 * for this CPU. Again, if we were in an RCU read-side critical
362 * section, and if that critical section was blocking the current
363 * grace period, then the fact that the task has been enqueued
364 * means that we continue to block the current grace period.
370 * Check for preempted RCU readers blocking the current grace period
371 * for the specified rcu_node structure. If the caller needs a reliable
372 * answer, it must hold the rcu_node's ->lock.
374 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
376 return rnp
->gp_tasks
!= NULL
;
380 * Advance a ->blkd_tasks-list pointer to the next entry, instead
381 * returning NULL if at the end of the list.
383 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
384 struct rcu_node
*rnp
)
386 struct list_head
*np
;
388 np
= t
->rcu_node_entry
.next
;
389 if (np
== &rnp
->blkd_tasks
)
395 * Return true if the specified rcu_node structure has tasks that were
396 * preempted within an RCU read-side critical section.
398 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
400 return !list_empty(&rnp
->blkd_tasks
);
404 * Handle special cases during rcu_read_unlock(), such as needing to
405 * notify RCU core processing or task having blocked during the RCU
406 * read-side critical section.
408 void rcu_read_unlock_special(struct task_struct
*t
)
414 struct list_head
*np
;
415 bool drop_boost_mutex
= false;
416 struct rcu_data
*rdp
;
417 struct rcu_node
*rnp
;
418 union rcu_special special
;
420 /* NMI handlers cannot block and cannot safely manipulate state. */
424 local_irq_save(flags
);
427 * If RCU core is waiting for this CPU to exit its critical section,
428 * report the fact that it has exited. Because irqs are disabled,
429 * t->rcu_read_unlock_special cannot change.
431 special
= t
->rcu_read_unlock_special
;
432 if (special
.b
.need_qs
) {
434 t
->rcu_read_unlock_special
.b
.need_qs
= false;
435 if (!t
->rcu_read_unlock_special
.s
) {
436 local_irq_restore(flags
);
442 * Respond to a request for an expedited grace period, but only if
443 * we were not preempted, meaning that we were running on the same
444 * CPU throughout. If we were preempted, the exp_need_qs flag
445 * would have been cleared at the time of the first preemption,
446 * and the quiescent state would be reported when we were dequeued.
448 if (special
.b
.exp_need_qs
) {
449 WARN_ON_ONCE(special
.b
.blocked
);
450 t
->rcu_read_unlock_special
.b
.exp_need_qs
= false;
451 rdp
= this_cpu_ptr(rcu_state_p
->rda
);
452 rcu_report_exp_rdp(rcu_state_p
, rdp
, true);
453 if (!t
->rcu_read_unlock_special
.s
) {
454 local_irq_restore(flags
);
459 /* Hardware IRQ handlers cannot block, complain if they get here. */
460 if (in_irq() || in_serving_softirq()) {
461 lockdep_rcu_suspicious(__FILE__
, __LINE__
,
462 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
463 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
464 t
->rcu_read_unlock_special
.s
,
465 t
->rcu_read_unlock_special
.b
.blocked
,
466 t
->rcu_read_unlock_special
.b
.exp_need_qs
,
467 t
->rcu_read_unlock_special
.b
.need_qs
);
468 local_irq_restore(flags
);
472 /* Clean up if blocked during RCU read-side critical section. */
473 if (special
.b
.blocked
) {
474 t
->rcu_read_unlock_special
.b
.blocked
= false;
477 * Remove this task from the list it blocked on. The task
478 * now remains queued on the rcu_node corresponding to the
479 * CPU it first blocked on, so there is no longer any need
480 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
482 rnp
= t
->rcu_blocked_node
;
483 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
484 WARN_ON_ONCE(rnp
!= t
->rcu_blocked_node
);
485 empty_norm
= !rcu_preempt_blocked_readers_cgp(rnp
);
486 empty_exp
= sync_rcu_preempt_exp_done(rnp
);
487 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
488 np
= rcu_next_node_entry(t
, rnp
);
489 list_del_init(&t
->rcu_node_entry
);
490 t
->rcu_blocked_node
= NULL
;
491 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
493 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
495 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
497 if (IS_ENABLED(CONFIG_RCU_BOOST
)) {
498 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
499 rnp
->boost_tasks
= np
;
500 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
501 drop_boost_mutex
= rt_mutex_owner(&rnp
->boost_mtx
) == t
;
505 * If this was the last task on the current list, and if
506 * we aren't waiting on any CPUs, report the quiescent state.
507 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
508 * so we must take a snapshot of the expedited state.
510 empty_exp_now
= sync_rcu_preempt_exp_done(rnp
);
511 if (!empty_norm
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
512 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
519 rcu_report_unblock_qs_rnp(rcu_state_p
, rnp
, flags
);
521 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
524 /* Unboost if we were boosted. */
525 if (IS_ENABLED(CONFIG_RCU_BOOST
) && drop_boost_mutex
)
526 rt_mutex_unlock(&rnp
->boost_mtx
);
529 * If this was the last task on the expedited lists,
530 * then we need to report up the rcu_node hierarchy.
532 if (!empty_exp
&& empty_exp_now
)
533 rcu_report_exp_rnp(rcu_state_p
, rnp
, true);
535 local_irq_restore(flags
);
540 * Dump detailed information for all tasks blocking the current RCU
541 * grace period on the specified rcu_node structure.
543 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
546 struct task_struct
*t
;
548 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
549 if (!rcu_preempt_blocked_readers_cgp(rnp
)) {
550 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
553 t
= list_entry(rnp
->gp_tasks
->prev
,
554 struct task_struct
, rcu_node_entry
);
555 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
)
557 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
561 * Dump detailed information for all tasks blocking the current RCU
564 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
566 struct rcu_node
*rnp
= rcu_get_root(rsp
);
568 rcu_print_detail_task_stall_rnp(rnp
);
569 rcu_for_each_leaf_node(rsp
, rnp
)
570 rcu_print_detail_task_stall_rnp(rnp
);
573 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
575 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
576 rnp
->level
, rnp
->grplo
, rnp
->grphi
);
579 static void rcu_print_task_stall_end(void)
585 * Scan the current list of tasks blocked within RCU read-side critical
586 * sections, printing out the tid of each.
588 static int rcu_print_task_stall(struct rcu_node
*rnp
)
590 struct task_struct
*t
;
593 if (!rcu_preempt_blocked_readers_cgp(rnp
))
595 rcu_print_task_stall_begin(rnp
);
596 t
= list_entry(rnp
->gp_tasks
->prev
,
597 struct task_struct
, rcu_node_entry
);
598 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
599 pr_cont(" P%d", t
->pid
);
602 rcu_print_task_stall_end();
607 * Scan the current list of tasks blocked within RCU read-side critical
608 * sections, printing out the tid of each that is blocking the current
609 * expedited grace period.
611 static int rcu_print_task_exp_stall(struct rcu_node
*rnp
)
613 struct task_struct
*t
;
618 t
= list_entry(rnp
->exp_tasks
->prev
,
619 struct task_struct
, rcu_node_entry
);
620 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
621 pr_cont(" P%d", t
->pid
);
628 * Check that the list of blocked tasks for the newly completed grace
629 * period is in fact empty. It is a serious bug to complete a grace
630 * period that still has RCU readers blocked! This function must be
631 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
632 * must be held by the caller.
634 * Also, if there are blocked tasks on the list, they automatically
635 * block the newly created grace period, so set up ->gp_tasks accordingly.
637 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
639 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
640 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
641 if (rcu_preempt_has_tasks(rnp
))
642 rnp
->gp_tasks
= rnp
->blkd_tasks
.next
;
643 WARN_ON_ONCE(rnp
->qsmask
);
647 * Check for a quiescent state from the current CPU. When a task blocks,
648 * the task is recorded in the corresponding CPU's rcu_node structure,
649 * which is checked elsewhere.
651 * Caller must disable hard irqs.
653 static void rcu_preempt_check_callbacks(void)
655 struct task_struct
*t
= current
;
657 if (t
->rcu_read_lock_nesting
== 0) {
661 if (t
->rcu_read_lock_nesting
> 0 &&
662 __this_cpu_read(rcu_data_p
->core_needs_qs
) &&
663 __this_cpu_read(rcu_data_p
->cpu_no_qs
.b
.norm
))
664 t
->rcu_read_unlock_special
.b
.need_qs
= true;
667 #ifdef CONFIG_RCU_BOOST
669 static void rcu_preempt_do_callbacks(void)
671 rcu_do_batch(rcu_state_p
, this_cpu_ptr(rcu_data_p
));
674 #endif /* #ifdef CONFIG_RCU_BOOST */
677 * call_rcu() - Queue an RCU callback for invocation after a grace period.
678 * @head: structure to be used for queueing the RCU updates.
679 * @func: actual callback function to be invoked after the grace period
681 * The callback function will be invoked some time after a full grace
682 * period elapses, in other words after all pre-existing RCU read-side
683 * critical sections have completed. However, the callback function
684 * might well execute concurrently with RCU read-side critical sections
685 * that started after call_rcu() was invoked. RCU read-side critical
686 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
689 * Note that all CPUs must agree that the grace period extended beyond
690 * all pre-existing RCU read-side critical section. On systems with more
691 * than one CPU, this means that when "func()" is invoked, each CPU is
692 * guaranteed to have executed a full memory barrier since the end of its
693 * last RCU read-side critical section whose beginning preceded the call
694 * to call_rcu(). It also means that each CPU executing an RCU read-side
695 * critical section that continues beyond the start of "func()" must have
696 * executed a memory barrier after the call_rcu() but before the beginning
697 * of that RCU read-side critical section. Note that these guarantees
698 * include CPUs that are offline, idle, or executing in user mode, as
699 * well as CPUs that are executing in the kernel.
701 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
702 * resulting RCU callback function "func()", then both CPU A and CPU B are
703 * guaranteed to execute a full memory barrier during the time interval
704 * between the call to call_rcu() and the invocation of "func()" -- even
705 * if CPU A and CPU B are the same CPU (but again only if the system has
706 * more than one CPU).
708 void call_rcu(struct rcu_head
*head
, rcu_callback_t func
)
710 __call_rcu(head
, func
, rcu_state_p
, -1, 0);
712 EXPORT_SYMBOL_GPL(call_rcu
);
715 * synchronize_rcu - wait until a grace period has elapsed.
717 * Control will return to the caller some time after a full grace
718 * period has elapsed, in other words after all currently executing RCU
719 * read-side critical sections have completed. Note, however, that
720 * upon return from synchronize_rcu(), the caller might well be executing
721 * concurrently with new RCU read-side critical sections that began while
722 * synchronize_rcu() was waiting. RCU read-side critical sections are
723 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
725 * See the description of synchronize_sched() for more detailed
726 * information on memory-ordering guarantees. However, please note
727 * that -only- the memory-ordering guarantees apply. For example,
728 * synchronize_rcu() is -not- guaranteed to wait on things like code
729 * protected by preempt_disable(), instead, synchronize_rcu() is -only-
730 * guaranteed to wait on RCU read-side critical sections, that is, sections
731 * of code protected by rcu_read_lock().
733 void synchronize_rcu(void)
735 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
736 lock_is_held(&rcu_lock_map
) ||
737 lock_is_held(&rcu_sched_lock_map
),
738 "Illegal synchronize_rcu() in RCU read-side critical section");
739 if (rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
)
741 if (rcu_gp_is_expedited())
742 synchronize_rcu_expedited();
744 wait_rcu_gp(call_rcu
);
746 EXPORT_SYMBOL_GPL(synchronize_rcu
);
749 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
751 * Note that this primitive does not necessarily wait for an RCU grace period
752 * to complete. For example, if there are no RCU callbacks queued anywhere
753 * in the system, then rcu_barrier() is within its rights to return
754 * immediately, without waiting for anything, much less an RCU grace period.
756 void rcu_barrier(void)
758 _rcu_barrier(rcu_state_p
);
760 EXPORT_SYMBOL_GPL(rcu_barrier
);
763 * Initialize preemptible RCU's state structures.
765 static void __init
__rcu_init_preempt(void)
767 rcu_init_one(rcu_state_p
);
771 * Check for a task exiting while in a preemptible-RCU read-side
772 * critical section, clean up if so. No need to issue warnings,
773 * as debug_check_no_locks_held() already does this if lockdep
778 struct task_struct
*t
= current
;
780 if (likely(list_empty(¤t
->rcu_node_entry
)))
782 t
->rcu_read_lock_nesting
= 1;
784 t
->rcu_read_unlock_special
.b
.blocked
= true;
788 #else /* #ifdef CONFIG_PREEMPT_RCU */
790 static struct rcu_state
*const rcu_state_p
= &rcu_sched_state
;
793 * Tell them what RCU they are running.
795 static void __init
rcu_bootup_announce(void)
797 pr_info("Hierarchical RCU implementation.\n");
798 rcu_bootup_announce_oddness();
802 * Because preemptible RCU does not exist, we never have to check for
803 * CPUs being in quiescent states.
805 static void rcu_preempt_note_context_switch(bool preempt
)
810 * Because preemptible RCU does not exist, there are never any preempted
813 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
819 * Because there is no preemptible RCU, there can be no readers blocked.
821 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
827 * Because preemptible RCU does not exist, we never have to check for
828 * tasks blocked within RCU read-side critical sections.
830 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
835 * Because preemptible RCU does not exist, we never have to check for
836 * tasks blocked within RCU read-side critical sections.
838 static int rcu_print_task_stall(struct rcu_node
*rnp
)
844 * Because preemptible RCU does not exist, we never have to check for
845 * tasks blocked within RCU read-side critical sections that are
846 * blocking the current expedited grace period.
848 static int rcu_print_task_exp_stall(struct rcu_node
*rnp
)
854 * Because there is no preemptible RCU, there can be no readers blocked,
855 * so there is no need to check for blocked tasks. So check only for
856 * bogus qsmask values.
858 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
860 WARN_ON_ONCE(rnp
->qsmask
);
864 * Because preemptible RCU does not exist, it never has any callbacks
867 static void rcu_preempt_check_callbacks(void)
872 * Because preemptible RCU does not exist, rcu_barrier() is just
873 * another name for rcu_barrier_sched().
875 void rcu_barrier(void)
879 EXPORT_SYMBOL_GPL(rcu_barrier
);
882 * Because preemptible RCU does not exist, it need not be initialized.
884 static void __init
__rcu_init_preempt(void)
889 * Because preemptible RCU does not exist, tasks cannot possibly exit
890 * while in preemptible RCU read-side critical sections.
896 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
898 #ifdef CONFIG_RCU_BOOST
900 #include "../locking/rtmutex_common.h"
902 static void rcu_wake_cond(struct task_struct
*t
, int status
)
905 * If the thread is yielding, only wake it when this
906 * is invoked from idle
908 if (status
!= RCU_KTHREAD_YIELDING
|| is_idle_task(current
))
913 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
914 * or ->boost_tasks, advancing the pointer to the next task in the
917 * Note that irqs must be enabled: boosting the task can block.
918 * Returns 1 if there are more tasks needing to be boosted.
920 static int rcu_boost(struct rcu_node
*rnp
)
923 struct task_struct
*t
;
924 struct list_head
*tb
;
926 if (READ_ONCE(rnp
->exp_tasks
) == NULL
&&
927 READ_ONCE(rnp
->boost_tasks
) == NULL
)
928 return 0; /* Nothing left to boost. */
930 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
933 * Recheck under the lock: all tasks in need of boosting
934 * might exit their RCU read-side critical sections on their own.
936 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
937 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
942 * Preferentially boost tasks blocking expedited grace periods.
943 * This cannot starve the normal grace periods because a second
944 * expedited grace period must boost all blocked tasks, including
945 * those blocking the pre-existing normal grace period.
947 if (rnp
->exp_tasks
!= NULL
) {
951 tb
= rnp
->boost_tasks
;
952 rnp
->n_normal_boosts
++;
954 rnp
->n_tasks_boosted
++;
957 * We boost task t by manufacturing an rt_mutex that appears to
958 * be held by task t. We leave a pointer to that rt_mutex where
959 * task t can find it, and task t will release the mutex when it
960 * exits its outermost RCU read-side critical section. Then
961 * simply acquiring this artificial rt_mutex will boost task
962 * t's priority. (Thanks to tglx for suggesting this approach!)
964 * Note that task t must acquire rnp->lock to remove itself from
965 * the ->blkd_tasks list, which it will do from exit() if from
966 * nowhere else. We therefore are guaranteed that task t will
967 * stay around at least until we drop rnp->lock. Note that
968 * rnp->lock also resolves races between our priority boosting
969 * and task t's exiting its outermost RCU read-side critical
972 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
973 rt_mutex_init_proxy_locked(&rnp
->boost_mtx
, t
);
974 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
975 /* Lock only for side effect: boosts task t's priority. */
976 rt_mutex_lock(&rnp
->boost_mtx
);
977 rt_mutex_unlock(&rnp
->boost_mtx
); /* Then keep lockdep happy. */
979 return READ_ONCE(rnp
->exp_tasks
) != NULL
||
980 READ_ONCE(rnp
->boost_tasks
) != NULL
;
984 * Priority-boosting kthread, one per leaf rcu_node.
986 static int rcu_boost_kthread(void *arg
)
988 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
992 trace_rcu_utilization(TPS("Start boost kthread@init"));
994 rnp
->boost_kthread_status
= RCU_KTHREAD_WAITING
;
995 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
996 rcu_wait(rnp
->boost_tasks
|| rnp
->exp_tasks
);
997 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
998 rnp
->boost_kthread_status
= RCU_KTHREAD_RUNNING
;
999 more2boost
= rcu_boost(rnp
);
1005 rnp
->boost_kthread_status
= RCU_KTHREAD_YIELDING
;
1006 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1007 schedule_timeout_interruptible(2);
1008 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1013 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1018 * Check to see if it is time to start boosting RCU readers that are
1019 * blocking the current grace period, and, if so, tell the per-rcu_node
1020 * kthread to start boosting them. If there is an expedited grace
1021 * period in progress, it is always time to boost.
1023 * The caller must hold rnp->lock, which this function releases.
1024 * The ->boost_kthread_task is immortal, so we don't need to worry
1025 * about it going away.
1027 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1028 __releases(rnp
->lock
)
1030 struct task_struct
*t
;
1032 lockdep_assert_held(&rnp
->lock
);
1033 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
1034 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1037 if (rnp
->exp_tasks
!= NULL
||
1038 (rnp
->gp_tasks
!= NULL
&&
1039 rnp
->boost_tasks
== NULL
&&
1041 ULONG_CMP_GE(jiffies
, rnp
->boost_time
))) {
1042 if (rnp
->exp_tasks
== NULL
)
1043 rnp
->boost_tasks
= rnp
->gp_tasks
;
1044 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1045 t
= rnp
->boost_kthread_task
;
1047 rcu_wake_cond(t
, rnp
->boost_kthread_status
);
1049 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1054 * Wake up the per-CPU kthread to invoke RCU callbacks.
1056 static void invoke_rcu_callbacks_kthread(void)
1058 unsigned long flags
;
1060 local_irq_save(flags
);
1061 __this_cpu_write(rcu_cpu_has_work
, 1);
1062 if (__this_cpu_read(rcu_cpu_kthread_task
) != NULL
&&
1063 current
!= __this_cpu_read(rcu_cpu_kthread_task
)) {
1064 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task
),
1065 __this_cpu_read(rcu_cpu_kthread_status
));
1067 local_irq_restore(flags
);
1071 * Is the current CPU running the RCU-callbacks kthread?
1072 * Caller must have preemption disabled.
1074 static bool rcu_is_callbacks_kthread(void)
1076 return __this_cpu_read(rcu_cpu_kthread_task
) == current
;
1079 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1082 * Do priority-boost accounting for the start of a new grace period.
1084 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1086 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1090 * Create an RCU-boost kthread for the specified node if one does not
1091 * already exist. We only create this kthread for preemptible RCU.
1092 * Returns zero if all is well, a negated errno otherwise.
1094 static int rcu_spawn_one_boost_kthread(struct rcu_state
*rsp
,
1095 struct rcu_node
*rnp
)
1097 int rnp_index
= rnp
- &rsp
->node
[0];
1098 unsigned long flags
;
1099 struct sched_param sp
;
1100 struct task_struct
*t
;
1102 if (rcu_state_p
!= rsp
)
1105 if (!rcu_scheduler_fully_active
|| rcu_rnp_online_cpus(rnp
) == 0)
1109 if (rnp
->boost_kthread_task
!= NULL
)
1111 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1112 "rcub/%d", rnp_index
);
1115 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1116 rnp
->boost_kthread_task
= t
;
1117 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1118 sp
.sched_priority
= kthread_prio
;
1119 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1120 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1124 static void rcu_kthread_do_work(void)
1126 rcu_do_batch(&rcu_sched_state
, this_cpu_ptr(&rcu_sched_data
));
1127 rcu_do_batch(&rcu_bh_state
, this_cpu_ptr(&rcu_bh_data
));
1128 rcu_preempt_do_callbacks();
1131 static void rcu_cpu_kthread_setup(unsigned int cpu
)
1133 struct sched_param sp
;
1135 sp
.sched_priority
= kthread_prio
;
1136 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1139 static void rcu_cpu_kthread_park(unsigned int cpu
)
1141 per_cpu(rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
1144 static int rcu_cpu_kthread_should_run(unsigned int cpu
)
1146 return __this_cpu_read(rcu_cpu_has_work
);
1150 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1151 * RCU softirq used in flavors and configurations of RCU that do not
1152 * support RCU priority boosting.
1154 static void rcu_cpu_kthread(unsigned int cpu
)
1156 unsigned int *statusp
= this_cpu_ptr(&rcu_cpu_kthread_status
);
1157 char work
, *workp
= this_cpu_ptr(&rcu_cpu_has_work
);
1160 for (spincnt
= 0; spincnt
< 10; spincnt
++) {
1161 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1163 *statusp
= RCU_KTHREAD_RUNNING
;
1164 this_cpu_inc(rcu_cpu_kthread_loops
);
1165 local_irq_disable();
1170 rcu_kthread_do_work();
1173 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1174 *statusp
= RCU_KTHREAD_WAITING
;
1178 *statusp
= RCU_KTHREAD_YIELDING
;
1179 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1180 schedule_timeout_interruptible(2);
1181 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1182 *statusp
= RCU_KTHREAD_WAITING
;
1186 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1187 * served by the rcu_node in question. The CPU hotplug lock is still
1188 * held, so the value of rnp->qsmaskinit will be stable.
1190 * We don't include outgoingcpu in the affinity set, use -1 if there is
1191 * no outgoing CPU. If there are no CPUs left in the affinity set,
1192 * this function allows the kthread to execute on any CPU.
1194 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1196 struct task_struct
*t
= rnp
->boost_kthread_task
;
1197 unsigned long mask
= rcu_rnp_online_cpus(rnp
);
1203 if (!zalloc_cpumask_var(&cm
, GFP_KERNEL
))
1205 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1206 if ((mask
& leaf_node_cpu_bit(rnp
, cpu
)) &&
1208 cpumask_set_cpu(cpu
, cm
);
1209 if (cpumask_weight(cm
) == 0)
1211 set_cpus_allowed_ptr(t
, cm
);
1212 free_cpumask_var(cm
);
1215 static struct smp_hotplug_thread rcu_cpu_thread_spec
= {
1216 .store
= &rcu_cpu_kthread_task
,
1217 .thread_should_run
= rcu_cpu_kthread_should_run
,
1218 .thread_fn
= rcu_cpu_kthread
,
1219 .thread_comm
= "rcuc/%u",
1220 .setup
= rcu_cpu_kthread_setup
,
1221 .park
= rcu_cpu_kthread_park
,
1225 * Spawn boost kthreads -- called as soon as the scheduler is running.
1227 static void __init
rcu_spawn_boost_kthreads(void)
1229 struct rcu_node
*rnp
;
1232 for_each_possible_cpu(cpu
)
1233 per_cpu(rcu_cpu_has_work
, cpu
) = 0;
1234 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec
));
1235 rcu_for_each_leaf_node(rcu_state_p
, rnp
)
1236 (void)rcu_spawn_one_boost_kthread(rcu_state_p
, rnp
);
1239 static void rcu_prepare_kthreads(int cpu
)
1241 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
1242 struct rcu_node
*rnp
= rdp
->mynode
;
1244 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1245 if (rcu_scheduler_fully_active
)
1246 (void)rcu_spawn_one_boost_kthread(rcu_state_p
, rnp
);
1249 #else /* #ifdef CONFIG_RCU_BOOST */
1251 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1252 __releases(rnp
->lock
)
1254 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1257 static void invoke_rcu_callbacks_kthread(void)
1262 static bool rcu_is_callbacks_kthread(void)
1267 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1271 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1275 static void __init
rcu_spawn_boost_kthreads(void)
1279 static void rcu_prepare_kthreads(int cpu
)
1283 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1285 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1288 * Check to see if any future RCU-related work will need to be done
1289 * by the current CPU, even if none need be done immediately, returning
1290 * 1 if so. This function is part of the RCU implementation; it is -not-
1291 * an exported member of the RCU API.
1293 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1294 * any flavor of RCU.
1296 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1298 *nextevt
= KTIME_MAX
;
1299 return rcu_cpu_has_callbacks(NULL
);
1303 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1306 static void rcu_cleanup_after_idle(void)
1311 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1314 static void rcu_prepare_for_idle(void)
1319 * Don't bother keeping a running count of the number of RCU callbacks
1320 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1322 static void rcu_idle_count_callbacks_posted(void)
1326 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1329 * This code is invoked when a CPU goes idle, at which point we want
1330 * to have the CPU do everything required for RCU so that it can enter
1331 * the energy-efficient dyntick-idle mode. This is handled by a
1332 * state machine implemented by rcu_prepare_for_idle() below.
1334 * The following three proprocessor symbols control this state machine:
1336 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1337 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1338 * is sized to be roughly one RCU grace period. Those energy-efficiency
1339 * benchmarkers who might otherwise be tempted to set this to a large
1340 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1341 * system. And if you are -that- concerned about energy efficiency,
1342 * just power the system down and be done with it!
1343 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1344 * permitted to sleep in dyntick-idle mode with only lazy RCU
1345 * callbacks pending. Setting this too high can OOM your system.
1347 * The values below work well in practice. If future workloads require
1348 * adjustment, they can be converted into kernel config parameters, though
1349 * making the state machine smarter might be a better option.
1351 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1352 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1354 static int rcu_idle_gp_delay
= RCU_IDLE_GP_DELAY
;
1355 module_param(rcu_idle_gp_delay
, int, 0644);
1356 static int rcu_idle_lazy_gp_delay
= RCU_IDLE_LAZY_GP_DELAY
;
1357 module_param(rcu_idle_lazy_gp_delay
, int, 0644);
1360 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1361 * only if it has been awhile since the last time we did so. Afterwards,
1362 * if there are any callbacks ready for immediate invocation, return true.
1364 static bool __maybe_unused
rcu_try_advance_all_cbs(void)
1366 bool cbs_ready
= false;
1367 struct rcu_data
*rdp
;
1368 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1369 struct rcu_node
*rnp
;
1370 struct rcu_state
*rsp
;
1372 /* Exit early if we advanced recently. */
1373 if (jiffies
== rdtp
->last_advance_all
)
1375 rdtp
->last_advance_all
= jiffies
;
1377 for_each_rcu_flavor(rsp
) {
1378 rdp
= this_cpu_ptr(rsp
->rda
);
1382 * Don't bother checking unless a grace period has
1383 * completed since we last checked and there are
1384 * callbacks not yet ready to invoke.
1386 if ((rdp
->completed
!= rnp
->completed
||
1387 unlikely(READ_ONCE(rdp
->gpwrap
))) &&
1388 rcu_segcblist_pend_cbs(&rdp
->cblist
))
1389 note_gp_changes(rsp
, rdp
);
1391 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
1398 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1399 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1400 * caller to set the timeout based on whether or not there are non-lazy
1403 * The caller must have disabled interrupts.
1405 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1407 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1410 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_needs_cpu() invoked with irqs enabled!!!");
1412 /* Snapshot to detect later posting of non-lazy callback. */
1413 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1415 /* If no callbacks, RCU doesn't need the CPU. */
1416 if (!rcu_cpu_has_callbacks(&rdtp
->all_lazy
)) {
1417 *nextevt
= KTIME_MAX
;
1421 /* Attempt to advance callbacks. */
1422 if (rcu_try_advance_all_cbs()) {
1423 /* Some ready to invoke, so initiate later invocation. */
1427 rdtp
->last_accelerate
= jiffies
;
1429 /* Request timer delay depending on laziness, and round. */
1430 if (!rdtp
->all_lazy
) {
1431 dj
= round_up(rcu_idle_gp_delay
+ jiffies
,
1432 rcu_idle_gp_delay
) - jiffies
;
1434 dj
= round_jiffies(rcu_idle_lazy_gp_delay
+ jiffies
) - jiffies
;
1436 *nextevt
= basemono
+ dj
* TICK_NSEC
;
1441 * Prepare a CPU for idle from an RCU perspective. The first major task
1442 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1443 * The second major task is to check to see if a non-lazy callback has
1444 * arrived at a CPU that previously had only lazy callbacks. The third
1445 * major task is to accelerate (that is, assign grace-period numbers to)
1446 * any recently arrived callbacks.
1448 * The caller must have disabled interrupts.
1450 static void rcu_prepare_for_idle(void)
1453 struct rcu_data
*rdp
;
1454 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1455 struct rcu_node
*rnp
;
1456 struct rcu_state
*rsp
;
1459 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_prepare_for_idle() invoked with irqs enabled!!!");
1460 if (rcu_is_nocb_cpu(smp_processor_id()))
1463 /* Handle nohz enablement switches conservatively. */
1464 tne
= READ_ONCE(tick_nohz_active
);
1465 if (tne
!= rdtp
->tick_nohz_enabled_snap
) {
1466 if (rcu_cpu_has_callbacks(NULL
))
1467 invoke_rcu_core(); /* force nohz to see update. */
1468 rdtp
->tick_nohz_enabled_snap
= tne
;
1475 * If a non-lazy callback arrived at a CPU having only lazy
1476 * callbacks, invoke RCU core for the side-effect of recalculating
1477 * idle duration on re-entry to idle.
1479 if (rdtp
->all_lazy
&&
1480 rdtp
->nonlazy_posted
!= rdtp
->nonlazy_posted_snap
) {
1481 rdtp
->all_lazy
= false;
1482 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1488 * If we have not yet accelerated this jiffy, accelerate all
1489 * callbacks on this CPU.
1491 if (rdtp
->last_accelerate
== jiffies
)
1493 rdtp
->last_accelerate
= jiffies
;
1494 for_each_rcu_flavor(rsp
) {
1495 rdp
= this_cpu_ptr(rsp
->rda
);
1496 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1499 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
1500 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1501 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1503 rcu_gp_kthread_wake(rsp
);
1508 * Clean up for exit from idle. Attempt to advance callbacks based on
1509 * any grace periods that elapsed while the CPU was idle, and if any
1510 * callbacks are now ready to invoke, initiate invocation.
1512 static void rcu_cleanup_after_idle(void)
1514 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_cleanup_after_idle() invoked with irqs enabled!!!");
1515 if (rcu_is_nocb_cpu(smp_processor_id()))
1517 if (rcu_try_advance_all_cbs())
1522 * Keep a running count of the number of non-lazy callbacks posted
1523 * on this CPU. This running counter (which is never decremented) allows
1524 * rcu_prepare_for_idle() to detect when something out of the idle loop
1525 * posts a callback, even if an equal number of callbacks are invoked.
1526 * Of course, callbacks should only be posted from within a trace event
1527 * designed to be called from idle or from within RCU_NONIDLE().
1529 static void rcu_idle_count_callbacks_posted(void)
1531 __this_cpu_add(rcu_dynticks
.nonlazy_posted
, 1);
1535 * Data for flushing lazy RCU callbacks at OOM time.
1537 static atomic_t oom_callback_count
;
1538 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq
);
1541 * RCU OOM callback -- decrement the outstanding count and deliver the
1542 * wake-up if we are the last one.
1544 static void rcu_oom_callback(struct rcu_head
*rhp
)
1546 if (atomic_dec_and_test(&oom_callback_count
))
1547 wake_up(&oom_callback_wq
);
1551 * Post an rcu_oom_notify callback on the current CPU if it has at
1552 * least one lazy callback. This will unnecessarily post callbacks
1553 * to CPUs that already have a non-lazy callback at the end of their
1554 * callback list, but this is an infrequent operation, so accept some
1555 * extra overhead to keep things simple.
1557 static void rcu_oom_notify_cpu(void *unused
)
1559 struct rcu_state
*rsp
;
1560 struct rcu_data
*rdp
;
1562 for_each_rcu_flavor(rsp
) {
1563 rdp
= raw_cpu_ptr(rsp
->rda
);
1564 if (rcu_segcblist_n_lazy_cbs(&rdp
->cblist
)) {
1565 atomic_inc(&oom_callback_count
);
1566 rsp
->call(&rdp
->oom_head
, rcu_oom_callback
);
1572 * If low on memory, ensure that each CPU has a non-lazy callback.
1573 * This will wake up CPUs that have only lazy callbacks, in turn
1574 * ensuring that they free up the corresponding memory in a timely manner.
1575 * Because an uncertain amount of memory will be freed in some uncertain
1576 * timeframe, we do not claim to have freed anything.
1578 static int rcu_oom_notify(struct notifier_block
*self
,
1579 unsigned long notused
, void *nfreed
)
1583 /* Wait for callbacks from earlier instance to complete. */
1584 wait_event(oom_callback_wq
, atomic_read(&oom_callback_count
) == 0);
1585 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1588 * Prevent premature wakeup: ensure that all increments happen
1589 * before there is a chance of the counter reaching zero.
1591 atomic_set(&oom_callback_count
, 1);
1593 for_each_online_cpu(cpu
) {
1594 smp_call_function_single(cpu
, rcu_oom_notify_cpu
, NULL
, 1);
1595 cond_resched_rcu_qs();
1598 /* Unconditionally decrement: no need to wake ourselves up. */
1599 atomic_dec(&oom_callback_count
);
1604 static struct notifier_block rcu_oom_nb
= {
1605 .notifier_call
= rcu_oom_notify
1608 static int __init
rcu_register_oom_notifier(void)
1610 register_oom_notifier(&rcu_oom_nb
);
1613 early_initcall(rcu_register_oom_notifier
);
1615 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1617 #ifdef CONFIG_RCU_FAST_NO_HZ
1619 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1621 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1622 unsigned long nlpd
= rdtp
->nonlazy_posted
- rdtp
->nonlazy_posted_snap
;
1624 sprintf(cp
, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1625 rdtp
->last_accelerate
& 0xffff, jiffies
& 0xffff,
1627 rdtp
->all_lazy
? 'L' : '.',
1628 rdtp
->tick_nohz_enabled_snap
? '.' : 'D');
1631 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1633 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1638 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1640 /* Initiate the stall-info list. */
1641 static void print_cpu_stall_info_begin(void)
1647 * Print out diagnostic information for the specified stalled CPU.
1649 * If the specified CPU is aware of the current RCU grace period
1650 * (flavor specified by rsp), then print the number of scheduling
1651 * clock interrupts the CPU has taken during the time that it has
1652 * been aware. Otherwise, print the number of RCU grace periods
1653 * that this CPU is ignorant of, for example, "1" if the CPU was
1654 * aware of the previous grace period.
1656 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1658 static void print_cpu_stall_info(struct rcu_state
*rsp
, int cpu
)
1660 char fast_no_hz
[72];
1661 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1662 struct rcu_dynticks
*rdtp
= rdp
->dynticks
;
1664 unsigned long ticks_value
;
1666 if (rsp
->gpnum
== rdp
->gpnum
) {
1667 ticks_title
= "ticks this GP";
1668 ticks_value
= rdp
->ticks_this_gp
;
1670 ticks_title
= "GPs behind";
1671 ticks_value
= rsp
->gpnum
- rdp
->gpnum
;
1673 print_cpu_stall_fast_no_hz(fast_no_hz
, cpu
);
1674 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1676 "O."[!!cpu_online(cpu
)],
1677 "o."[!!(rdp
->grpmask
& rdp
->mynode
->qsmaskinit
)],
1678 "N."[!!(rdp
->grpmask
& rdp
->mynode
->qsmaskinitnext
)],
1679 ticks_value
, ticks_title
,
1680 rcu_dynticks_snap(rdtp
) & 0xfff,
1681 rdtp
->dynticks_nesting
, rdtp
->dynticks_nmi_nesting
,
1682 rdp
->softirq_snap
, kstat_softirqs_cpu(RCU_SOFTIRQ
, cpu
),
1683 READ_ONCE(rsp
->n_force_qs
) - rsp
->n_force_qs_gpstart
,
1687 /* Terminate the stall-info list. */
1688 static void print_cpu_stall_info_end(void)
1693 /* Zero ->ticks_this_gp for all flavors of RCU. */
1694 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
1696 rdp
->ticks_this_gp
= 0;
1697 rdp
->softirq_snap
= kstat_softirqs_cpu(RCU_SOFTIRQ
, smp_processor_id());
1700 /* Increment ->ticks_this_gp for all flavors of RCU. */
1701 static void increment_cpu_stall_ticks(void)
1703 struct rcu_state
*rsp
;
1705 for_each_rcu_flavor(rsp
)
1706 raw_cpu_inc(rsp
->rda
->ticks_this_gp
);
1709 #ifdef CONFIG_RCU_NOCB_CPU
1712 * Offload callback processing from the boot-time-specified set of CPUs
1713 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1714 * kthread created that pulls the callbacks from the corresponding CPU,
1715 * waits for a grace period to elapse, and invokes the callbacks.
1716 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1717 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1718 * has been specified, in which case each kthread actively polls its
1719 * CPU. (Which isn't so great for energy efficiency, but which does
1720 * reduce RCU's overhead on that CPU.)
1722 * This is intended to be used in conjunction with Frederic Weisbecker's
1723 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1724 * running CPU-bound user-mode computations.
1726 * Offloading of callback processing could also in theory be used as
1727 * an energy-efficiency measure because CPUs with no RCU callbacks
1728 * queued are more aggressive about entering dyntick-idle mode.
1732 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1733 static int __init
rcu_nocb_setup(char *str
)
1735 alloc_bootmem_cpumask_var(&rcu_nocb_mask
);
1736 have_rcu_nocb_mask
= true;
1737 cpulist_parse(str
, rcu_nocb_mask
);
1740 __setup("rcu_nocbs=", rcu_nocb_setup
);
1742 static int __init
parse_rcu_nocb_poll(char *arg
)
1744 rcu_nocb_poll
= true;
1747 early_param("rcu_nocb_poll", parse_rcu_nocb_poll
);
1750 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1753 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
1759 * Set the root rcu_node structure's ->need_future_gp field
1760 * based on the sum of those of all rcu_node structures. This does
1761 * double-count the root rcu_node structure's requests, but this
1762 * is necessary to handle the possibility of a rcu_nocb_kthread()
1763 * having awakened during the time that the rcu_node structures
1764 * were being updated for the end of the previous grace period.
1766 static void rcu_nocb_gp_set(struct rcu_node
*rnp
, int nrq
)
1768 rnp
->need_future_gp
[(rnp
->completed
+ 1) & 0x1] += nrq
;
1771 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
1773 return &rnp
->nocb_gp_wq
[rnp
->completed
& 0x1];
1776 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
1778 init_swait_queue_head(&rnp
->nocb_gp_wq
[0]);
1779 init_swait_queue_head(&rnp
->nocb_gp_wq
[1]);
1782 /* Is the specified CPU a no-CBs CPU? */
1783 bool rcu_is_nocb_cpu(int cpu
)
1785 if (have_rcu_nocb_mask
)
1786 return cpumask_test_cpu(cpu
, rcu_nocb_mask
);
1791 * Kick the leader kthread for this NOCB group.
1793 static void wake_nocb_leader(struct rcu_data
*rdp
, bool force
)
1795 struct rcu_data
*rdp_leader
= rdp
->nocb_leader
;
1797 if (!READ_ONCE(rdp_leader
->nocb_kthread
))
1799 if (READ_ONCE(rdp_leader
->nocb_leader_sleep
) || force
) {
1800 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1801 WRITE_ONCE(rdp_leader
->nocb_leader_sleep
, false);
1802 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1803 swake_up(&rdp_leader
->nocb_wq
);
1808 * Does the specified CPU need an RCU callback for the specified flavor
1811 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state
*rsp
, int cpu
)
1813 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1815 #ifdef CONFIG_PROVE_RCU
1816 struct rcu_head
*rhp
;
1817 #endif /* #ifdef CONFIG_PROVE_RCU */
1820 * Check count of all no-CBs callbacks awaiting invocation.
1821 * There needs to be a barrier before this function is called,
1822 * but associated with a prior determination that no more
1823 * callbacks would be posted. In the worst case, the first
1824 * barrier in _rcu_barrier() suffices (but the caller cannot
1825 * necessarily rely on this, not a substitute for the caller
1826 * getting the concurrency design right!). There must also be
1827 * a barrier between the following load an posting of a callback
1828 * (if a callback is in fact needed). This is associated with an
1829 * atomic_inc() in the caller.
1831 ret
= atomic_long_read(&rdp
->nocb_q_count
);
1833 #ifdef CONFIG_PROVE_RCU
1834 rhp
= READ_ONCE(rdp
->nocb_head
);
1836 rhp
= READ_ONCE(rdp
->nocb_gp_head
);
1838 rhp
= READ_ONCE(rdp
->nocb_follower_head
);
1840 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1841 if (!READ_ONCE(rdp
->nocb_kthread
) && rhp
&&
1842 rcu_scheduler_fully_active
) {
1843 /* RCU callback enqueued before CPU first came online??? */
1844 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1848 #endif /* #ifdef CONFIG_PROVE_RCU */
1854 * Enqueue the specified string of rcu_head structures onto the specified
1855 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1856 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1857 * counts are supplied by rhcount and rhcount_lazy.
1859 * If warranted, also wake up the kthread servicing this CPUs queues.
1861 static void __call_rcu_nocb_enqueue(struct rcu_data
*rdp
,
1862 struct rcu_head
*rhp
,
1863 struct rcu_head
**rhtp
,
1864 int rhcount
, int rhcount_lazy
,
1865 unsigned long flags
)
1868 struct rcu_head
**old_rhpp
;
1869 struct task_struct
*t
;
1871 /* Enqueue the callback on the nocb list and update counts. */
1872 atomic_long_add(rhcount
, &rdp
->nocb_q_count
);
1873 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1874 old_rhpp
= xchg(&rdp
->nocb_tail
, rhtp
);
1875 WRITE_ONCE(*old_rhpp
, rhp
);
1876 atomic_long_add(rhcount_lazy
, &rdp
->nocb_q_count_lazy
);
1877 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1879 /* If we are not being polled and there is a kthread, awaken it ... */
1880 t
= READ_ONCE(rdp
->nocb_kthread
);
1881 if (rcu_nocb_poll
|| !t
) {
1882 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1883 TPS("WakeNotPoll"));
1886 len
= atomic_long_read(&rdp
->nocb_q_count
);
1887 if (old_rhpp
== &rdp
->nocb_head
) {
1888 if (!irqs_disabled_flags(flags
)) {
1889 /* ... if queue was empty ... */
1890 wake_nocb_leader(rdp
, false);
1891 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1894 WRITE_ONCE(rdp
->nocb_defer_wakeup
, RCU_NOCB_WAKE
);
1895 /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1896 smp_store_release(this_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
), true);
1897 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1898 TPS("WakeEmptyIsDeferred"));
1900 rdp
->qlen_last_fqs_check
= 0;
1901 } else if (len
> rdp
->qlen_last_fqs_check
+ qhimark
) {
1902 /* ... or if many callbacks queued. */
1903 if (!irqs_disabled_flags(flags
)) {
1904 wake_nocb_leader(rdp
, true);
1905 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1908 WRITE_ONCE(rdp
->nocb_defer_wakeup
, RCU_NOCB_WAKE_FORCE
);
1909 /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1910 smp_store_release(this_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
), true);
1911 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1912 TPS("WakeOvfIsDeferred"));
1914 rdp
->qlen_last_fqs_check
= LONG_MAX
/ 2;
1916 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("WakeNot"));
1922 * This is a helper for __call_rcu(), which invokes this when the normal
1923 * callback queue is inoperable. If this is not a no-CBs CPU, this
1924 * function returns failure back to __call_rcu(), which can complain
1927 * Otherwise, this function queues the callback where the corresponding
1928 * "rcuo" kthread can find it.
1930 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
1931 bool lazy
, unsigned long flags
)
1934 if (!rcu_is_nocb_cpu(rdp
->cpu
))
1936 __call_rcu_nocb_enqueue(rdp
, rhp
, &rhp
->next
, 1, lazy
, flags
);
1937 if (__is_kfree_rcu_offset((unsigned long)rhp
->func
))
1938 trace_rcu_kfree_callback(rdp
->rsp
->name
, rhp
,
1939 (unsigned long)rhp
->func
,
1940 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
1941 -atomic_long_read(&rdp
->nocb_q_count
));
1943 trace_rcu_callback(rdp
->rsp
->name
, rhp
,
1944 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
1945 -atomic_long_read(&rdp
->nocb_q_count
));
1948 * If called from an extended quiescent state with interrupts
1949 * disabled, invoke the RCU core in order to allow the idle-entry
1950 * deferred-wakeup check to function.
1952 if (irqs_disabled_flags(flags
) &&
1953 !rcu_is_watching() &&
1954 cpu_online(smp_processor_id()))
1961 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1964 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
1965 struct rcu_data
*rdp
,
1966 unsigned long flags
)
1968 long ql
= rsp
->orphan_done
.len
;
1969 long qll
= rsp
->orphan_done
.len_lazy
;
1971 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1972 if (!rcu_is_nocb_cpu(smp_processor_id()))
1975 /* First, enqueue the donelist, if any. This preserves CB ordering. */
1976 if (rsp
->orphan_done
.head
) {
1977 __call_rcu_nocb_enqueue(rdp
, rcu_cblist_head(&rsp
->orphan_done
),
1978 rcu_cblist_tail(&rsp
->orphan_done
),
1981 if (rsp
->orphan_pend
.head
) {
1982 __call_rcu_nocb_enqueue(rdp
, rcu_cblist_head(&rsp
->orphan_pend
),
1983 rcu_cblist_tail(&rsp
->orphan_pend
),
1986 rcu_cblist_init(&rsp
->orphan_done
);
1987 rcu_cblist_init(&rsp
->orphan_pend
);
1992 * If necessary, kick off a new grace period, and either way wait
1993 * for a subsequent grace period to complete.
1995 static void rcu_nocb_wait_gp(struct rcu_data
*rdp
)
1999 unsigned long flags
;
2001 struct rcu_node
*rnp
= rdp
->mynode
;
2003 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2004 needwake
= rcu_start_future_gp(rnp
, rdp
, &c
);
2005 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2007 rcu_gp_kthread_wake(rdp
->rsp
);
2010 * Wait for the grace period. Do so interruptibly to avoid messing
2011 * up the load average.
2013 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("StartWait"));
2015 swait_event_interruptible(
2016 rnp
->nocb_gp_wq
[c
& 0x1],
2017 (d
= ULONG_CMP_GE(READ_ONCE(rnp
->completed
), c
)));
2020 WARN_ON(signal_pending(current
));
2021 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("ResumeWait"));
2023 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("EndWait"));
2024 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2028 * Leaders come here to wait for additional callbacks to show up.
2029 * This function does not return until callbacks appear.
2031 static void nocb_leader_wait(struct rcu_data
*my_rdp
)
2033 bool firsttime
= true;
2035 struct rcu_data
*rdp
;
2036 struct rcu_head
**tail
;
2040 /* Wait for callbacks to appear. */
2041 if (!rcu_nocb_poll
) {
2042 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
, "Sleep");
2043 swait_event_interruptible(my_rdp
->nocb_wq
,
2044 !READ_ONCE(my_rdp
->nocb_leader_sleep
));
2045 /* Memory barrier handled by smp_mb() calls below and repoll. */
2046 } else if (firsttime
) {
2047 firsttime
= false; /* Don't drown trace log with "Poll"! */
2048 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
, "Poll");
2052 * Each pass through the following loop checks a follower for CBs.
2053 * We are our own first follower. Any CBs found are moved to
2054 * nocb_gp_head, where they await a grace period.
2057 smp_mb(); /* wakeup before ->nocb_head reads. */
2058 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
) {
2059 rdp
->nocb_gp_head
= READ_ONCE(rdp
->nocb_head
);
2060 if (!rdp
->nocb_gp_head
)
2061 continue; /* No CBs here, try next follower. */
2063 /* Move callbacks to wait-for-GP list, which is empty. */
2064 WRITE_ONCE(rdp
->nocb_head
, NULL
);
2065 rdp
->nocb_gp_tail
= xchg(&rdp
->nocb_tail
, &rdp
->nocb_head
);
2070 * If there were no callbacks, sleep a bit, rescan after a
2071 * memory barrier, and go retry.
2073 if (unlikely(!gotcbs
)) {
2075 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
,
2077 WARN_ON(signal_pending(current
));
2078 schedule_timeout_interruptible(1);
2080 /* Rescan in case we were a victim of memory ordering. */
2081 my_rdp
->nocb_leader_sleep
= true;
2082 smp_mb(); /* Ensure _sleep true before scan. */
2083 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
)
2084 if (READ_ONCE(rdp
->nocb_head
)) {
2085 /* Found CB, so short-circuit next wait. */
2086 my_rdp
->nocb_leader_sleep
= false;
2092 /* Wait for one grace period. */
2093 rcu_nocb_wait_gp(my_rdp
);
2096 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2097 * We set it now, but recheck for new callbacks while
2098 * traversing our follower list.
2100 my_rdp
->nocb_leader_sleep
= true;
2101 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2103 /* Each pass through the following loop wakes a follower, if needed. */
2104 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
) {
2105 if (READ_ONCE(rdp
->nocb_head
))
2106 my_rdp
->nocb_leader_sleep
= false;/* No need to sleep.*/
2107 if (!rdp
->nocb_gp_head
)
2108 continue; /* No CBs, so no need to wake follower. */
2110 /* Append callbacks to follower's "done" list. */
2111 tail
= xchg(&rdp
->nocb_follower_tail
, rdp
->nocb_gp_tail
);
2112 *tail
= rdp
->nocb_gp_head
;
2113 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2114 if (rdp
!= my_rdp
&& tail
== &rdp
->nocb_follower_head
) {
2116 * List was empty, wake up the follower.
2117 * Memory barriers supplied by atomic_long_add().
2119 swake_up(&rdp
->nocb_wq
);
2123 /* If we (the leader) don't have CBs, go wait some more. */
2124 if (!my_rdp
->nocb_follower_head
)
2129 * Followers come here to wait for additional callbacks to show up.
2130 * This function does not return until callbacks appear.
2132 static void nocb_follower_wait(struct rcu_data
*rdp
)
2134 bool firsttime
= true;
2137 if (!rcu_nocb_poll
) {
2138 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2140 swait_event_interruptible(rdp
->nocb_wq
,
2141 READ_ONCE(rdp
->nocb_follower_head
));
2142 } else if (firsttime
) {
2143 /* Don't drown trace log with "Poll"! */
2145 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, "Poll");
2147 if (smp_load_acquire(&rdp
->nocb_follower_head
)) {
2148 /* ^^^ Ensure CB invocation follows _head test. */
2152 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2154 WARN_ON(signal_pending(current
));
2155 schedule_timeout_interruptible(1);
2160 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2161 * callbacks queued by the corresponding no-CBs CPU, however, there is
2162 * an optional leader-follower relationship so that the grace-period
2163 * kthreads don't have to do quite so many wakeups.
2165 static int rcu_nocb_kthread(void *arg
)
2168 struct rcu_head
*list
;
2169 struct rcu_head
*next
;
2170 struct rcu_head
**tail
;
2171 struct rcu_data
*rdp
= arg
;
2173 /* Each pass through this loop invokes one batch of callbacks */
2175 /* Wait for callbacks. */
2176 if (rdp
->nocb_leader
== rdp
)
2177 nocb_leader_wait(rdp
);
2179 nocb_follower_wait(rdp
);
2181 /* Pull the ready-to-invoke callbacks onto local list. */
2182 list
= READ_ONCE(rdp
->nocb_follower_head
);
2184 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, "WokeNonEmpty");
2185 WRITE_ONCE(rdp
->nocb_follower_head
, NULL
);
2186 tail
= xchg(&rdp
->nocb_follower_tail
, &rdp
->nocb_follower_head
);
2188 /* Each pass through the following loop invokes a callback. */
2189 trace_rcu_batch_start(rdp
->rsp
->name
,
2190 atomic_long_read(&rdp
->nocb_q_count_lazy
),
2191 atomic_long_read(&rdp
->nocb_q_count
), -1);
2195 /* Wait for enqueuing to complete, if needed. */
2196 while (next
== NULL
&& &list
->next
!= tail
) {
2197 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2199 schedule_timeout_interruptible(1);
2200 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2204 debug_rcu_head_unqueue(list
);
2206 if (__rcu_reclaim(rdp
->rsp
->name
, list
))
2210 cond_resched_rcu_qs();
2213 trace_rcu_batch_end(rdp
->rsp
->name
, c
, !!list
, 0, 0, 1);
2214 smp_mb__before_atomic(); /* _add after CB invocation. */
2215 atomic_long_add(-c
, &rdp
->nocb_q_count
);
2216 atomic_long_add(-cl
, &rdp
->nocb_q_count_lazy
);
2217 rdp
->n_nocbs_invoked
+= c
;
2222 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2223 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2225 return READ_ONCE(rdp
->nocb_defer_wakeup
);
2228 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2229 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2233 if (!rcu_nocb_need_deferred_wakeup(rdp
))
2235 ndw
= READ_ONCE(rdp
->nocb_defer_wakeup
);
2236 WRITE_ONCE(rdp
->nocb_defer_wakeup
, RCU_NOCB_WAKE_NOT
);
2237 wake_nocb_leader(rdp
, ndw
== RCU_NOCB_WAKE_FORCE
);
2238 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("DeferredWake"));
2241 void __init
rcu_init_nohz(void)
2244 bool need_rcu_nocb_mask
= true;
2245 struct rcu_state
*rsp
;
2247 #if defined(CONFIG_NO_HZ_FULL)
2248 if (tick_nohz_full_running
&& cpumask_weight(tick_nohz_full_mask
))
2249 need_rcu_nocb_mask
= true;
2250 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2252 if (!have_rcu_nocb_mask
&& need_rcu_nocb_mask
) {
2253 if (!zalloc_cpumask_var(&rcu_nocb_mask
, GFP_KERNEL
)) {
2254 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2257 have_rcu_nocb_mask
= true;
2259 if (!have_rcu_nocb_mask
)
2262 #if defined(CONFIG_NO_HZ_FULL)
2263 if (tick_nohz_full_running
)
2264 cpumask_or(rcu_nocb_mask
, rcu_nocb_mask
, tick_nohz_full_mask
);
2265 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2267 if (!cpumask_subset(rcu_nocb_mask
, cpu_possible_mask
)) {
2268 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2269 cpumask_and(rcu_nocb_mask
, cpu_possible_mask
,
2272 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2273 cpumask_pr_args(rcu_nocb_mask
));
2275 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2277 for_each_rcu_flavor(rsp
) {
2278 for_each_cpu(cpu
, rcu_nocb_mask
)
2279 init_nocb_callback_list(per_cpu_ptr(rsp
->rda
, cpu
));
2280 rcu_organize_nocb_kthreads(rsp
);
2284 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2285 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2287 rdp
->nocb_tail
= &rdp
->nocb_head
;
2288 init_swait_queue_head(&rdp
->nocb_wq
);
2289 rdp
->nocb_follower_tail
= &rdp
->nocb_follower_head
;
2293 * If the specified CPU is a no-CBs CPU that does not already have its
2294 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2295 * brought online out of order, this can require re-organizing the
2296 * leader-follower relationships.
2298 static void rcu_spawn_one_nocb_kthread(struct rcu_state
*rsp
, int cpu
)
2300 struct rcu_data
*rdp
;
2301 struct rcu_data
*rdp_last
;
2302 struct rcu_data
*rdp_old_leader
;
2303 struct rcu_data
*rdp_spawn
= per_cpu_ptr(rsp
->rda
, cpu
);
2304 struct task_struct
*t
;
2307 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2308 * then nothing to do.
2310 if (!rcu_is_nocb_cpu(cpu
) || rdp_spawn
->nocb_kthread
)
2313 /* If we didn't spawn the leader first, reorganize! */
2314 rdp_old_leader
= rdp_spawn
->nocb_leader
;
2315 if (rdp_old_leader
!= rdp_spawn
&& !rdp_old_leader
->nocb_kthread
) {
2317 rdp
= rdp_old_leader
;
2319 rdp
->nocb_leader
= rdp_spawn
;
2320 if (rdp_last
&& rdp
!= rdp_spawn
)
2321 rdp_last
->nocb_next_follower
= rdp
;
2322 if (rdp
== rdp_spawn
) {
2323 rdp
= rdp
->nocb_next_follower
;
2326 rdp
= rdp
->nocb_next_follower
;
2327 rdp_last
->nocb_next_follower
= NULL
;
2330 rdp_spawn
->nocb_next_follower
= rdp_old_leader
;
2333 /* Spawn the kthread for this CPU and RCU flavor. */
2334 t
= kthread_run(rcu_nocb_kthread
, rdp_spawn
,
2335 "rcuo%c/%d", rsp
->abbr
, cpu
);
2337 WRITE_ONCE(rdp_spawn
->nocb_kthread
, t
);
2341 * If the specified CPU is a no-CBs CPU that does not already have its
2342 * rcuo kthreads, spawn them.
2344 static void rcu_spawn_all_nocb_kthreads(int cpu
)
2346 struct rcu_state
*rsp
;
2348 if (rcu_scheduler_fully_active
)
2349 for_each_rcu_flavor(rsp
)
2350 rcu_spawn_one_nocb_kthread(rsp
, cpu
);
2354 * Once the scheduler is running, spawn rcuo kthreads for all online
2355 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2356 * non-boot CPUs come online -- if this changes, we will need to add
2357 * some mutual exclusion.
2359 static void __init
rcu_spawn_nocb_kthreads(void)
2363 for_each_online_cpu(cpu
)
2364 rcu_spawn_all_nocb_kthreads(cpu
);
2367 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2368 static int rcu_nocb_leader_stride
= -1;
2369 module_param(rcu_nocb_leader_stride
, int, 0444);
2372 * Initialize leader-follower relationships for all no-CBs CPU.
2374 static void __init
rcu_organize_nocb_kthreads(struct rcu_state
*rsp
)
2377 int ls
= rcu_nocb_leader_stride
;
2378 int nl
= 0; /* Next leader. */
2379 struct rcu_data
*rdp
;
2380 struct rcu_data
*rdp_leader
= NULL
; /* Suppress misguided gcc warn. */
2381 struct rcu_data
*rdp_prev
= NULL
;
2383 if (!have_rcu_nocb_mask
)
2386 ls
= int_sqrt(nr_cpu_ids
);
2387 rcu_nocb_leader_stride
= ls
;
2391 * Each pass through this loop sets up one rcu_data structure.
2392 * Should the corresponding CPU come online in the future, then
2393 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2395 for_each_cpu(cpu
, rcu_nocb_mask
) {
2396 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2397 if (rdp
->cpu
>= nl
) {
2398 /* New leader, set up for followers & next leader. */
2399 nl
= DIV_ROUND_UP(rdp
->cpu
+ 1, ls
) * ls
;
2400 rdp
->nocb_leader
= rdp
;
2403 /* Another follower, link to previous leader. */
2404 rdp
->nocb_leader
= rdp_leader
;
2405 rdp_prev
->nocb_next_follower
= rdp
;
2411 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2412 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2414 if (!rcu_is_nocb_cpu(rdp
->cpu
))
2417 /* If there are early-boot callbacks, move them to nocb lists. */
2418 if (!rcu_segcblist_empty(&rdp
->cblist
)) {
2419 rdp
->nocb_head
= rcu_segcblist_head(&rdp
->cblist
);
2420 rdp
->nocb_tail
= rcu_segcblist_tail(&rdp
->cblist
);
2421 atomic_long_set(&rdp
->nocb_q_count
,
2422 rcu_segcblist_n_cbs(&rdp
->cblist
));
2423 atomic_long_set(&rdp
->nocb_q_count_lazy
,
2424 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
));
2425 rcu_segcblist_init(&rdp
->cblist
);
2427 rcu_segcblist_disable(&rdp
->cblist
);
2431 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2433 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state
*rsp
, int cpu
)
2435 WARN_ON_ONCE(1); /* Should be dead code. */
2439 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
2443 static void rcu_nocb_gp_set(struct rcu_node
*rnp
, int nrq
)
2447 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
2452 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
2456 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2457 bool lazy
, unsigned long flags
)
2462 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
2463 struct rcu_data
*rdp
,
2464 unsigned long flags
)
2469 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2473 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2478 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2482 static void rcu_spawn_all_nocb_kthreads(int cpu
)
2486 static void __init
rcu_spawn_nocb_kthreads(void)
2490 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2495 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2498 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2499 * arbitrarily long period of time with the scheduling-clock tick turned
2500 * off. RCU will be paying attention to this CPU because it is in the
2501 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2502 * machine because the scheduling-clock tick has been disabled. Therefore,
2503 * if an adaptive-ticks CPU is failing to respond to the current grace
2504 * period and has not be idle from an RCU perspective, kick it.
2506 static void __maybe_unused
rcu_kick_nohz_cpu(int cpu
)
2508 #ifdef CONFIG_NO_HZ_FULL
2509 if (tick_nohz_full_cpu(cpu
))
2510 smp_send_reschedule(cpu
);
2511 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2515 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2516 * grace-period kthread will do force_quiescent_state() processing?
2517 * The idea is to avoid waking up RCU core processing on such a
2518 * CPU unless the grace period has extended for too long.
2520 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2521 * CONFIG_RCU_NOCB_CPU CPUs.
2523 static bool rcu_nohz_full_cpu(struct rcu_state
*rsp
)
2525 #ifdef CONFIG_NO_HZ_FULL
2526 if (tick_nohz_full_cpu(smp_processor_id()) &&
2527 (!rcu_gp_in_progress(rsp
) ||
2528 ULONG_CMP_LT(jiffies
, READ_ONCE(rsp
->gp_start
) + HZ
)))
2530 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2535 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2538 static void rcu_bind_gp_kthread(void)
2540 int __maybe_unused cpu
;
2542 if (!tick_nohz_full_enabled())
2544 housekeeping_affine(current
);
2547 /* Record the current task on dyntick-idle entry. */
2548 static void rcu_dynticks_task_enter(void)
2550 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2551 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, smp_processor_id());
2552 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2555 /* Record no current task on dyntick-idle exit. */
2556 static void rcu_dynticks_task_exit(void)
2558 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2559 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, -1);
2560 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */