4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
20 #include <linux/oom.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
43 #include <linux/mmu_notifier.h>
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/oom.h>
51 int sysctl_panic_on_oom
;
52 int sysctl_oom_kill_allocating_task
;
53 int sysctl_oom_dump_tasks
= 1;
55 DEFINE_MUTEX(oom_lock
);
59 * has_intersects_mems_allowed() - check task eligiblity for kill
60 * @start: task struct of which task to consider
61 * @mask: nodemask passed to page allocator for mempolicy ooms
63 * Task eligibility is determined by whether or not a candidate task, @tsk,
64 * shares the same mempolicy nodes as current if it is bound by such a policy
65 * and whether or not it has the same set of allowed cpuset nodes.
67 static bool has_intersects_mems_allowed(struct task_struct
*start
,
68 const nodemask_t
*mask
)
70 struct task_struct
*tsk
;
74 for_each_thread(start
, tsk
) {
77 * If this is a mempolicy constrained oom, tsk's
78 * cpuset is irrelevant. Only return true if its
79 * mempolicy intersects current, otherwise it may be
82 ret
= mempolicy_nodemask_intersects(tsk
, mask
);
85 * This is not a mempolicy constrained oom, so only
86 * check the mems of tsk's cpuset.
88 ret
= cpuset_mems_allowed_intersects(current
, tsk
);
98 static bool has_intersects_mems_allowed(struct task_struct
*tsk
,
99 const nodemask_t
*mask
)
103 #endif /* CONFIG_NUMA */
106 * The process p may have detached its own ->mm while exiting or through
107 * use_mm(), but one or more of its subthreads may still have a valid
108 * pointer. Return p, or any of its subthreads with a valid ->mm, with
111 struct task_struct
*find_lock_task_mm(struct task_struct
*p
)
113 struct task_struct
*t
;
117 for_each_thread(p
, t
) {
131 * order == -1 means the oom kill is required by sysrq, otherwise only
132 * for display purposes.
134 static inline bool is_sysrq_oom(struct oom_control
*oc
)
136 return oc
->order
== -1;
139 static inline bool is_memcg_oom(struct oom_control
*oc
)
141 return oc
->memcg
!= NULL
;
144 /* return true if the task is not adequate as candidate victim task. */
145 static bool oom_unkillable_task(struct task_struct
*p
,
146 struct mem_cgroup
*memcg
, const nodemask_t
*nodemask
)
148 if (is_global_init(p
))
150 if (p
->flags
& PF_KTHREAD
)
153 /* When mem_cgroup_out_of_memory() and p is not member of the group */
154 if (memcg
&& !task_in_mem_cgroup(p
, memcg
))
157 /* p may not have freeable memory in nodemask */
158 if (!has_intersects_mems_allowed(p
, nodemask
))
165 * oom_badness - heuristic function to determine which candidate task to kill
166 * @p: task struct of which task we should calculate
167 * @totalpages: total present RAM allowed for page allocation
169 * The heuristic for determining which task to kill is made to be as simple and
170 * predictable as possible. The goal is to return the highest value for the
171 * task consuming the most memory to avoid subsequent oom failures.
173 unsigned long oom_badness(struct task_struct
*p
, struct mem_cgroup
*memcg
,
174 const nodemask_t
*nodemask
, unsigned long totalpages
)
179 if (oom_unkillable_task(p
, memcg
, nodemask
))
182 p
= find_lock_task_mm(p
);
187 * Do not even consider tasks which are explicitly marked oom
188 * unkillable or have been already oom reaped or the are in
189 * the middle of vfork
191 adj
= (long)p
->signal
->oom_score_adj
;
192 if (adj
== OOM_SCORE_ADJ_MIN
||
193 test_bit(MMF_OOM_SKIP
, &p
->mm
->flags
) ||
200 * The baseline for the badness score is the proportion of RAM that each
201 * task's rss, pagetable and swap space use.
203 points
= get_mm_rss(p
->mm
) + get_mm_counter(p
->mm
, MM_SWAPENTS
) +
204 atomic_long_read(&p
->mm
->nr_ptes
) + mm_nr_pmds(p
->mm
);
208 * Root processes get 3% bonus, just like the __vm_enough_memory()
209 * implementation used by LSMs.
211 if (has_capability_noaudit(p
, CAP_SYS_ADMIN
))
212 points
-= (points
* 3) / 100;
214 /* Normalize to oom_score_adj units */
215 adj
*= totalpages
/ 1000;
219 * Never return 0 for an eligible task regardless of the root bonus and
220 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
222 return points
> 0 ? points
: 1;
225 enum oom_constraint
{
228 CONSTRAINT_MEMORY_POLICY
,
233 * Determine the type of allocation constraint.
235 static enum oom_constraint
constrained_alloc(struct oom_control
*oc
)
239 enum zone_type high_zoneidx
= gfp_zone(oc
->gfp_mask
);
240 bool cpuset_limited
= false;
243 if (is_memcg_oom(oc
)) {
244 oc
->totalpages
= mem_cgroup_get_limit(oc
->memcg
) ?: 1;
245 return CONSTRAINT_MEMCG
;
248 /* Default to all available memory */
249 oc
->totalpages
= totalram_pages
+ total_swap_pages
;
251 if (!IS_ENABLED(CONFIG_NUMA
))
252 return CONSTRAINT_NONE
;
255 return CONSTRAINT_NONE
;
257 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
258 * to kill current.We have to random task kill in this case.
259 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
261 if (oc
->gfp_mask
& __GFP_THISNODE
)
262 return CONSTRAINT_NONE
;
265 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
266 * the page allocator means a mempolicy is in effect. Cpuset policy
267 * is enforced in get_page_from_freelist().
270 !nodes_subset(node_states
[N_MEMORY
], *oc
->nodemask
)) {
271 oc
->totalpages
= total_swap_pages
;
272 for_each_node_mask(nid
, *oc
->nodemask
)
273 oc
->totalpages
+= node_spanned_pages(nid
);
274 return CONSTRAINT_MEMORY_POLICY
;
277 /* Check this allocation failure is caused by cpuset's wall function */
278 for_each_zone_zonelist_nodemask(zone
, z
, oc
->zonelist
,
279 high_zoneidx
, oc
->nodemask
)
280 if (!cpuset_zone_allowed(zone
, oc
->gfp_mask
))
281 cpuset_limited
= true;
283 if (cpuset_limited
) {
284 oc
->totalpages
= total_swap_pages
;
285 for_each_node_mask(nid
, cpuset_current_mems_allowed
)
286 oc
->totalpages
+= node_spanned_pages(nid
);
287 return CONSTRAINT_CPUSET
;
289 return CONSTRAINT_NONE
;
292 static int oom_evaluate_task(struct task_struct
*task
, void *arg
)
294 struct oom_control
*oc
= arg
;
295 unsigned long points
;
297 if (oom_unkillable_task(task
, NULL
, oc
->nodemask
))
301 * This task already has access to memory reserves and is being killed.
302 * Don't allow any other task to have access to the reserves unless
303 * the task has MMF_OOM_SKIP because chances that it would release
304 * any memory is quite low.
306 if (!is_sysrq_oom(oc
) && tsk_is_oom_victim(task
)) {
307 if (test_bit(MMF_OOM_SKIP
, &task
->signal
->oom_mm
->flags
))
313 * If task is allocating a lot of memory and has been marked to be
314 * killed first if it triggers an oom, then select it.
316 if (oom_task_origin(task
)) {
321 points
= oom_badness(task
, NULL
, oc
->nodemask
, oc
->totalpages
);
322 if (!points
|| points
< oc
->chosen_points
)
325 /* Prefer thread group leaders for display purposes */
326 if (points
== oc
->chosen_points
&& thread_group_leader(oc
->chosen
))
330 put_task_struct(oc
->chosen
);
331 get_task_struct(task
);
333 oc
->chosen_points
= points
;
338 put_task_struct(oc
->chosen
);
339 oc
->chosen
= (void *)-1UL;
344 * Simple selection loop. We choose the process with the highest number of
345 * 'points'. In case scan was aborted, oc->chosen is set to -1.
347 static void select_bad_process(struct oom_control
*oc
)
349 if (is_memcg_oom(oc
))
350 mem_cgroup_scan_tasks(oc
->memcg
, oom_evaluate_task
, oc
);
352 struct task_struct
*p
;
356 if (oom_evaluate_task(p
, oc
))
361 oc
->chosen_points
= oc
->chosen_points
* 1000 / oc
->totalpages
;
365 * dump_tasks - dump current memory state of all system tasks
366 * @memcg: current's memory controller, if constrained
367 * @nodemask: nodemask passed to page allocator for mempolicy ooms
369 * Dumps the current memory state of all eligible tasks. Tasks not in the same
370 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
372 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
373 * swapents, oom_score_adj value, and name.
375 static void dump_tasks(struct mem_cgroup
*memcg
, const nodemask_t
*nodemask
)
377 struct task_struct
*p
;
378 struct task_struct
*task
;
380 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
382 for_each_process(p
) {
383 if (oom_unkillable_task(p
, memcg
, nodemask
))
386 task
= find_lock_task_mm(p
);
389 * This is a kthread or all of p's threads have already
390 * detached their mm's. There's no need to report
391 * them; they can't be oom killed anyway.
396 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
397 task
->pid
, from_kuid(&init_user_ns
, task_uid(task
)),
398 task
->tgid
, task
->mm
->total_vm
, get_mm_rss(task
->mm
),
399 atomic_long_read(&task
->mm
->nr_ptes
),
400 mm_nr_pmds(task
->mm
),
401 get_mm_counter(task
->mm
, MM_SWAPENTS
),
402 task
->signal
->oom_score_adj
, task
->comm
);
408 static void dump_header(struct oom_control
*oc
, struct task_struct
*p
)
410 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=",
411 current
->comm
, oc
->gfp_mask
, &oc
->gfp_mask
);
413 pr_cont("%*pbl", nodemask_pr_args(oc
->nodemask
));
416 pr_cont(", order=%d, oom_score_adj=%hd\n",
417 oc
->order
, current
->signal
->oom_score_adj
);
418 if (!IS_ENABLED(CONFIG_COMPACTION
) && oc
->order
)
419 pr_warn("COMPACTION is disabled!!!\n");
421 cpuset_print_current_mems_allowed();
424 mem_cgroup_print_oom_info(oc
->memcg
, p
);
426 show_mem(SHOW_MEM_FILTER_NODES
, oc
->nodemask
);
427 if (sysctl_oom_dump_tasks
)
428 dump_tasks(oc
->memcg
, oc
->nodemask
);
432 * Number of OOM victims in flight
434 static atomic_t oom_victims
= ATOMIC_INIT(0);
435 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait
);
437 static bool oom_killer_disabled __read_mostly
;
439 #define K(x) ((x) << (PAGE_SHIFT-10))
442 * task->mm can be NULL if the task is the exited group leader. So to
443 * determine whether the task is using a particular mm, we examine all the
444 * task's threads: if one of those is using this mm then this task was also
447 bool process_shares_mm(struct task_struct
*p
, struct mm_struct
*mm
)
449 struct task_struct
*t
;
451 for_each_thread(p
, t
) {
452 struct mm_struct
*t_mm
= READ_ONCE(t
->mm
);
462 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
463 * victim (if that is possible) to help the OOM killer to move on.
465 static struct task_struct
*oom_reaper_th
;
466 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait
);
467 static struct task_struct
*oom_reaper_list
;
468 static DEFINE_SPINLOCK(oom_reaper_lock
);
470 static bool __oom_reap_task_mm(struct task_struct
*tsk
, struct mm_struct
*mm
)
472 struct mmu_gather tlb
;
473 struct vm_area_struct
*vma
;
477 * We have to make sure to not race with the victim exit path
478 * and cause premature new oom victim selection:
479 * __oom_reap_task_mm exit_mm
482 * atomic_dec_and_test
487 * # no TIF_MEMDIE task selects new victim
488 * unmap_page_range # frees some memory
490 mutex_lock(&oom_lock
);
492 if (!down_read_trylock(&mm
->mmap_sem
)) {
494 trace_skip_task_reaping(tsk
->pid
);
499 * If the mm has notifiers then we would need to invalidate them around
500 * unmap_page_range and that is risky because notifiers can sleep and
501 * what they do is basically undeterministic. So let's have a short
502 * sleep to give the oom victim some more time.
503 * TODO: we really want to get rid of this ugly hack and make sure that
504 * notifiers cannot block for unbounded amount of time and add
505 * mmu_notifier_invalidate_range_{start,end} around unmap_page_range
507 if (mm_has_notifiers(mm
)) {
508 up_read(&mm
->mmap_sem
);
509 schedule_timeout_idle(HZ
);
514 * increase mm_users only after we know we will reap something so
515 * that the mmput_async is called only when we have reaped something
516 * and delayed __mmput doesn't matter that much
518 if (!mmget_not_zero(mm
)) {
519 up_read(&mm
->mmap_sem
);
520 trace_skip_task_reaping(tsk
->pid
);
524 trace_start_task_reaping(tsk
->pid
);
527 * Tell all users of get_user/copy_from_user etc... that the content
528 * is no longer stable. No barriers really needed because unmapping
529 * should imply barriers already and the reader would hit a page fault
530 * if it stumbled over a reaped memory.
532 set_bit(MMF_UNSTABLE
, &mm
->flags
);
534 tlb_gather_mmu(&tlb
, mm
, 0, -1);
535 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
536 if (!can_madv_dontneed_vma(vma
))
540 * Only anonymous pages have a good chance to be dropped
541 * without additional steps which we cannot afford as we
544 * We do not even care about fs backed pages because all
545 * which are reclaimable have already been reclaimed and
546 * we do not want to block exit_mmap by keeping mm ref
547 * count elevated without a good reason.
549 if (vma_is_anonymous(vma
) || !(vma
->vm_flags
& VM_SHARED
))
550 unmap_page_range(&tlb
, vma
, vma
->vm_start
, vma
->vm_end
,
553 tlb_finish_mmu(&tlb
, 0, -1);
554 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
555 task_pid_nr(tsk
), tsk
->comm
,
556 K(get_mm_counter(mm
, MM_ANONPAGES
)),
557 K(get_mm_counter(mm
, MM_FILEPAGES
)),
558 K(get_mm_counter(mm
, MM_SHMEMPAGES
)));
559 up_read(&mm
->mmap_sem
);
562 * Drop our reference but make sure the mmput slow path is called from a
563 * different context because we shouldn't risk we get stuck there and
564 * put the oom_reaper out of the way.
567 trace_finish_task_reaping(tsk
->pid
);
569 mutex_unlock(&oom_lock
);
573 #define MAX_OOM_REAP_RETRIES 10
574 static void oom_reap_task(struct task_struct
*tsk
)
577 struct mm_struct
*mm
= tsk
->signal
->oom_mm
;
579 /* Retry the down_read_trylock(mmap_sem) a few times */
580 while (attempts
++ < MAX_OOM_REAP_RETRIES
&& !__oom_reap_task_mm(tsk
, mm
))
581 schedule_timeout_idle(HZ
/10);
583 if (attempts
<= MAX_OOM_REAP_RETRIES
)
587 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
588 task_pid_nr(tsk
), tsk
->comm
);
589 debug_show_all_locks();
592 tsk
->oom_reaper_list
= NULL
;
595 * Hide this mm from OOM killer because it has been either reaped or
596 * somebody can't call up_write(mmap_sem).
598 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
600 /* Drop a reference taken by wake_oom_reaper */
601 put_task_struct(tsk
);
604 static int oom_reaper(void *unused
)
607 struct task_struct
*tsk
= NULL
;
609 wait_event_freezable(oom_reaper_wait
, oom_reaper_list
!= NULL
);
610 spin_lock(&oom_reaper_lock
);
611 if (oom_reaper_list
!= NULL
) {
612 tsk
= oom_reaper_list
;
613 oom_reaper_list
= tsk
->oom_reaper_list
;
615 spin_unlock(&oom_reaper_lock
);
624 static void wake_oom_reaper(struct task_struct
*tsk
)
629 /* tsk is already queued? */
630 if (tsk
== oom_reaper_list
|| tsk
->oom_reaper_list
)
633 get_task_struct(tsk
);
635 spin_lock(&oom_reaper_lock
);
636 tsk
->oom_reaper_list
= oom_reaper_list
;
637 oom_reaper_list
= tsk
;
638 spin_unlock(&oom_reaper_lock
);
639 trace_wake_reaper(tsk
->pid
);
640 wake_up(&oom_reaper_wait
);
643 static int __init
oom_init(void)
645 oom_reaper_th
= kthread_run(oom_reaper
, NULL
, "oom_reaper");
646 if (IS_ERR(oom_reaper_th
)) {
647 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
648 PTR_ERR(oom_reaper_th
));
649 oom_reaper_th
= NULL
;
653 subsys_initcall(oom_init
)
655 static inline void wake_oom_reaper(struct task_struct
*tsk
)
658 #endif /* CONFIG_MMU */
661 * mark_oom_victim - mark the given task as OOM victim
664 * Has to be called with oom_lock held and never after
665 * oom has been disabled already.
667 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
668 * under task_lock or operate on the current).
670 static void mark_oom_victim(struct task_struct
*tsk
)
672 struct mm_struct
*mm
= tsk
->mm
;
674 WARN_ON(oom_killer_disabled
);
675 /* OOM killer might race with memcg OOM */
676 if (test_and_set_tsk_thread_flag(tsk
, TIF_MEMDIE
))
679 /* oom_mm is bound to the signal struct life time. */
680 if (!cmpxchg(&tsk
->signal
->oom_mm
, NULL
, mm
))
681 mmgrab(tsk
->signal
->oom_mm
);
684 * Make sure that the task is woken up from uninterruptible sleep
685 * if it is frozen because OOM killer wouldn't be able to free
686 * any memory and livelock. freezing_slow_path will tell the freezer
687 * that TIF_MEMDIE tasks should be ignored.
690 atomic_inc(&oom_victims
);
691 trace_mark_victim(tsk
->pid
);
695 * exit_oom_victim - note the exit of an OOM victim
697 void exit_oom_victim(void)
699 clear_thread_flag(TIF_MEMDIE
);
701 if (!atomic_dec_return(&oom_victims
))
702 wake_up_all(&oom_victims_wait
);
706 * oom_killer_enable - enable OOM killer
708 void oom_killer_enable(void)
710 oom_killer_disabled
= false;
711 pr_info("OOM killer enabled.\n");
715 * oom_killer_disable - disable OOM killer
716 * @timeout: maximum timeout to wait for oom victims in jiffies
718 * Forces all page allocations to fail rather than trigger OOM killer.
719 * Will block and wait until all OOM victims are killed or the given
722 * The function cannot be called when there are runnable user tasks because
723 * the userspace would see unexpected allocation failures as a result. Any
724 * new usage of this function should be consulted with MM people.
726 * Returns true if successful and false if the OOM killer cannot be
729 bool oom_killer_disable(signed long timeout
)
734 * Make sure to not race with an ongoing OOM killer. Check that the
735 * current is not killed (possibly due to sharing the victim's memory).
737 if (mutex_lock_killable(&oom_lock
))
739 oom_killer_disabled
= true;
740 mutex_unlock(&oom_lock
);
742 ret
= wait_event_interruptible_timeout(oom_victims_wait
,
743 !atomic_read(&oom_victims
), timeout
);
748 pr_info("OOM killer disabled.\n");
753 static inline bool __task_will_free_mem(struct task_struct
*task
)
755 struct signal_struct
*sig
= task
->signal
;
758 * A coredumping process may sleep for an extended period in exit_mm(),
759 * so the oom killer cannot assume that the process will promptly exit
760 * and release memory.
762 if (sig
->flags
& SIGNAL_GROUP_COREDUMP
)
765 if (sig
->flags
& SIGNAL_GROUP_EXIT
)
768 if (thread_group_empty(task
) && (task
->flags
& PF_EXITING
))
775 * Checks whether the given task is dying or exiting and likely to
776 * release its address space. This means that all threads and processes
777 * sharing the same mm have to be killed or exiting.
778 * Caller has to make sure that task->mm is stable (hold task_lock or
779 * it operates on the current).
781 static bool task_will_free_mem(struct task_struct
*task
)
783 struct mm_struct
*mm
= task
->mm
;
784 struct task_struct
*p
;
788 * Skip tasks without mm because it might have passed its exit_mm and
789 * exit_oom_victim. oom_reaper could have rescued that but do not rely
790 * on that for now. We can consider find_lock_task_mm in future.
795 if (!__task_will_free_mem(task
))
799 * This task has already been drained by the oom reaper so there are
800 * only small chances it will free some more
802 if (test_bit(MMF_OOM_SKIP
, &mm
->flags
))
805 if (atomic_read(&mm
->mm_users
) <= 1)
809 * Make sure that all tasks which share the mm with the given tasks
810 * are dying as well to make sure that a) nobody pins its mm and
811 * b) the task is also reapable by the oom reaper.
814 for_each_process(p
) {
815 if (!process_shares_mm(p
, mm
))
817 if (same_thread_group(task
, p
))
819 ret
= __task_will_free_mem(p
);
828 static void oom_kill_process(struct oom_control
*oc
, const char *message
)
830 struct task_struct
*p
= oc
->chosen
;
831 unsigned int points
= oc
->chosen_points
;
832 struct task_struct
*victim
= p
;
833 struct task_struct
*child
;
834 struct task_struct
*t
;
835 struct mm_struct
*mm
;
836 unsigned int victim_points
= 0;
837 static DEFINE_RATELIMIT_STATE(oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
838 DEFAULT_RATELIMIT_BURST
);
839 bool can_oom_reap
= true;
842 * If the task is already exiting, don't alarm the sysadmin or kill
843 * its children or threads, just set TIF_MEMDIE so it can die quickly
846 if (task_will_free_mem(p
)) {
855 if (__ratelimit(&oom_rs
))
858 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
859 message
, task_pid_nr(p
), p
->comm
, points
);
862 * If any of p's children has a different mm and is eligible for kill,
863 * the one with the highest oom_badness() score is sacrificed for its
864 * parent. This attempts to lose the minimal amount of work done while
865 * still freeing memory.
867 read_lock(&tasklist_lock
);
868 for_each_thread(p
, t
) {
869 list_for_each_entry(child
, &t
->children
, sibling
) {
870 unsigned int child_points
;
872 if (process_shares_mm(child
, p
->mm
))
875 * oom_badness() returns 0 if the thread is unkillable
877 child_points
= oom_badness(child
,
878 oc
->memcg
, oc
->nodemask
, oc
->totalpages
);
879 if (child_points
> victim_points
) {
880 put_task_struct(victim
);
882 victim_points
= child_points
;
883 get_task_struct(victim
);
887 read_unlock(&tasklist_lock
);
889 p
= find_lock_task_mm(victim
);
891 put_task_struct(victim
);
893 } else if (victim
!= p
) {
895 put_task_struct(victim
);
899 /* Get a reference to safely compare mm after task_unlock(victim) */
903 /* Raise event before sending signal: task reaper must see this */
904 count_vm_event(OOM_KILL
);
905 count_memcg_event_mm(mm
, OOM_KILL
);
908 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
909 * the OOM victim from depleting the memory reserves from the user
910 * space under its control.
912 do_send_sig_info(SIGKILL
, SEND_SIG_FORCED
, victim
, true);
913 mark_oom_victim(victim
);
914 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
915 task_pid_nr(victim
), victim
->comm
, K(victim
->mm
->total_vm
),
916 K(get_mm_counter(victim
->mm
, MM_ANONPAGES
)),
917 K(get_mm_counter(victim
->mm
, MM_FILEPAGES
)),
918 K(get_mm_counter(victim
->mm
, MM_SHMEMPAGES
)));
922 * Kill all user processes sharing victim->mm in other thread groups, if
923 * any. They don't get access to memory reserves, though, to avoid
924 * depletion of all memory. This prevents mm->mmap_sem livelock when an
925 * oom killed thread cannot exit because it requires the semaphore and
926 * its contended by another thread trying to allocate memory itself.
927 * That thread will now get access to memory reserves since it has a
928 * pending fatal signal.
931 for_each_process(p
) {
932 if (!process_shares_mm(p
, mm
))
934 if (same_thread_group(p
, victim
))
936 if (is_global_init(p
)) {
937 can_oom_reap
= false;
938 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
939 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
940 task_pid_nr(victim
), victim
->comm
,
941 task_pid_nr(p
), p
->comm
);
945 * No use_mm() user needs to read from the userspace so we are
948 if (unlikely(p
->flags
& PF_KTHREAD
))
950 do_send_sig_info(SIGKILL
, SEND_SIG_FORCED
, p
, true);
955 wake_oom_reaper(victim
);
958 put_task_struct(victim
);
963 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
965 static void check_panic_on_oom(struct oom_control
*oc
,
966 enum oom_constraint constraint
)
968 if (likely(!sysctl_panic_on_oom
))
970 if (sysctl_panic_on_oom
!= 2) {
972 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
973 * does not panic for cpuset, mempolicy, or memcg allocation
976 if (constraint
!= CONSTRAINT_NONE
)
979 /* Do not panic for oom kills triggered by sysrq */
980 if (is_sysrq_oom(oc
))
982 dump_header(oc
, NULL
);
983 panic("Out of memory: %s panic_on_oom is enabled\n",
984 sysctl_panic_on_oom
== 2 ? "compulsory" : "system-wide");
987 static BLOCKING_NOTIFIER_HEAD(oom_notify_list
);
989 int register_oom_notifier(struct notifier_block
*nb
)
991 return blocking_notifier_chain_register(&oom_notify_list
, nb
);
993 EXPORT_SYMBOL_GPL(register_oom_notifier
);
995 int unregister_oom_notifier(struct notifier_block
*nb
)
997 return blocking_notifier_chain_unregister(&oom_notify_list
, nb
);
999 EXPORT_SYMBOL_GPL(unregister_oom_notifier
);
1002 * out_of_memory - kill the "best" process when we run out of memory
1003 * @oc: pointer to struct oom_control
1005 * If we run out of memory, we have the choice between either
1006 * killing a random task (bad), letting the system crash (worse)
1007 * OR try to be smart about which process to kill. Note that we
1008 * don't have to be perfect here, we just have to be good.
1010 bool out_of_memory(struct oom_control
*oc
)
1012 unsigned long freed
= 0;
1013 enum oom_constraint constraint
= CONSTRAINT_NONE
;
1015 if (oom_killer_disabled
)
1018 if (!is_memcg_oom(oc
)) {
1019 blocking_notifier_call_chain(&oom_notify_list
, 0, &freed
);
1021 /* Got some memory back in the last second. */
1026 * If current has a pending SIGKILL or is exiting, then automatically
1027 * select it. The goal is to allow it to allocate so that it may
1028 * quickly exit and free its memory.
1030 if (task_will_free_mem(current
)) {
1031 mark_oom_victim(current
);
1032 wake_oom_reaper(current
);
1037 * The OOM killer does not compensate for IO-less reclaim.
1038 * pagefault_out_of_memory lost its gfp context so we have to
1039 * make sure exclude 0 mask - all other users should have at least
1040 * ___GFP_DIRECT_RECLAIM to get here.
1042 if (oc
->gfp_mask
&& !(oc
->gfp_mask
& __GFP_FS
))
1046 * Check if there were limitations on the allocation (only relevant for
1047 * NUMA and memcg) that may require different handling.
1049 constraint
= constrained_alloc(oc
);
1050 if (constraint
!= CONSTRAINT_MEMORY_POLICY
)
1051 oc
->nodemask
= NULL
;
1052 check_panic_on_oom(oc
, constraint
);
1054 if (!is_memcg_oom(oc
) && sysctl_oom_kill_allocating_task
&&
1055 current
->mm
&& !oom_unkillable_task(current
, NULL
, oc
->nodemask
) &&
1056 current
->signal
->oom_score_adj
!= OOM_SCORE_ADJ_MIN
) {
1057 get_task_struct(current
);
1058 oc
->chosen
= current
;
1059 oom_kill_process(oc
, "Out of memory (oom_kill_allocating_task)");
1063 select_bad_process(oc
);
1064 /* Found nothing?!?! Either we hang forever, or we panic. */
1065 if (!oc
->chosen
&& !is_sysrq_oom(oc
) && !is_memcg_oom(oc
)) {
1066 dump_header(oc
, NULL
);
1067 panic("Out of memory and no killable processes...\n");
1069 if (oc
->chosen
&& oc
->chosen
!= (void *)-1UL) {
1070 oom_kill_process(oc
, !is_memcg_oom(oc
) ? "Out of memory" :
1071 "Memory cgroup out of memory");
1073 * Give the killed process a good chance to exit before trying
1074 * to allocate memory again.
1076 schedule_timeout_killable(1);
1078 return !!oc
->chosen
;
1082 * The pagefault handler calls here because it is out of memory, so kill a
1083 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1084 * killing is already in progress so do nothing.
1086 void pagefault_out_of_memory(void)
1088 struct oom_control oc
= {
1096 if (mem_cgroup_oom_synchronize(true))
1099 if (!mutex_trylock(&oom_lock
))
1102 mutex_unlock(&oom_lock
);