Linux 4.13.16
[linux/fpc-iii.git] / kernel / time / tick-sched.c
blobc7a899c5ce643f04fcfa1bbeb9eb97c0d0984016
1 /*
2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
31 #include <asm/irq_regs.h>
33 #include "tick-internal.h"
35 #include <trace/events/timer.h>
38 * Per-CPU nohz control structure
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
42 struct tick_sched *tick_get_tick_sched(int cpu)
44 return &per_cpu(tick_cpu_sched, cpu);
47 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
49 * The time, when the last jiffy update happened. Protected by jiffies_lock.
51 static ktime_t last_jiffies_update;
54 * Must be called with interrupts disabled !
56 static void tick_do_update_jiffies64(ktime_t now)
58 unsigned long ticks = 0;
59 ktime_t delta;
62 * Do a quick check without holding jiffies_lock:
64 delta = ktime_sub(now, last_jiffies_update);
65 if (delta < tick_period)
66 return;
68 /* Reevaluate with jiffies_lock held */
69 write_seqlock(&jiffies_lock);
71 delta = ktime_sub(now, last_jiffies_update);
72 if (delta >= tick_period) {
74 delta = ktime_sub(delta, tick_period);
75 last_jiffies_update = ktime_add(last_jiffies_update,
76 tick_period);
78 /* Slow path for long timeouts */
79 if (unlikely(delta >= tick_period)) {
80 s64 incr = ktime_to_ns(tick_period);
82 ticks = ktime_divns(delta, incr);
84 last_jiffies_update = ktime_add_ns(last_jiffies_update,
85 incr * ticks);
87 do_timer(++ticks);
89 /* Keep the tick_next_period variable up to date */
90 tick_next_period = ktime_add(last_jiffies_update, tick_period);
91 } else {
92 write_sequnlock(&jiffies_lock);
93 return;
95 write_sequnlock(&jiffies_lock);
96 update_wall_time();
100 * Initialize and return retrieve the jiffies update.
102 static ktime_t tick_init_jiffy_update(void)
104 ktime_t period;
106 write_seqlock(&jiffies_lock);
107 /* Did we start the jiffies update yet ? */
108 if (last_jiffies_update == 0)
109 last_jiffies_update = tick_next_period;
110 period = last_jiffies_update;
111 write_sequnlock(&jiffies_lock);
112 return period;
116 static void tick_sched_do_timer(ktime_t now)
118 int cpu = smp_processor_id();
120 #ifdef CONFIG_NO_HZ_COMMON
122 * Check if the do_timer duty was dropped. We don't care about
123 * concurrency: This happens only when the CPU in charge went
124 * into a long sleep. If two CPUs happen to assign themselves to
125 * this duty, then the jiffies update is still serialized by
126 * jiffies_lock.
128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
129 && !tick_nohz_full_cpu(cpu))
130 tick_do_timer_cpu = cpu;
131 #endif
133 /* Check, if the jiffies need an update */
134 if (tick_do_timer_cpu == cpu)
135 tick_do_update_jiffies64(now);
138 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
140 #ifdef CONFIG_NO_HZ_COMMON
142 * When we are idle and the tick is stopped, we have to touch
143 * the watchdog as we might not schedule for a really long
144 * time. This happens on complete idle SMP systems while
145 * waiting on the login prompt. We also increment the "start of
146 * idle" jiffy stamp so the idle accounting adjustment we do
147 * when we go busy again does not account too much ticks.
149 if (ts->tick_stopped) {
150 touch_softlockup_watchdog_sched();
151 if (is_idle_task(current))
152 ts->idle_jiffies++;
154 * In case the current tick fired too early past its expected
155 * expiration, make sure we don't bypass the next clock reprogramming
156 * to the same deadline.
158 ts->next_tick = 0;
160 #endif
161 update_process_times(user_mode(regs));
162 profile_tick(CPU_PROFILING);
164 #endif
166 #ifdef CONFIG_NO_HZ_FULL
167 cpumask_var_t tick_nohz_full_mask;
168 cpumask_var_t housekeeping_mask;
169 bool tick_nohz_full_running;
170 static atomic_t tick_dep_mask;
172 static bool check_tick_dependency(atomic_t *dep)
174 int val = atomic_read(dep);
176 if (val & TICK_DEP_MASK_POSIX_TIMER) {
177 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
178 return true;
181 if (val & TICK_DEP_MASK_PERF_EVENTS) {
182 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
183 return true;
186 if (val & TICK_DEP_MASK_SCHED) {
187 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
188 return true;
191 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
192 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
193 return true;
196 return false;
199 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
201 WARN_ON_ONCE(!irqs_disabled());
203 if (unlikely(!cpu_online(cpu)))
204 return false;
206 if (check_tick_dependency(&tick_dep_mask))
207 return false;
209 if (check_tick_dependency(&ts->tick_dep_mask))
210 return false;
212 if (check_tick_dependency(&current->tick_dep_mask))
213 return false;
215 if (check_tick_dependency(&current->signal->tick_dep_mask))
216 return false;
218 return true;
221 static void nohz_full_kick_func(struct irq_work *work)
223 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
226 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
227 .func = nohz_full_kick_func,
231 * Kick this CPU if it's full dynticks in order to force it to
232 * re-evaluate its dependency on the tick and restart it if necessary.
233 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
234 * is NMI safe.
236 static void tick_nohz_full_kick(void)
238 if (!tick_nohz_full_cpu(smp_processor_id()))
239 return;
241 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
245 * Kick the CPU if it's full dynticks in order to force it to
246 * re-evaluate its dependency on the tick and restart it if necessary.
248 void tick_nohz_full_kick_cpu(int cpu)
250 if (!tick_nohz_full_cpu(cpu))
251 return;
253 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
257 * Kick all full dynticks CPUs in order to force these to re-evaluate
258 * their dependency on the tick and restart it if necessary.
260 static void tick_nohz_full_kick_all(void)
262 int cpu;
264 if (!tick_nohz_full_running)
265 return;
267 preempt_disable();
268 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
269 tick_nohz_full_kick_cpu(cpu);
270 preempt_enable();
273 static void tick_nohz_dep_set_all(atomic_t *dep,
274 enum tick_dep_bits bit)
276 int prev;
278 prev = atomic_fetch_or(BIT(bit), dep);
279 if (!prev)
280 tick_nohz_full_kick_all();
284 * Set a global tick dependency. Used by perf events that rely on freq and
285 * by unstable clock.
287 void tick_nohz_dep_set(enum tick_dep_bits bit)
289 tick_nohz_dep_set_all(&tick_dep_mask, bit);
292 void tick_nohz_dep_clear(enum tick_dep_bits bit)
294 atomic_andnot(BIT(bit), &tick_dep_mask);
298 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
299 * manage events throttling.
301 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
303 int prev;
304 struct tick_sched *ts;
306 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
308 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
309 if (!prev) {
310 preempt_disable();
311 /* Perf needs local kick that is NMI safe */
312 if (cpu == smp_processor_id()) {
313 tick_nohz_full_kick();
314 } else {
315 /* Remote irq work not NMI-safe */
316 if (!WARN_ON_ONCE(in_nmi()))
317 tick_nohz_full_kick_cpu(cpu);
319 preempt_enable();
323 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
325 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
327 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
331 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
332 * per task timers.
334 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
337 * We could optimize this with just kicking the target running the task
338 * if that noise matters for nohz full users.
340 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
343 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
345 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
349 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
350 * per process timers.
352 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
354 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
357 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
359 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
363 * Re-evaluate the need for the tick as we switch the current task.
364 * It might need the tick due to per task/process properties:
365 * perf events, posix CPU timers, ...
367 void __tick_nohz_task_switch(void)
369 unsigned long flags;
370 struct tick_sched *ts;
372 local_irq_save(flags);
374 if (!tick_nohz_full_cpu(smp_processor_id()))
375 goto out;
377 ts = this_cpu_ptr(&tick_cpu_sched);
379 if (ts->tick_stopped) {
380 if (atomic_read(&current->tick_dep_mask) ||
381 atomic_read(&current->signal->tick_dep_mask))
382 tick_nohz_full_kick();
384 out:
385 local_irq_restore(flags);
388 /* Parse the boot-time nohz CPU list from the kernel parameters. */
389 static int __init tick_nohz_full_setup(char *str)
391 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
392 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
393 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
394 free_bootmem_cpumask_var(tick_nohz_full_mask);
395 return 1;
397 tick_nohz_full_running = true;
399 return 1;
401 __setup("nohz_full=", tick_nohz_full_setup);
403 static int tick_nohz_cpu_down(unsigned int cpu)
406 * The boot CPU handles housekeeping duty (unbound timers,
407 * workqueues, timekeeping, ...) on behalf of full dynticks
408 * CPUs. It must remain online when nohz full is enabled.
410 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
411 return -EBUSY;
412 return 0;
415 static int tick_nohz_init_all(void)
417 int err = -1;
419 #ifdef CONFIG_NO_HZ_FULL_ALL
420 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
421 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
422 return err;
424 err = 0;
425 cpumask_setall(tick_nohz_full_mask);
426 tick_nohz_full_running = true;
427 #endif
428 return err;
431 void __init tick_nohz_init(void)
433 int cpu, ret;
435 if (!tick_nohz_full_running) {
436 if (tick_nohz_init_all() < 0)
437 return;
440 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
441 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
442 cpumask_clear(tick_nohz_full_mask);
443 tick_nohz_full_running = false;
444 return;
448 * Full dynticks uses irq work to drive the tick rescheduling on safe
449 * locking contexts. But then we need irq work to raise its own
450 * interrupts to avoid circular dependency on the tick
452 if (!arch_irq_work_has_interrupt()) {
453 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
454 cpumask_clear(tick_nohz_full_mask);
455 cpumask_copy(housekeeping_mask, cpu_possible_mask);
456 tick_nohz_full_running = false;
457 return;
460 cpu = smp_processor_id();
462 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
463 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
464 cpu);
465 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
468 cpumask_andnot(housekeeping_mask,
469 cpu_possible_mask, tick_nohz_full_mask);
471 for_each_cpu(cpu, tick_nohz_full_mask)
472 context_tracking_cpu_set(cpu);
474 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
475 "kernel/nohz:predown", NULL,
476 tick_nohz_cpu_down);
477 WARN_ON(ret < 0);
478 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
479 cpumask_pr_args(tick_nohz_full_mask));
482 * We need at least one CPU to handle housekeeping work such
483 * as timekeeping, unbound timers, workqueues, ...
485 WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
487 #endif
490 * NOHZ - aka dynamic tick functionality
492 #ifdef CONFIG_NO_HZ_COMMON
494 * NO HZ enabled ?
496 bool tick_nohz_enabled __read_mostly = true;
497 unsigned long tick_nohz_active __read_mostly;
499 * Enable / Disable tickless mode
501 static int __init setup_tick_nohz(char *str)
503 return (kstrtobool(str, &tick_nohz_enabled) == 0);
506 __setup("nohz=", setup_tick_nohz);
508 int tick_nohz_tick_stopped(void)
510 return __this_cpu_read(tick_cpu_sched.tick_stopped);
514 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
516 * Called from interrupt entry when the CPU was idle
518 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
519 * must be updated. Otherwise an interrupt handler could use a stale jiffy
520 * value. We do this unconditionally on any CPU, as we don't know whether the
521 * CPU, which has the update task assigned is in a long sleep.
523 static void tick_nohz_update_jiffies(ktime_t now)
525 unsigned long flags;
527 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
529 local_irq_save(flags);
530 tick_do_update_jiffies64(now);
531 local_irq_restore(flags);
533 touch_softlockup_watchdog_sched();
537 * Updates the per-CPU time idle statistics counters
539 static void
540 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
542 ktime_t delta;
544 if (ts->idle_active) {
545 delta = ktime_sub(now, ts->idle_entrytime);
546 if (nr_iowait_cpu(cpu) > 0)
547 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
548 else
549 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
550 ts->idle_entrytime = now;
553 if (last_update_time)
554 *last_update_time = ktime_to_us(now);
558 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
560 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
561 ts->idle_active = 0;
563 sched_clock_idle_wakeup_event();
566 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
568 ktime_t now = ktime_get();
570 ts->idle_entrytime = now;
571 ts->idle_active = 1;
572 sched_clock_idle_sleep_event();
573 return now;
577 * get_cpu_idle_time_us - get the total idle time of a CPU
578 * @cpu: CPU number to query
579 * @last_update_time: variable to store update time in. Do not update
580 * counters if NULL.
582 * Return the cumulative idle time (since boot) for a given
583 * CPU, in microseconds.
585 * This time is measured via accounting rather than sampling,
586 * and is as accurate as ktime_get() is.
588 * This function returns -1 if NOHZ is not enabled.
590 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
592 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
593 ktime_t now, idle;
595 if (!tick_nohz_active)
596 return -1;
598 now = ktime_get();
599 if (last_update_time) {
600 update_ts_time_stats(cpu, ts, now, last_update_time);
601 idle = ts->idle_sleeptime;
602 } else {
603 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
604 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
606 idle = ktime_add(ts->idle_sleeptime, delta);
607 } else {
608 idle = ts->idle_sleeptime;
612 return ktime_to_us(idle);
615 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
618 * get_cpu_iowait_time_us - get the total iowait time of a CPU
619 * @cpu: CPU number to query
620 * @last_update_time: variable to store update time in. Do not update
621 * counters if NULL.
623 * Return the cumulative iowait time (since boot) for a given
624 * CPU, in microseconds.
626 * This time is measured via accounting rather than sampling,
627 * and is as accurate as ktime_get() is.
629 * This function returns -1 if NOHZ is not enabled.
631 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
633 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
634 ktime_t now, iowait;
636 if (!tick_nohz_active)
637 return -1;
639 now = ktime_get();
640 if (last_update_time) {
641 update_ts_time_stats(cpu, ts, now, last_update_time);
642 iowait = ts->iowait_sleeptime;
643 } else {
644 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
645 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
647 iowait = ktime_add(ts->iowait_sleeptime, delta);
648 } else {
649 iowait = ts->iowait_sleeptime;
653 return ktime_to_us(iowait);
655 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
657 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
659 hrtimer_cancel(&ts->sched_timer);
660 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
662 /* Forward the time to expire in the future */
663 hrtimer_forward(&ts->sched_timer, now, tick_period);
665 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
666 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
667 else
668 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
671 * Reset to make sure next tick stop doesn't get fooled by past
672 * cached clock deadline.
674 ts->next_tick = 0;
677 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
678 ktime_t now, int cpu)
680 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
681 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
682 unsigned long seq, basejiff;
683 ktime_t tick;
685 /* Read jiffies and the time when jiffies were updated last */
686 do {
687 seq = read_seqbegin(&jiffies_lock);
688 basemono = last_jiffies_update;
689 basejiff = jiffies;
690 } while (read_seqretry(&jiffies_lock, seq));
691 ts->last_jiffies = basejiff;
693 if (rcu_needs_cpu(basemono, &next_rcu) ||
694 arch_needs_cpu() || irq_work_needs_cpu()) {
695 next_tick = basemono + TICK_NSEC;
696 } else {
698 * Get the next pending timer. If high resolution
699 * timers are enabled this only takes the timer wheel
700 * timers into account. If high resolution timers are
701 * disabled this also looks at the next expiring
702 * hrtimer.
704 next_tmr = get_next_timer_interrupt(basejiff, basemono);
705 ts->next_timer = next_tmr;
706 /* Take the next rcu event into account */
707 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
711 * If the tick is due in the next period, keep it ticking or
712 * force prod the timer.
714 delta = next_tick - basemono;
715 if (delta <= (u64)TICK_NSEC) {
717 * Tell the timer code that the base is not idle, i.e. undo
718 * the effect of get_next_timer_interrupt():
720 timer_clear_idle();
722 * We've not stopped the tick yet, and there's a timer in the
723 * next period, so no point in stopping it either, bail.
725 if (!ts->tick_stopped) {
726 tick = 0;
727 goto out;
732 * If this CPU is the one which updates jiffies, then give up
733 * the assignment and let it be taken by the CPU which runs
734 * the tick timer next, which might be this CPU as well. If we
735 * don't drop this here the jiffies might be stale and
736 * do_timer() never invoked. Keep track of the fact that it
737 * was the one which had the do_timer() duty last. If this CPU
738 * is the one which had the do_timer() duty last, we limit the
739 * sleep time to the timekeeping max_deferment value.
740 * Otherwise we can sleep as long as we want.
742 delta = timekeeping_max_deferment();
743 if (cpu == tick_do_timer_cpu) {
744 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
745 ts->do_timer_last = 1;
746 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
747 delta = KTIME_MAX;
748 ts->do_timer_last = 0;
749 } else if (!ts->do_timer_last) {
750 delta = KTIME_MAX;
753 #ifdef CONFIG_NO_HZ_FULL
754 /* Limit the tick delta to the maximum scheduler deferment */
755 if (!ts->inidle)
756 delta = min(delta, scheduler_tick_max_deferment());
757 #endif
759 /* Calculate the next expiry time */
760 if (delta < (KTIME_MAX - basemono))
761 expires = basemono + delta;
762 else
763 expires = KTIME_MAX;
765 expires = min_t(u64, expires, next_tick);
766 tick = expires;
768 /* Skip reprogram of event if its not changed */
769 if (ts->tick_stopped && (expires == ts->next_tick)) {
770 /* Sanity check: make sure clockevent is actually programmed */
771 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
772 goto out;
774 WARN_ON_ONCE(1);
775 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
776 basemono, ts->next_tick, dev->next_event,
777 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
781 * nohz_stop_sched_tick can be called several times before
782 * the nohz_restart_sched_tick is called. This happens when
783 * interrupts arrive which do not cause a reschedule. In the
784 * first call we save the current tick time, so we can restart
785 * the scheduler tick in nohz_restart_sched_tick.
787 if (!ts->tick_stopped) {
788 calc_load_nohz_start();
789 cpu_load_update_nohz_start();
791 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
792 ts->tick_stopped = 1;
793 trace_tick_stop(1, TICK_DEP_MASK_NONE);
796 ts->next_tick = tick;
799 * If the expiration time == KTIME_MAX, then we simply stop
800 * the tick timer.
802 if (unlikely(expires == KTIME_MAX)) {
803 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
804 hrtimer_cancel(&ts->sched_timer);
805 goto out;
808 hrtimer_set_expires(&ts->sched_timer, tick);
810 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
811 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
812 else
813 tick_program_event(tick, 1);
814 out:
816 * Update the estimated sleep length until the next timer
817 * (not only the tick).
819 ts->sleep_length = ktime_sub(dev->next_event, now);
820 return tick;
823 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
825 /* Update jiffies first */
826 tick_do_update_jiffies64(now);
827 cpu_load_update_nohz_stop();
830 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
831 * the clock forward checks in the enqueue path:
833 timer_clear_idle();
835 calc_load_nohz_stop();
836 touch_softlockup_watchdog_sched();
838 * Cancel the scheduled timer and restore the tick
840 ts->tick_stopped = 0;
841 ts->idle_exittime = now;
843 tick_nohz_restart(ts, now);
846 static void tick_nohz_full_update_tick(struct tick_sched *ts)
848 #ifdef CONFIG_NO_HZ_FULL
849 int cpu = smp_processor_id();
851 if (!tick_nohz_full_cpu(cpu))
852 return;
854 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
855 return;
857 if (can_stop_full_tick(cpu, ts))
858 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
859 else if (ts->tick_stopped)
860 tick_nohz_restart_sched_tick(ts, ktime_get());
861 #endif
864 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
867 * If this CPU is offline and it is the one which updates
868 * jiffies, then give up the assignment and let it be taken by
869 * the CPU which runs the tick timer next. If we don't drop
870 * this here the jiffies might be stale and do_timer() never
871 * invoked.
873 if (unlikely(!cpu_online(cpu))) {
874 if (cpu == tick_do_timer_cpu)
875 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
877 * Make sure the CPU doesn't get fooled by obsolete tick
878 * deadline if it comes back online later.
880 ts->next_tick = 0;
881 return false;
884 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
885 ts->sleep_length = NSEC_PER_SEC / HZ;
886 return false;
889 if (need_resched())
890 return false;
892 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
893 static int ratelimit;
895 if (ratelimit < 10 &&
896 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
897 pr_warn("NOHZ: local_softirq_pending %02x\n",
898 (unsigned int) local_softirq_pending());
899 ratelimit++;
901 return false;
904 if (tick_nohz_full_enabled()) {
906 * Keep the tick alive to guarantee timekeeping progression
907 * if there are full dynticks CPUs around
909 if (tick_do_timer_cpu == cpu)
910 return false;
912 * Boot safety: make sure the timekeeping duty has been
913 * assigned before entering dyntick-idle mode,
915 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
916 return false;
919 return true;
922 static void __tick_nohz_idle_enter(struct tick_sched *ts)
924 ktime_t now, expires;
925 int cpu = smp_processor_id();
927 now = tick_nohz_start_idle(ts);
929 if (can_stop_idle_tick(cpu, ts)) {
930 int was_stopped = ts->tick_stopped;
932 ts->idle_calls++;
934 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
935 if (expires > 0LL) {
936 ts->idle_sleeps++;
937 ts->idle_expires = expires;
940 if (!was_stopped && ts->tick_stopped) {
941 ts->idle_jiffies = ts->last_jiffies;
942 nohz_balance_enter_idle(cpu);
948 * tick_nohz_idle_enter - stop the idle tick from the idle task
950 * When the next event is more than a tick into the future, stop the idle tick
951 * Called when we start the idle loop.
953 * The arch is responsible of calling:
955 * - rcu_idle_enter() after its last use of RCU before the CPU is put
956 * to sleep.
957 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
959 void tick_nohz_idle_enter(void)
961 struct tick_sched *ts;
963 WARN_ON_ONCE(irqs_disabled());
966 * Update the idle state in the scheduler domain hierarchy
967 * when tick_nohz_stop_sched_tick() is called from the idle loop.
968 * State will be updated to busy during the first busy tick after
969 * exiting idle.
971 set_cpu_sd_state_idle();
973 local_irq_disable();
975 ts = this_cpu_ptr(&tick_cpu_sched);
976 ts->inidle = 1;
977 __tick_nohz_idle_enter(ts);
979 local_irq_enable();
983 * tick_nohz_irq_exit - update next tick event from interrupt exit
985 * When an interrupt fires while we are idle and it doesn't cause
986 * a reschedule, it may still add, modify or delete a timer, enqueue
987 * an RCU callback, etc...
988 * So we need to re-calculate and reprogram the next tick event.
990 void tick_nohz_irq_exit(void)
992 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
994 if (ts->inidle)
995 __tick_nohz_idle_enter(ts);
996 else
997 tick_nohz_full_update_tick(ts);
1001 * tick_nohz_get_sleep_length - return the length of the current sleep
1003 * Called from power state control code with interrupts disabled
1005 ktime_t tick_nohz_get_sleep_length(void)
1007 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1009 return ts->sleep_length;
1013 * tick_nohz_get_idle_calls - return the current idle calls counter value
1015 * Called from the schedutil frequency scaling governor in scheduler context.
1017 unsigned long tick_nohz_get_idle_calls(void)
1019 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1021 return ts->idle_calls;
1024 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1026 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1027 unsigned long ticks;
1029 if (vtime_accounting_cpu_enabled())
1030 return;
1032 * We stopped the tick in idle. Update process times would miss the
1033 * time we slept as update_process_times does only a 1 tick
1034 * accounting. Enforce that this is accounted to idle !
1036 ticks = jiffies - ts->idle_jiffies;
1038 * We might be one off. Do not randomly account a huge number of ticks!
1040 if (ticks && ticks < LONG_MAX)
1041 account_idle_ticks(ticks);
1042 #endif
1046 * tick_nohz_idle_exit - restart the idle tick from the idle task
1048 * Restart the idle tick when the CPU is woken up from idle
1049 * This also exit the RCU extended quiescent state. The CPU
1050 * can use RCU again after this function is called.
1052 void tick_nohz_idle_exit(void)
1054 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1055 ktime_t now;
1057 local_irq_disable();
1059 WARN_ON_ONCE(!ts->inidle);
1061 ts->inidle = 0;
1063 if (ts->idle_active || ts->tick_stopped)
1064 now = ktime_get();
1066 if (ts->idle_active)
1067 tick_nohz_stop_idle(ts, now);
1069 if (ts->tick_stopped) {
1070 tick_nohz_restart_sched_tick(ts, now);
1071 tick_nohz_account_idle_ticks(ts);
1074 local_irq_enable();
1078 * The nohz low res interrupt handler
1080 static void tick_nohz_handler(struct clock_event_device *dev)
1082 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1083 struct pt_regs *regs = get_irq_regs();
1084 ktime_t now = ktime_get();
1086 dev->next_event = KTIME_MAX;
1088 tick_sched_do_timer(now);
1089 tick_sched_handle(ts, regs);
1091 /* No need to reprogram if we are running tickless */
1092 if (unlikely(ts->tick_stopped))
1093 return;
1095 hrtimer_forward(&ts->sched_timer, now, tick_period);
1096 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1099 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1101 if (!tick_nohz_enabled)
1102 return;
1103 ts->nohz_mode = mode;
1104 /* One update is enough */
1105 if (!test_and_set_bit(0, &tick_nohz_active))
1106 timers_update_migration(true);
1110 * tick_nohz_switch_to_nohz - switch to nohz mode
1112 static void tick_nohz_switch_to_nohz(void)
1114 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1115 ktime_t next;
1117 if (!tick_nohz_enabled)
1118 return;
1120 if (tick_switch_to_oneshot(tick_nohz_handler))
1121 return;
1124 * Recycle the hrtimer in ts, so we can share the
1125 * hrtimer_forward with the highres code.
1127 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1128 /* Get the next period */
1129 next = tick_init_jiffy_update();
1131 hrtimer_set_expires(&ts->sched_timer, next);
1132 hrtimer_forward_now(&ts->sched_timer, tick_period);
1133 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1134 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1137 static inline void tick_nohz_irq_enter(void)
1139 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1140 ktime_t now;
1142 if (!ts->idle_active && !ts->tick_stopped)
1143 return;
1144 now = ktime_get();
1145 if (ts->idle_active)
1146 tick_nohz_stop_idle(ts, now);
1147 if (ts->tick_stopped)
1148 tick_nohz_update_jiffies(now);
1151 #else
1153 static inline void tick_nohz_switch_to_nohz(void) { }
1154 static inline void tick_nohz_irq_enter(void) { }
1155 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1157 #endif /* CONFIG_NO_HZ_COMMON */
1160 * Called from irq_enter to notify about the possible interruption of idle()
1162 void tick_irq_enter(void)
1164 tick_check_oneshot_broadcast_this_cpu();
1165 tick_nohz_irq_enter();
1169 * High resolution timer specific code
1171 #ifdef CONFIG_HIGH_RES_TIMERS
1173 * We rearm the timer until we get disabled by the idle code.
1174 * Called with interrupts disabled.
1176 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1178 struct tick_sched *ts =
1179 container_of(timer, struct tick_sched, sched_timer);
1180 struct pt_regs *regs = get_irq_regs();
1181 ktime_t now = ktime_get();
1183 tick_sched_do_timer(now);
1186 * Do not call, when we are not in irq context and have
1187 * no valid regs pointer
1189 if (regs)
1190 tick_sched_handle(ts, regs);
1191 else
1192 ts->next_tick = 0;
1194 /* No need to reprogram if we are in idle or full dynticks mode */
1195 if (unlikely(ts->tick_stopped))
1196 return HRTIMER_NORESTART;
1198 hrtimer_forward(timer, now, tick_period);
1200 return HRTIMER_RESTART;
1203 static int sched_skew_tick;
1205 static int __init skew_tick(char *str)
1207 get_option(&str, &sched_skew_tick);
1209 return 0;
1211 early_param("skew_tick", skew_tick);
1214 * tick_setup_sched_timer - setup the tick emulation timer
1216 void tick_setup_sched_timer(void)
1218 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1219 ktime_t now = ktime_get();
1222 * Emulate tick processing via per-CPU hrtimers:
1224 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1225 ts->sched_timer.function = tick_sched_timer;
1227 /* Get the next period (per-CPU) */
1228 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1230 /* Offset the tick to avert jiffies_lock contention. */
1231 if (sched_skew_tick) {
1232 u64 offset = ktime_to_ns(tick_period) >> 1;
1233 do_div(offset, num_possible_cpus());
1234 offset *= smp_processor_id();
1235 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1238 hrtimer_forward(&ts->sched_timer, now, tick_period);
1239 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1240 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1242 #endif /* HIGH_RES_TIMERS */
1244 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1245 void tick_cancel_sched_timer(int cpu)
1247 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1249 # ifdef CONFIG_HIGH_RES_TIMERS
1250 if (ts->sched_timer.base)
1251 hrtimer_cancel(&ts->sched_timer);
1252 # endif
1254 memset(ts, 0, sizeof(*ts));
1256 #endif
1259 * Async notification about clocksource changes
1261 void tick_clock_notify(void)
1263 int cpu;
1265 for_each_possible_cpu(cpu)
1266 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1270 * Async notification about clock event changes
1272 void tick_oneshot_notify(void)
1274 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1276 set_bit(0, &ts->check_clocks);
1280 * Check, if a change happened, which makes oneshot possible.
1282 * Called cyclic from the hrtimer softirq (driven by the timer
1283 * softirq) allow_nohz signals, that we can switch into low-res nohz
1284 * mode, because high resolution timers are disabled (either compile
1285 * or runtime). Called with interrupts disabled.
1287 int tick_check_oneshot_change(int allow_nohz)
1289 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1291 if (!test_and_clear_bit(0, &ts->check_clocks))
1292 return 0;
1294 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1295 return 0;
1297 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1298 return 0;
1300 if (!allow_nohz)
1301 return 1;
1303 tick_nohz_switch_to_nohz();
1304 return 0;