Linux 4.13.16
[linux/fpc-iii.git] / mm / memory_hotplug.c
blob8dccc317aac2a568bb7a3014705d894fc4248cd0
1 /*
2 * linux/mm/memory_hotplug.c
4 * Copyright (C)
5 */
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/bootmem.h>
37 #include <linux/compaction.h>
39 #include <asm/tlbflush.h>
41 #include "internal.h"
44 * online_page_callback contains pointer to current page onlining function.
45 * Initially it is generic_online_page(). If it is required it could be
46 * changed by calling set_online_page_callback() for callback registration
47 * and restore_online_page_callback() for generic callback restore.
50 static void generic_online_page(struct page *page);
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
57 void get_online_mems(void)
59 percpu_down_read(&mem_hotplug_lock);
62 void put_online_mems(void)
64 percpu_up_read(&mem_hotplug_lock);
67 bool movable_node_enabled = false;
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
76 static int __init setup_memhp_default_state(char *str)
78 if (!strcmp(str, "online"))
79 memhp_auto_online = true;
80 else if (!strcmp(str, "offline"))
81 memhp_auto_online = false;
83 return 1;
85 __setup("memhp_default_state=", setup_memhp_default_state);
87 void mem_hotplug_begin(void)
89 cpus_read_lock();
90 percpu_down_write(&mem_hotplug_lock);
93 void mem_hotplug_done(void)
95 percpu_up_write(&mem_hotplug_lock);
96 cpus_read_unlock();
99 /* add this memory to iomem resource */
100 static struct resource *register_memory_resource(u64 start, u64 size)
102 struct resource *res;
103 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
104 if (!res)
105 return ERR_PTR(-ENOMEM);
107 res->name = "System RAM";
108 res->start = start;
109 res->end = start + size - 1;
110 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
111 if (request_resource(&iomem_resource, res) < 0) {
112 pr_debug("System RAM resource %pR cannot be added\n", res);
113 kfree(res);
114 return ERR_PTR(-EEXIST);
116 return res;
119 static void release_memory_resource(struct resource *res)
121 if (!res)
122 return;
123 release_resource(res);
124 kfree(res);
125 return;
128 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
129 void get_page_bootmem(unsigned long info, struct page *page,
130 unsigned long type)
132 page->freelist = (void *)type;
133 SetPagePrivate(page);
134 set_page_private(page, info);
135 page_ref_inc(page);
138 void put_page_bootmem(struct page *page)
140 unsigned long type;
142 type = (unsigned long) page->freelist;
143 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
144 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
146 if (page_ref_dec_return(page) == 1) {
147 page->freelist = NULL;
148 ClearPagePrivate(page);
149 set_page_private(page, 0);
150 INIT_LIST_HEAD(&page->lru);
151 free_reserved_page(page);
155 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
156 #ifndef CONFIG_SPARSEMEM_VMEMMAP
157 static void register_page_bootmem_info_section(unsigned long start_pfn)
159 unsigned long *usemap, mapsize, section_nr, i;
160 struct mem_section *ms;
161 struct page *page, *memmap;
163 section_nr = pfn_to_section_nr(start_pfn);
164 ms = __nr_to_section(section_nr);
166 /* Get section's memmap address */
167 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
170 * Get page for the memmap's phys address
171 * XXX: need more consideration for sparse_vmemmap...
173 page = virt_to_page(memmap);
174 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
175 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
177 /* remember memmap's page */
178 for (i = 0; i < mapsize; i++, page++)
179 get_page_bootmem(section_nr, page, SECTION_INFO);
181 usemap = __nr_to_section(section_nr)->pageblock_flags;
182 page = virt_to_page(usemap);
184 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
186 for (i = 0; i < mapsize; i++, page++)
187 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
190 #else /* CONFIG_SPARSEMEM_VMEMMAP */
191 static void register_page_bootmem_info_section(unsigned long start_pfn)
193 unsigned long *usemap, mapsize, section_nr, i;
194 struct mem_section *ms;
195 struct page *page, *memmap;
197 if (!pfn_valid(start_pfn))
198 return;
200 section_nr = pfn_to_section_nr(start_pfn);
201 ms = __nr_to_section(section_nr);
203 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
205 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
207 usemap = __nr_to_section(section_nr)->pageblock_flags;
208 page = virt_to_page(usemap);
210 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
212 for (i = 0; i < mapsize; i++, page++)
213 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
215 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
217 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
219 unsigned long i, pfn, end_pfn, nr_pages;
220 int node = pgdat->node_id;
221 struct page *page;
223 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
224 page = virt_to_page(pgdat);
226 for (i = 0; i < nr_pages; i++, page++)
227 get_page_bootmem(node, page, NODE_INFO);
229 pfn = pgdat->node_start_pfn;
230 end_pfn = pgdat_end_pfn(pgdat);
232 /* register section info */
233 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
235 * Some platforms can assign the same pfn to multiple nodes - on
236 * node0 as well as nodeN. To avoid registering a pfn against
237 * multiple nodes we check that this pfn does not already
238 * reside in some other nodes.
240 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
241 register_page_bootmem_info_section(pfn);
244 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
246 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
247 bool want_memblock)
249 int ret;
250 int i;
252 if (pfn_valid(phys_start_pfn))
253 return -EEXIST;
255 ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn);
256 if (ret < 0)
257 return ret;
260 * Make all the pages reserved so that nobody will stumble over half
261 * initialized state.
262 * FIXME: We also have to associate it with a node because pfn_to_node
263 * relies on having page with the proper node.
265 for (i = 0; i < PAGES_PER_SECTION; i++) {
266 unsigned long pfn = phys_start_pfn + i;
267 struct page *page;
268 if (!pfn_valid(pfn))
269 continue;
271 page = pfn_to_page(pfn);
272 set_page_node(page, nid);
273 SetPageReserved(page);
276 if (!want_memblock)
277 return 0;
279 return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
283 * Reasonably generic function for adding memory. It is
284 * expected that archs that support memory hotplug will
285 * call this function after deciding the zone to which to
286 * add the new pages.
288 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
289 unsigned long nr_pages, bool want_memblock)
291 unsigned long i;
292 int err = 0;
293 int start_sec, end_sec;
294 struct vmem_altmap *altmap;
296 /* during initialize mem_map, align hot-added range to section */
297 start_sec = pfn_to_section_nr(phys_start_pfn);
298 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
300 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
301 if (altmap) {
303 * Validate altmap is within bounds of the total request
305 if (altmap->base_pfn != phys_start_pfn
306 || vmem_altmap_offset(altmap) > nr_pages) {
307 pr_warn_once("memory add fail, invalid altmap\n");
308 err = -EINVAL;
309 goto out;
311 altmap->alloc = 0;
314 for (i = start_sec; i <= end_sec; i++) {
315 err = __add_section(nid, section_nr_to_pfn(i), want_memblock);
318 * EEXIST is finally dealt with by ioresource collision
319 * check. see add_memory() => register_memory_resource()
320 * Warning will be printed if there is collision.
322 if (err && (err != -EEXIST))
323 break;
324 err = 0;
326 vmemmap_populate_print_last();
327 out:
328 return err;
330 EXPORT_SYMBOL_GPL(__add_pages);
332 #ifdef CONFIG_MEMORY_HOTREMOVE
333 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
334 static int find_smallest_section_pfn(int nid, struct zone *zone,
335 unsigned long start_pfn,
336 unsigned long end_pfn)
338 struct mem_section *ms;
340 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
341 ms = __pfn_to_section(start_pfn);
343 if (unlikely(!valid_section(ms)))
344 continue;
346 if (unlikely(pfn_to_nid(start_pfn) != nid))
347 continue;
349 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
350 continue;
352 return start_pfn;
355 return 0;
358 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
359 static int find_biggest_section_pfn(int nid, struct zone *zone,
360 unsigned long start_pfn,
361 unsigned long end_pfn)
363 struct mem_section *ms;
364 unsigned long pfn;
366 /* pfn is the end pfn of a memory section. */
367 pfn = end_pfn - 1;
368 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
369 ms = __pfn_to_section(pfn);
371 if (unlikely(!valid_section(ms)))
372 continue;
374 if (unlikely(pfn_to_nid(pfn) != nid))
375 continue;
377 if (zone && zone != page_zone(pfn_to_page(pfn)))
378 continue;
380 return pfn;
383 return 0;
386 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
387 unsigned long end_pfn)
389 unsigned long zone_start_pfn = zone->zone_start_pfn;
390 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
391 unsigned long zone_end_pfn = z;
392 unsigned long pfn;
393 struct mem_section *ms;
394 int nid = zone_to_nid(zone);
396 zone_span_writelock(zone);
397 if (zone_start_pfn == start_pfn) {
399 * If the section is smallest section in the zone, it need
400 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
401 * In this case, we find second smallest valid mem_section
402 * for shrinking zone.
404 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
405 zone_end_pfn);
406 if (pfn) {
407 zone->zone_start_pfn = pfn;
408 zone->spanned_pages = zone_end_pfn - pfn;
410 } else if (zone_end_pfn == end_pfn) {
412 * If the section is biggest section in the zone, it need
413 * shrink zone->spanned_pages.
414 * In this case, we find second biggest valid mem_section for
415 * shrinking zone.
417 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
418 start_pfn);
419 if (pfn)
420 zone->spanned_pages = pfn - zone_start_pfn + 1;
424 * The section is not biggest or smallest mem_section in the zone, it
425 * only creates a hole in the zone. So in this case, we need not
426 * change the zone. But perhaps, the zone has only hole data. Thus
427 * it check the zone has only hole or not.
429 pfn = zone_start_pfn;
430 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
431 ms = __pfn_to_section(pfn);
433 if (unlikely(!valid_section(ms)))
434 continue;
436 if (page_zone(pfn_to_page(pfn)) != zone)
437 continue;
439 /* If the section is current section, it continues the loop */
440 if (start_pfn == pfn)
441 continue;
443 /* If we find valid section, we have nothing to do */
444 zone_span_writeunlock(zone);
445 return;
448 /* The zone has no valid section */
449 zone->zone_start_pfn = 0;
450 zone->spanned_pages = 0;
451 zone_span_writeunlock(zone);
454 static void shrink_pgdat_span(struct pglist_data *pgdat,
455 unsigned long start_pfn, unsigned long end_pfn)
457 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
458 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
459 unsigned long pgdat_end_pfn = p;
460 unsigned long pfn;
461 struct mem_section *ms;
462 int nid = pgdat->node_id;
464 if (pgdat_start_pfn == start_pfn) {
466 * If the section is smallest section in the pgdat, it need
467 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
468 * In this case, we find second smallest valid mem_section
469 * for shrinking zone.
471 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
472 pgdat_end_pfn);
473 if (pfn) {
474 pgdat->node_start_pfn = pfn;
475 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
477 } else if (pgdat_end_pfn == end_pfn) {
479 * If the section is biggest section in the pgdat, it need
480 * shrink pgdat->node_spanned_pages.
481 * In this case, we find second biggest valid mem_section for
482 * shrinking zone.
484 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
485 start_pfn);
486 if (pfn)
487 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
491 * If the section is not biggest or smallest mem_section in the pgdat,
492 * it only creates a hole in the pgdat. So in this case, we need not
493 * change the pgdat.
494 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
495 * has only hole or not.
497 pfn = pgdat_start_pfn;
498 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
499 ms = __pfn_to_section(pfn);
501 if (unlikely(!valid_section(ms)))
502 continue;
504 if (pfn_to_nid(pfn) != nid)
505 continue;
507 /* If the section is current section, it continues the loop */
508 if (start_pfn == pfn)
509 continue;
511 /* If we find valid section, we have nothing to do */
512 return;
515 /* The pgdat has no valid section */
516 pgdat->node_start_pfn = 0;
517 pgdat->node_spanned_pages = 0;
520 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
522 struct pglist_data *pgdat = zone->zone_pgdat;
523 int nr_pages = PAGES_PER_SECTION;
524 unsigned long flags;
526 pgdat_resize_lock(zone->zone_pgdat, &flags);
527 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
528 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
529 pgdat_resize_unlock(zone->zone_pgdat, &flags);
532 static int __remove_section(struct zone *zone, struct mem_section *ms,
533 unsigned long map_offset)
535 unsigned long start_pfn;
536 int scn_nr;
537 int ret = -EINVAL;
539 if (!valid_section(ms))
540 return ret;
542 ret = unregister_memory_section(ms);
543 if (ret)
544 return ret;
546 scn_nr = __section_nr(ms);
547 start_pfn = section_nr_to_pfn(scn_nr);
548 __remove_zone(zone, start_pfn);
550 sparse_remove_one_section(zone, ms, map_offset);
551 return 0;
555 * __remove_pages() - remove sections of pages from a zone
556 * @zone: zone from which pages need to be removed
557 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
558 * @nr_pages: number of pages to remove (must be multiple of section size)
560 * Generic helper function to remove section mappings and sysfs entries
561 * for the section of the memory we are removing. Caller needs to make
562 * sure that pages are marked reserved and zones are adjust properly by
563 * calling offline_pages().
565 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
566 unsigned long nr_pages)
568 unsigned long i;
569 unsigned long map_offset = 0;
570 int sections_to_remove, ret = 0;
572 /* In the ZONE_DEVICE case device driver owns the memory region */
573 if (is_dev_zone(zone)) {
574 struct page *page = pfn_to_page(phys_start_pfn);
575 struct vmem_altmap *altmap;
577 altmap = to_vmem_altmap((unsigned long) page);
578 if (altmap)
579 map_offset = vmem_altmap_offset(altmap);
580 } else {
581 resource_size_t start, size;
583 start = phys_start_pfn << PAGE_SHIFT;
584 size = nr_pages * PAGE_SIZE;
586 ret = release_mem_region_adjustable(&iomem_resource, start,
587 size);
588 if (ret) {
589 resource_size_t endres = start + size - 1;
591 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
592 &start, &endres, ret);
596 clear_zone_contiguous(zone);
599 * We can only remove entire sections
601 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
602 BUG_ON(nr_pages % PAGES_PER_SECTION);
604 sections_to_remove = nr_pages / PAGES_PER_SECTION;
605 for (i = 0; i < sections_to_remove; i++) {
606 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
608 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
609 map_offset = 0;
610 if (ret)
611 break;
614 set_zone_contiguous(zone);
616 return ret;
618 #endif /* CONFIG_MEMORY_HOTREMOVE */
620 int set_online_page_callback(online_page_callback_t callback)
622 int rc = -EINVAL;
624 get_online_mems();
625 mutex_lock(&online_page_callback_lock);
627 if (online_page_callback == generic_online_page) {
628 online_page_callback = callback;
629 rc = 0;
632 mutex_unlock(&online_page_callback_lock);
633 put_online_mems();
635 return rc;
637 EXPORT_SYMBOL_GPL(set_online_page_callback);
639 int restore_online_page_callback(online_page_callback_t callback)
641 int rc = -EINVAL;
643 get_online_mems();
644 mutex_lock(&online_page_callback_lock);
646 if (online_page_callback == callback) {
647 online_page_callback = generic_online_page;
648 rc = 0;
651 mutex_unlock(&online_page_callback_lock);
652 put_online_mems();
654 return rc;
656 EXPORT_SYMBOL_GPL(restore_online_page_callback);
658 void __online_page_set_limits(struct page *page)
661 EXPORT_SYMBOL_GPL(__online_page_set_limits);
663 void __online_page_increment_counters(struct page *page)
665 adjust_managed_page_count(page, 1);
667 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
669 void __online_page_free(struct page *page)
671 __free_reserved_page(page);
673 EXPORT_SYMBOL_GPL(__online_page_free);
675 static void generic_online_page(struct page *page)
677 __online_page_set_limits(page);
678 __online_page_increment_counters(page);
679 __online_page_free(page);
682 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
683 void *arg)
685 unsigned long i;
686 unsigned long onlined_pages = *(unsigned long *)arg;
687 struct page *page;
689 if (PageReserved(pfn_to_page(start_pfn)))
690 for (i = 0; i < nr_pages; i++) {
691 page = pfn_to_page(start_pfn + i);
692 (*online_page_callback)(page);
693 onlined_pages++;
696 online_mem_sections(start_pfn, start_pfn + nr_pages);
698 *(unsigned long *)arg = onlined_pages;
699 return 0;
702 /* check which state of node_states will be changed when online memory */
703 static void node_states_check_changes_online(unsigned long nr_pages,
704 struct zone *zone, struct memory_notify *arg)
706 int nid = zone_to_nid(zone);
707 enum zone_type zone_last = ZONE_NORMAL;
710 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
711 * contains nodes which have zones of 0...ZONE_NORMAL,
712 * set zone_last to ZONE_NORMAL.
714 * If we don't have HIGHMEM nor movable node,
715 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
716 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
718 if (N_MEMORY == N_NORMAL_MEMORY)
719 zone_last = ZONE_MOVABLE;
722 * if the memory to be online is in a zone of 0...zone_last, and
723 * the zones of 0...zone_last don't have memory before online, we will
724 * need to set the node to node_states[N_NORMAL_MEMORY] after
725 * the memory is online.
727 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
728 arg->status_change_nid_normal = nid;
729 else
730 arg->status_change_nid_normal = -1;
732 #ifdef CONFIG_HIGHMEM
734 * If we have movable node, node_states[N_HIGH_MEMORY]
735 * contains nodes which have zones of 0...ZONE_HIGHMEM,
736 * set zone_last to ZONE_HIGHMEM.
738 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
739 * contains nodes which have zones of 0...ZONE_MOVABLE,
740 * set zone_last to ZONE_MOVABLE.
742 zone_last = ZONE_HIGHMEM;
743 if (N_MEMORY == N_HIGH_MEMORY)
744 zone_last = ZONE_MOVABLE;
746 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
747 arg->status_change_nid_high = nid;
748 else
749 arg->status_change_nid_high = -1;
750 #else
751 arg->status_change_nid_high = arg->status_change_nid_normal;
752 #endif
755 * if the node don't have memory befor online, we will need to
756 * set the node to node_states[N_MEMORY] after the memory
757 * is online.
759 if (!node_state(nid, N_MEMORY))
760 arg->status_change_nid = nid;
761 else
762 arg->status_change_nid = -1;
765 static void node_states_set_node(int node, struct memory_notify *arg)
767 if (arg->status_change_nid_normal >= 0)
768 node_set_state(node, N_NORMAL_MEMORY);
770 if (arg->status_change_nid_high >= 0)
771 node_set_state(node, N_HIGH_MEMORY);
773 node_set_state(node, N_MEMORY);
776 bool allow_online_pfn_range(int nid, unsigned long pfn, unsigned long nr_pages, int online_type)
778 struct pglist_data *pgdat = NODE_DATA(nid);
779 struct zone *movable_zone = &pgdat->node_zones[ZONE_MOVABLE];
780 struct zone *default_zone = default_zone_for_pfn(nid, pfn, nr_pages);
783 * TODO there shouldn't be any inherent reason to have ZONE_NORMAL
784 * physically before ZONE_MOVABLE. All we need is they do not
785 * overlap. Historically we didn't allow ZONE_NORMAL after ZONE_MOVABLE
786 * though so let's stick with it for simplicity for now.
787 * TODO make sure we do not overlap with ZONE_DEVICE
789 if (online_type == MMOP_ONLINE_KERNEL) {
790 if (zone_is_empty(movable_zone))
791 return true;
792 return movable_zone->zone_start_pfn >= pfn + nr_pages;
793 } else if (online_type == MMOP_ONLINE_MOVABLE) {
794 return zone_end_pfn(default_zone) <= pfn;
797 /* MMOP_ONLINE_KEEP will always succeed and inherits the current zone */
798 return online_type == MMOP_ONLINE_KEEP;
801 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
802 unsigned long nr_pages)
804 unsigned long old_end_pfn = zone_end_pfn(zone);
806 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
807 zone->zone_start_pfn = start_pfn;
809 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
812 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
813 unsigned long nr_pages)
815 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
817 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
818 pgdat->node_start_pfn = start_pfn;
820 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
823 void __ref move_pfn_range_to_zone(struct zone *zone,
824 unsigned long start_pfn, unsigned long nr_pages)
826 struct pglist_data *pgdat = zone->zone_pgdat;
827 int nid = pgdat->node_id;
828 unsigned long flags;
830 if (zone_is_empty(zone))
831 init_currently_empty_zone(zone, start_pfn, nr_pages);
833 clear_zone_contiguous(zone);
835 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
836 pgdat_resize_lock(pgdat, &flags);
837 zone_span_writelock(zone);
838 resize_zone_range(zone, start_pfn, nr_pages);
839 zone_span_writeunlock(zone);
840 resize_pgdat_range(pgdat, start_pfn, nr_pages);
841 pgdat_resize_unlock(pgdat, &flags);
844 * TODO now we have a visible range of pages which are not associated
845 * with their zone properly. Not nice but set_pfnblock_flags_mask
846 * expects the zone spans the pfn range. All the pages in the range
847 * are reserved so nobody should be touching them so we should be safe
849 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, MEMMAP_HOTPLUG);
851 set_zone_contiguous(zone);
855 * Returns a default kernel memory zone for the given pfn range.
856 * If no kernel zone covers this pfn range it will automatically go
857 * to the ZONE_NORMAL.
859 struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
860 unsigned long nr_pages)
862 struct pglist_data *pgdat = NODE_DATA(nid);
863 int zid;
865 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
866 struct zone *zone = &pgdat->node_zones[zid];
868 if (zone_intersects(zone, start_pfn, nr_pages))
869 return zone;
872 return &pgdat->node_zones[ZONE_NORMAL];
875 static inline bool movable_pfn_range(int nid, struct zone *default_zone,
876 unsigned long start_pfn, unsigned long nr_pages)
878 if (!allow_online_pfn_range(nid, start_pfn, nr_pages,
879 MMOP_ONLINE_KERNEL))
880 return true;
882 if (!movable_node_is_enabled())
883 return false;
885 return !zone_intersects(default_zone, start_pfn, nr_pages);
889 * Associates the given pfn range with the given node and the zone appropriate
890 * for the given online type.
892 static struct zone * __meminit move_pfn_range(int online_type, int nid,
893 unsigned long start_pfn, unsigned long nr_pages)
895 struct pglist_data *pgdat = NODE_DATA(nid);
896 struct zone *zone = default_zone_for_pfn(nid, start_pfn, nr_pages);
898 if (online_type == MMOP_ONLINE_KEEP) {
899 struct zone *movable_zone = &pgdat->node_zones[ZONE_MOVABLE];
901 * MMOP_ONLINE_KEEP defaults to MMOP_ONLINE_KERNEL but use
902 * movable zone if that is not possible (e.g. we are within
903 * or past the existing movable zone). movable_node overrides
904 * this default and defaults to movable zone
906 if (movable_pfn_range(nid, zone, start_pfn, nr_pages))
907 zone = movable_zone;
908 } else if (online_type == MMOP_ONLINE_MOVABLE) {
909 zone = &pgdat->node_zones[ZONE_MOVABLE];
912 move_pfn_range_to_zone(zone, start_pfn, nr_pages);
913 return zone;
916 /* Must be protected by mem_hotplug_begin() */
917 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
919 unsigned long flags;
920 unsigned long onlined_pages = 0;
921 struct zone *zone;
922 int need_zonelists_rebuild = 0;
923 int nid;
924 int ret;
925 struct memory_notify arg;
927 nid = pfn_to_nid(pfn);
928 if (!allow_online_pfn_range(nid, pfn, nr_pages, online_type))
929 return -EINVAL;
931 /* associate pfn range with the zone */
932 zone = move_pfn_range(online_type, nid, pfn, nr_pages);
934 arg.start_pfn = pfn;
935 arg.nr_pages = nr_pages;
936 node_states_check_changes_online(nr_pages, zone, &arg);
938 ret = memory_notify(MEM_GOING_ONLINE, &arg);
939 ret = notifier_to_errno(ret);
940 if (ret)
941 goto failed_addition;
944 * If this zone is not populated, then it is not in zonelist.
945 * This means the page allocator ignores this zone.
946 * So, zonelist must be updated after online.
948 mutex_lock(&zonelists_mutex);
949 if (!populated_zone(zone)) {
950 need_zonelists_rebuild = 1;
951 build_all_zonelists(NULL, zone);
954 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
955 online_pages_range);
956 if (ret) {
957 if (need_zonelists_rebuild)
958 zone_pcp_reset(zone);
959 mutex_unlock(&zonelists_mutex);
960 goto failed_addition;
963 zone->present_pages += onlined_pages;
965 pgdat_resize_lock(zone->zone_pgdat, &flags);
966 zone->zone_pgdat->node_present_pages += onlined_pages;
967 pgdat_resize_unlock(zone->zone_pgdat, &flags);
969 if (onlined_pages) {
970 node_states_set_node(nid, &arg);
971 if (need_zonelists_rebuild)
972 build_all_zonelists(NULL, NULL);
973 else
974 zone_pcp_update(zone);
977 mutex_unlock(&zonelists_mutex);
979 init_per_zone_wmark_min();
981 if (onlined_pages) {
982 kswapd_run(nid);
983 kcompactd_run(nid);
986 vm_total_pages = nr_free_pagecache_pages();
988 writeback_set_ratelimit();
990 if (onlined_pages)
991 memory_notify(MEM_ONLINE, &arg);
992 return 0;
994 failed_addition:
995 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
996 (unsigned long long) pfn << PAGE_SHIFT,
997 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
998 memory_notify(MEM_CANCEL_ONLINE, &arg);
999 return ret;
1001 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1003 static void reset_node_present_pages(pg_data_t *pgdat)
1005 struct zone *z;
1007 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1008 z->present_pages = 0;
1010 pgdat->node_present_pages = 0;
1013 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1014 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1016 struct pglist_data *pgdat;
1017 unsigned long zones_size[MAX_NR_ZONES] = {0};
1018 unsigned long zholes_size[MAX_NR_ZONES] = {0};
1019 unsigned long start_pfn = PFN_DOWN(start);
1021 pgdat = NODE_DATA(nid);
1022 if (!pgdat) {
1023 pgdat = arch_alloc_nodedata(nid);
1024 if (!pgdat)
1025 return NULL;
1027 arch_refresh_nodedata(nid, pgdat);
1028 } else {
1030 * Reset the nr_zones, order and classzone_idx before reuse.
1031 * Note that kswapd will init kswapd_classzone_idx properly
1032 * when it starts in the near future.
1034 pgdat->nr_zones = 0;
1035 pgdat->kswapd_order = 0;
1036 pgdat->kswapd_classzone_idx = 0;
1039 /* we can use NODE_DATA(nid) from here */
1041 /* init node's zones as empty zones, we don't have any present pages.*/
1042 free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1043 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1046 * The node we allocated has no zone fallback lists. For avoiding
1047 * to access not-initialized zonelist, build here.
1049 mutex_lock(&zonelists_mutex);
1050 build_all_zonelists(pgdat, NULL);
1051 mutex_unlock(&zonelists_mutex);
1054 * zone->managed_pages is set to an approximate value in
1055 * free_area_init_core(), which will cause
1056 * /sys/device/system/node/nodeX/meminfo has wrong data.
1057 * So reset it to 0 before any memory is onlined.
1059 reset_node_managed_pages(pgdat);
1062 * When memory is hot-added, all the memory is in offline state. So
1063 * clear all zones' present_pages because they will be updated in
1064 * online_pages() and offline_pages().
1066 reset_node_present_pages(pgdat);
1068 return pgdat;
1071 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1073 arch_refresh_nodedata(nid, NULL);
1074 free_percpu(pgdat->per_cpu_nodestats);
1075 arch_free_nodedata(pgdat);
1076 return;
1081 * try_online_node - online a node if offlined
1083 * called by cpu_up() to online a node without onlined memory.
1085 int try_online_node(int nid)
1087 pg_data_t *pgdat;
1088 int ret;
1090 if (node_online(nid))
1091 return 0;
1093 mem_hotplug_begin();
1094 pgdat = hotadd_new_pgdat(nid, 0);
1095 if (!pgdat) {
1096 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1097 ret = -ENOMEM;
1098 goto out;
1100 node_set_online(nid);
1101 ret = register_one_node(nid);
1102 BUG_ON(ret);
1104 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1105 mutex_lock(&zonelists_mutex);
1106 build_all_zonelists(NULL, NULL);
1107 mutex_unlock(&zonelists_mutex);
1110 out:
1111 mem_hotplug_done();
1112 return ret;
1115 static int check_hotplug_memory_range(u64 start, u64 size)
1117 u64 start_pfn = PFN_DOWN(start);
1118 u64 nr_pages = size >> PAGE_SHIFT;
1120 /* Memory range must be aligned with section */
1121 if ((start_pfn & ~PAGE_SECTION_MASK) ||
1122 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1123 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1124 (unsigned long long)start,
1125 (unsigned long long)size);
1126 return -EINVAL;
1129 return 0;
1132 static int online_memory_block(struct memory_block *mem, void *arg)
1134 return device_online(&mem->dev);
1137 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1138 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1140 u64 start, size;
1141 pg_data_t *pgdat = NULL;
1142 bool new_pgdat;
1143 bool new_node;
1144 int ret;
1146 start = res->start;
1147 size = resource_size(res);
1149 ret = check_hotplug_memory_range(start, size);
1150 if (ret)
1151 return ret;
1153 { /* Stupid hack to suppress address-never-null warning */
1154 void *p = NODE_DATA(nid);
1155 new_pgdat = !p;
1158 mem_hotplug_begin();
1161 * Add new range to memblock so that when hotadd_new_pgdat() is called
1162 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1163 * this new range and calculate total pages correctly. The range will
1164 * be removed at hot-remove time.
1166 memblock_add_node(start, size, nid);
1168 new_node = !node_online(nid);
1169 if (new_node) {
1170 pgdat = hotadd_new_pgdat(nid, start);
1171 ret = -ENOMEM;
1172 if (!pgdat)
1173 goto error;
1176 /* call arch's memory hotadd */
1177 ret = arch_add_memory(nid, start, size, true);
1179 if (ret < 0)
1180 goto error;
1182 /* we online node here. we can't roll back from here. */
1183 node_set_online(nid);
1185 if (new_node) {
1186 unsigned long start_pfn = start >> PAGE_SHIFT;
1187 unsigned long nr_pages = size >> PAGE_SHIFT;
1189 ret = __register_one_node(nid);
1190 if (ret)
1191 goto register_fail;
1194 * link memory sections under this node. This is already
1195 * done when creatig memory section in register_new_memory
1196 * but that depends to have the node registered so offline
1197 * nodes have to go through register_node.
1198 * TODO clean up this mess.
1200 ret = link_mem_sections(nid, start_pfn, nr_pages);
1201 register_fail:
1203 * If sysfs file of new node can't create, cpu on the node
1204 * can't be hot-added. There is no rollback way now.
1205 * So, check by BUG_ON() to catch it reluctantly..
1207 BUG_ON(ret);
1210 /* create new memmap entry */
1211 firmware_map_add_hotplug(start, start + size, "System RAM");
1213 /* online pages if requested */
1214 if (online)
1215 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1216 NULL, online_memory_block);
1218 goto out;
1220 error:
1221 /* rollback pgdat allocation and others */
1222 if (new_pgdat && pgdat)
1223 rollback_node_hotadd(nid, pgdat);
1224 memblock_remove(start, size);
1226 out:
1227 mem_hotplug_done();
1228 return ret;
1230 EXPORT_SYMBOL_GPL(add_memory_resource);
1232 int __ref add_memory(int nid, u64 start, u64 size)
1234 struct resource *res;
1235 int ret;
1237 res = register_memory_resource(start, size);
1238 if (IS_ERR(res))
1239 return PTR_ERR(res);
1241 ret = add_memory_resource(nid, res, memhp_auto_online);
1242 if (ret < 0)
1243 release_memory_resource(res);
1244 return ret;
1246 EXPORT_SYMBOL_GPL(add_memory);
1248 #ifdef CONFIG_MEMORY_HOTREMOVE
1250 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1251 * set and the size of the free page is given by page_order(). Using this,
1252 * the function determines if the pageblock contains only free pages.
1253 * Due to buddy contraints, a free page at least the size of a pageblock will
1254 * be located at the start of the pageblock
1256 static inline int pageblock_free(struct page *page)
1258 return PageBuddy(page) && page_order(page) >= pageblock_order;
1261 /* Return the start of the next active pageblock after a given page */
1262 static struct page *next_active_pageblock(struct page *page)
1264 /* Ensure the starting page is pageblock-aligned */
1265 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1267 /* If the entire pageblock is free, move to the end of free page */
1268 if (pageblock_free(page)) {
1269 int order;
1270 /* be careful. we don't have locks, page_order can be changed.*/
1271 order = page_order(page);
1272 if ((order < MAX_ORDER) && (order >= pageblock_order))
1273 return page + (1 << order);
1276 return page + pageblock_nr_pages;
1279 /* Checks if this range of memory is likely to be hot-removable. */
1280 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1282 struct page *page = pfn_to_page(start_pfn);
1283 struct page *end_page = page + nr_pages;
1285 /* Check the starting page of each pageblock within the range */
1286 for (; page < end_page; page = next_active_pageblock(page)) {
1287 if (!is_pageblock_removable_nolock(page))
1288 return false;
1289 cond_resched();
1292 /* All pageblocks in the memory block are likely to be hot-removable */
1293 return true;
1297 * Confirm all pages in a range [start, end) belong to the same zone.
1298 * When true, return its valid [start, end).
1300 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1301 unsigned long *valid_start, unsigned long *valid_end)
1303 unsigned long pfn, sec_end_pfn;
1304 unsigned long start, end;
1305 struct zone *zone = NULL;
1306 struct page *page;
1307 int i;
1308 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1309 pfn < end_pfn;
1310 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1311 /* Make sure the memory section is present first */
1312 if (!present_section_nr(pfn_to_section_nr(pfn)))
1313 continue;
1314 for (; pfn < sec_end_pfn && pfn < end_pfn;
1315 pfn += MAX_ORDER_NR_PAGES) {
1316 i = 0;
1317 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1318 while ((i < MAX_ORDER_NR_PAGES) &&
1319 !pfn_valid_within(pfn + i))
1320 i++;
1321 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1322 continue;
1323 page = pfn_to_page(pfn + i);
1324 if (zone && page_zone(page) != zone)
1325 return 0;
1326 if (!zone)
1327 start = pfn + i;
1328 zone = page_zone(page);
1329 end = pfn + MAX_ORDER_NR_PAGES;
1333 if (zone) {
1334 *valid_start = start;
1335 *valid_end = min(end, end_pfn);
1336 return 1;
1337 } else {
1338 return 0;
1343 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1344 * non-lru movable pages and hugepages). We scan pfn because it's much
1345 * easier than scanning over linked list. This function returns the pfn
1346 * of the first found movable page if it's found, otherwise 0.
1348 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1350 unsigned long pfn;
1351 struct page *page;
1352 for (pfn = start; pfn < end; pfn++) {
1353 if (pfn_valid(pfn)) {
1354 page = pfn_to_page(pfn);
1355 if (PageLRU(page))
1356 return pfn;
1357 if (__PageMovable(page))
1358 return pfn;
1359 if (PageHuge(page)) {
1360 if (page_huge_active(page))
1361 return pfn;
1362 else
1363 pfn = round_up(pfn + 1,
1364 1 << compound_order(page)) - 1;
1368 return 0;
1371 static struct page *new_node_page(struct page *page, unsigned long private,
1372 int **result)
1374 int nid = page_to_nid(page);
1375 nodemask_t nmask = node_states[N_MEMORY];
1378 * try to allocate from a different node but reuse this node if there
1379 * are no other online nodes to be used (e.g. we are offlining a part
1380 * of the only existing node)
1382 node_clear(nid, nmask);
1383 if (nodes_empty(nmask))
1384 node_set(nid, nmask);
1386 return new_page_nodemask(page, nid, &nmask);
1389 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1390 static int
1391 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1393 unsigned long pfn;
1394 struct page *page;
1395 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1396 int not_managed = 0;
1397 int ret = 0;
1398 LIST_HEAD(source);
1400 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1401 if (!pfn_valid(pfn))
1402 continue;
1403 page = pfn_to_page(pfn);
1405 if (PageHuge(page)) {
1406 struct page *head = compound_head(page);
1407 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1408 if (compound_order(head) > PFN_SECTION_SHIFT) {
1409 ret = -EBUSY;
1410 break;
1412 if (isolate_huge_page(page, &source))
1413 move_pages -= 1 << compound_order(head);
1414 continue;
1417 if (!get_page_unless_zero(page))
1418 continue;
1420 * We can skip free pages. And we can deal with pages on
1421 * LRU and non-lru movable pages.
1423 if (PageLRU(page))
1424 ret = isolate_lru_page(page);
1425 else
1426 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1427 if (!ret) { /* Success */
1428 put_page(page);
1429 list_add_tail(&page->lru, &source);
1430 move_pages--;
1431 if (!__PageMovable(page))
1432 inc_node_page_state(page, NR_ISOLATED_ANON +
1433 page_is_file_cache(page));
1435 } else {
1436 #ifdef CONFIG_DEBUG_VM
1437 pr_alert("failed to isolate pfn %lx\n", pfn);
1438 dump_page(page, "isolation failed");
1439 #endif
1440 put_page(page);
1441 /* Because we don't have big zone->lock. we should
1442 check this again here. */
1443 if (page_count(page)) {
1444 not_managed++;
1445 ret = -EBUSY;
1446 break;
1450 if (!list_empty(&source)) {
1451 if (not_managed) {
1452 putback_movable_pages(&source);
1453 goto out;
1456 /* Allocate a new page from the nearest neighbor node */
1457 ret = migrate_pages(&source, new_node_page, NULL, 0,
1458 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1459 if (ret)
1460 putback_movable_pages(&source);
1462 out:
1463 return ret;
1467 * remove from free_area[] and mark all as Reserved.
1469 static int
1470 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1471 void *data)
1473 __offline_isolated_pages(start, start + nr_pages);
1474 return 0;
1477 static void
1478 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1480 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1481 offline_isolated_pages_cb);
1485 * Check all pages in range, recoreded as memory resource, are isolated.
1487 static int
1488 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1489 void *data)
1491 int ret;
1492 long offlined = *(long *)data;
1493 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1494 offlined = nr_pages;
1495 if (!ret)
1496 *(long *)data += offlined;
1497 return ret;
1500 static long
1501 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1503 long offlined = 0;
1504 int ret;
1506 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1507 check_pages_isolated_cb);
1508 if (ret < 0)
1509 offlined = (long)ret;
1510 return offlined;
1513 static int __init cmdline_parse_movable_node(char *p)
1515 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1516 movable_node_enabled = true;
1517 #else
1518 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1519 #endif
1520 return 0;
1522 early_param("movable_node", cmdline_parse_movable_node);
1524 /* check which state of node_states will be changed when offline memory */
1525 static void node_states_check_changes_offline(unsigned long nr_pages,
1526 struct zone *zone, struct memory_notify *arg)
1528 struct pglist_data *pgdat = zone->zone_pgdat;
1529 unsigned long present_pages = 0;
1530 enum zone_type zt, zone_last = ZONE_NORMAL;
1533 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1534 * contains nodes which have zones of 0...ZONE_NORMAL,
1535 * set zone_last to ZONE_NORMAL.
1537 * If we don't have HIGHMEM nor movable node,
1538 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1539 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1541 if (N_MEMORY == N_NORMAL_MEMORY)
1542 zone_last = ZONE_MOVABLE;
1545 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1546 * If the memory to be offline is in a zone of 0...zone_last,
1547 * and it is the last present memory, 0...zone_last will
1548 * become empty after offline , thus we can determind we will
1549 * need to clear the node from node_states[N_NORMAL_MEMORY].
1551 for (zt = 0; zt <= zone_last; zt++)
1552 present_pages += pgdat->node_zones[zt].present_pages;
1553 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1554 arg->status_change_nid_normal = zone_to_nid(zone);
1555 else
1556 arg->status_change_nid_normal = -1;
1558 #ifdef CONFIG_HIGHMEM
1560 * If we have movable node, node_states[N_HIGH_MEMORY]
1561 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1562 * set zone_last to ZONE_HIGHMEM.
1564 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1565 * contains nodes which have zones of 0...ZONE_MOVABLE,
1566 * set zone_last to ZONE_MOVABLE.
1568 zone_last = ZONE_HIGHMEM;
1569 if (N_MEMORY == N_HIGH_MEMORY)
1570 zone_last = ZONE_MOVABLE;
1572 for (; zt <= zone_last; zt++)
1573 present_pages += pgdat->node_zones[zt].present_pages;
1574 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1575 arg->status_change_nid_high = zone_to_nid(zone);
1576 else
1577 arg->status_change_nid_high = -1;
1578 #else
1579 arg->status_change_nid_high = arg->status_change_nid_normal;
1580 #endif
1583 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1585 zone_last = ZONE_MOVABLE;
1588 * check whether node_states[N_HIGH_MEMORY] will be changed
1589 * If we try to offline the last present @nr_pages from the node,
1590 * we can determind we will need to clear the node from
1591 * node_states[N_HIGH_MEMORY].
1593 for (; zt <= zone_last; zt++)
1594 present_pages += pgdat->node_zones[zt].present_pages;
1595 if (nr_pages >= present_pages)
1596 arg->status_change_nid = zone_to_nid(zone);
1597 else
1598 arg->status_change_nid = -1;
1601 static void node_states_clear_node(int node, struct memory_notify *arg)
1603 if (arg->status_change_nid_normal >= 0)
1604 node_clear_state(node, N_NORMAL_MEMORY);
1606 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1607 (arg->status_change_nid_high >= 0))
1608 node_clear_state(node, N_HIGH_MEMORY);
1610 if ((N_MEMORY != N_HIGH_MEMORY) &&
1611 (arg->status_change_nid >= 0))
1612 node_clear_state(node, N_MEMORY);
1615 static int __ref __offline_pages(unsigned long start_pfn,
1616 unsigned long end_pfn, unsigned long timeout)
1618 unsigned long pfn, nr_pages, expire;
1619 long offlined_pages;
1620 int ret, drain, retry_max, node;
1621 unsigned long flags;
1622 unsigned long valid_start, valid_end;
1623 struct zone *zone;
1624 struct memory_notify arg;
1626 /* at least, alignment against pageblock is necessary */
1627 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1628 return -EINVAL;
1629 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1630 return -EINVAL;
1631 /* This makes hotplug much easier...and readable.
1632 we assume this for now. .*/
1633 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1634 return -EINVAL;
1636 zone = page_zone(pfn_to_page(valid_start));
1637 node = zone_to_nid(zone);
1638 nr_pages = end_pfn - start_pfn;
1640 /* set above range as isolated */
1641 ret = start_isolate_page_range(start_pfn, end_pfn,
1642 MIGRATE_MOVABLE, true);
1643 if (ret)
1644 return ret;
1646 arg.start_pfn = start_pfn;
1647 arg.nr_pages = nr_pages;
1648 node_states_check_changes_offline(nr_pages, zone, &arg);
1650 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1651 ret = notifier_to_errno(ret);
1652 if (ret)
1653 goto failed_removal;
1655 pfn = start_pfn;
1656 expire = jiffies + timeout;
1657 drain = 0;
1658 retry_max = 5;
1659 repeat:
1660 /* start memory hot removal */
1661 ret = -EAGAIN;
1662 if (time_after(jiffies, expire))
1663 goto failed_removal;
1664 ret = -EINTR;
1665 if (signal_pending(current))
1666 goto failed_removal;
1667 ret = 0;
1668 if (drain) {
1669 lru_add_drain_all_cpuslocked();
1670 cond_resched();
1671 drain_all_pages(zone);
1674 pfn = scan_movable_pages(start_pfn, end_pfn);
1675 if (pfn) { /* We have movable pages */
1676 ret = do_migrate_range(pfn, end_pfn);
1677 if (!ret) {
1678 drain = 1;
1679 goto repeat;
1680 } else {
1681 if (ret < 0)
1682 if (--retry_max == 0)
1683 goto failed_removal;
1684 yield();
1685 drain = 1;
1686 goto repeat;
1689 /* drain all zone's lru pagevec, this is asynchronous... */
1690 lru_add_drain_all_cpuslocked();
1691 yield();
1692 /* drain pcp pages, this is synchronous. */
1693 drain_all_pages(zone);
1695 * dissolve free hugepages in the memory block before doing offlining
1696 * actually in order to make hugetlbfs's object counting consistent.
1698 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1699 if (ret)
1700 goto failed_removal;
1701 /* check again */
1702 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1703 if (offlined_pages < 0) {
1704 ret = -EBUSY;
1705 goto failed_removal;
1707 pr_info("Offlined Pages %ld\n", offlined_pages);
1708 /* Ok, all of our target is isolated.
1709 We cannot do rollback at this point. */
1710 offline_isolated_pages(start_pfn, end_pfn);
1711 /* reset pagetype flags and makes migrate type to be MOVABLE */
1712 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1713 /* removal success */
1714 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1715 zone->present_pages -= offlined_pages;
1717 pgdat_resize_lock(zone->zone_pgdat, &flags);
1718 zone->zone_pgdat->node_present_pages -= offlined_pages;
1719 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1721 init_per_zone_wmark_min();
1723 if (!populated_zone(zone)) {
1724 zone_pcp_reset(zone);
1725 mutex_lock(&zonelists_mutex);
1726 build_all_zonelists(NULL, NULL);
1727 mutex_unlock(&zonelists_mutex);
1728 } else
1729 zone_pcp_update(zone);
1731 node_states_clear_node(node, &arg);
1732 if (arg.status_change_nid >= 0) {
1733 kswapd_stop(node);
1734 kcompactd_stop(node);
1737 vm_total_pages = nr_free_pagecache_pages();
1738 writeback_set_ratelimit();
1740 memory_notify(MEM_OFFLINE, &arg);
1741 return 0;
1743 failed_removal:
1744 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1745 (unsigned long long) start_pfn << PAGE_SHIFT,
1746 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1747 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1748 /* pushback to free area */
1749 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1750 return ret;
1753 /* Must be protected by mem_hotplug_begin() */
1754 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1756 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1758 #endif /* CONFIG_MEMORY_HOTREMOVE */
1761 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1762 * @start_pfn: start pfn of the memory range
1763 * @end_pfn: end pfn of the memory range
1764 * @arg: argument passed to func
1765 * @func: callback for each memory section walked
1767 * This function walks through all present mem sections in range
1768 * [start_pfn, end_pfn) and call func on each mem section.
1770 * Returns the return value of func.
1772 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1773 void *arg, int (*func)(struct memory_block *, void *))
1775 struct memory_block *mem = NULL;
1776 struct mem_section *section;
1777 unsigned long pfn, section_nr;
1778 int ret;
1780 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1781 section_nr = pfn_to_section_nr(pfn);
1782 if (!present_section_nr(section_nr))
1783 continue;
1785 section = __nr_to_section(section_nr);
1786 /* same memblock? */
1787 if (mem)
1788 if ((section_nr >= mem->start_section_nr) &&
1789 (section_nr <= mem->end_section_nr))
1790 continue;
1792 mem = find_memory_block_hinted(section, mem);
1793 if (!mem)
1794 continue;
1796 ret = func(mem, arg);
1797 if (ret) {
1798 kobject_put(&mem->dev.kobj);
1799 return ret;
1803 if (mem)
1804 kobject_put(&mem->dev.kobj);
1806 return 0;
1809 #ifdef CONFIG_MEMORY_HOTREMOVE
1810 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1812 int ret = !is_memblock_offlined(mem);
1814 if (unlikely(ret)) {
1815 phys_addr_t beginpa, endpa;
1817 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1818 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1819 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1820 &beginpa, &endpa);
1823 return ret;
1826 static int check_cpu_on_node(pg_data_t *pgdat)
1828 int cpu;
1830 for_each_present_cpu(cpu) {
1831 if (cpu_to_node(cpu) == pgdat->node_id)
1833 * the cpu on this node isn't removed, and we can't
1834 * offline this node.
1836 return -EBUSY;
1839 return 0;
1842 static void unmap_cpu_on_node(pg_data_t *pgdat)
1844 #ifdef CONFIG_ACPI_NUMA
1845 int cpu;
1847 for_each_possible_cpu(cpu)
1848 if (cpu_to_node(cpu) == pgdat->node_id)
1849 numa_clear_node(cpu);
1850 #endif
1853 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1855 int ret;
1857 ret = check_cpu_on_node(pgdat);
1858 if (ret)
1859 return ret;
1862 * the node will be offlined when we come here, so we can clear
1863 * the cpu_to_node() now.
1866 unmap_cpu_on_node(pgdat);
1867 return 0;
1871 * try_offline_node
1873 * Offline a node if all memory sections and cpus of the node are removed.
1875 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1876 * and online/offline operations before this call.
1878 void try_offline_node(int nid)
1880 pg_data_t *pgdat = NODE_DATA(nid);
1881 unsigned long start_pfn = pgdat->node_start_pfn;
1882 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1883 unsigned long pfn;
1885 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1886 unsigned long section_nr = pfn_to_section_nr(pfn);
1888 if (!present_section_nr(section_nr))
1889 continue;
1891 if (pfn_to_nid(pfn) != nid)
1892 continue;
1895 * some memory sections of this node are not removed, and we
1896 * can't offline node now.
1898 return;
1901 if (check_and_unmap_cpu_on_node(pgdat))
1902 return;
1905 * all memory/cpu of this node are removed, we can offline this
1906 * node now.
1908 node_set_offline(nid);
1909 unregister_one_node(nid);
1911 EXPORT_SYMBOL(try_offline_node);
1914 * remove_memory
1916 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1917 * and online/offline operations before this call, as required by
1918 * try_offline_node().
1920 void __ref remove_memory(int nid, u64 start, u64 size)
1922 int ret;
1924 BUG_ON(check_hotplug_memory_range(start, size));
1926 mem_hotplug_begin();
1929 * All memory blocks must be offlined before removing memory. Check
1930 * whether all memory blocks in question are offline and trigger a BUG()
1931 * if this is not the case.
1933 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1934 check_memblock_offlined_cb);
1935 if (ret)
1936 BUG();
1938 /* remove memmap entry */
1939 firmware_map_remove(start, start + size, "System RAM");
1940 memblock_free(start, size);
1941 memblock_remove(start, size);
1943 arch_remove_memory(start, size);
1945 try_offline_node(nid);
1947 mem_hotplug_done();
1949 EXPORT_SYMBOL_GPL(remove_memory);
1950 #endif /* CONFIG_MEMORY_HOTREMOVE */