2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched/signal.h>
6 #include <linux/sched/cputime.h>
7 #include <linux/posix-timers.h>
8 #include <linux/errno.h>
9 #include <linux/math64.h>
10 #include <linux/uaccess.h>
11 #include <linux/kernel_stat.h>
12 #include <trace/events/timer.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15 #include <linux/compat.h>
17 #include "posix-timers.h"
19 static void posix_cpu_timer_rearm(struct k_itimer
*timer
);
22 * Called after updating RLIMIT_CPU to run cpu timer and update
23 * tsk->signal->cputime_expires expiration cache if necessary. Needs
24 * siglock protection since other code may update expiration cache as
27 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
29 u64 nsecs
= rlim_new
* NSEC_PER_SEC
;
31 spin_lock_irq(&task
->sighand
->siglock
);
32 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &nsecs
, NULL
);
33 spin_unlock_irq(&task
->sighand
->siglock
);
36 static int check_clock(const clockid_t which_clock
)
39 struct task_struct
*p
;
40 const pid_t pid
= CPUCLOCK_PID(which_clock
);
42 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
49 p
= find_task_by_vpid(pid
);
50 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
51 same_thread_group(p
, current
) : has_group_leader_pid(p
))) {
60 * Update expiry time from increment, and increase overrun count,
61 * given the current clock sample.
63 static void bump_cpu_timer(struct k_itimer
*timer
, u64 now
)
68 if (timer
->it
.cpu
.incr
== 0)
71 if (now
< timer
->it
.cpu
.expires
)
74 incr
= timer
->it
.cpu
.incr
;
75 delta
= now
+ incr
- timer
->it
.cpu
.expires
;
77 /* Don't use (incr*2 < delta), incr*2 might overflow. */
78 for (i
= 0; incr
< delta
- incr
; i
++)
81 for (; i
>= 0; incr
>>= 1, i
--) {
85 timer
->it
.cpu
.expires
+= incr
;
86 timer
->it_overrun
+= 1 << i
;
92 * task_cputime_zero - Check a task_cputime struct for all zero fields.
94 * @cputime: The struct to compare.
96 * Checks @cputime to see if all fields are zero. Returns true if all fields
97 * are zero, false if any field is nonzero.
99 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
101 if (!cputime
->utime
&& !cputime
->stime
&& !cputime
->sum_exec_runtime
)
106 static inline u64
prof_ticks(struct task_struct
*p
)
110 task_cputime(p
, &utime
, &stime
);
112 return utime
+ stime
;
114 static inline u64
virt_ticks(struct task_struct
*p
)
118 task_cputime(p
, &utime
, &stime
);
124 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec64
*tp
)
126 int error
= check_clock(which_clock
);
129 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
130 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
132 * If sched_clock is using a cycle counter, we
133 * don't have any idea of its true resolution
134 * exported, but it is much more than 1s/HZ.
143 posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec64
*tp
)
146 * You can never reset a CPU clock, but we check for other errors
147 * in the call before failing with EPERM.
149 int error
= check_clock(which_clock
);
158 * Sample a per-thread clock for the given task.
160 static int cpu_clock_sample(const clockid_t which_clock
,
161 struct task_struct
*p
, u64
*sample
)
163 switch (CPUCLOCK_WHICH(which_clock
)) {
167 *sample
= prof_ticks(p
);
170 *sample
= virt_ticks(p
);
173 *sample
= task_sched_runtime(p
);
180 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
181 * to avoid race conditions with concurrent updates to cputime.
183 static inline void __update_gt_cputime(atomic64_t
*cputime
, u64 sum_cputime
)
187 curr_cputime
= atomic64_read(cputime
);
188 if (sum_cputime
> curr_cputime
) {
189 if (atomic64_cmpxchg(cputime
, curr_cputime
, sum_cputime
) != curr_cputime
)
194 static void update_gt_cputime(struct task_cputime_atomic
*cputime_atomic
, struct task_cputime
*sum
)
196 __update_gt_cputime(&cputime_atomic
->utime
, sum
->utime
);
197 __update_gt_cputime(&cputime_atomic
->stime
, sum
->stime
);
198 __update_gt_cputime(&cputime_atomic
->sum_exec_runtime
, sum
->sum_exec_runtime
);
201 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
202 static inline void sample_cputime_atomic(struct task_cputime
*times
,
203 struct task_cputime_atomic
*atomic_times
)
205 times
->utime
= atomic64_read(&atomic_times
->utime
);
206 times
->stime
= atomic64_read(&atomic_times
->stime
);
207 times
->sum_exec_runtime
= atomic64_read(&atomic_times
->sum_exec_runtime
);
210 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
212 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
213 struct task_cputime sum
;
215 /* Check if cputimer isn't running. This is accessed without locking. */
216 if (!READ_ONCE(cputimer
->running
)) {
218 * The POSIX timer interface allows for absolute time expiry
219 * values through the TIMER_ABSTIME flag, therefore we have
220 * to synchronize the timer to the clock every time we start it.
222 thread_group_cputime(tsk
, &sum
);
223 update_gt_cputime(&cputimer
->cputime_atomic
, &sum
);
226 * We're setting cputimer->running without a lock. Ensure
227 * this only gets written to in one operation. We set
228 * running after update_gt_cputime() as a small optimization,
229 * but barriers are not required because update_gt_cputime()
230 * can handle concurrent updates.
232 WRITE_ONCE(cputimer
->running
, true);
234 sample_cputime_atomic(times
, &cputimer
->cputime_atomic
);
238 * Sample a process (thread group) clock for the given group_leader task.
239 * Must be called with task sighand lock held for safe while_each_thread()
242 static int cpu_clock_sample_group(const clockid_t which_clock
,
243 struct task_struct
*p
,
246 struct task_cputime cputime
;
248 switch (CPUCLOCK_WHICH(which_clock
)) {
252 thread_group_cputime(p
, &cputime
);
253 *sample
= cputime
.utime
+ cputime
.stime
;
256 thread_group_cputime(p
, &cputime
);
257 *sample
= cputime
.utime
;
260 thread_group_cputime(p
, &cputime
);
261 *sample
= cputime
.sum_exec_runtime
;
267 static int posix_cpu_clock_get_task(struct task_struct
*tsk
,
268 const clockid_t which_clock
,
269 struct timespec64
*tp
)
274 if (CPUCLOCK_PERTHREAD(which_clock
)) {
275 if (same_thread_group(tsk
, current
))
276 err
= cpu_clock_sample(which_clock
, tsk
, &rtn
);
278 if (tsk
== current
|| thread_group_leader(tsk
))
279 err
= cpu_clock_sample_group(which_clock
, tsk
, &rtn
);
283 *tp
= ns_to_timespec64(rtn
);
289 static int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec64
*tp
)
291 const pid_t pid
= CPUCLOCK_PID(which_clock
);
296 * Special case constant value for our own clocks.
297 * We don't have to do any lookup to find ourselves.
299 err
= posix_cpu_clock_get_task(current
, which_clock
, tp
);
302 * Find the given PID, and validate that the caller
303 * should be able to see it.
305 struct task_struct
*p
;
307 p
= find_task_by_vpid(pid
);
309 err
= posix_cpu_clock_get_task(p
, which_clock
, tp
);
317 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
318 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
319 * new timer already all-zeros initialized.
321 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
324 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
325 struct task_struct
*p
;
327 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
330 new_timer
->kclock
= &clock_posix_cpu
;
332 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
335 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
339 p
= find_task_by_vpid(pid
);
340 if (p
&& !same_thread_group(p
, current
))
345 p
= current
->group_leader
;
347 p
= find_task_by_vpid(pid
);
348 if (p
&& !has_group_leader_pid(p
))
352 new_timer
->it
.cpu
.task
= p
;
364 * Clean up a CPU-clock timer that is about to be destroyed.
365 * This is called from timer deletion with the timer already locked.
366 * If we return TIMER_RETRY, it's necessary to release the timer's lock
367 * and try again. (This happens when the timer is in the middle of firing.)
369 static int posix_cpu_timer_del(struct k_itimer
*timer
)
373 struct sighand_struct
*sighand
;
374 struct task_struct
*p
= timer
->it
.cpu
.task
;
376 WARN_ON_ONCE(p
== NULL
);
379 * Protect against sighand release/switch in exit/exec and process/
380 * thread timer list entry concurrent read/writes.
382 sighand
= lock_task_sighand(p
, &flags
);
383 if (unlikely(sighand
== NULL
)) {
385 * We raced with the reaping of the task.
386 * The deletion should have cleared us off the list.
388 WARN_ON_ONCE(!list_empty(&timer
->it
.cpu
.entry
));
390 if (timer
->it
.cpu
.firing
)
393 list_del(&timer
->it
.cpu
.entry
);
395 unlock_task_sighand(p
, &flags
);
404 static void cleanup_timers_list(struct list_head
*head
)
406 struct cpu_timer_list
*timer
, *next
;
408 list_for_each_entry_safe(timer
, next
, head
, entry
)
409 list_del_init(&timer
->entry
);
413 * Clean out CPU timers still ticking when a thread exited. The task
414 * pointer is cleared, and the expiry time is replaced with the residual
415 * time for later timer_gettime calls to return.
416 * This must be called with the siglock held.
418 static void cleanup_timers(struct list_head
*head
)
420 cleanup_timers_list(head
);
421 cleanup_timers_list(++head
);
422 cleanup_timers_list(++head
);
426 * These are both called with the siglock held, when the current thread
427 * is being reaped. When the final (leader) thread in the group is reaped,
428 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
430 void posix_cpu_timers_exit(struct task_struct
*tsk
)
432 cleanup_timers(tsk
->cpu_timers
);
434 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
436 cleanup_timers(tsk
->signal
->cpu_timers
);
439 static inline int expires_gt(u64 expires
, u64 new_exp
)
441 return expires
== 0 || expires
> new_exp
;
445 * Insert the timer on the appropriate list before any timers that
446 * expire later. This must be called with the sighand lock held.
448 static void arm_timer(struct k_itimer
*timer
)
450 struct task_struct
*p
= timer
->it
.cpu
.task
;
451 struct list_head
*head
, *listpos
;
452 struct task_cputime
*cputime_expires
;
453 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
454 struct cpu_timer_list
*next
;
456 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
457 head
= p
->cpu_timers
;
458 cputime_expires
= &p
->cputime_expires
;
460 head
= p
->signal
->cpu_timers
;
461 cputime_expires
= &p
->signal
->cputime_expires
;
463 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
466 list_for_each_entry(next
, head
, entry
) {
467 if (nt
->expires
< next
->expires
)
469 listpos
= &next
->entry
;
471 list_add(&nt
->entry
, listpos
);
473 if (listpos
== head
) {
474 u64 exp
= nt
->expires
;
477 * We are the new earliest-expiring POSIX 1.b timer, hence
478 * need to update expiration cache. Take into account that
479 * for process timers we share expiration cache with itimers
480 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
483 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
485 if (expires_gt(cputime_expires
->prof_exp
, exp
))
486 cputime_expires
->prof_exp
= exp
;
489 if (expires_gt(cputime_expires
->virt_exp
, exp
))
490 cputime_expires
->virt_exp
= exp
;
493 if (expires_gt(cputime_expires
->sched_exp
, exp
))
494 cputime_expires
->sched_exp
= exp
;
497 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
498 tick_dep_set_task(p
, TICK_DEP_BIT_POSIX_TIMER
);
500 tick_dep_set_signal(p
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
505 * The timer is locked, fire it and arrange for its reload.
507 static void cpu_timer_fire(struct k_itimer
*timer
)
509 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
511 * User don't want any signal.
513 timer
->it
.cpu
.expires
= 0;
514 } else if (unlikely(timer
->sigq
== NULL
)) {
516 * This a special case for clock_nanosleep,
517 * not a normal timer from sys_timer_create.
519 wake_up_process(timer
->it_process
);
520 timer
->it
.cpu
.expires
= 0;
521 } else if (timer
->it
.cpu
.incr
== 0) {
523 * One-shot timer. Clear it as soon as it's fired.
525 posix_timer_event(timer
, 0);
526 timer
->it
.cpu
.expires
= 0;
527 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
529 * The signal did not get queued because the signal
530 * was ignored, so we won't get any callback to
531 * reload the timer. But we need to keep it
532 * ticking in case the signal is deliverable next time.
534 posix_cpu_timer_rearm(timer
);
535 ++timer
->it_requeue_pending
;
540 * Sample a process (thread group) timer for the given group_leader task.
541 * Must be called with task sighand lock held for safe while_each_thread()
544 static int cpu_timer_sample_group(const clockid_t which_clock
,
545 struct task_struct
*p
, u64
*sample
)
547 struct task_cputime cputime
;
549 thread_group_cputimer(p
, &cputime
);
550 switch (CPUCLOCK_WHICH(which_clock
)) {
554 *sample
= cputime
.utime
+ cputime
.stime
;
557 *sample
= cputime
.utime
;
560 *sample
= cputime
.sum_exec_runtime
;
567 * Guts of sys_timer_settime for CPU timers.
568 * This is called with the timer locked and interrupts disabled.
569 * If we return TIMER_RETRY, it's necessary to release the timer's lock
570 * and try again. (This happens when the timer is in the middle of firing.)
572 static int posix_cpu_timer_set(struct k_itimer
*timer
, int timer_flags
,
573 struct itimerspec64
*new, struct itimerspec64
*old
)
576 struct sighand_struct
*sighand
;
577 struct task_struct
*p
= timer
->it
.cpu
.task
;
578 u64 old_expires
, new_expires
, old_incr
, val
;
581 WARN_ON_ONCE(p
== NULL
);
584 * Use the to_ktime conversion because that clamps the maximum
585 * value to KTIME_MAX and avoid multiplication overflows.
587 new_expires
= ktime_to_ns(timespec64_to_ktime(new->it_value
));
590 * Protect against sighand release/switch in exit/exec and p->cpu_timers
591 * and p->signal->cpu_timers read/write in arm_timer()
593 sighand
= lock_task_sighand(p
, &flags
);
595 * If p has just been reaped, we can no
596 * longer get any information about it at all.
598 if (unlikely(sighand
== NULL
)) {
603 * Disarm any old timer after extracting its expiry time.
605 WARN_ON_ONCE(!irqs_disabled());
608 old_incr
= timer
->it
.cpu
.incr
;
609 old_expires
= timer
->it
.cpu
.expires
;
610 if (unlikely(timer
->it
.cpu
.firing
)) {
611 timer
->it
.cpu
.firing
= -1;
614 list_del_init(&timer
->it
.cpu
.entry
);
617 * We need to sample the current value to convert the new
618 * value from to relative and absolute, and to convert the
619 * old value from absolute to relative. To set a process
620 * timer, we need a sample to balance the thread expiry
621 * times (in arm_timer). With an absolute time, we must
622 * check if it's already passed. In short, we need a sample.
624 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
625 cpu_clock_sample(timer
->it_clock
, p
, &val
);
627 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
631 if (old_expires
== 0) {
632 old
->it_value
.tv_sec
= 0;
633 old
->it_value
.tv_nsec
= 0;
636 * Update the timer in case it has
637 * overrun already. If it has,
638 * we'll report it as having overrun
639 * and with the next reloaded timer
640 * already ticking, though we are
641 * swallowing that pending
642 * notification here to install the
645 bump_cpu_timer(timer
, val
);
646 if (val
< timer
->it
.cpu
.expires
) {
647 old_expires
= timer
->it
.cpu
.expires
- val
;
648 old
->it_value
= ns_to_timespec64(old_expires
);
650 old
->it_value
.tv_nsec
= 1;
651 old
->it_value
.tv_sec
= 0;
658 * We are colliding with the timer actually firing.
659 * Punt after filling in the timer's old value, and
660 * disable this firing since we are already reporting
661 * it as an overrun (thanks to bump_cpu_timer above).
663 unlock_task_sighand(p
, &flags
);
667 if (new_expires
!= 0 && !(timer_flags
& TIMER_ABSTIME
)) {
672 * Install the new expiry time (or zero).
673 * For a timer with no notification action, we don't actually
674 * arm the timer (we'll just fake it for timer_gettime).
676 timer
->it
.cpu
.expires
= new_expires
;
677 if (new_expires
!= 0 && val
< new_expires
) {
681 unlock_task_sighand(p
, &flags
);
683 * Install the new reload setting, and
684 * set up the signal and overrun bookkeeping.
686 timer
->it
.cpu
.incr
= timespec64_to_ns(&new->it_interval
);
689 * This acts as a modification timestamp for the timer,
690 * so any automatic reload attempt will punt on seeing
691 * that we have reset the timer manually.
693 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
695 timer
->it_overrun_last
= 0;
696 timer
->it_overrun
= -1;
698 if (new_expires
!= 0 && !(val
< new_expires
)) {
700 * The designated time already passed, so we notify
701 * immediately, even if the thread never runs to
702 * accumulate more time on this clock.
704 cpu_timer_fire(timer
);
710 old
->it_interval
= ns_to_timespec64(old_incr
);
715 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec64
*itp
)
718 struct task_struct
*p
= timer
->it
.cpu
.task
;
720 WARN_ON_ONCE(p
== NULL
);
723 * Easy part: convert the reload time.
725 itp
->it_interval
= ns_to_timespec64(timer
->it
.cpu
.incr
);
727 if (!timer
->it
.cpu
.expires
)
731 * Sample the clock to take the difference with the expiry time.
733 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
734 cpu_clock_sample(timer
->it_clock
, p
, &now
);
736 struct sighand_struct
*sighand
;
740 * Protect against sighand release/switch in exit/exec and
741 * also make timer sampling safe if it ends up calling
742 * thread_group_cputime().
744 sighand
= lock_task_sighand(p
, &flags
);
745 if (unlikely(sighand
== NULL
)) {
747 * The process has been reaped.
748 * We can't even collect a sample any more.
749 * Call the timer disarmed, nothing else to do.
751 timer
->it
.cpu
.expires
= 0;
754 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
755 unlock_task_sighand(p
, &flags
);
759 if (now
< timer
->it
.cpu
.expires
) {
760 itp
->it_value
= ns_to_timespec64(timer
->it
.cpu
.expires
- now
);
763 * The timer should have expired already, but the firing
764 * hasn't taken place yet. Say it's just about to expire.
766 itp
->it_value
.tv_nsec
= 1;
767 itp
->it_value
.tv_sec
= 0;
771 static unsigned long long
772 check_timers_list(struct list_head
*timers
,
773 struct list_head
*firing
,
774 unsigned long long curr
)
778 while (!list_empty(timers
)) {
779 struct cpu_timer_list
*t
;
781 t
= list_first_entry(timers
, struct cpu_timer_list
, entry
);
783 if (!--maxfire
|| curr
< t
->expires
)
787 list_move_tail(&t
->entry
, firing
);
794 * Check for any per-thread CPU timers that have fired and move them off
795 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
796 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
798 static void check_thread_timers(struct task_struct
*tsk
,
799 struct list_head
*firing
)
801 struct list_head
*timers
= tsk
->cpu_timers
;
802 struct signal_struct
*const sig
= tsk
->signal
;
803 struct task_cputime
*tsk_expires
= &tsk
->cputime_expires
;
808 * If cputime_expires is zero, then there are no active
809 * per thread CPU timers.
811 if (task_cputime_zero(&tsk
->cputime_expires
))
814 expires
= check_timers_list(timers
, firing
, prof_ticks(tsk
));
815 tsk_expires
->prof_exp
= expires
;
817 expires
= check_timers_list(++timers
, firing
, virt_ticks(tsk
));
818 tsk_expires
->virt_exp
= expires
;
820 tsk_expires
->sched_exp
= check_timers_list(++timers
, firing
,
821 tsk
->se
.sum_exec_runtime
);
824 * Check for the special case thread timers.
826 soft
= READ_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
);
827 if (soft
!= RLIM_INFINITY
) {
829 READ_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_max
);
831 if (hard
!= RLIM_INFINITY
&&
832 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
834 * At the hard limit, we just die.
835 * No need to calculate anything else now.
837 if (print_fatal_signals
) {
838 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
839 tsk
->comm
, task_pid_nr(tsk
));
841 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
844 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
846 * At the soft limit, send a SIGXCPU every second.
849 soft
+= USEC_PER_SEC
;
850 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
852 if (print_fatal_signals
) {
853 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
854 tsk
->comm
, task_pid_nr(tsk
));
856 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
859 if (task_cputime_zero(tsk_expires
))
860 tick_dep_clear_task(tsk
, TICK_DEP_BIT_POSIX_TIMER
);
863 static inline void stop_process_timers(struct signal_struct
*sig
)
865 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
867 /* Turn off cputimer->running. This is done without locking. */
868 WRITE_ONCE(cputimer
->running
, false);
869 tick_dep_clear_signal(sig
, TICK_DEP_BIT_POSIX_TIMER
);
872 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
873 u64
*expires
, u64 cur_time
, int signo
)
878 if (cur_time
>= it
->expires
) {
880 it
->expires
+= it
->incr
;
884 trace_itimer_expire(signo
== SIGPROF
?
885 ITIMER_PROF
: ITIMER_VIRTUAL
,
886 tsk
->signal
->leader_pid
, cur_time
);
887 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
890 if (it
->expires
&& (!*expires
|| it
->expires
< *expires
))
891 *expires
= it
->expires
;
895 * Check for any per-thread CPU timers that have fired and move them
896 * off the tsk->*_timers list onto the firing list. Per-thread timers
897 * have already been taken off.
899 static void check_process_timers(struct task_struct
*tsk
,
900 struct list_head
*firing
)
902 struct signal_struct
*const sig
= tsk
->signal
;
903 u64 utime
, ptime
, virt_expires
, prof_expires
;
904 u64 sum_sched_runtime
, sched_expires
;
905 struct list_head
*timers
= sig
->cpu_timers
;
906 struct task_cputime cputime
;
910 * If cputimer is not running, then there are no active
911 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
913 if (!READ_ONCE(tsk
->signal
->cputimer
.running
))
917 * Signify that a thread is checking for process timers.
918 * Write access to this field is protected by the sighand lock.
920 sig
->cputimer
.checking_timer
= true;
923 * Collect the current process totals.
925 thread_group_cputimer(tsk
, &cputime
);
926 utime
= cputime
.utime
;
927 ptime
= utime
+ cputime
.stime
;
928 sum_sched_runtime
= cputime
.sum_exec_runtime
;
930 prof_expires
= check_timers_list(timers
, firing
, ptime
);
931 virt_expires
= check_timers_list(++timers
, firing
, utime
);
932 sched_expires
= check_timers_list(++timers
, firing
, sum_sched_runtime
);
935 * Check for the special case process timers.
937 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
939 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
941 soft
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
942 if (soft
!= RLIM_INFINITY
) {
943 unsigned long psecs
= div_u64(ptime
, NSEC_PER_SEC
);
945 READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_max
);
949 * At the hard limit, we just die.
950 * No need to calculate anything else now.
952 if (print_fatal_signals
) {
953 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
954 tsk
->comm
, task_pid_nr(tsk
));
956 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
961 * At the soft limit, send a SIGXCPU every second.
963 if (print_fatal_signals
) {
964 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
965 tsk
->comm
, task_pid_nr(tsk
));
967 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
970 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
973 x
= soft
* NSEC_PER_SEC
;
974 if (!prof_expires
|| x
< prof_expires
)
978 sig
->cputime_expires
.prof_exp
= prof_expires
;
979 sig
->cputime_expires
.virt_exp
= virt_expires
;
980 sig
->cputime_expires
.sched_exp
= sched_expires
;
981 if (task_cputime_zero(&sig
->cputime_expires
))
982 stop_process_timers(sig
);
984 sig
->cputimer
.checking_timer
= false;
988 * This is called from the signal code (via posixtimer_rearm)
989 * when the last timer signal was delivered and we have to reload the timer.
991 static void posix_cpu_timer_rearm(struct k_itimer
*timer
)
993 struct sighand_struct
*sighand
;
995 struct task_struct
*p
= timer
->it
.cpu
.task
;
998 WARN_ON_ONCE(p
== NULL
);
1001 * Fetch the current sample and update the timer's expiry time.
1003 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1004 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1005 bump_cpu_timer(timer
, now
);
1006 if (unlikely(p
->exit_state
))
1009 /* Protect timer list r/w in arm_timer() */
1010 sighand
= lock_task_sighand(p
, &flags
);
1015 * Protect arm_timer() and timer sampling in case of call to
1016 * thread_group_cputime().
1018 sighand
= lock_task_sighand(p
, &flags
);
1019 if (unlikely(sighand
== NULL
)) {
1021 * The process has been reaped.
1022 * We can't even collect a sample any more.
1024 timer
->it
.cpu
.expires
= 0;
1026 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1027 /* If the process is dying, no need to rearm */
1030 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1031 bump_cpu_timer(timer
, now
);
1032 /* Leave the sighand locked for the call below. */
1036 * Now re-arm for the new expiry time.
1038 WARN_ON_ONCE(!irqs_disabled());
1041 unlock_task_sighand(p
, &flags
);
1045 * task_cputime_expired - Compare two task_cputime entities.
1047 * @sample: The task_cputime structure to be checked for expiration.
1048 * @expires: Expiration times, against which @sample will be checked.
1050 * Checks @sample against @expires to see if any field of @sample has expired.
1051 * Returns true if any field of the former is greater than the corresponding
1052 * field of the latter if the latter field is set. Otherwise returns false.
1054 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1055 const struct task_cputime
*expires
)
1057 if (expires
->utime
&& sample
->utime
>= expires
->utime
)
1059 if (expires
->stime
&& sample
->utime
+ sample
->stime
>= expires
->stime
)
1061 if (expires
->sum_exec_runtime
!= 0 &&
1062 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1068 * fastpath_timer_check - POSIX CPU timers fast path.
1070 * @tsk: The task (thread) being checked.
1072 * Check the task and thread group timers. If both are zero (there are no
1073 * timers set) return false. Otherwise snapshot the task and thread group
1074 * timers and compare them with the corresponding expiration times. Return
1075 * true if a timer has expired, else return false.
1077 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1079 struct signal_struct
*sig
;
1081 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1082 struct task_cputime task_sample
;
1084 task_cputime(tsk
, &task_sample
.utime
, &task_sample
.stime
);
1085 task_sample
.sum_exec_runtime
= tsk
->se
.sum_exec_runtime
;
1086 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1092 * Check if thread group timers expired when the cputimer is
1093 * running and no other thread in the group is already checking
1094 * for thread group cputimers. These fields are read without the
1095 * sighand lock. However, this is fine because this is meant to
1096 * be a fastpath heuristic to determine whether we should try to
1097 * acquire the sighand lock to check/handle timers.
1099 * In the worst case scenario, if 'running' or 'checking_timer' gets
1100 * set but the current thread doesn't see the change yet, we'll wait
1101 * until the next thread in the group gets a scheduler interrupt to
1102 * handle the timer. This isn't an issue in practice because these
1103 * types of delays with signals actually getting sent are expected.
1105 if (READ_ONCE(sig
->cputimer
.running
) &&
1106 !READ_ONCE(sig
->cputimer
.checking_timer
)) {
1107 struct task_cputime group_sample
;
1109 sample_cputime_atomic(&group_sample
, &sig
->cputimer
.cputime_atomic
);
1111 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1119 * This is called from the timer interrupt handler. The irq handler has
1120 * already updated our counts. We need to check if any timers fire now.
1121 * Interrupts are disabled.
1123 void run_posix_cpu_timers(struct task_struct
*tsk
)
1126 struct k_itimer
*timer
, *next
;
1127 unsigned long flags
;
1129 WARN_ON_ONCE(!irqs_disabled());
1132 * The fast path checks that there are no expired thread or thread
1133 * group timers. If that's so, just return.
1135 if (!fastpath_timer_check(tsk
))
1138 if (!lock_task_sighand(tsk
, &flags
))
1141 * Here we take off tsk->signal->cpu_timers[N] and
1142 * tsk->cpu_timers[N] all the timers that are firing, and
1143 * put them on the firing list.
1145 check_thread_timers(tsk
, &firing
);
1147 check_process_timers(tsk
, &firing
);
1150 * We must release these locks before taking any timer's lock.
1151 * There is a potential race with timer deletion here, as the
1152 * siglock now protects our private firing list. We have set
1153 * the firing flag in each timer, so that a deletion attempt
1154 * that gets the timer lock before we do will give it up and
1155 * spin until we've taken care of that timer below.
1157 unlock_task_sighand(tsk
, &flags
);
1160 * Now that all the timers on our list have the firing flag,
1161 * no one will touch their list entries but us. We'll take
1162 * each timer's lock before clearing its firing flag, so no
1163 * timer call will interfere.
1165 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1168 spin_lock(&timer
->it_lock
);
1169 list_del_init(&timer
->it
.cpu
.entry
);
1170 cpu_firing
= timer
->it
.cpu
.firing
;
1171 timer
->it
.cpu
.firing
= 0;
1173 * The firing flag is -1 if we collided with a reset
1174 * of the timer, which already reported this
1175 * almost-firing as an overrun. So don't generate an event.
1177 if (likely(cpu_firing
>= 0))
1178 cpu_timer_fire(timer
);
1179 spin_unlock(&timer
->it_lock
);
1184 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1185 * The tsk->sighand->siglock must be held by the caller.
1187 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1188 u64
*newval
, u64
*oldval
)
1192 WARN_ON_ONCE(clock_idx
== CPUCLOCK_SCHED
);
1193 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1197 * We are setting itimer. The *oldval is absolute and we update
1198 * it to be relative, *newval argument is relative and we update
1199 * it to be absolute.
1202 if (*oldval
<= now
) {
1203 /* Just about to fire. */
1204 *oldval
= TICK_NSEC
;
1216 * Update expiration cache if we are the earliest timer, or eventually
1217 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1219 switch (clock_idx
) {
1221 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1222 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1225 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1226 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1230 tick_dep_set_signal(tsk
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
1233 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1234 const struct timespec64
*rqtp
)
1236 struct itimerspec64 it
;
1237 struct k_itimer timer
;
1242 * Set up a temporary timer and then wait for it to go off.
1244 memset(&timer
, 0, sizeof timer
);
1245 spin_lock_init(&timer
.it_lock
);
1246 timer
.it_clock
= which_clock
;
1247 timer
.it_overrun
= -1;
1248 error
= posix_cpu_timer_create(&timer
);
1249 timer
.it_process
= current
;
1251 static struct itimerspec64 zero_it
;
1252 struct restart_block
*restart
;
1254 memset(&it
, 0, sizeof(it
));
1255 it
.it_value
= *rqtp
;
1257 spin_lock_irq(&timer
.it_lock
);
1258 error
= posix_cpu_timer_set(&timer
, flags
, &it
, NULL
);
1260 spin_unlock_irq(&timer
.it_lock
);
1264 while (!signal_pending(current
)) {
1265 if (timer
.it
.cpu
.expires
== 0) {
1267 * Our timer fired and was reset, below
1268 * deletion can not fail.
1270 posix_cpu_timer_del(&timer
);
1271 spin_unlock_irq(&timer
.it_lock
);
1276 * Block until cpu_timer_fire (or a signal) wakes us.
1278 __set_current_state(TASK_INTERRUPTIBLE
);
1279 spin_unlock_irq(&timer
.it_lock
);
1281 spin_lock_irq(&timer
.it_lock
);
1285 * We were interrupted by a signal.
1287 expires
= timer
.it
.cpu
.expires
;
1288 error
= posix_cpu_timer_set(&timer
, 0, &zero_it
, &it
);
1291 * Timer is now unarmed, deletion can not fail.
1293 posix_cpu_timer_del(&timer
);
1295 spin_unlock_irq(&timer
.it_lock
);
1297 while (error
== TIMER_RETRY
) {
1299 * We need to handle case when timer was or is in the
1300 * middle of firing. In other cases we already freed
1303 spin_lock_irq(&timer
.it_lock
);
1304 error
= posix_cpu_timer_del(&timer
);
1305 spin_unlock_irq(&timer
.it_lock
);
1308 if ((it
.it_value
.tv_sec
| it
.it_value
.tv_nsec
) == 0) {
1310 * It actually did fire already.
1315 error
= -ERESTART_RESTARTBLOCK
;
1317 * Report back to the user the time still remaining.
1319 restart
= ¤t
->restart_block
;
1320 restart
->nanosleep
.expires
= expires
;
1321 if (restart
->nanosleep
.type
!= TT_NONE
)
1322 error
= nanosleep_copyout(restart
, &it
.it_value
);
1328 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1330 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1331 const struct timespec64
*rqtp
)
1333 struct restart_block
*restart_block
= ¤t
->restart_block
;
1337 * Diagnose required errors first.
1339 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1340 (CPUCLOCK_PID(which_clock
) == 0 ||
1341 CPUCLOCK_PID(which_clock
) == task_pid_vnr(current
)))
1344 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
);
1346 if (error
== -ERESTART_RESTARTBLOCK
) {
1348 if (flags
& TIMER_ABSTIME
)
1349 return -ERESTARTNOHAND
;
1351 restart_block
->fn
= posix_cpu_nsleep_restart
;
1352 restart_block
->nanosleep
.clockid
= which_clock
;
1357 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1359 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1360 struct timespec64 t
;
1362 t
= ns_to_timespec64(restart_block
->nanosleep
.expires
);
1364 return do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
);
1367 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1368 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1370 static int process_cpu_clock_getres(const clockid_t which_clock
,
1371 struct timespec64
*tp
)
1373 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1375 static int process_cpu_clock_get(const clockid_t which_clock
,
1376 struct timespec64
*tp
)
1378 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1380 static int process_cpu_timer_create(struct k_itimer
*timer
)
1382 timer
->it_clock
= PROCESS_CLOCK
;
1383 return posix_cpu_timer_create(timer
);
1385 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1386 const struct timespec64
*rqtp
)
1388 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
);
1390 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1391 struct timespec64
*tp
)
1393 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1395 static int thread_cpu_clock_get(const clockid_t which_clock
,
1396 struct timespec64
*tp
)
1398 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1400 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1402 timer
->it_clock
= THREAD_CLOCK
;
1403 return posix_cpu_timer_create(timer
);
1406 const struct k_clock clock_posix_cpu
= {
1407 .clock_getres
= posix_cpu_clock_getres
,
1408 .clock_set
= posix_cpu_clock_set
,
1409 .clock_get
= posix_cpu_clock_get
,
1410 .timer_create
= posix_cpu_timer_create
,
1411 .nsleep
= posix_cpu_nsleep
,
1412 .timer_set
= posix_cpu_timer_set
,
1413 .timer_del
= posix_cpu_timer_del
,
1414 .timer_get
= posix_cpu_timer_get
,
1415 .timer_rearm
= posix_cpu_timer_rearm
,
1418 const struct k_clock clock_process
= {
1419 .clock_getres
= process_cpu_clock_getres
,
1420 .clock_get
= process_cpu_clock_get
,
1421 .timer_create
= process_cpu_timer_create
,
1422 .nsleep
= process_cpu_nsleep
,
1425 const struct k_clock clock_thread
= {
1426 .clock_getres
= thread_cpu_clock_getres
,
1427 .clock_get
= thread_cpu_clock_get
,
1428 .timer_create
= thread_cpu_timer_create
,