4 * Kernel internal timers
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched/signal.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/sched/nohz.h>
44 #include <linux/sched/debug.h>
45 #include <linux/slab.h>
46 #include <linux/compat.h>
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
54 #include "tick-internal.h"
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/timer.h>
59 __visible u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
61 EXPORT_SYMBOL(jiffies_64
);
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
101 * This results in the following granularity and range levels:
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
151 /* Clock divisor for the next level */
152 #define LVL_CLK_SHIFT 3
153 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154 #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
159 * The time start value for each level to select the bucket at enqueue
162 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
164 /* Size of each clock level */
166 #define LVL_SIZE (1UL << LVL_BITS)
167 #define LVL_MASK (LVL_SIZE - 1)
168 #define LVL_OFFS(n) ((n) * LVL_SIZE)
177 /* The cutoff (max. capacity of the wheel) */
178 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
179 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
182 * The resulting wheel size. If NOHZ is configured we allocate two
183 * wheels so we have a separate storage for the deferrable timers.
185 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
187 #ifdef CONFIG_NO_HZ_COMMON
199 struct timer_list
*running_timer
;
201 unsigned long next_expiry
;
203 bool migration_enabled
;
206 bool must_forward_clk
;
207 DECLARE_BITMAP(pending_map
, WHEEL_SIZE
);
208 struct hlist_head vectors
[WHEEL_SIZE
];
209 } ____cacheline_aligned
;
211 static DEFINE_PER_CPU(struct timer_base
, timer_bases
[NR_BASES
]);
213 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
214 unsigned int sysctl_timer_migration
= 1;
216 void timers_update_migration(bool update_nohz
)
218 bool on
= sysctl_timer_migration
&& tick_nohz_active
;
221 /* Avoid the loop, if nothing to update */
222 if (this_cpu_read(timer_bases
[BASE_STD
].migration_enabled
) == on
)
225 for_each_possible_cpu(cpu
) {
226 per_cpu(timer_bases
[BASE_STD
].migration_enabled
, cpu
) = on
;
227 per_cpu(timer_bases
[BASE_DEF
].migration_enabled
, cpu
) = on
;
228 per_cpu(hrtimer_bases
.migration_enabled
, cpu
) = on
;
231 per_cpu(timer_bases
[BASE_STD
].nohz_active
, cpu
) = true;
232 per_cpu(timer_bases
[BASE_DEF
].nohz_active
, cpu
) = true;
233 per_cpu(hrtimer_bases
.nohz_active
, cpu
) = true;
237 int timer_migration_handler(struct ctl_table
*table
, int write
,
238 void __user
*buffer
, size_t *lenp
,
241 static DEFINE_MUTEX(mutex
);
245 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
247 timers_update_migration(false);
248 mutex_unlock(&mutex
);
253 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
257 unsigned long original
= j
;
260 * We don't want all cpus firing their timers at once hitting the
261 * same lock or cachelines, so we skew each extra cpu with an extra
262 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
264 * The skew is done by adding 3*cpunr, then round, then subtract this
265 * extra offset again.
272 * If the target jiffie is just after a whole second (which can happen
273 * due to delays of the timer irq, long irq off times etc etc) then
274 * we should round down to the whole second, not up. Use 1/4th second
275 * as cutoff for this rounding as an extreme upper bound for this.
276 * But never round down if @force_up is set.
278 if (rem
< HZ
/4 && !force_up
) /* round down */
283 /* now that we have rounded, subtract the extra skew again */
287 * Make sure j is still in the future. Otherwise return the
290 return time_is_after_jiffies(j
) ? j
: original
;
294 * __round_jiffies - function to round jiffies to a full second
295 * @j: the time in (absolute) jiffies that should be rounded
296 * @cpu: the processor number on which the timeout will happen
298 * __round_jiffies() rounds an absolute time in the future (in jiffies)
299 * up or down to (approximately) full seconds. This is useful for timers
300 * for which the exact time they fire does not matter too much, as long as
301 * they fire approximately every X seconds.
303 * By rounding these timers to whole seconds, all such timers will fire
304 * at the same time, rather than at various times spread out. The goal
305 * of this is to have the CPU wake up less, which saves power.
307 * The exact rounding is skewed for each processor to avoid all
308 * processors firing at the exact same time, which could lead
309 * to lock contention or spurious cache line bouncing.
311 * The return value is the rounded version of the @j parameter.
313 unsigned long __round_jiffies(unsigned long j
, int cpu
)
315 return round_jiffies_common(j
, cpu
, false);
317 EXPORT_SYMBOL_GPL(__round_jiffies
);
320 * __round_jiffies_relative - function to round jiffies to a full second
321 * @j: the time in (relative) jiffies that should be rounded
322 * @cpu: the processor number on which the timeout will happen
324 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
325 * up or down to (approximately) full seconds. This is useful for timers
326 * for which the exact time they fire does not matter too much, as long as
327 * they fire approximately every X seconds.
329 * By rounding these timers to whole seconds, all such timers will fire
330 * at the same time, rather than at various times spread out. The goal
331 * of this is to have the CPU wake up less, which saves power.
333 * The exact rounding is skewed for each processor to avoid all
334 * processors firing at the exact same time, which could lead
335 * to lock contention or spurious cache line bouncing.
337 * The return value is the rounded version of the @j parameter.
339 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
341 unsigned long j0
= jiffies
;
343 /* Use j0 because jiffies might change while we run */
344 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
346 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
349 * round_jiffies - function to round jiffies to a full second
350 * @j: the time in (absolute) jiffies that should be rounded
352 * round_jiffies() rounds an absolute time in the future (in jiffies)
353 * up or down to (approximately) full seconds. This is useful for timers
354 * for which the exact time they fire does not matter too much, as long as
355 * they fire approximately every X seconds.
357 * By rounding these timers to whole seconds, all such timers will fire
358 * at the same time, rather than at various times spread out. The goal
359 * of this is to have the CPU wake up less, which saves power.
361 * The return value is the rounded version of the @j parameter.
363 unsigned long round_jiffies(unsigned long j
)
365 return round_jiffies_common(j
, raw_smp_processor_id(), false);
367 EXPORT_SYMBOL_GPL(round_jiffies
);
370 * round_jiffies_relative - function to round jiffies to a full second
371 * @j: the time in (relative) jiffies that should be rounded
373 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
374 * up or down to (approximately) full seconds. This is useful for timers
375 * for which the exact time they fire does not matter too much, as long as
376 * they fire approximately every X seconds.
378 * By rounding these timers to whole seconds, all such timers will fire
379 * at the same time, rather than at various times spread out. The goal
380 * of this is to have the CPU wake up less, which saves power.
382 * The return value is the rounded version of the @j parameter.
384 unsigned long round_jiffies_relative(unsigned long j
)
386 return __round_jiffies_relative(j
, raw_smp_processor_id());
388 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
391 * __round_jiffies_up - function to round jiffies up to a full second
392 * @j: the time in (absolute) jiffies that should be rounded
393 * @cpu: the processor number on which the timeout will happen
395 * This is the same as __round_jiffies() except that it will never
396 * round down. This is useful for timeouts for which the exact time
397 * of firing does not matter too much, as long as they don't fire too
400 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
402 return round_jiffies_common(j
, cpu
, true);
404 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
407 * __round_jiffies_up_relative - function to round jiffies up to a full second
408 * @j: the time in (relative) jiffies that should be rounded
409 * @cpu: the processor number on which the timeout will happen
411 * This is the same as __round_jiffies_relative() except that it will never
412 * round down. This is useful for timeouts for which the exact time
413 * of firing does not matter too much, as long as they don't fire too
416 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
418 unsigned long j0
= jiffies
;
420 /* Use j0 because jiffies might change while we run */
421 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
423 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
426 * round_jiffies_up - function to round jiffies up to a full second
427 * @j: the time in (absolute) jiffies that should be rounded
429 * This is the same as round_jiffies() except that it will never
430 * round down. This is useful for timeouts for which the exact time
431 * of firing does not matter too much, as long as they don't fire too
434 unsigned long round_jiffies_up(unsigned long j
)
436 return round_jiffies_common(j
, raw_smp_processor_id(), true);
438 EXPORT_SYMBOL_GPL(round_jiffies_up
);
441 * round_jiffies_up_relative - function to round jiffies up to a full second
442 * @j: the time in (relative) jiffies that should be rounded
444 * This is the same as round_jiffies_relative() except that it will never
445 * round down. This is useful for timeouts for which the exact time
446 * of firing does not matter too much, as long as they don't fire too
449 unsigned long round_jiffies_up_relative(unsigned long j
)
451 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
453 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
456 static inline unsigned int timer_get_idx(struct timer_list
*timer
)
458 return (timer
->flags
& TIMER_ARRAYMASK
) >> TIMER_ARRAYSHIFT
;
461 static inline void timer_set_idx(struct timer_list
*timer
, unsigned int idx
)
463 timer
->flags
= (timer
->flags
& ~TIMER_ARRAYMASK
) |
464 idx
<< TIMER_ARRAYSHIFT
;
468 * Helper function to calculate the array index for a given expiry
471 static inline unsigned calc_index(unsigned expires
, unsigned lvl
)
473 expires
= (expires
+ LVL_GRAN(lvl
)) >> LVL_SHIFT(lvl
);
474 return LVL_OFFS(lvl
) + (expires
& LVL_MASK
);
477 static int calc_wheel_index(unsigned long expires
, unsigned long clk
)
479 unsigned long delta
= expires
- clk
;
482 if (delta
< LVL_START(1)) {
483 idx
= calc_index(expires
, 0);
484 } else if (delta
< LVL_START(2)) {
485 idx
= calc_index(expires
, 1);
486 } else if (delta
< LVL_START(3)) {
487 idx
= calc_index(expires
, 2);
488 } else if (delta
< LVL_START(4)) {
489 idx
= calc_index(expires
, 3);
490 } else if (delta
< LVL_START(5)) {
491 idx
= calc_index(expires
, 4);
492 } else if (delta
< LVL_START(6)) {
493 idx
= calc_index(expires
, 5);
494 } else if (delta
< LVL_START(7)) {
495 idx
= calc_index(expires
, 6);
496 } else if (LVL_DEPTH
> 8 && delta
< LVL_START(8)) {
497 idx
= calc_index(expires
, 7);
498 } else if ((long) delta
< 0) {
499 idx
= clk
& LVL_MASK
;
502 * Force expire obscene large timeouts to expire at the
503 * capacity limit of the wheel.
505 if (expires
>= WHEEL_TIMEOUT_CUTOFF
)
506 expires
= WHEEL_TIMEOUT_MAX
;
508 idx
= calc_index(expires
, LVL_DEPTH
- 1);
514 * Enqueue the timer into the hash bucket, mark it pending in
515 * the bitmap and store the index in the timer flags.
517 static void enqueue_timer(struct timer_base
*base
, struct timer_list
*timer
,
520 hlist_add_head(&timer
->entry
, base
->vectors
+ idx
);
521 __set_bit(idx
, base
->pending_map
);
522 timer_set_idx(timer
, idx
);
526 __internal_add_timer(struct timer_base
*base
, struct timer_list
*timer
)
530 idx
= calc_wheel_index(timer
->expires
, base
->clk
);
531 enqueue_timer(base
, timer
, idx
);
535 trigger_dyntick_cpu(struct timer_base
*base
, struct timer_list
*timer
)
537 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON
) || !base
->nohz_active
)
541 * TODO: This wants some optimizing similar to the code below, but we
542 * will do that when we switch from push to pull for deferrable timers.
544 if (timer
->flags
& TIMER_DEFERRABLE
) {
545 if (tick_nohz_full_cpu(base
->cpu
))
546 wake_up_nohz_cpu(base
->cpu
);
551 * We might have to IPI the remote CPU if the base is idle and the
552 * timer is not deferrable. If the other CPU is on the way to idle
553 * then it can't set base->is_idle as we hold the base lock:
558 /* Check whether this is the new first expiring timer: */
559 if (time_after_eq(timer
->expires
, base
->next_expiry
))
563 * Set the next expiry time and kick the CPU so it can reevaluate the
566 base
->next_expiry
= timer
->expires
;
567 wake_up_nohz_cpu(base
->cpu
);
571 internal_add_timer(struct timer_base
*base
, struct timer_list
*timer
)
573 __internal_add_timer(base
, timer
);
574 trigger_dyntick_cpu(base
, timer
);
577 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
579 static struct debug_obj_descr timer_debug_descr
;
581 static void *timer_debug_hint(void *addr
)
583 return ((struct timer_list
*) addr
)->function
;
586 static bool timer_is_static_object(void *addr
)
588 struct timer_list
*timer
= addr
;
590 return (timer
->entry
.pprev
== NULL
&&
591 timer
->entry
.next
== TIMER_ENTRY_STATIC
);
595 * fixup_init is called when:
596 * - an active object is initialized
598 static bool timer_fixup_init(void *addr
, enum debug_obj_state state
)
600 struct timer_list
*timer
= addr
;
603 case ODEBUG_STATE_ACTIVE
:
604 del_timer_sync(timer
);
605 debug_object_init(timer
, &timer_debug_descr
);
612 /* Stub timer callback for improperly used timers. */
613 static void stub_timer(unsigned long data
)
619 * fixup_activate is called when:
620 * - an active object is activated
621 * - an unknown non-static object is activated
623 static bool timer_fixup_activate(void *addr
, enum debug_obj_state state
)
625 struct timer_list
*timer
= addr
;
628 case ODEBUG_STATE_NOTAVAILABLE
:
629 setup_timer(timer
, stub_timer
, 0);
632 case ODEBUG_STATE_ACTIVE
:
641 * fixup_free is called when:
642 * - an active object is freed
644 static bool timer_fixup_free(void *addr
, enum debug_obj_state state
)
646 struct timer_list
*timer
= addr
;
649 case ODEBUG_STATE_ACTIVE
:
650 del_timer_sync(timer
);
651 debug_object_free(timer
, &timer_debug_descr
);
659 * fixup_assert_init is called when:
660 * - an untracked/uninit-ed object is found
662 static bool timer_fixup_assert_init(void *addr
, enum debug_obj_state state
)
664 struct timer_list
*timer
= addr
;
667 case ODEBUG_STATE_NOTAVAILABLE
:
668 setup_timer(timer
, stub_timer
, 0);
675 static struct debug_obj_descr timer_debug_descr
= {
676 .name
= "timer_list",
677 .debug_hint
= timer_debug_hint
,
678 .is_static_object
= timer_is_static_object
,
679 .fixup_init
= timer_fixup_init
,
680 .fixup_activate
= timer_fixup_activate
,
681 .fixup_free
= timer_fixup_free
,
682 .fixup_assert_init
= timer_fixup_assert_init
,
685 static inline void debug_timer_init(struct timer_list
*timer
)
687 debug_object_init(timer
, &timer_debug_descr
);
690 static inline void debug_timer_activate(struct timer_list
*timer
)
692 debug_object_activate(timer
, &timer_debug_descr
);
695 static inline void debug_timer_deactivate(struct timer_list
*timer
)
697 debug_object_deactivate(timer
, &timer_debug_descr
);
700 static inline void debug_timer_free(struct timer_list
*timer
)
702 debug_object_free(timer
, &timer_debug_descr
);
705 static inline void debug_timer_assert_init(struct timer_list
*timer
)
707 debug_object_assert_init(timer
, &timer_debug_descr
);
710 static void do_init_timer(struct timer_list
*timer
, unsigned int flags
,
711 const char *name
, struct lock_class_key
*key
);
713 void init_timer_on_stack_key(struct timer_list
*timer
, unsigned int flags
,
714 const char *name
, struct lock_class_key
*key
)
716 debug_object_init_on_stack(timer
, &timer_debug_descr
);
717 do_init_timer(timer
, flags
, name
, key
);
719 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
721 void destroy_timer_on_stack(struct timer_list
*timer
)
723 debug_object_free(timer
, &timer_debug_descr
);
725 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
728 static inline void debug_timer_init(struct timer_list
*timer
) { }
729 static inline void debug_timer_activate(struct timer_list
*timer
) { }
730 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
731 static inline void debug_timer_assert_init(struct timer_list
*timer
) { }
734 static inline void debug_init(struct timer_list
*timer
)
736 debug_timer_init(timer
);
737 trace_timer_init(timer
);
741 debug_activate(struct timer_list
*timer
, unsigned long expires
)
743 debug_timer_activate(timer
);
744 trace_timer_start(timer
, expires
, timer
->flags
);
747 static inline void debug_deactivate(struct timer_list
*timer
)
749 debug_timer_deactivate(timer
);
750 trace_timer_cancel(timer
);
753 static inline void debug_assert_init(struct timer_list
*timer
)
755 debug_timer_assert_init(timer
);
758 static void do_init_timer(struct timer_list
*timer
, unsigned int flags
,
759 const char *name
, struct lock_class_key
*key
)
761 timer
->entry
.pprev
= NULL
;
762 timer
->flags
= flags
| raw_smp_processor_id();
763 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
767 * init_timer_key - initialize a timer
768 * @timer: the timer to be initialized
769 * @flags: timer flags
770 * @name: name of the timer
771 * @key: lockdep class key of the fake lock used for tracking timer
772 * sync lock dependencies
774 * init_timer_key() must be done to a timer prior calling *any* of the
775 * other timer functions.
777 void init_timer_key(struct timer_list
*timer
, unsigned int flags
,
778 const char *name
, struct lock_class_key
*key
)
781 do_init_timer(timer
, flags
, name
, key
);
783 EXPORT_SYMBOL(init_timer_key
);
785 static inline void detach_timer(struct timer_list
*timer
, bool clear_pending
)
787 struct hlist_node
*entry
= &timer
->entry
;
789 debug_deactivate(timer
);
794 entry
->next
= LIST_POISON2
;
797 static int detach_if_pending(struct timer_list
*timer
, struct timer_base
*base
,
800 unsigned idx
= timer_get_idx(timer
);
802 if (!timer_pending(timer
))
805 if (hlist_is_singular_node(&timer
->entry
, base
->vectors
+ idx
))
806 __clear_bit(idx
, base
->pending_map
);
808 detach_timer(timer
, clear_pending
);
812 static inline struct timer_base
*get_timer_cpu_base(u32 tflags
, u32 cpu
)
814 struct timer_base
*base
= per_cpu_ptr(&timer_bases
[BASE_STD
], cpu
);
817 * If the timer is deferrable and nohz is active then we need to use
818 * the deferrable base.
820 if (IS_ENABLED(CONFIG_NO_HZ_COMMON
) && base
->nohz_active
&&
821 (tflags
& TIMER_DEFERRABLE
))
822 base
= per_cpu_ptr(&timer_bases
[BASE_DEF
], cpu
);
826 static inline struct timer_base
*get_timer_this_cpu_base(u32 tflags
)
828 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
831 * If the timer is deferrable and nohz is active then we need to use
832 * the deferrable base.
834 if (IS_ENABLED(CONFIG_NO_HZ_COMMON
) && base
->nohz_active
&&
835 (tflags
& TIMER_DEFERRABLE
))
836 base
= this_cpu_ptr(&timer_bases
[BASE_DEF
]);
840 static inline struct timer_base
*get_timer_base(u32 tflags
)
842 return get_timer_cpu_base(tflags
, tflags
& TIMER_CPUMASK
);
845 #ifdef CONFIG_NO_HZ_COMMON
846 static inline struct timer_base
*
847 get_target_base(struct timer_base
*base
, unsigned tflags
)
850 if ((tflags
& TIMER_PINNED
) || !base
->migration_enabled
)
851 return get_timer_this_cpu_base(tflags
);
852 return get_timer_cpu_base(tflags
, get_nohz_timer_target());
854 return get_timer_this_cpu_base(tflags
);
858 static inline void forward_timer_base(struct timer_base
*base
)
863 * We only forward the base when we are idle or have just come out of
864 * idle (must_forward_clk logic), and have a delta between base clock
865 * and jiffies. In the common case, run_timers will take care of it.
867 if (likely(!base
->must_forward_clk
))
870 jnow
= READ_ONCE(jiffies
);
871 base
->must_forward_clk
= base
->is_idle
;
872 if ((long)(jnow
- base
->clk
) < 2)
876 * If the next expiry value is > jiffies, then we fast forward to
877 * jiffies otherwise we forward to the next expiry value.
879 if (time_after(base
->next_expiry
, jnow
))
882 base
->clk
= base
->next_expiry
;
885 static inline struct timer_base
*
886 get_target_base(struct timer_base
*base
, unsigned tflags
)
888 return get_timer_this_cpu_base(tflags
);
891 static inline void forward_timer_base(struct timer_base
*base
) { }
896 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
897 * that all timers which are tied to this base are locked, and the base itself
900 * So __run_timers/migrate_timers can safely modify all timers which could
901 * be found in the base->vectors array.
903 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
904 * to wait until the migration is done.
906 static struct timer_base
*lock_timer_base(struct timer_list
*timer
,
907 unsigned long *flags
)
908 __acquires(timer
->base
->lock
)
911 struct timer_base
*base
;
915 * We need to use READ_ONCE() here, otherwise the compiler
916 * might re-read @tf between the check for TIMER_MIGRATING
919 tf
= READ_ONCE(timer
->flags
);
921 if (!(tf
& TIMER_MIGRATING
)) {
922 base
= get_timer_base(tf
);
923 raw_spin_lock_irqsave(&base
->lock
, *flags
);
924 if (timer
->flags
== tf
)
926 raw_spin_unlock_irqrestore(&base
->lock
, *flags
);
933 __mod_timer(struct timer_list
*timer
, unsigned long expires
, bool pending_only
)
935 struct timer_base
*base
, *new_base
;
936 unsigned int idx
= UINT_MAX
;
937 unsigned long clk
= 0, flags
;
940 BUG_ON(!timer
->function
);
943 * This is a common optimization triggered by the networking code - if
944 * the timer is re-modified to have the same timeout or ends up in the
945 * same array bucket then just return:
947 if (timer_pending(timer
)) {
949 * The downside of this optimization is that it can result in
950 * larger granularity than you would get from adding a new
951 * timer with this expiry.
953 if (timer
->expires
== expires
)
957 * We lock timer base and calculate the bucket index right
958 * here. If the timer ends up in the same bucket, then we
959 * just update the expiry time and avoid the whole
960 * dequeue/enqueue dance.
962 base
= lock_timer_base(timer
, &flags
);
963 forward_timer_base(base
);
966 idx
= calc_wheel_index(expires
, clk
);
969 * Retrieve and compare the array index of the pending
970 * timer. If it matches set the expiry to the new value so a
971 * subsequent call will exit in the expires check above.
973 if (idx
== timer_get_idx(timer
)) {
974 timer
->expires
= expires
;
979 base
= lock_timer_base(timer
, &flags
);
980 forward_timer_base(base
);
983 ret
= detach_if_pending(timer
, base
, false);
984 if (!ret
&& pending_only
)
987 debug_activate(timer
, expires
);
989 new_base
= get_target_base(base
, timer
->flags
);
991 if (base
!= new_base
) {
993 * We are trying to schedule the timer on the new base.
994 * However we can't change timer's base while it is running,
995 * otherwise del_timer_sync() can't detect that the timer's
996 * handler yet has not finished. This also guarantees that the
997 * timer is serialized wrt itself.
999 if (likely(base
->running_timer
!= timer
)) {
1000 /* See the comment in lock_timer_base() */
1001 timer
->flags
|= TIMER_MIGRATING
;
1003 raw_spin_unlock(&base
->lock
);
1005 raw_spin_lock(&base
->lock
);
1006 WRITE_ONCE(timer
->flags
,
1007 (timer
->flags
& ~TIMER_BASEMASK
) | base
->cpu
);
1008 forward_timer_base(base
);
1012 timer
->expires
= expires
;
1014 * If 'idx' was calculated above and the base time did not advance
1015 * between calculating 'idx' and possibly switching the base, only
1016 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1017 * we need to (re)calculate the wheel index via
1018 * internal_add_timer().
1020 if (idx
!= UINT_MAX
&& clk
== base
->clk
) {
1021 enqueue_timer(base
, timer
, idx
);
1022 trigger_dyntick_cpu(base
, timer
);
1024 internal_add_timer(base
, timer
);
1028 raw_spin_unlock_irqrestore(&base
->lock
, flags
);
1034 * mod_timer_pending - modify a pending timer's timeout
1035 * @timer: the pending timer to be modified
1036 * @expires: new timeout in jiffies
1038 * mod_timer_pending() is the same for pending timers as mod_timer(),
1039 * but will not re-activate and modify already deleted timers.
1041 * It is useful for unserialized use of timers.
1043 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
1045 return __mod_timer(timer
, expires
, true);
1047 EXPORT_SYMBOL(mod_timer_pending
);
1050 * mod_timer - modify a timer's timeout
1051 * @timer: the timer to be modified
1052 * @expires: new timeout in jiffies
1054 * mod_timer() is a more efficient way to update the expire field of an
1055 * active timer (if the timer is inactive it will be activated)
1057 * mod_timer(timer, expires) is equivalent to:
1059 * del_timer(timer); timer->expires = expires; add_timer(timer);
1061 * Note that if there are multiple unserialized concurrent users of the
1062 * same timer, then mod_timer() is the only safe way to modify the timeout,
1063 * since add_timer() cannot modify an already running timer.
1065 * The function returns whether it has modified a pending timer or not.
1066 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1067 * active timer returns 1.)
1069 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
1071 return __mod_timer(timer
, expires
, false);
1073 EXPORT_SYMBOL(mod_timer
);
1076 * add_timer - start a timer
1077 * @timer: the timer to be added
1079 * The kernel will do a ->function(->data) callback from the
1080 * timer interrupt at the ->expires point in the future. The
1081 * current time is 'jiffies'.
1083 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1084 * fields must be set prior calling this function.
1086 * Timers with an ->expires field in the past will be executed in the next
1089 void add_timer(struct timer_list
*timer
)
1091 BUG_ON(timer_pending(timer
));
1092 mod_timer(timer
, timer
->expires
);
1094 EXPORT_SYMBOL(add_timer
);
1097 * add_timer_on - start a timer on a particular CPU
1098 * @timer: the timer to be added
1099 * @cpu: the CPU to start it on
1101 * This is not very scalable on SMP. Double adds are not possible.
1103 void add_timer_on(struct timer_list
*timer
, int cpu
)
1105 struct timer_base
*new_base
, *base
;
1106 unsigned long flags
;
1108 BUG_ON(timer_pending(timer
) || !timer
->function
);
1110 new_base
= get_timer_cpu_base(timer
->flags
, cpu
);
1113 * If @timer was on a different CPU, it should be migrated with the
1114 * old base locked to prevent other operations proceeding with the
1115 * wrong base locked. See lock_timer_base().
1117 base
= lock_timer_base(timer
, &flags
);
1118 if (base
!= new_base
) {
1119 timer
->flags
|= TIMER_MIGRATING
;
1121 raw_spin_unlock(&base
->lock
);
1123 raw_spin_lock(&base
->lock
);
1124 WRITE_ONCE(timer
->flags
,
1125 (timer
->flags
& ~TIMER_BASEMASK
) | cpu
);
1127 forward_timer_base(base
);
1129 debug_activate(timer
, timer
->expires
);
1130 internal_add_timer(base
, timer
);
1131 raw_spin_unlock_irqrestore(&base
->lock
, flags
);
1133 EXPORT_SYMBOL_GPL(add_timer_on
);
1136 * del_timer - deactivate a timer.
1137 * @timer: the timer to be deactivated
1139 * del_timer() deactivates a timer - this works on both active and inactive
1142 * The function returns whether it has deactivated a pending timer or not.
1143 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1144 * active timer returns 1.)
1146 int del_timer(struct timer_list
*timer
)
1148 struct timer_base
*base
;
1149 unsigned long flags
;
1152 debug_assert_init(timer
);
1154 if (timer_pending(timer
)) {
1155 base
= lock_timer_base(timer
, &flags
);
1156 ret
= detach_if_pending(timer
, base
, true);
1157 raw_spin_unlock_irqrestore(&base
->lock
, flags
);
1162 EXPORT_SYMBOL(del_timer
);
1165 * try_to_del_timer_sync - Try to deactivate a timer
1166 * @timer: timer to delete
1168 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1169 * exit the timer is not queued and the handler is not running on any CPU.
1171 int try_to_del_timer_sync(struct timer_list
*timer
)
1173 struct timer_base
*base
;
1174 unsigned long flags
;
1177 debug_assert_init(timer
);
1179 base
= lock_timer_base(timer
, &flags
);
1181 if (base
->running_timer
!= timer
)
1182 ret
= detach_if_pending(timer
, base
, true);
1184 raw_spin_unlock_irqrestore(&base
->lock
, flags
);
1188 EXPORT_SYMBOL(try_to_del_timer_sync
);
1192 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1193 * @timer: the timer to be deactivated
1195 * This function only differs from del_timer() on SMP: besides deactivating
1196 * the timer it also makes sure the handler has finished executing on other
1199 * Synchronization rules: Callers must prevent restarting of the timer,
1200 * otherwise this function is meaningless. It must not be called from
1201 * interrupt contexts unless the timer is an irqsafe one. The caller must
1202 * not hold locks which would prevent completion of the timer's
1203 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1204 * timer is not queued and the handler is not running on any CPU.
1206 * Note: For !irqsafe timers, you must not hold locks that are held in
1207 * interrupt context while calling this function. Even if the lock has
1208 * nothing to do with the timer in question. Here's why:
1214 * base->running_timer = mytimer;
1215 * spin_lock_irq(somelock);
1217 * spin_lock(somelock);
1218 * del_timer_sync(mytimer);
1219 * while (base->running_timer == mytimer);
1221 * Now del_timer_sync() will never return and never release somelock.
1222 * The interrupt on the other CPU is waiting to grab somelock but
1223 * it has interrupted the softirq that CPU0 is waiting to finish.
1225 * The function returns whether it has deactivated a pending timer or not.
1227 int del_timer_sync(struct timer_list
*timer
)
1229 #ifdef CONFIG_LOCKDEP
1230 unsigned long flags
;
1233 * If lockdep gives a backtrace here, please reference
1234 * the synchronization rules above.
1236 local_irq_save(flags
);
1237 lock_map_acquire(&timer
->lockdep_map
);
1238 lock_map_release(&timer
->lockdep_map
);
1239 local_irq_restore(flags
);
1242 * don't use it in hardirq context, because it
1243 * could lead to deadlock.
1245 WARN_ON(in_irq() && !(timer
->flags
& TIMER_IRQSAFE
));
1247 int ret
= try_to_del_timer_sync(timer
);
1253 EXPORT_SYMBOL(del_timer_sync
);
1256 static void call_timer_fn(struct timer_list
*timer
, void (*fn
)(unsigned long),
1259 int count
= preempt_count();
1261 #ifdef CONFIG_LOCKDEP
1263 * It is permissible to free the timer from inside the
1264 * function that is called from it, this we need to take into
1265 * account for lockdep too. To avoid bogus "held lock freed"
1266 * warnings as well as problems when looking into
1267 * timer->lockdep_map, make a copy and use that here.
1269 struct lockdep_map lockdep_map
;
1271 lockdep_copy_map(&lockdep_map
, &timer
->lockdep_map
);
1274 * Couple the lock chain with the lock chain at
1275 * del_timer_sync() by acquiring the lock_map around the fn()
1276 * call here and in del_timer_sync().
1278 lock_map_acquire(&lockdep_map
);
1280 trace_timer_expire_entry(timer
);
1282 trace_timer_expire_exit(timer
);
1284 lock_map_release(&lockdep_map
);
1286 if (count
!= preempt_count()) {
1287 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1288 fn
, count
, preempt_count());
1290 * Restore the preempt count. That gives us a decent
1291 * chance to survive and extract information. If the
1292 * callback kept a lock held, bad luck, but not worse
1293 * than the BUG() we had.
1295 preempt_count_set(count
);
1299 static void expire_timers(struct timer_base
*base
, struct hlist_head
*head
)
1301 while (!hlist_empty(head
)) {
1302 struct timer_list
*timer
;
1303 void (*fn
)(unsigned long);
1306 timer
= hlist_entry(head
->first
, struct timer_list
, entry
);
1308 base
->running_timer
= timer
;
1309 detach_timer(timer
, true);
1311 fn
= timer
->function
;
1314 if (timer
->flags
& TIMER_IRQSAFE
) {
1315 raw_spin_unlock(&base
->lock
);
1316 call_timer_fn(timer
, fn
, data
);
1317 raw_spin_lock(&base
->lock
);
1319 raw_spin_unlock_irq(&base
->lock
);
1320 call_timer_fn(timer
, fn
, data
);
1321 raw_spin_lock_irq(&base
->lock
);
1326 static int __collect_expired_timers(struct timer_base
*base
,
1327 struct hlist_head
*heads
)
1329 unsigned long clk
= base
->clk
;
1330 struct hlist_head
*vec
;
1334 for (i
= 0; i
< LVL_DEPTH
; i
++) {
1335 idx
= (clk
& LVL_MASK
) + i
* LVL_SIZE
;
1337 if (__test_and_clear_bit(idx
, base
->pending_map
)) {
1338 vec
= base
->vectors
+ idx
;
1339 hlist_move_list(vec
, heads
++);
1342 /* Is it time to look at the next level? */
1343 if (clk
& LVL_CLK_MASK
)
1345 /* Shift clock for the next level granularity */
1346 clk
>>= LVL_CLK_SHIFT
;
1351 #ifdef CONFIG_NO_HZ_COMMON
1353 * Find the next pending bucket of a level. Search from level start (@offset)
1354 * + @clk upwards and if nothing there, search from start of the level
1355 * (@offset) up to @offset + clk.
1357 static int next_pending_bucket(struct timer_base
*base
, unsigned offset
,
1360 unsigned pos
, start
= offset
+ clk
;
1361 unsigned end
= offset
+ LVL_SIZE
;
1363 pos
= find_next_bit(base
->pending_map
, end
, start
);
1367 pos
= find_next_bit(base
->pending_map
, start
, offset
);
1368 return pos
< start
? pos
+ LVL_SIZE
- start
: -1;
1372 * Search the first expiring timer in the various clock levels. Caller must
1375 static unsigned long __next_timer_interrupt(struct timer_base
*base
)
1377 unsigned long clk
, next
, adj
;
1378 unsigned lvl
, offset
= 0;
1380 next
= base
->clk
+ NEXT_TIMER_MAX_DELTA
;
1382 for (lvl
= 0; lvl
< LVL_DEPTH
; lvl
++, offset
+= LVL_SIZE
) {
1383 int pos
= next_pending_bucket(base
, offset
, clk
& LVL_MASK
);
1386 unsigned long tmp
= clk
+ (unsigned long) pos
;
1388 tmp
<<= LVL_SHIFT(lvl
);
1389 if (time_before(tmp
, next
))
1393 * Clock for the next level. If the current level clock lower
1394 * bits are zero, we look at the next level as is. If not we
1395 * need to advance it by one because that's going to be the
1396 * next expiring bucket in that level. base->clk is the next
1397 * expiring jiffie. So in case of:
1399 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1402 * we have to look at all levels @index 0. With
1404 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1407 * LVL0 has the next expiring bucket @index 2. The upper
1408 * levels have the next expiring bucket @index 1.
1410 * In case that the propagation wraps the next level the same
1413 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1416 * So after looking at LVL0 we get:
1418 * LVL5 LVL4 LVL3 LVL2 LVL1
1421 * So no propagation from LVL1 to LVL2 because that happened
1422 * with the add already, but then we need to propagate further
1423 * from LVL2 to LVL3.
1425 * So the simple check whether the lower bits of the current
1426 * level are 0 or not is sufficient for all cases.
1428 adj
= clk
& LVL_CLK_MASK
? 1 : 0;
1429 clk
>>= LVL_CLK_SHIFT
;
1436 * Check, if the next hrtimer event is before the next timer wheel
1439 static u64
cmp_next_hrtimer_event(u64 basem
, u64 expires
)
1441 u64 nextevt
= hrtimer_get_next_event();
1444 * If high resolution timers are enabled
1445 * hrtimer_get_next_event() returns KTIME_MAX.
1447 if (expires
<= nextevt
)
1451 * If the next timer is already expired, return the tick base
1452 * time so the tick is fired immediately.
1454 if (nextevt
<= basem
)
1458 * Round up to the next jiffie. High resolution timers are
1459 * off, so the hrtimers are expired in the tick and we need to
1460 * make sure that this tick really expires the timer to avoid
1461 * a ping pong of the nohz stop code.
1463 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1465 return DIV_ROUND_UP_ULL(nextevt
, TICK_NSEC
) * TICK_NSEC
;
1469 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1470 * @basej: base time jiffies
1471 * @basem: base time clock monotonic
1473 * Returns the tick aligned clock monotonic time of the next pending
1474 * timer or KTIME_MAX if no timer is pending.
1476 u64
get_next_timer_interrupt(unsigned long basej
, u64 basem
)
1478 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1479 u64 expires
= KTIME_MAX
;
1480 unsigned long nextevt
;
1484 * Pretend that there is no timer pending if the cpu is offline.
1485 * Possible pending timers will be migrated later to an active cpu.
1487 if (cpu_is_offline(smp_processor_id()))
1490 raw_spin_lock(&base
->lock
);
1491 nextevt
= __next_timer_interrupt(base
);
1492 is_max_delta
= (nextevt
== base
->clk
+ NEXT_TIMER_MAX_DELTA
);
1493 base
->next_expiry
= nextevt
;
1495 * We have a fresh next event. Check whether we can forward the
1496 * base. We can only do that when @basej is past base->clk
1497 * otherwise we might rewind base->clk.
1499 if (time_after(basej
, base
->clk
)) {
1500 if (time_after(nextevt
, basej
))
1502 else if (time_after(nextevt
, base
->clk
))
1503 base
->clk
= nextevt
;
1506 if (time_before_eq(nextevt
, basej
)) {
1508 base
->is_idle
= false;
1511 expires
= basem
+ (u64
)(nextevt
- basej
) * TICK_NSEC
;
1513 * If we expect to sleep more than a tick, mark the base idle.
1514 * Also the tick is stopped so any added timer must forward
1515 * the base clk itself to keep granularity small. This idle
1516 * logic is only maintained for the BASE_STD base, deferrable
1517 * timers may still see large granularity skew (by design).
1519 if ((expires
- basem
) > TICK_NSEC
) {
1520 base
->must_forward_clk
= true;
1521 base
->is_idle
= true;
1524 raw_spin_unlock(&base
->lock
);
1526 return cmp_next_hrtimer_event(basem
, expires
);
1530 * timer_clear_idle - Clear the idle state of the timer base
1532 * Called with interrupts disabled
1534 void timer_clear_idle(void)
1536 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1539 * We do this unlocked. The worst outcome is a remote enqueue sending
1540 * a pointless IPI, but taking the lock would just make the window for
1541 * sending the IPI a few instructions smaller for the cost of taking
1542 * the lock in the exit from idle path.
1544 base
->is_idle
= false;
1547 static int collect_expired_timers(struct timer_base
*base
,
1548 struct hlist_head
*heads
)
1551 * NOHZ optimization. After a long idle sleep we need to forward the
1552 * base to current jiffies. Avoid a loop by searching the bitfield for
1553 * the next expiring timer.
1555 if ((long)(jiffies
- base
->clk
) > 2) {
1556 unsigned long next
= __next_timer_interrupt(base
);
1559 * If the next timer is ahead of time forward to current
1560 * jiffies, otherwise forward to the next expiry time:
1562 if (time_after(next
, jiffies
)) {
1563 /* The call site will increment clock! */
1564 base
->clk
= jiffies
- 1;
1569 return __collect_expired_timers(base
, heads
);
1572 static inline int collect_expired_timers(struct timer_base
*base
,
1573 struct hlist_head
*heads
)
1575 return __collect_expired_timers(base
, heads
);
1580 * Called from the timer interrupt handler to charge one tick to the current
1581 * process. user_tick is 1 if the tick is user time, 0 for system.
1583 void update_process_times(int user_tick
)
1585 struct task_struct
*p
= current
;
1587 /* Note: this timer irq context must be accounted for as well. */
1588 account_process_tick(p
, user_tick
);
1590 rcu_check_callbacks(user_tick
);
1591 #ifdef CONFIG_IRQ_WORK
1596 if (IS_ENABLED(CONFIG_POSIX_TIMERS
))
1597 run_posix_cpu_timers(p
);
1601 * __run_timers - run all expired timers (if any) on this CPU.
1602 * @base: the timer vector to be processed.
1604 static inline void __run_timers(struct timer_base
*base
)
1606 struct hlist_head heads
[LVL_DEPTH
];
1609 if (!time_after_eq(jiffies
, base
->clk
))
1612 raw_spin_lock_irq(&base
->lock
);
1614 while (time_after_eq(jiffies
, base
->clk
)) {
1616 levels
= collect_expired_timers(base
, heads
);
1620 expire_timers(base
, heads
+ levels
);
1622 base
->running_timer
= NULL
;
1623 raw_spin_unlock_irq(&base
->lock
);
1627 * This function runs timers and the timer-tq in bottom half context.
1629 static __latent_entropy
void run_timer_softirq(struct softirq_action
*h
)
1631 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1634 * must_forward_clk must be cleared before running timers so that any
1635 * timer functions that call mod_timer will not try to forward the
1636 * base. idle trcking / clock forwarding logic is only used with
1639 * The deferrable base does not do idle tracking at all, so we do
1640 * not forward it. This can result in very large variations in
1641 * granularity for deferrable timers, but they can be deferred for
1642 * long periods due to idle.
1644 base
->must_forward_clk
= false;
1647 if (IS_ENABLED(CONFIG_NO_HZ_COMMON
) && base
->nohz_active
)
1648 __run_timers(this_cpu_ptr(&timer_bases
[BASE_DEF
]));
1652 * Called by the local, per-CPU timer interrupt on SMP.
1654 void run_local_timers(void)
1656 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1658 hrtimer_run_queues();
1659 /* Raise the softirq only if required. */
1660 if (time_before(jiffies
, base
->clk
)) {
1661 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON
) || !base
->nohz_active
)
1663 /* CPU is awake, so check the deferrable base. */
1665 if (time_before(jiffies
, base
->clk
))
1668 raise_softirq(TIMER_SOFTIRQ
);
1671 static void process_timeout(unsigned long __data
)
1673 wake_up_process((struct task_struct
*)__data
);
1677 * schedule_timeout - sleep until timeout
1678 * @timeout: timeout value in jiffies
1680 * Make the current task sleep until @timeout jiffies have
1681 * elapsed. The routine will return immediately unless
1682 * the current task state has been set (see set_current_state()).
1684 * You can set the task state as follows -
1686 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1687 * pass before the routine returns unless the current task is explicitly
1688 * woken up, (e.g. by wake_up_process())".
1690 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1691 * delivered to the current task or the current task is explicitly woken
1694 * The current task state is guaranteed to be TASK_RUNNING when this
1697 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1698 * the CPU away without a bound on the timeout. In this case the return
1699 * value will be %MAX_SCHEDULE_TIMEOUT.
1701 * Returns 0 when the timer has expired otherwise the remaining time in
1702 * jiffies will be returned. In all cases the return value is guaranteed
1703 * to be non-negative.
1705 signed long __sched
schedule_timeout(signed long timeout
)
1707 struct timer_list timer
;
1708 unsigned long expire
;
1712 case MAX_SCHEDULE_TIMEOUT
:
1714 * These two special cases are useful to be comfortable
1715 * in the caller. Nothing more. We could take
1716 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1717 * but I' d like to return a valid offset (>=0) to allow
1718 * the caller to do everything it want with the retval.
1724 * Another bit of PARANOID. Note that the retval will be
1725 * 0 since no piece of kernel is supposed to do a check
1726 * for a negative retval of schedule_timeout() (since it
1727 * should never happens anyway). You just have the printk()
1728 * that will tell you if something is gone wrong and where.
1731 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1732 "value %lx\n", timeout
);
1734 current
->state
= TASK_RUNNING
;
1739 expire
= timeout
+ jiffies
;
1741 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1742 __mod_timer(&timer
, expire
, false);
1744 del_singleshot_timer_sync(&timer
);
1746 /* Remove the timer from the object tracker */
1747 destroy_timer_on_stack(&timer
);
1749 timeout
= expire
- jiffies
;
1752 return timeout
< 0 ? 0 : timeout
;
1754 EXPORT_SYMBOL(schedule_timeout
);
1757 * We can use __set_current_state() here because schedule_timeout() calls
1758 * schedule() unconditionally.
1760 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1762 __set_current_state(TASK_INTERRUPTIBLE
);
1763 return schedule_timeout(timeout
);
1765 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1767 signed long __sched
schedule_timeout_killable(signed long timeout
)
1769 __set_current_state(TASK_KILLABLE
);
1770 return schedule_timeout(timeout
);
1772 EXPORT_SYMBOL(schedule_timeout_killable
);
1774 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1776 __set_current_state(TASK_UNINTERRUPTIBLE
);
1777 return schedule_timeout(timeout
);
1779 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1782 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1785 signed long __sched
schedule_timeout_idle(signed long timeout
)
1787 __set_current_state(TASK_IDLE
);
1788 return schedule_timeout(timeout
);
1790 EXPORT_SYMBOL(schedule_timeout_idle
);
1792 #ifdef CONFIG_HOTPLUG_CPU
1793 static void migrate_timer_list(struct timer_base
*new_base
, struct hlist_head
*head
)
1795 struct timer_list
*timer
;
1796 int cpu
= new_base
->cpu
;
1798 while (!hlist_empty(head
)) {
1799 timer
= hlist_entry(head
->first
, struct timer_list
, entry
);
1800 detach_timer(timer
, false);
1801 timer
->flags
= (timer
->flags
& ~TIMER_BASEMASK
) | cpu
;
1802 internal_add_timer(new_base
, timer
);
1806 int timers_dead_cpu(unsigned int cpu
)
1808 struct timer_base
*old_base
;
1809 struct timer_base
*new_base
;
1812 BUG_ON(cpu_online(cpu
));
1814 for (b
= 0; b
< NR_BASES
; b
++) {
1815 old_base
= per_cpu_ptr(&timer_bases
[b
], cpu
);
1816 new_base
= get_cpu_ptr(&timer_bases
[b
]);
1818 * The caller is globally serialized and nobody else
1819 * takes two locks at once, deadlock is not possible.
1821 raw_spin_lock_irq(&new_base
->lock
);
1822 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1824 BUG_ON(old_base
->running_timer
);
1826 for (i
= 0; i
< WHEEL_SIZE
; i
++)
1827 migrate_timer_list(new_base
, old_base
->vectors
+ i
);
1829 raw_spin_unlock(&old_base
->lock
);
1830 raw_spin_unlock_irq(&new_base
->lock
);
1831 put_cpu_ptr(&timer_bases
);
1836 #endif /* CONFIG_HOTPLUG_CPU */
1838 static void __init
init_timer_cpu(int cpu
)
1840 struct timer_base
*base
;
1843 for (i
= 0; i
< NR_BASES
; i
++) {
1844 base
= per_cpu_ptr(&timer_bases
[i
], cpu
);
1846 raw_spin_lock_init(&base
->lock
);
1847 base
->clk
= jiffies
;
1851 static void __init
init_timer_cpus(void)
1855 for_each_possible_cpu(cpu
)
1856 init_timer_cpu(cpu
);
1859 void __init
init_timers(void)
1862 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1866 * msleep - sleep safely even with waitqueue interruptions
1867 * @msecs: Time in milliseconds to sleep for
1869 void msleep(unsigned int msecs
)
1871 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1874 timeout
= schedule_timeout_uninterruptible(timeout
);
1877 EXPORT_SYMBOL(msleep
);
1880 * msleep_interruptible - sleep waiting for signals
1881 * @msecs: Time in milliseconds to sleep for
1883 unsigned long msleep_interruptible(unsigned int msecs
)
1885 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1887 while (timeout
&& !signal_pending(current
))
1888 timeout
= schedule_timeout_interruptible(timeout
);
1889 return jiffies_to_msecs(timeout
);
1892 EXPORT_SYMBOL(msleep_interruptible
);
1895 * usleep_range - Sleep for an approximate time
1896 * @min: Minimum time in usecs to sleep
1897 * @max: Maximum time in usecs to sleep
1899 * In non-atomic context where the exact wakeup time is flexible, use
1900 * usleep_range() instead of udelay(). The sleep improves responsiveness
1901 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1902 * power usage by allowing hrtimers to take advantage of an already-
1903 * scheduled interrupt instead of scheduling a new one just for this sleep.
1905 void __sched
usleep_range(unsigned long min
, unsigned long max
)
1907 ktime_t exp
= ktime_add_us(ktime_get(), min
);
1908 u64 delta
= (u64
)(max
- min
) * NSEC_PER_USEC
;
1911 __set_current_state(TASK_UNINTERRUPTIBLE
);
1912 /* Do not return before the requested sleep time has elapsed */
1913 if (!schedule_hrtimeout_range(&exp
, delta
, HRTIMER_MODE_ABS
))
1917 EXPORT_SYMBOL(usleep_range
);