4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
47 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
49 static void free_swap_count_continuations(struct swap_info_struct
*);
50 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
52 DEFINE_SPINLOCK(swap_lock
);
53 static unsigned int nr_swapfiles
;
54 atomic_long_t nr_swap_pages
;
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
60 EXPORT_SYMBOL_GPL(nr_swap_pages
);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages
;
63 static int least_priority
;
65 static const char Bad_file
[] = "Bad swap file entry ";
66 static const char Unused_file
[] = "Unused swap file entry ";
67 static const char Bad_offset
[] = "Bad swap offset entry ";
68 static const char Unused_offset
[] = "Unused swap offset entry ";
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
74 PLIST_HEAD(swap_active_head
);
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
88 static PLIST_HEAD(swap_avail_head
);
89 static DEFINE_SPINLOCK(swap_avail_lock
);
91 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
93 static DEFINE_MUTEX(swapon_mutex
);
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
99 static inline unsigned char swap_count(unsigned char ent
)
101 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
104 /* returns 1 if swap entry is freed */
106 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
108 swp_entry_t entry
= swp_entry(si
->type
, offset
);
112 page
= find_get_page(swap_address_space(entry
), swp_offset(entry
));
116 * This function is called from scan_swap_map() and it's called
117 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
118 * We have to use trylock for avoiding deadlock. This is a special
119 * case and you should use try_to_free_swap() with explicit lock_page()
120 * in usual operations.
122 if (trylock_page(page
)) {
123 ret
= try_to_free_swap(page
);
131 * swapon tell device that all the old swap contents can be discarded,
132 * to allow the swap device to optimize its wear-levelling.
134 static int discard_swap(struct swap_info_struct
*si
)
136 struct swap_extent
*se
;
137 sector_t start_block
;
141 /* Do not discard the swap header page! */
142 se
= &si
->first_swap_extent
;
143 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
144 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
146 err
= blkdev_issue_discard(si
->bdev
, start_block
,
147 nr_blocks
, GFP_KERNEL
, 0);
153 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
154 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
155 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
157 err
= blkdev_issue_discard(si
->bdev
, start_block
,
158 nr_blocks
, GFP_KERNEL
, 0);
164 return err
; /* That will often be -EOPNOTSUPP */
168 * swap allocation tell device that a cluster of swap can now be discarded,
169 * to allow the swap device to optimize its wear-levelling.
171 static void discard_swap_cluster(struct swap_info_struct
*si
,
172 pgoff_t start_page
, pgoff_t nr_pages
)
174 struct swap_extent
*se
= si
->curr_swap_extent
;
175 int found_extent
= 0;
178 if (se
->start_page
<= start_page
&&
179 start_page
< se
->start_page
+ se
->nr_pages
) {
180 pgoff_t offset
= start_page
- se
->start_page
;
181 sector_t start_block
= se
->start_block
+ offset
;
182 sector_t nr_blocks
= se
->nr_pages
- offset
;
184 if (nr_blocks
> nr_pages
)
185 nr_blocks
= nr_pages
;
186 start_page
+= nr_blocks
;
187 nr_pages
-= nr_blocks
;
190 si
->curr_swap_extent
= se
;
192 start_block
<<= PAGE_SHIFT
- 9;
193 nr_blocks
<<= PAGE_SHIFT
- 9;
194 if (blkdev_issue_discard(si
->bdev
, start_block
,
195 nr_blocks
, GFP_NOIO
, 0))
199 se
= list_next_entry(se
, list
);
203 #ifdef CONFIG_THP_SWAP
204 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
206 #define SWAPFILE_CLUSTER 256
208 #define LATENCY_LIMIT 256
210 static inline void cluster_set_flag(struct swap_cluster_info
*info
,
216 static inline unsigned int cluster_count(struct swap_cluster_info
*info
)
221 static inline void cluster_set_count(struct swap_cluster_info
*info
,
227 static inline void cluster_set_count_flag(struct swap_cluster_info
*info
,
228 unsigned int c
, unsigned int f
)
234 static inline unsigned int cluster_next(struct swap_cluster_info
*info
)
239 static inline void cluster_set_next(struct swap_cluster_info
*info
,
245 static inline void cluster_set_next_flag(struct swap_cluster_info
*info
,
246 unsigned int n
, unsigned int f
)
252 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
254 return info
->flags
& CLUSTER_FLAG_FREE
;
257 static inline bool cluster_is_null(struct swap_cluster_info
*info
)
259 return info
->flags
& CLUSTER_FLAG_NEXT_NULL
;
262 static inline void cluster_set_null(struct swap_cluster_info
*info
)
264 info
->flags
= CLUSTER_FLAG_NEXT_NULL
;
268 static inline struct swap_cluster_info
*lock_cluster(struct swap_info_struct
*si
,
269 unsigned long offset
)
271 struct swap_cluster_info
*ci
;
273 ci
= si
->cluster_info
;
275 ci
+= offset
/ SWAPFILE_CLUSTER
;
276 spin_lock(&ci
->lock
);
281 static inline void unlock_cluster(struct swap_cluster_info
*ci
)
284 spin_unlock(&ci
->lock
);
287 static inline struct swap_cluster_info
*lock_cluster_or_swap_info(
288 struct swap_info_struct
*si
,
289 unsigned long offset
)
291 struct swap_cluster_info
*ci
;
293 ci
= lock_cluster(si
, offset
);
295 spin_lock(&si
->lock
);
300 static inline void unlock_cluster_or_swap_info(struct swap_info_struct
*si
,
301 struct swap_cluster_info
*ci
)
306 spin_unlock(&si
->lock
);
309 static inline bool cluster_list_empty(struct swap_cluster_list
*list
)
311 return cluster_is_null(&list
->head
);
314 static inline unsigned int cluster_list_first(struct swap_cluster_list
*list
)
316 return cluster_next(&list
->head
);
319 static void cluster_list_init(struct swap_cluster_list
*list
)
321 cluster_set_null(&list
->head
);
322 cluster_set_null(&list
->tail
);
325 static void cluster_list_add_tail(struct swap_cluster_list
*list
,
326 struct swap_cluster_info
*ci
,
329 if (cluster_list_empty(list
)) {
330 cluster_set_next_flag(&list
->head
, idx
, 0);
331 cluster_set_next_flag(&list
->tail
, idx
, 0);
333 struct swap_cluster_info
*ci_tail
;
334 unsigned int tail
= cluster_next(&list
->tail
);
337 * Nested cluster lock, but both cluster locks are
338 * only acquired when we held swap_info_struct->lock
341 spin_lock_nested(&ci_tail
->lock
, SINGLE_DEPTH_NESTING
);
342 cluster_set_next(ci_tail
, idx
);
343 spin_unlock(&ci_tail
->lock
);
344 cluster_set_next_flag(&list
->tail
, idx
, 0);
348 static unsigned int cluster_list_del_first(struct swap_cluster_list
*list
,
349 struct swap_cluster_info
*ci
)
353 idx
= cluster_next(&list
->head
);
354 if (cluster_next(&list
->tail
) == idx
) {
355 cluster_set_null(&list
->head
);
356 cluster_set_null(&list
->tail
);
358 cluster_set_next_flag(&list
->head
,
359 cluster_next(&ci
[idx
]), 0);
364 /* Add a cluster to discard list and schedule it to do discard */
365 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
369 * If scan_swap_map() can't find a free cluster, it will check
370 * si->swap_map directly. To make sure the discarding cluster isn't
371 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
372 * will be cleared after discard
374 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
375 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
377 cluster_list_add_tail(&si
->discard_clusters
, si
->cluster_info
, idx
);
379 schedule_work(&si
->discard_work
);
382 static void __free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
384 struct swap_cluster_info
*ci
= si
->cluster_info
;
386 cluster_set_flag(ci
+ idx
, CLUSTER_FLAG_FREE
);
387 cluster_list_add_tail(&si
->free_clusters
, ci
, idx
);
391 * Doing discard actually. After a cluster discard is finished, the cluster
392 * will be added to free cluster list. caller should hold si->lock.
394 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
396 struct swap_cluster_info
*info
, *ci
;
399 info
= si
->cluster_info
;
401 while (!cluster_list_empty(&si
->discard_clusters
)) {
402 idx
= cluster_list_del_first(&si
->discard_clusters
, info
);
403 spin_unlock(&si
->lock
);
405 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
408 spin_lock(&si
->lock
);
409 ci
= lock_cluster(si
, idx
* SWAPFILE_CLUSTER
);
410 __free_cluster(si
, idx
);
411 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
412 0, SWAPFILE_CLUSTER
);
417 static void swap_discard_work(struct work_struct
*work
)
419 struct swap_info_struct
*si
;
421 si
= container_of(work
, struct swap_info_struct
, discard_work
);
423 spin_lock(&si
->lock
);
424 swap_do_scheduled_discard(si
);
425 spin_unlock(&si
->lock
);
428 static void alloc_cluster(struct swap_info_struct
*si
, unsigned long idx
)
430 struct swap_cluster_info
*ci
= si
->cluster_info
;
432 VM_BUG_ON(cluster_list_first(&si
->free_clusters
) != idx
);
433 cluster_list_del_first(&si
->free_clusters
, ci
);
434 cluster_set_count_flag(ci
+ idx
, 0, 0);
437 static void free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
439 struct swap_cluster_info
*ci
= si
->cluster_info
+ idx
;
441 VM_BUG_ON(cluster_count(ci
) != 0);
443 * If the swap is discardable, prepare discard the cluster
444 * instead of free it immediately. The cluster will be freed
447 if ((si
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
448 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
449 swap_cluster_schedule_discard(si
, idx
);
453 __free_cluster(si
, idx
);
457 * The cluster corresponding to page_nr will be used. The cluster will be
458 * removed from free cluster list and its usage counter will be increased.
460 static void inc_cluster_info_page(struct swap_info_struct
*p
,
461 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
463 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
467 if (cluster_is_free(&cluster_info
[idx
]))
468 alloc_cluster(p
, idx
);
470 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) >= SWAPFILE_CLUSTER
);
471 cluster_set_count(&cluster_info
[idx
],
472 cluster_count(&cluster_info
[idx
]) + 1);
476 * The cluster corresponding to page_nr decreases one usage. If the usage
477 * counter becomes 0, which means no page in the cluster is in using, we can
478 * optionally discard the cluster and add it to free cluster list.
480 static void dec_cluster_info_page(struct swap_info_struct
*p
,
481 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
483 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
488 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) == 0);
489 cluster_set_count(&cluster_info
[idx
],
490 cluster_count(&cluster_info
[idx
]) - 1);
492 if (cluster_count(&cluster_info
[idx
]) == 0)
493 free_cluster(p
, idx
);
497 * It's possible scan_swap_map() uses a free cluster in the middle of free
498 * cluster list. Avoiding such abuse to avoid list corruption.
501 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct
*si
,
502 unsigned long offset
)
504 struct percpu_cluster
*percpu_cluster
;
507 offset
/= SWAPFILE_CLUSTER
;
508 conflict
= !cluster_list_empty(&si
->free_clusters
) &&
509 offset
!= cluster_list_first(&si
->free_clusters
) &&
510 cluster_is_free(&si
->cluster_info
[offset
]);
515 percpu_cluster
= this_cpu_ptr(si
->percpu_cluster
);
516 cluster_set_null(&percpu_cluster
->index
);
521 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
522 * might involve allocating a new cluster for current CPU too.
524 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct
*si
,
525 unsigned long *offset
, unsigned long *scan_base
)
527 struct percpu_cluster
*cluster
;
528 struct swap_cluster_info
*ci
;
530 unsigned long tmp
, max
;
533 cluster
= this_cpu_ptr(si
->percpu_cluster
);
534 if (cluster_is_null(&cluster
->index
)) {
535 if (!cluster_list_empty(&si
->free_clusters
)) {
536 cluster
->index
= si
->free_clusters
.head
;
537 cluster
->next
= cluster_next(&cluster
->index
) *
539 } else if (!cluster_list_empty(&si
->discard_clusters
)) {
541 * we don't have free cluster but have some clusters in
542 * discarding, do discard now and reclaim them
544 swap_do_scheduled_discard(si
);
545 *scan_base
= *offset
= si
->cluster_next
;
554 * Other CPUs can use our cluster if they can't find a free cluster,
555 * check if there is still free entry in the cluster
558 max
= min_t(unsigned long, si
->max
,
559 (cluster_next(&cluster
->index
) + 1) * SWAPFILE_CLUSTER
);
561 cluster_set_null(&cluster
->index
);
564 ci
= lock_cluster(si
, tmp
);
566 if (!si
->swap_map
[tmp
]) {
574 cluster_set_null(&cluster
->index
);
577 cluster
->next
= tmp
+ 1;
583 static void swap_range_alloc(struct swap_info_struct
*si
, unsigned long offset
,
584 unsigned int nr_entries
)
586 unsigned int end
= offset
+ nr_entries
- 1;
588 if (offset
== si
->lowest_bit
)
589 si
->lowest_bit
+= nr_entries
;
590 if (end
== si
->highest_bit
)
591 si
->highest_bit
-= nr_entries
;
592 si
->inuse_pages
+= nr_entries
;
593 if (si
->inuse_pages
== si
->pages
) {
594 si
->lowest_bit
= si
->max
;
596 spin_lock(&swap_avail_lock
);
597 plist_del(&si
->avail_list
, &swap_avail_head
);
598 spin_unlock(&swap_avail_lock
);
602 static void swap_range_free(struct swap_info_struct
*si
, unsigned long offset
,
603 unsigned int nr_entries
)
605 unsigned long end
= offset
+ nr_entries
- 1;
606 void (*swap_slot_free_notify
)(struct block_device
*, unsigned long);
608 if (offset
< si
->lowest_bit
)
609 si
->lowest_bit
= offset
;
610 if (end
> si
->highest_bit
) {
611 bool was_full
= !si
->highest_bit
;
613 si
->highest_bit
= end
;
614 if (was_full
&& (si
->flags
& SWP_WRITEOK
)) {
615 spin_lock(&swap_avail_lock
);
616 WARN_ON(!plist_node_empty(&si
->avail_list
));
617 if (plist_node_empty(&si
->avail_list
))
618 plist_add(&si
->avail_list
, &swap_avail_head
);
619 spin_unlock(&swap_avail_lock
);
622 atomic_long_add(nr_entries
, &nr_swap_pages
);
623 si
->inuse_pages
-= nr_entries
;
624 if (si
->flags
& SWP_BLKDEV
)
625 swap_slot_free_notify
=
626 si
->bdev
->bd_disk
->fops
->swap_slot_free_notify
;
628 swap_slot_free_notify
= NULL
;
629 while (offset
<= end
) {
630 frontswap_invalidate_page(si
->type
, offset
);
631 if (swap_slot_free_notify
)
632 swap_slot_free_notify(si
->bdev
, offset
);
637 static int scan_swap_map_slots(struct swap_info_struct
*si
,
638 unsigned char usage
, int nr
,
641 struct swap_cluster_info
*ci
;
642 unsigned long offset
;
643 unsigned long scan_base
;
644 unsigned long last_in_cluster
= 0;
645 int latency_ration
= LATENCY_LIMIT
;
652 * We try to cluster swap pages by allocating them sequentially
653 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
654 * way, however, we resort to first-free allocation, starting
655 * a new cluster. This prevents us from scattering swap pages
656 * all over the entire swap partition, so that we reduce
657 * overall disk seek times between swap pages. -- sct
658 * But we do now try to find an empty cluster. -Andrea
659 * And we let swap pages go all over an SSD partition. Hugh
662 si
->flags
+= SWP_SCANNING
;
663 scan_base
= offset
= si
->cluster_next
;
666 if (si
->cluster_info
) {
667 if (scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
))
673 if (unlikely(!si
->cluster_nr
--)) {
674 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
675 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
679 spin_unlock(&si
->lock
);
682 * If seek is expensive, start searching for new cluster from
683 * start of partition, to minimize the span of allocated swap.
684 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
685 * case, just handled by scan_swap_map_try_ssd_cluster() above.
687 scan_base
= offset
= si
->lowest_bit
;
688 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
690 /* Locate the first empty (unaligned) cluster */
691 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
692 if (si
->swap_map
[offset
])
693 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
694 else if (offset
== last_in_cluster
) {
695 spin_lock(&si
->lock
);
696 offset
-= SWAPFILE_CLUSTER
- 1;
697 si
->cluster_next
= offset
;
698 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
701 if (unlikely(--latency_ration
< 0)) {
703 latency_ration
= LATENCY_LIMIT
;
708 spin_lock(&si
->lock
);
709 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
713 if (si
->cluster_info
) {
714 while (scan_swap_map_ssd_cluster_conflict(si
, offset
)) {
715 /* take a break if we already got some slots */
718 if (!scan_swap_map_try_ssd_cluster(si
, &offset
,
723 if (!(si
->flags
& SWP_WRITEOK
))
725 if (!si
->highest_bit
)
727 if (offset
> si
->highest_bit
)
728 scan_base
= offset
= si
->lowest_bit
;
730 ci
= lock_cluster(si
, offset
);
731 /* reuse swap entry of cache-only swap if not busy. */
732 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
735 spin_unlock(&si
->lock
);
736 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
737 spin_lock(&si
->lock
);
738 /* entry was freed successfully, try to use this again */
741 goto scan
; /* check next one */
744 if (si
->swap_map
[offset
]) {
751 si
->swap_map
[offset
] = usage
;
752 inc_cluster_info_page(si
, si
->cluster_info
, offset
);
755 swap_range_alloc(si
, offset
, 1);
756 si
->cluster_next
= offset
+ 1;
757 slots
[n_ret
++] = swp_entry(si
->type
, offset
);
759 /* got enough slots or reach max slots? */
760 if ((n_ret
== nr
) || (offset
>= si
->highest_bit
))
763 /* search for next available slot */
765 /* time to take a break? */
766 if (unlikely(--latency_ration
< 0)) {
769 spin_unlock(&si
->lock
);
771 spin_lock(&si
->lock
);
772 latency_ration
= LATENCY_LIMIT
;
775 /* try to get more slots in cluster */
776 if (si
->cluster_info
) {
777 if (scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
))
785 /* non-ssd case, still more slots in cluster? */
786 if (si
->cluster_nr
&& !si
->swap_map
[offset
]) {
792 si
->flags
-= SWP_SCANNING
;
796 spin_unlock(&si
->lock
);
797 while (++offset
<= si
->highest_bit
) {
798 if (!si
->swap_map
[offset
]) {
799 spin_lock(&si
->lock
);
802 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
803 spin_lock(&si
->lock
);
806 if (unlikely(--latency_ration
< 0)) {
808 latency_ration
= LATENCY_LIMIT
;
811 offset
= si
->lowest_bit
;
812 while (offset
< scan_base
) {
813 if (!si
->swap_map
[offset
]) {
814 spin_lock(&si
->lock
);
817 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
818 spin_lock(&si
->lock
);
821 if (unlikely(--latency_ration
< 0)) {
823 latency_ration
= LATENCY_LIMIT
;
827 spin_lock(&si
->lock
);
830 si
->flags
-= SWP_SCANNING
;
834 #ifdef CONFIG_THP_SWAP
835 static int swap_alloc_cluster(struct swap_info_struct
*si
, swp_entry_t
*slot
)
838 struct swap_cluster_info
*ci
;
839 unsigned long offset
, i
;
842 if (cluster_list_empty(&si
->free_clusters
))
845 idx
= cluster_list_first(&si
->free_clusters
);
846 offset
= idx
* SWAPFILE_CLUSTER
;
847 ci
= lock_cluster(si
, offset
);
848 alloc_cluster(si
, idx
);
849 cluster_set_count_flag(ci
, SWAPFILE_CLUSTER
, 0);
851 map
= si
->swap_map
+ offset
;
852 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++)
853 map
[i
] = SWAP_HAS_CACHE
;
855 swap_range_alloc(si
, offset
, SWAPFILE_CLUSTER
);
856 *slot
= swp_entry(si
->type
, offset
);
861 static void swap_free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
863 unsigned long offset
= idx
* SWAPFILE_CLUSTER
;
864 struct swap_cluster_info
*ci
;
866 ci
= lock_cluster(si
, offset
);
867 cluster_set_count_flag(ci
, 0, 0);
868 free_cluster(si
, idx
);
870 swap_range_free(si
, offset
, SWAPFILE_CLUSTER
);
873 static int swap_alloc_cluster(struct swap_info_struct
*si
, swp_entry_t
*slot
)
878 #endif /* CONFIG_THP_SWAP */
880 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
886 n_ret
= scan_swap_map_slots(si
, usage
, 1, &entry
);
889 return swp_offset(entry
);
895 int get_swap_pages(int n_goal
, bool cluster
, swp_entry_t swp_entries
[])
897 unsigned long nr_pages
= cluster
? SWAPFILE_CLUSTER
: 1;
898 struct swap_info_struct
*si
, *next
;
902 /* Only single cluster request supported */
903 WARN_ON_ONCE(n_goal
> 1 && cluster
);
905 avail_pgs
= atomic_long_read(&nr_swap_pages
) / nr_pages
;
909 if (n_goal
> SWAP_BATCH
)
912 if (n_goal
> avail_pgs
)
915 atomic_long_sub(n_goal
* nr_pages
, &nr_swap_pages
);
917 spin_lock(&swap_avail_lock
);
920 plist_for_each_entry_safe(si
, next
, &swap_avail_head
, avail_list
) {
921 /* requeue si to after same-priority siblings */
922 plist_requeue(&si
->avail_list
, &swap_avail_head
);
923 spin_unlock(&swap_avail_lock
);
924 spin_lock(&si
->lock
);
925 if (!si
->highest_bit
|| !(si
->flags
& SWP_WRITEOK
)) {
926 spin_lock(&swap_avail_lock
);
927 if (plist_node_empty(&si
->avail_list
)) {
928 spin_unlock(&si
->lock
);
931 WARN(!si
->highest_bit
,
932 "swap_info %d in list but !highest_bit\n",
934 WARN(!(si
->flags
& SWP_WRITEOK
),
935 "swap_info %d in list but !SWP_WRITEOK\n",
937 plist_del(&si
->avail_list
, &swap_avail_head
);
938 spin_unlock(&si
->lock
);
942 n_ret
= swap_alloc_cluster(si
, swp_entries
);
944 n_ret
= scan_swap_map_slots(si
, SWAP_HAS_CACHE
,
945 n_goal
, swp_entries
);
946 spin_unlock(&si
->lock
);
947 if (n_ret
|| cluster
)
949 pr_debug("scan_swap_map of si %d failed to find offset\n",
952 spin_lock(&swap_avail_lock
);
955 * if we got here, it's likely that si was almost full before,
956 * and since scan_swap_map() can drop the si->lock, multiple
957 * callers probably all tried to get a page from the same si
958 * and it filled up before we could get one; or, the si filled
959 * up between us dropping swap_avail_lock and taking si->lock.
960 * Since we dropped the swap_avail_lock, the swap_avail_head
961 * list may have been modified; so if next is still in the
962 * swap_avail_head list then try it, otherwise start over
963 * if we have not gotten any slots.
965 if (plist_node_empty(&next
->avail_list
))
969 spin_unlock(&swap_avail_lock
);
973 atomic_long_add((long)(n_goal
- n_ret
) * nr_pages
,
979 /* The only caller of this function is now suspend routine */
980 swp_entry_t
get_swap_page_of_type(int type
)
982 struct swap_info_struct
*si
;
985 si
= swap_info
[type
];
986 spin_lock(&si
->lock
);
987 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
988 atomic_long_dec(&nr_swap_pages
);
989 /* This is called for allocating swap entry, not cache */
990 offset
= scan_swap_map(si
, 1);
992 spin_unlock(&si
->lock
);
993 return swp_entry(type
, offset
);
995 atomic_long_inc(&nr_swap_pages
);
997 spin_unlock(&si
->lock
);
998 return (swp_entry_t
) {0};
1001 static struct swap_info_struct
*__swap_info_get(swp_entry_t entry
)
1003 struct swap_info_struct
*p
;
1004 unsigned long offset
, type
;
1008 type
= swp_type(entry
);
1009 if (type
>= nr_swapfiles
)
1011 p
= swap_info
[type
];
1012 if (!(p
->flags
& SWP_USED
))
1014 offset
= swp_offset(entry
);
1015 if (offset
>= p
->max
)
1020 pr_err("swap_info_get: %s%08lx\n", Bad_offset
, entry
.val
);
1023 pr_err("swap_info_get: %s%08lx\n", Unused_file
, entry
.val
);
1026 pr_err("swap_info_get: %s%08lx\n", Bad_file
, entry
.val
);
1031 static struct swap_info_struct
*_swap_info_get(swp_entry_t entry
)
1033 struct swap_info_struct
*p
;
1035 p
= __swap_info_get(entry
);
1038 if (!p
->swap_map
[swp_offset(entry
)])
1043 pr_err("swap_info_get: %s%08lx\n", Unused_offset
, entry
.val
);
1049 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
1051 struct swap_info_struct
*p
;
1053 p
= _swap_info_get(entry
);
1055 spin_lock(&p
->lock
);
1059 static struct swap_info_struct
*swap_info_get_cont(swp_entry_t entry
,
1060 struct swap_info_struct
*q
)
1062 struct swap_info_struct
*p
;
1064 p
= _swap_info_get(entry
);
1068 spin_unlock(&q
->lock
);
1070 spin_lock(&p
->lock
);
1075 static unsigned char __swap_entry_free(struct swap_info_struct
*p
,
1076 swp_entry_t entry
, unsigned char usage
)
1078 struct swap_cluster_info
*ci
;
1079 unsigned long offset
= swp_offset(entry
);
1080 unsigned char count
;
1081 unsigned char has_cache
;
1083 ci
= lock_cluster_or_swap_info(p
, offset
);
1085 count
= p
->swap_map
[offset
];
1087 has_cache
= count
& SWAP_HAS_CACHE
;
1088 count
&= ~SWAP_HAS_CACHE
;
1090 if (usage
== SWAP_HAS_CACHE
) {
1091 VM_BUG_ON(!has_cache
);
1093 } else if (count
== SWAP_MAP_SHMEM
) {
1095 * Or we could insist on shmem.c using a special
1096 * swap_shmem_free() and free_shmem_swap_and_cache()...
1099 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
1100 if (count
== COUNT_CONTINUED
) {
1101 if (swap_count_continued(p
, offset
, count
))
1102 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
1104 count
= SWAP_MAP_MAX
;
1109 usage
= count
| has_cache
;
1110 p
->swap_map
[offset
] = usage
? : SWAP_HAS_CACHE
;
1112 unlock_cluster_or_swap_info(p
, ci
);
1117 static void swap_entry_free(struct swap_info_struct
*p
, swp_entry_t entry
)
1119 struct swap_cluster_info
*ci
;
1120 unsigned long offset
= swp_offset(entry
);
1121 unsigned char count
;
1123 ci
= lock_cluster(p
, offset
);
1124 count
= p
->swap_map
[offset
];
1125 VM_BUG_ON(count
!= SWAP_HAS_CACHE
);
1126 p
->swap_map
[offset
] = 0;
1127 dec_cluster_info_page(p
, p
->cluster_info
, offset
);
1130 mem_cgroup_uncharge_swap(entry
, 1);
1131 swap_range_free(p
, offset
, 1);
1135 * Caller has made sure that the swap device corresponding to entry
1136 * is still around or has not been recycled.
1138 void swap_free(swp_entry_t entry
)
1140 struct swap_info_struct
*p
;
1142 p
= _swap_info_get(entry
);
1144 if (!__swap_entry_free(p
, entry
, 1))
1145 free_swap_slot(entry
);
1150 * Called after dropping swapcache to decrease refcnt to swap entries.
1152 static void swapcache_free(swp_entry_t entry
)
1154 struct swap_info_struct
*p
;
1156 p
= _swap_info_get(entry
);
1158 if (!__swap_entry_free(p
, entry
, SWAP_HAS_CACHE
))
1159 free_swap_slot(entry
);
1163 #ifdef CONFIG_THP_SWAP
1164 static void swapcache_free_cluster(swp_entry_t entry
)
1166 unsigned long offset
= swp_offset(entry
);
1167 unsigned long idx
= offset
/ SWAPFILE_CLUSTER
;
1168 struct swap_cluster_info
*ci
;
1169 struct swap_info_struct
*si
;
1173 si
= swap_info_get(entry
);
1177 ci
= lock_cluster(si
, offset
);
1178 map
= si
->swap_map
+ offset
;
1179 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++) {
1180 VM_BUG_ON(map
[i
] != SWAP_HAS_CACHE
);
1184 mem_cgroup_uncharge_swap(entry
, SWAPFILE_CLUSTER
);
1185 swap_free_cluster(si
, idx
);
1186 spin_unlock(&si
->lock
);
1189 static inline void swapcache_free_cluster(swp_entry_t entry
)
1192 #endif /* CONFIG_THP_SWAP */
1194 void put_swap_page(struct page
*page
, swp_entry_t entry
)
1196 if (!PageTransHuge(page
))
1197 swapcache_free(entry
);
1199 swapcache_free_cluster(entry
);
1202 static int swp_entry_cmp(const void *ent1
, const void *ent2
)
1204 const swp_entry_t
*e1
= ent1
, *e2
= ent2
;
1206 return (int)swp_type(*e1
) - (int)swp_type(*e2
);
1209 void swapcache_free_entries(swp_entry_t
*entries
, int n
)
1211 struct swap_info_struct
*p
, *prev
;
1221 * Sort swap entries by swap device, so each lock is only taken once.
1222 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1223 * so low that it isn't necessary to optimize further.
1225 if (nr_swapfiles
> 1)
1226 sort(entries
, n
, sizeof(entries
[0]), swp_entry_cmp
, NULL
);
1227 for (i
= 0; i
< n
; ++i
) {
1228 p
= swap_info_get_cont(entries
[i
], prev
);
1230 swap_entry_free(p
, entries
[i
]);
1234 spin_unlock(&p
->lock
);
1238 * How many references to page are currently swapped out?
1239 * This does not give an exact answer when swap count is continued,
1240 * but does include the high COUNT_CONTINUED flag to allow for that.
1242 int page_swapcount(struct page
*page
)
1245 struct swap_info_struct
*p
;
1246 struct swap_cluster_info
*ci
;
1248 unsigned long offset
;
1250 entry
.val
= page_private(page
);
1251 p
= _swap_info_get(entry
);
1253 offset
= swp_offset(entry
);
1254 ci
= lock_cluster_or_swap_info(p
, offset
);
1255 count
= swap_count(p
->swap_map
[offset
]);
1256 unlock_cluster_or_swap_info(p
, ci
);
1261 static int swap_swapcount(struct swap_info_struct
*si
, swp_entry_t entry
)
1264 pgoff_t offset
= swp_offset(entry
);
1265 struct swap_cluster_info
*ci
;
1267 ci
= lock_cluster_or_swap_info(si
, offset
);
1268 count
= swap_count(si
->swap_map
[offset
]);
1269 unlock_cluster_or_swap_info(si
, ci
);
1274 * How many references to @entry are currently swapped out?
1275 * This does not give an exact answer when swap count is continued,
1276 * but does include the high COUNT_CONTINUED flag to allow for that.
1278 int __swp_swapcount(swp_entry_t entry
)
1281 struct swap_info_struct
*si
;
1283 si
= __swap_info_get(entry
);
1285 count
= swap_swapcount(si
, entry
);
1290 * How many references to @entry are currently swapped out?
1291 * This considers COUNT_CONTINUED so it returns exact answer.
1293 int swp_swapcount(swp_entry_t entry
)
1295 int count
, tmp_count
, n
;
1296 struct swap_info_struct
*p
;
1297 struct swap_cluster_info
*ci
;
1302 p
= _swap_info_get(entry
);
1306 offset
= swp_offset(entry
);
1308 ci
= lock_cluster_or_swap_info(p
, offset
);
1310 count
= swap_count(p
->swap_map
[offset
]);
1311 if (!(count
& COUNT_CONTINUED
))
1314 count
&= ~COUNT_CONTINUED
;
1315 n
= SWAP_MAP_MAX
+ 1;
1317 page
= vmalloc_to_page(p
->swap_map
+ offset
);
1318 offset
&= ~PAGE_MASK
;
1319 VM_BUG_ON(page_private(page
) != SWP_CONTINUED
);
1322 page
= list_next_entry(page
, lru
);
1323 map
= kmap_atomic(page
);
1324 tmp_count
= map
[offset
];
1327 count
+= (tmp_count
& ~COUNT_CONTINUED
) * n
;
1328 n
*= (SWAP_CONT_MAX
+ 1);
1329 } while (tmp_count
& COUNT_CONTINUED
);
1331 unlock_cluster_or_swap_info(p
, ci
);
1336 * We can write to an anon page without COW if there are no other references
1337 * to it. And as a side-effect, free up its swap: because the old content
1338 * on disk will never be read, and seeking back there to write new content
1339 * later would only waste time away from clustering.
1341 * NOTE: total_mapcount should not be relied upon by the caller if
1342 * reuse_swap_page() returns false, but it may be always overwritten
1343 * (see the other implementation for CONFIG_SWAP=n).
1345 bool reuse_swap_page(struct page
*page
, int *total_mapcount
)
1349 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1350 if (unlikely(PageKsm(page
)))
1352 count
= page_trans_huge_mapcount(page
, total_mapcount
);
1353 if (count
<= 1 && PageSwapCache(page
)) {
1354 count
+= page_swapcount(page
);
1357 if (!PageWriteback(page
)) {
1358 delete_from_swap_cache(page
);
1362 struct swap_info_struct
*p
;
1364 entry
.val
= page_private(page
);
1365 p
= swap_info_get(entry
);
1366 if (p
->flags
& SWP_STABLE_WRITES
) {
1367 spin_unlock(&p
->lock
);
1370 spin_unlock(&p
->lock
);
1378 * If swap is getting full, or if there are no more mappings of this page,
1379 * then try_to_free_swap is called to free its swap space.
1381 int try_to_free_swap(struct page
*page
)
1383 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1385 if (!PageSwapCache(page
))
1387 if (PageWriteback(page
))
1389 if (page_swapcount(page
))
1393 * Once hibernation has begun to create its image of memory,
1394 * there's a danger that one of the calls to try_to_free_swap()
1395 * - most probably a call from __try_to_reclaim_swap() while
1396 * hibernation is allocating its own swap pages for the image,
1397 * but conceivably even a call from memory reclaim - will free
1398 * the swap from a page which has already been recorded in the
1399 * image as a clean swapcache page, and then reuse its swap for
1400 * another page of the image. On waking from hibernation, the
1401 * original page might be freed under memory pressure, then
1402 * later read back in from swap, now with the wrong data.
1404 * Hibernation suspends storage while it is writing the image
1405 * to disk so check that here.
1407 if (pm_suspended_storage())
1410 delete_from_swap_cache(page
);
1416 * Free the swap entry like above, but also try to
1417 * free the page cache entry if it is the last user.
1419 int free_swap_and_cache(swp_entry_t entry
)
1421 struct swap_info_struct
*p
;
1422 struct page
*page
= NULL
;
1423 unsigned char count
;
1425 if (non_swap_entry(entry
))
1428 p
= _swap_info_get(entry
);
1430 count
= __swap_entry_free(p
, entry
, 1);
1431 if (count
== SWAP_HAS_CACHE
) {
1432 page
= find_get_page(swap_address_space(entry
),
1434 if (page
&& !trylock_page(page
)) {
1439 free_swap_slot(entry
);
1443 * Not mapped elsewhere, or swap space full? Free it!
1444 * Also recheck PageSwapCache now page is locked (above).
1446 if (PageSwapCache(page
) && !PageWriteback(page
) &&
1447 (!page_mapped(page
) || mem_cgroup_swap_full(page
)) &&
1448 !swap_swapcount(p
, entry
)) {
1449 delete_from_swap_cache(page
);
1458 #ifdef CONFIG_HIBERNATION
1460 * Find the swap type that corresponds to given device (if any).
1462 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1463 * from 0, in which the swap header is expected to be located.
1465 * This is needed for the suspend to disk (aka swsusp).
1467 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
1469 struct block_device
*bdev
= NULL
;
1473 bdev
= bdget(device
);
1475 spin_lock(&swap_lock
);
1476 for (type
= 0; type
< nr_swapfiles
; type
++) {
1477 struct swap_info_struct
*sis
= swap_info
[type
];
1479 if (!(sis
->flags
& SWP_WRITEOK
))
1484 *bdev_p
= bdgrab(sis
->bdev
);
1486 spin_unlock(&swap_lock
);
1489 if (bdev
== sis
->bdev
) {
1490 struct swap_extent
*se
= &sis
->first_swap_extent
;
1492 if (se
->start_block
== offset
) {
1494 *bdev_p
= bdgrab(sis
->bdev
);
1496 spin_unlock(&swap_lock
);
1502 spin_unlock(&swap_lock
);
1510 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1511 * corresponding to given index in swap_info (swap type).
1513 sector_t
swapdev_block(int type
, pgoff_t offset
)
1515 struct block_device
*bdev
;
1517 if ((unsigned int)type
>= nr_swapfiles
)
1519 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
1521 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
1525 * Return either the total number of swap pages of given type, or the number
1526 * of free pages of that type (depending on @free)
1528 * This is needed for software suspend
1530 unsigned int count_swap_pages(int type
, int free
)
1534 spin_lock(&swap_lock
);
1535 if ((unsigned int)type
< nr_swapfiles
) {
1536 struct swap_info_struct
*sis
= swap_info
[type
];
1538 spin_lock(&sis
->lock
);
1539 if (sis
->flags
& SWP_WRITEOK
) {
1542 n
-= sis
->inuse_pages
;
1544 spin_unlock(&sis
->lock
);
1546 spin_unlock(&swap_lock
);
1549 #endif /* CONFIG_HIBERNATION */
1551 static inline int pte_same_as_swp(pte_t pte
, pte_t swp_pte
)
1553 return pte_same(pte_swp_clear_soft_dirty(pte
), swp_pte
);
1557 * No need to decide whether this PTE shares the swap entry with others,
1558 * just let do_wp_page work it out if a write is requested later - to
1559 * force COW, vm_page_prot omits write permission from any private vma.
1561 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1562 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
1564 struct page
*swapcache
;
1565 struct mem_cgroup
*memcg
;
1571 page
= ksm_might_need_to_copy(page
, vma
, addr
);
1572 if (unlikely(!page
))
1575 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
1581 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1582 if (unlikely(!pte_same_as_swp(*pte
, swp_entry_to_pte(entry
)))) {
1583 mem_cgroup_cancel_charge(page
, memcg
, false);
1588 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
1589 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
1591 set_pte_at(vma
->vm_mm
, addr
, pte
,
1592 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
1593 if (page
== swapcache
) {
1594 page_add_anon_rmap(page
, vma
, addr
, false);
1595 mem_cgroup_commit_charge(page
, memcg
, true, false);
1596 } else { /* ksm created a completely new copy */
1597 page_add_new_anon_rmap(page
, vma
, addr
, false);
1598 mem_cgroup_commit_charge(page
, memcg
, false, false);
1599 lru_cache_add_active_or_unevictable(page
, vma
);
1603 * Move the page to the active list so it is not
1604 * immediately swapped out again after swapon.
1606 activate_page(page
);
1608 pte_unmap_unlock(pte
, ptl
);
1610 if (page
!= swapcache
) {
1617 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1618 unsigned long addr
, unsigned long end
,
1619 swp_entry_t entry
, struct page
*page
)
1621 pte_t swp_pte
= swp_entry_to_pte(entry
);
1626 * We don't actually need pte lock while scanning for swp_pte: since
1627 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1628 * page table while we're scanning; though it could get zapped, and on
1629 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1630 * of unmatched parts which look like swp_pte, so unuse_pte must
1631 * recheck under pte lock. Scanning without pte lock lets it be
1632 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1634 pte
= pte_offset_map(pmd
, addr
);
1637 * swapoff spends a _lot_ of time in this loop!
1638 * Test inline before going to call unuse_pte.
1640 if (unlikely(pte_same_as_swp(*pte
, swp_pte
))) {
1642 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
1645 pte
= pte_offset_map(pmd
, addr
);
1647 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1653 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
1654 unsigned long addr
, unsigned long end
,
1655 swp_entry_t entry
, struct page
*page
)
1661 pmd
= pmd_offset(pud
, addr
);
1664 next
= pmd_addr_end(addr
, end
);
1665 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1667 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
1670 } while (pmd
++, addr
= next
, addr
!= end
);
1674 static inline int unuse_pud_range(struct vm_area_struct
*vma
, p4d_t
*p4d
,
1675 unsigned long addr
, unsigned long end
,
1676 swp_entry_t entry
, struct page
*page
)
1682 pud
= pud_offset(p4d
, addr
);
1684 next
= pud_addr_end(addr
, end
);
1685 if (pud_none_or_clear_bad(pud
))
1687 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1690 } while (pud
++, addr
= next
, addr
!= end
);
1694 static inline int unuse_p4d_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1695 unsigned long addr
, unsigned long end
,
1696 swp_entry_t entry
, struct page
*page
)
1702 p4d
= p4d_offset(pgd
, addr
);
1704 next
= p4d_addr_end(addr
, end
);
1705 if (p4d_none_or_clear_bad(p4d
))
1707 ret
= unuse_pud_range(vma
, p4d
, addr
, next
, entry
, page
);
1710 } while (p4d
++, addr
= next
, addr
!= end
);
1714 static int unuse_vma(struct vm_area_struct
*vma
,
1715 swp_entry_t entry
, struct page
*page
)
1718 unsigned long addr
, end
, next
;
1721 if (page_anon_vma(page
)) {
1722 addr
= page_address_in_vma(page
, vma
);
1723 if (addr
== -EFAULT
)
1726 end
= addr
+ PAGE_SIZE
;
1728 addr
= vma
->vm_start
;
1732 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1734 next
= pgd_addr_end(addr
, end
);
1735 if (pgd_none_or_clear_bad(pgd
))
1737 ret
= unuse_p4d_range(vma
, pgd
, addr
, next
, entry
, page
);
1740 } while (pgd
++, addr
= next
, addr
!= end
);
1744 static int unuse_mm(struct mm_struct
*mm
,
1745 swp_entry_t entry
, struct page
*page
)
1747 struct vm_area_struct
*vma
;
1750 if (!down_read_trylock(&mm
->mmap_sem
)) {
1752 * Activate page so shrink_inactive_list is unlikely to unmap
1753 * its ptes while lock is dropped, so swapoff can make progress.
1755 activate_page(page
);
1757 down_read(&mm
->mmap_sem
);
1760 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1761 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1765 up_read(&mm
->mmap_sem
);
1766 return (ret
< 0)? ret
: 0;
1770 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1771 * from current position to next entry still in use.
1772 * Recycle to start on reaching the end, returning 0 when empty.
1774 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1775 unsigned int prev
, bool frontswap
)
1777 unsigned int max
= si
->max
;
1778 unsigned int i
= prev
;
1779 unsigned char count
;
1782 * No need for swap_lock here: we're just looking
1783 * for whether an entry is in use, not modifying it; false
1784 * hits are okay, and sys_swapoff() has already prevented new
1785 * allocations from this area (while holding swap_lock).
1794 * No entries in use at top of swap_map,
1795 * loop back to start and recheck there.
1801 count
= READ_ONCE(si
->swap_map
[i
]);
1802 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1803 if (!frontswap
|| frontswap_test(si
, i
))
1805 if ((i
% LATENCY_LIMIT
) == 0)
1812 * We completely avoid races by reading each swap page in advance,
1813 * and then search for the process using it. All the necessary
1814 * page table adjustments can then be made atomically.
1816 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1817 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1819 int try_to_unuse(unsigned int type
, bool frontswap
,
1820 unsigned long pages_to_unuse
)
1822 struct swap_info_struct
*si
= swap_info
[type
];
1823 struct mm_struct
*start_mm
;
1824 volatile unsigned char *swap_map
; /* swap_map is accessed without
1825 * locking. Mark it as volatile
1826 * to prevent compiler doing
1829 unsigned char swcount
;
1836 * When searching mms for an entry, a good strategy is to
1837 * start at the first mm we freed the previous entry from
1838 * (though actually we don't notice whether we or coincidence
1839 * freed the entry). Initialize this start_mm with a hold.
1841 * A simpler strategy would be to start at the last mm we
1842 * freed the previous entry from; but that would take less
1843 * advantage of mmlist ordering, which clusters forked mms
1844 * together, child after parent. If we race with dup_mmap(), we
1845 * prefer to resolve parent before child, lest we miss entries
1846 * duplicated after we scanned child: using last mm would invert
1849 start_mm
= &init_mm
;
1853 * Keep on scanning until all entries have gone. Usually,
1854 * one pass through swap_map is enough, but not necessarily:
1855 * there are races when an instance of an entry might be missed.
1857 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
1858 if (signal_pending(current
)) {
1864 * Get a page for the entry, using the existing swap
1865 * cache page if there is one. Otherwise, get a clean
1866 * page and read the swap into it.
1868 swap_map
= &si
->swap_map
[i
];
1869 entry
= swp_entry(type
, i
);
1870 page
= read_swap_cache_async(entry
,
1871 GFP_HIGHUSER_MOVABLE
, NULL
, 0, false);
1874 * Either swap_duplicate() failed because entry
1875 * has been freed independently, and will not be
1876 * reused since sys_swapoff() already disabled
1877 * allocation from here, or alloc_page() failed.
1879 swcount
= *swap_map
;
1881 * We don't hold lock here, so the swap entry could be
1882 * SWAP_MAP_BAD (when the cluster is discarding).
1883 * Instead of fail out, We can just skip the swap
1884 * entry because swapoff will wait for discarding
1887 if (!swcount
|| swcount
== SWAP_MAP_BAD
)
1894 * Don't hold on to start_mm if it looks like exiting.
1896 if (atomic_read(&start_mm
->mm_users
) == 1) {
1898 start_mm
= &init_mm
;
1903 * Wait for and lock page. When do_swap_page races with
1904 * try_to_unuse, do_swap_page can handle the fault much
1905 * faster than try_to_unuse can locate the entry. This
1906 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1907 * defer to do_swap_page in such a case - in some tests,
1908 * do_swap_page and try_to_unuse repeatedly compete.
1910 wait_on_page_locked(page
);
1911 wait_on_page_writeback(page
);
1913 wait_on_page_writeback(page
);
1916 * Remove all references to entry.
1918 swcount
= *swap_map
;
1919 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1920 retval
= shmem_unuse(entry
, page
);
1921 /* page has already been unlocked and released */
1926 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1927 retval
= unuse_mm(start_mm
, entry
, page
);
1929 if (swap_count(*swap_map
)) {
1930 int set_start_mm
= (*swap_map
>= swcount
);
1931 struct list_head
*p
= &start_mm
->mmlist
;
1932 struct mm_struct
*new_start_mm
= start_mm
;
1933 struct mm_struct
*prev_mm
= start_mm
;
1934 struct mm_struct
*mm
;
1936 mmget(new_start_mm
);
1938 spin_lock(&mmlist_lock
);
1939 while (swap_count(*swap_map
) && !retval
&&
1940 (p
= p
->next
) != &start_mm
->mmlist
) {
1941 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1942 if (!mmget_not_zero(mm
))
1944 spin_unlock(&mmlist_lock
);
1950 swcount
= *swap_map
;
1951 if (!swap_count(swcount
)) /* any usage ? */
1953 else if (mm
== &init_mm
)
1956 retval
= unuse_mm(mm
, entry
, page
);
1958 if (set_start_mm
&& *swap_map
< swcount
) {
1959 mmput(new_start_mm
);
1964 spin_lock(&mmlist_lock
);
1966 spin_unlock(&mmlist_lock
);
1969 start_mm
= new_start_mm
;
1978 * If a reference remains (rare), we would like to leave
1979 * the page in the swap cache; but try_to_unmap could
1980 * then re-duplicate the entry once we drop page lock,
1981 * so we might loop indefinitely; also, that page could
1982 * not be swapped out to other storage meanwhile. So:
1983 * delete from cache even if there's another reference,
1984 * after ensuring that the data has been saved to disk -
1985 * since if the reference remains (rarer), it will be
1986 * read from disk into another page. Splitting into two
1987 * pages would be incorrect if swap supported "shared
1988 * private" pages, but they are handled by tmpfs files.
1990 * Given how unuse_vma() targets one particular offset
1991 * in an anon_vma, once the anon_vma has been determined,
1992 * this splitting happens to be just what is needed to
1993 * handle where KSM pages have been swapped out: re-reading
1994 * is unnecessarily slow, but we can fix that later on.
1996 if (swap_count(*swap_map
) &&
1997 PageDirty(page
) && PageSwapCache(page
)) {
1998 struct writeback_control wbc
= {
1999 .sync_mode
= WB_SYNC_NONE
,
2002 swap_writepage(page
, &wbc
);
2004 wait_on_page_writeback(page
);
2008 * It is conceivable that a racing task removed this page from
2009 * swap cache just before we acquired the page lock at the top,
2010 * or while we dropped it in unuse_mm(). The page might even
2011 * be back in swap cache on another swap area: that we must not
2012 * delete, since it may not have been written out to swap yet.
2014 if (PageSwapCache(page
) &&
2015 likely(page_private(page
) == entry
.val
))
2016 delete_from_swap_cache(page
);
2019 * So we could skip searching mms once swap count went
2020 * to 1, we did not mark any present ptes as dirty: must
2021 * mark page dirty so shrink_page_list will preserve it.
2028 * Make sure that we aren't completely killing
2029 * interactive performance.
2032 if (frontswap
&& pages_to_unuse
> 0) {
2033 if (!--pages_to_unuse
)
2043 * After a successful try_to_unuse, if no swap is now in use, we know
2044 * we can empty the mmlist. swap_lock must be held on entry and exit.
2045 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2046 * added to the mmlist just after page_duplicate - before would be racy.
2048 static void drain_mmlist(void)
2050 struct list_head
*p
, *next
;
2053 for (type
= 0; type
< nr_swapfiles
; type
++)
2054 if (swap_info
[type
]->inuse_pages
)
2056 spin_lock(&mmlist_lock
);
2057 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
2059 spin_unlock(&mmlist_lock
);
2063 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2064 * corresponds to page offset for the specified swap entry.
2065 * Note that the type of this function is sector_t, but it returns page offset
2066 * into the bdev, not sector offset.
2068 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
2070 struct swap_info_struct
*sis
;
2071 struct swap_extent
*start_se
;
2072 struct swap_extent
*se
;
2075 sis
= swap_info
[swp_type(entry
)];
2078 offset
= swp_offset(entry
);
2079 start_se
= sis
->curr_swap_extent
;
2083 if (se
->start_page
<= offset
&&
2084 offset
< (se
->start_page
+ se
->nr_pages
)) {
2085 return se
->start_block
+ (offset
- se
->start_page
);
2087 se
= list_next_entry(se
, list
);
2088 sis
->curr_swap_extent
= se
;
2089 BUG_ON(se
== start_se
); /* It *must* be present */
2094 * Returns the page offset into bdev for the specified page's swap entry.
2096 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
2099 entry
.val
= page_private(page
);
2100 return map_swap_entry(entry
, bdev
);
2104 * Free all of a swapdev's extent information
2106 static void destroy_swap_extents(struct swap_info_struct
*sis
)
2108 while (!list_empty(&sis
->first_swap_extent
.list
)) {
2109 struct swap_extent
*se
;
2111 se
= list_first_entry(&sis
->first_swap_extent
.list
,
2112 struct swap_extent
, list
);
2113 list_del(&se
->list
);
2117 if (sis
->flags
& SWP_FILE
) {
2118 struct file
*swap_file
= sis
->swap_file
;
2119 struct address_space
*mapping
= swap_file
->f_mapping
;
2121 sis
->flags
&= ~SWP_FILE
;
2122 mapping
->a_ops
->swap_deactivate(swap_file
);
2127 * Add a block range (and the corresponding page range) into this swapdev's
2128 * extent list. The extent list is kept sorted in page order.
2130 * This function rather assumes that it is called in ascending page order.
2133 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
2134 unsigned long nr_pages
, sector_t start_block
)
2136 struct swap_extent
*se
;
2137 struct swap_extent
*new_se
;
2138 struct list_head
*lh
;
2140 if (start_page
== 0) {
2141 se
= &sis
->first_swap_extent
;
2142 sis
->curr_swap_extent
= se
;
2144 se
->nr_pages
= nr_pages
;
2145 se
->start_block
= start_block
;
2148 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
2149 se
= list_entry(lh
, struct swap_extent
, list
);
2150 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
2151 if (se
->start_block
+ se
->nr_pages
== start_block
) {
2153 se
->nr_pages
+= nr_pages
;
2159 * No merge. Insert a new extent, preserving ordering.
2161 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
2164 new_se
->start_page
= start_page
;
2165 new_se
->nr_pages
= nr_pages
;
2166 new_se
->start_block
= start_block
;
2168 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
2173 * A `swap extent' is a simple thing which maps a contiguous range of pages
2174 * onto a contiguous range of disk blocks. An ordered list of swap extents
2175 * is built at swapon time and is then used at swap_writepage/swap_readpage
2176 * time for locating where on disk a page belongs.
2178 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2179 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2180 * swap files identically.
2182 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2183 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2184 * swapfiles are handled *identically* after swapon time.
2186 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2187 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2188 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2189 * requirements, they are simply tossed out - we will never use those blocks
2192 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2193 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2194 * which will scribble on the fs.
2196 * The amount of disk space which a single swap extent represents varies.
2197 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2198 * extents in the list. To avoid much list walking, we cache the previous
2199 * search location in `curr_swap_extent', and start new searches from there.
2200 * This is extremely effective. The average number of iterations in
2201 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2203 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
2205 struct file
*swap_file
= sis
->swap_file
;
2206 struct address_space
*mapping
= swap_file
->f_mapping
;
2207 struct inode
*inode
= mapping
->host
;
2210 if (S_ISBLK(inode
->i_mode
)) {
2211 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2216 if (mapping
->a_ops
->swap_activate
) {
2217 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
2219 sis
->flags
|= SWP_FILE
;
2220 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2226 return generic_swapfile_activate(sis
, swap_file
, span
);
2229 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
2230 unsigned char *swap_map
,
2231 struct swap_cluster_info
*cluster_info
)
2236 p
->prio
= --least_priority
;
2238 * the plist prio is negated because plist ordering is
2239 * low-to-high, while swap ordering is high-to-low
2241 p
->list
.prio
= -p
->prio
;
2242 p
->avail_list
.prio
= -p
->prio
;
2243 p
->swap_map
= swap_map
;
2244 p
->cluster_info
= cluster_info
;
2245 p
->flags
|= SWP_WRITEOK
;
2246 atomic_long_add(p
->pages
, &nr_swap_pages
);
2247 total_swap_pages
+= p
->pages
;
2249 assert_spin_locked(&swap_lock
);
2251 * both lists are plists, and thus priority ordered.
2252 * swap_active_head needs to be priority ordered for swapoff(),
2253 * which on removal of any swap_info_struct with an auto-assigned
2254 * (i.e. negative) priority increments the auto-assigned priority
2255 * of any lower-priority swap_info_structs.
2256 * swap_avail_head needs to be priority ordered for get_swap_page(),
2257 * which allocates swap pages from the highest available priority
2260 plist_add(&p
->list
, &swap_active_head
);
2261 spin_lock(&swap_avail_lock
);
2262 plist_add(&p
->avail_list
, &swap_avail_head
);
2263 spin_unlock(&swap_avail_lock
);
2266 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
2267 unsigned char *swap_map
,
2268 struct swap_cluster_info
*cluster_info
,
2269 unsigned long *frontswap_map
)
2271 frontswap_init(p
->type
, frontswap_map
);
2272 spin_lock(&swap_lock
);
2273 spin_lock(&p
->lock
);
2274 _enable_swap_info(p
, prio
, swap_map
, cluster_info
);
2275 spin_unlock(&p
->lock
);
2276 spin_unlock(&swap_lock
);
2279 static void reinsert_swap_info(struct swap_info_struct
*p
)
2281 spin_lock(&swap_lock
);
2282 spin_lock(&p
->lock
);
2283 _enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->cluster_info
);
2284 spin_unlock(&p
->lock
);
2285 spin_unlock(&swap_lock
);
2288 bool has_usable_swap(void)
2292 spin_lock(&swap_lock
);
2293 if (plist_head_empty(&swap_active_head
))
2295 spin_unlock(&swap_lock
);
2299 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
2301 struct swap_info_struct
*p
= NULL
;
2302 unsigned char *swap_map
;
2303 struct swap_cluster_info
*cluster_info
;
2304 unsigned long *frontswap_map
;
2305 struct file
*swap_file
, *victim
;
2306 struct address_space
*mapping
;
2307 struct inode
*inode
;
2308 struct filename
*pathname
;
2310 unsigned int old_block_size
;
2312 if (!capable(CAP_SYS_ADMIN
))
2315 BUG_ON(!current
->mm
);
2317 pathname
= getname(specialfile
);
2318 if (IS_ERR(pathname
))
2319 return PTR_ERR(pathname
);
2321 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
2322 err
= PTR_ERR(victim
);
2326 mapping
= victim
->f_mapping
;
2327 spin_lock(&swap_lock
);
2328 plist_for_each_entry(p
, &swap_active_head
, list
) {
2329 if (p
->flags
& SWP_WRITEOK
) {
2330 if (p
->swap_file
->f_mapping
== mapping
) {
2338 spin_unlock(&swap_lock
);
2341 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
2342 vm_unacct_memory(p
->pages
);
2345 spin_unlock(&swap_lock
);
2348 spin_lock(&swap_avail_lock
);
2349 plist_del(&p
->avail_list
, &swap_avail_head
);
2350 spin_unlock(&swap_avail_lock
);
2351 spin_lock(&p
->lock
);
2353 struct swap_info_struct
*si
= p
;
2355 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
2358 si
->avail_list
.prio
--;
2362 plist_del(&p
->list
, &swap_active_head
);
2363 atomic_long_sub(p
->pages
, &nr_swap_pages
);
2364 total_swap_pages
-= p
->pages
;
2365 p
->flags
&= ~SWP_WRITEOK
;
2366 spin_unlock(&p
->lock
);
2367 spin_unlock(&swap_lock
);
2369 disable_swap_slots_cache_lock();
2371 set_current_oom_origin();
2372 err
= try_to_unuse(p
->type
, false, 0); /* force unuse all pages */
2373 clear_current_oom_origin();
2376 /* re-insert swap space back into swap_list */
2377 reinsert_swap_info(p
);
2378 reenable_swap_slots_cache_unlock();
2382 reenable_swap_slots_cache_unlock();
2384 flush_work(&p
->discard_work
);
2386 destroy_swap_extents(p
);
2387 if (p
->flags
& SWP_CONTINUED
)
2388 free_swap_count_continuations(p
);
2390 mutex_lock(&swapon_mutex
);
2391 spin_lock(&swap_lock
);
2392 spin_lock(&p
->lock
);
2395 /* wait for anyone still in scan_swap_map */
2396 p
->highest_bit
= 0; /* cuts scans short */
2397 while (p
->flags
>= SWP_SCANNING
) {
2398 spin_unlock(&p
->lock
);
2399 spin_unlock(&swap_lock
);
2400 schedule_timeout_uninterruptible(1);
2401 spin_lock(&swap_lock
);
2402 spin_lock(&p
->lock
);
2405 swap_file
= p
->swap_file
;
2406 old_block_size
= p
->old_block_size
;
2407 p
->swap_file
= NULL
;
2409 swap_map
= p
->swap_map
;
2411 cluster_info
= p
->cluster_info
;
2412 p
->cluster_info
= NULL
;
2413 frontswap_map
= frontswap_map_get(p
);
2414 spin_unlock(&p
->lock
);
2415 spin_unlock(&swap_lock
);
2416 frontswap_invalidate_area(p
->type
);
2417 frontswap_map_set(p
, NULL
);
2418 mutex_unlock(&swapon_mutex
);
2419 free_percpu(p
->percpu_cluster
);
2420 p
->percpu_cluster
= NULL
;
2422 kvfree(cluster_info
);
2423 kvfree(frontswap_map
);
2424 /* Destroy swap account information */
2425 swap_cgroup_swapoff(p
->type
);
2426 exit_swap_address_space(p
->type
);
2428 inode
= mapping
->host
;
2429 if (S_ISBLK(inode
->i_mode
)) {
2430 struct block_device
*bdev
= I_BDEV(inode
);
2431 set_blocksize(bdev
, old_block_size
);
2432 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2435 inode
->i_flags
&= ~S_SWAPFILE
;
2436 inode_unlock(inode
);
2438 filp_close(swap_file
, NULL
);
2441 * Clear the SWP_USED flag after all resources are freed so that swapon
2442 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2443 * not hold p->lock after we cleared its SWP_WRITEOK.
2445 spin_lock(&swap_lock
);
2447 spin_unlock(&swap_lock
);
2450 atomic_inc(&proc_poll_event
);
2451 wake_up_interruptible(&proc_poll_wait
);
2454 filp_close(victim
, NULL
);
2460 #ifdef CONFIG_PROC_FS
2461 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
2463 struct seq_file
*seq
= file
->private_data
;
2465 poll_wait(file
, &proc_poll_wait
, wait
);
2467 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
2468 seq
->poll_event
= atomic_read(&proc_poll_event
);
2469 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
2472 return POLLIN
| POLLRDNORM
;
2476 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
2478 struct swap_info_struct
*si
;
2482 mutex_lock(&swapon_mutex
);
2485 return SEQ_START_TOKEN
;
2487 for (type
= 0; type
< nr_swapfiles
; type
++) {
2488 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2489 si
= swap_info
[type
];
2490 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2499 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
2501 struct swap_info_struct
*si
= v
;
2504 if (v
== SEQ_START_TOKEN
)
2507 type
= si
->type
+ 1;
2509 for (; type
< nr_swapfiles
; type
++) {
2510 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2511 si
= swap_info
[type
];
2512 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2521 static void swap_stop(struct seq_file
*swap
, void *v
)
2523 mutex_unlock(&swapon_mutex
);
2526 static int swap_show(struct seq_file
*swap
, void *v
)
2528 struct swap_info_struct
*si
= v
;
2532 if (si
== SEQ_START_TOKEN
) {
2533 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2537 file
= si
->swap_file
;
2538 len
= seq_file_path(swap
, file
, " \t\n\\");
2539 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
2540 len
< 40 ? 40 - len
: 1, " ",
2541 S_ISBLK(file_inode(file
)->i_mode
) ?
2542 "partition" : "file\t",
2543 si
->pages
<< (PAGE_SHIFT
- 10),
2544 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
2549 static const struct seq_operations swaps_op
= {
2550 .start
= swap_start
,
2556 static int swaps_open(struct inode
*inode
, struct file
*file
)
2558 struct seq_file
*seq
;
2561 ret
= seq_open(file
, &swaps_op
);
2565 seq
= file
->private_data
;
2566 seq
->poll_event
= atomic_read(&proc_poll_event
);
2570 static const struct file_operations proc_swaps_operations
= {
2573 .llseek
= seq_lseek
,
2574 .release
= seq_release
,
2578 static int __init
procswaps_init(void)
2580 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
2583 __initcall(procswaps_init
);
2584 #endif /* CONFIG_PROC_FS */
2586 #ifdef MAX_SWAPFILES_CHECK
2587 static int __init
max_swapfiles_check(void)
2589 MAX_SWAPFILES_CHECK();
2592 late_initcall(max_swapfiles_check
);
2595 static struct swap_info_struct
*alloc_swap_info(void)
2597 struct swap_info_struct
*p
;
2600 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
2602 return ERR_PTR(-ENOMEM
);
2604 spin_lock(&swap_lock
);
2605 for (type
= 0; type
< nr_swapfiles
; type
++) {
2606 if (!(swap_info
[type
]->flags
& SWP_USED
))
2609 if (type
>= MAX_SWAPFILES
) {
2610 spin_unlock(&swap_lock
);
2612 return ERR_PTR(-EPERM
);
2614 if (type
>= nr_swapfiles
) {
2616 swap_info
[type
] = p
;
2618 * Write swap_info[type] before nr_swapfiles, in case a
2619 * racing procfs swap_start() or swap_next() is reading them.
2620 * (We never shrink nr_swapfiles, we never free this entry.)
2626 p
= swap_info
[type
];
2628 * Do not memset this entry: a racing procfs swap_next()
2629 * would be relying on p->type to remain valid.
2632 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
2633 plist_node_init(&p
->list
, 0);
2634 plist_node_init(&p
->avail_list
, 0);
2635 p
->flags
= SWP_USED
;
2636 spin_unlock(&swap_lock
);
2637 spin_lock_init(&p
->lock
);
2638 spin_lock_init(&p
->cont_lock
);
2643 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
2647 if (S_ISBLK(inode
->i_mode
)) {
2648 p
->bdev
= bdgrab(I_BDEV(inode
));
2649 error
= blkdev_get(p
->bdev
,
2650 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
, p
);
2655 p
->old_block_size
= block_size(p
->bdev
);
2656 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
2659 p
->flags
|= SWP_BLKDEV
;
2660 } else if (S_ISREG(inode
->i_mode
)) {
2661 p
->bdev
= inode
->i_sb
->s_bdev
;
2663 if (IS_SWAPFILE(inode
))
2671 static unsigned long read_swap_header(struct swap_info_struct
*p
,
2672 union swap_header
*swap_header
,
2673 struct inode
*inode
)
2676 unsigned long maxpages
;
2677 unsigned long swapfilepages
;
2678 unsigned long last_page
;
2680 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
2681 pr_err("Unable to find swap-space signature\n");
2685 /* swap partition endianess hack... */
2686 if (swab32(swap_header
->info
.version
) == 1) {
2687 swab32s(&swap_header
->info
.version
);
2688 swab32s(&swap_header
->info
.last_page
);
2689 swab32s(&swap_header
->info
.nr_badpages
);
2690 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2692 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
2693 swab32s(&swap_header
->info
.badpages
[i
]);
2695 /* Check the swap header's sub-version */
2696 if (swap_header
->info
.version
!= 1) {
2697 pr_warn("Unable to handle swap header version %d\n",
2698 swap_header
->info
.version
);
2703 p
->cluster_next
= 1;
2707 * Find out how many pages are allowed for a single swap
2708 * device. There are two limiting factors: 1) the number
2709 * of bits for the swap offset in the swp_entry_t type, and
2710 * 2) the number of bits in the swap pte as defined by the
2711 * different architectures. In order to find the
2712 * largest possible bit mask, a swap entry with swap type 0
2713 * and swap offset ~0UL is created, encoded to a swap pte,
2714 * decoded to a swp_entry_t again, and finally the swap
2715 * offset is extracted. This will mask all the bits from
2716 * the initial ~0UL mask that can't be encoded in either
2717 * the swp_entry_t or the architecture definition of a
2720 maxpages
= swp_offset(pte_to_swp_entry(
2721 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2722 last_page
= swap_header
->info
.last_page
;
2723 if (last_page
> maxpages
) {
2724 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2725 maxpages
<< (PAGE_SHIFT
- 10),
2726 last_page
<< (PAGE_SHIFT
- 10));
2728 if (maxpages
> last_page
) {
2729 maxpages
= last_page
+ 1;
2730 /* p->max is an unsigned int: don't overflow it */
2731 if ((unsigned int)maxpages
== 0)
2732 maxpages
= UINT_MAX
;
2734 p
->highest_bit
= maxpages
- 1;
2738 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
2739 if (swapfilepages
&& maxpages
> swapfilepages
) {
2740 pr_warn("Swap area shorter than signature indicates\n");
2743 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2745 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2751 #define SWAP_CLUSTER_INFO_COLS \
2752 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2753 #define SWAP_CLUSTER_SPACE_COLS \
2754 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2755 #define SWAP_CLUSTER_COLS \
2756 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2758 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
2759 union swap_header
*swap_header
,
2760 unsigned char *swap_map
,
2761 struct swap_cluster_info
*cluster_info
,
2762 unsigned long maxpages
,
2766 unsigned int nr_good_pages
;
2768 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
2769 unsigned long col
= p
->cluster_next
/ SWAPFILE_CLUSTER
% SWAP_CLUSTER_COLS
;
2770 unsigned long i
, idx
;
2772 nr_good_pages
= maxpages
- 1; /* omit header page */
2774 cluster_list_init(&p
->free_clusters
);
2775 cluster_list_init(&p
->discard_clusters
);
2777 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2778 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2779 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
2781 if (page_nr
< maxpages
) {
2782 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2785 * Haven't marked the cluster free yet, no list
2786 * operation involved
2788 inc_cluster_info_page(p
, cluster_info
, page_nr
);
2792 /* Haven't marked the cluster free yet, no list operation involved */
2793 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
2794 inc_cluster_info_page(p
, cluster_info
, i
);
2796 if (nr_good_pages
) {
2797 swap_map
[0] = SWAP_MAP_BAD
;
2799 * Not mark the cluster free yet, no list
2800 * operation involved
2802 inc_cluster_info_page(p
, cluster_info
, 0);
2804 p
->pages
= nr_good_pages
;
2805 nr_extents
= setup_swap_extents(p
, span
);
2808 nr_good_pages
= p
->pages
;
2810 if (!nr_good_pages
) {
2811 pr_warn("Empty swap-file\n");
2820 * Reduce false cache line sharing between cluster_info and
2821 * sharing same address space.
2823 for (k
= 0; k
< SWAP_CLUSTER_COLS
; k
++) {
2824 j
= (k
+ col
) % SWAP_CLUSTER_COLS
;
2825 for (i
= 0; i
< DIV_ROUND_UP(nr_clusters
, SWAP_CLUSTER_COLS
); i
++) {
2826 idx
= i
* SWAP_CLUSTER_COLS
+ j
;
2827 if (idx
>= nr_clusters
)
2829 if (cluster_count(&cluster_info
[idx
]))
2831 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
2832 cluster_list_add_tail(&p
->free_clusters
, cluster_info
,
2840 * Helper to sys_swapon determining if a given swap
2841 * backing device queue supports DISCARD operations.
2843 static bool swap_discardable(struct swap_info_struct
*si
)
2845 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
2847 if (!q
|| !blk_queue_discard(q
))
2853 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
2855 struct swap_info_struct
*p
;
2856 struct filename
*name
;
2857 struct file
*swap_file
= NULL
;
2858 struct address_space
*mapping
;
2861 union swap_header
*swap_header
;
2864 unsigned long maxpages
;
2865 unsigned char *swap_map
= NULL
;
2866 struct swap_cluster_info
*cluster_info
= NULL
;
2867 unsigned long *frontswap_map
= NULL
;
2868 struct page
*page
= NULL
;
2869 struct inode
*inode
= NULL
;
2871 if (swap_flags
& ~SWAP_FLAGS_VALID
)
2874 if (!capable(CAP_SYS_ADMIN
))
2877 p
= alloc_swap_info();
2881 INIT_WORK(&p
->discard_work
, swap_discard_work
);
2883 name
= getname(specialfile
);
2885 error
= PTR_ERR(name
);
2889 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
2890 if (IS_ERR(swap_file
)) {
2891 error
= PTR_ERR(swap_file
);
2896 p
->swap_file
= swap_file
;
2897 mapping
= swap_file
->f_mapping
;
2898 inode
= mapping
->host
;
2900 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2901 error
= claim_swapfile(p
, inode
);
2902 if (unlikely(error
))
2906 * Read the swap header.
2908 if (!mapping
->a_ops
->readpage
) {
2912 page
= read_mapping_page(mapping
, 0, swap_file
);
2914 error
= PTR_ERR(page
);
2917 swap_header
= kmap(page
);
2919 maxpages
= read_swap_header(p
, swap_header
, inode
);
2920 if (unlikely(!maxpages
)) {
2925 /* OK, set up the swap map and apply the bad block list */
2926 swap_map
= vzalloc(maxpages
);
2932 if (bdi_cap_stable_pages_required(inode_to_bdi(inode
)))
2933 p
->flags
|= SWP_STABLE_WRITES
;
2935 if (p
->bdev
&& blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2937 unsigned long ci
, nr_cluster
;
2939 p
->flags
|= SWP_SOLIDSTATE
;
2941 * select a random position to start with to help wear leveling
2944 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
2945 nr_cluster
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
2947 cluster_info
= kvzalloc(nr_cluster
* sizeof(*cluster_info
),
2949 if (!cluster_info
) {
2954 for (ci
= 0; ci
< nr_cluster
; ci
++)
2955 spin_lock_init(&((cluster_info
+ ci
)->lock
));
2957 p
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
2958 if (!p
->percpu_cluster
) {
2962 for_each_possible_cpu(cpu
) {
2963 struct percpu_cluster
*cluster
;
2964 cluster
= per_cpu_ptr(p
->percpu_cluster
, cpu
);
2965 cluster_set_null(&cluster
->index
);
2969 error
= swap_cgroup_swapon(p
->type
, maxpages
);
2973 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
2974 cluster_info
, maxpages
, &span
);
2975 if (unlikely(nr_extents
< 0)) {
2979 /* frontswap enabled? set up bit-per-page map for frontswap */
2980 if (IS_ENABLED(CONFIG_FRONTSWAP
))
2981 frontswap_map
= kvzalloc(BITS_TO_LONGS(maxpages
) * sizeof(long),
2984 if (p
->bdev
&&(swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
2986 * When discard is enabled for swap with no particular
2987 * policy flagged, we set all swap discard flags here in
2988 * order to sustain backward compatibility with older
2989 * swapon(8) releases.
2991 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
2995 * By flagging sys_swapon, a sysadmin can tell us to
2996 * either do single-time area discards only, or to just
2997 * perform discards for released swap page-clusters.
2998 * Now it's time to adjust the p->flags accordingly.
3000 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
3001 p
->flags
&= ~SWP_PAGE_DISCARD
;
3002 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
3003 p
->flags
&= ~SWP_AREA_DISCARD
;
3005 /* issue a swapon-time discard if it's still required */
3006 if (p
->flags
& SWP_AREA_DISCARD
) {
3007 int err
= discard_swap(p
);
3009 pr_err("swapon: discard_swap(%p): %d\n",
3014 error
= init_swap_address_space(p
->type
, maxpages
);
3018 mutex_lock(&swapon_mutex
);
3020 if (swap_flags
& SWAP_FLAG_PREFER
)
3022 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
3023 enable_swap_info(p
, prio
, swap_map
, cluster_info
, frontswap_map
);
3025 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3026 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
3027 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
3028 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
3029 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
3030 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
3031 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
3032 (frontswap_map
) ? "FS" : "");
3034 mutex_unlock(&swapon_mutex
);
3035 atomic_inc(&proc_poll_event
);
3036 wake_up_interruptible(&proc_poll_wait
);
3038 if (S_ISREG(inode
->i_mode
))
3039 inode
->i_flags
|= S_SWAPFILE
;
3043 free_percpu(p
->percpu_cluster
);
3044 p
->percpu_cluster
= NULL
;
3045 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
3046 set_blocksize(p
->bdev
, p
->old_block_size
);
3047 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
3049 destroy_swap_extents(p
);
3050 swap_cgroup_swapoff(p
->type
);
3051 spin_lock(&swap_lock
);
3052 p
->swap_file
= NULL
;
3054 spin_unlock(&swap_lock
);
3056 kvfree(cluster_info
);
3057 kvfree(frontswap_map
);
3059 if (inode
&& S_ISREG(inode
->i_mode
)) {
3060 inode_unlock(inode
);
3063 filp_close(swap_file
, NULL
);
3066 if (page
&& !IS_ERR(page
)) {
3072 if (inode
&& S_ISREG(inode
->i_mode
))
3073 inode_unlock(inode
);
3075 enable_swap_slots_cache();
3079 void si_swapinfo(struct sysinfo
*val
)
3082 unsigned long nr_to_be_unused
= 0;
3084 spin_lock(&swap_lock
);
3085 for (type
= 0; type
< nr_swapfiles
; type
++) {
3086 struct swap_info_struct
*si
= swap_info
[type
];
3088 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
3089 nr_to_be_unused
+= si
->inuse_pages
;
3091 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
3092 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
3093 spin_unlock(&swap_lock
);
3097 * Verify that a swap entry is valid and increment its swap map count.
3099 * Returns error code in following case.
3101 * - swp_entry is invalid -> EINVAL
3102 * - swp_entry is migration entry -> EINVAL
3103 * - swap-cache reference is requested but there is already one. -> EEXIST
3104 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3105 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3107 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
3109 struct swap_info_struct
*p
;
3110 struct swap_cluster_info
*ci
;
3111 unsigned long offset
, type
;
3112 unsigned char count
;
3113 unsigned char has_cache
;
3116 if (non_swap_entry(entry
))
3119 type
= swp_type(entry
);
3120 if (type
>= nr_swapfiles
)
3122 p
= swap_info
[type
];
3123 offset
= swp_offset(entry
);
3124 if (unlikely(offset
>= p
->max
))
3127 ci
= lock_cluster_or_swap_info(p
, offset
);
3129 count
= p
->swap_map
[offset
];
3132 * swapin_readahead() doesn't check if a swap entry is valid, so the
3133 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3135 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
3140 has_cache
= count
& SWAP_HAS_CACHE
;
3141 count
&= ~SWAP_HAS_CACHE
;
3144 if (usage
== SWAP_HAS_CACHE
) {
3146 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3147 if (!has_cache
&& count
)
3148 has_cache
= SWAP_HAS_CACHE
;
3149 else if (has_cache
) /* someone else added cache */
3151 else /* no users remaining */
3154 } else if (count
|| has_cache
) {
3156 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
3158 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
3160 else if (swap_count_continued(p
, offset
, count
))
3161 count
= COUNT_CONTINUED
;
3165 err
= -ENOENT
; /* unused swap entry */
3167 p
->swap_map
[offset
] = count
| has_cache
;
3170 unlock_cluster_or_swap_info(p
, ci
);
3175 pr_err("swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
3180 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3181 * (in which case its reference count is never incremented).
3183 void swap_shmem_alloc(swp_entry_t entry
)
3185 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
3189 * Increase reference count of swap entry by 1.
3190 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3191 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3192 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3193 * might occur if a page table entry has got corrupted.
3195 int swap_duplicate(swp_entry_t entry
)
3199 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
3200 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
3205 * @entry: swap entry for which we allocate swap cache.
3207 * Called when allocating swap cache for existing swap entry,
3208 * This can return error codes. Returns 0 at success.
3209 * -EBUSY means there is a swap cache.
3210 * Note: return code is different from swap_duplicate().
3212 int swapcache_prepare(swp_entry_t entry
)
3214 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
3217 struct swap_info_struct
*page_swap_info(struct page
*page
)
3219 swp_entry_t swap
= { .val
= page_private(page
) };
3220 return swap_info
[swp_type(swap
)];
3224 * out-of-line __page_file_ methods to avoid include hell.
3226 struct address_space
*__page_file_mapping(struct page
*page
)
3228 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
3229 return page_swap_info(page
)->swap_file
->f_mapping
;
3231 EXPORT_SYMBOL_GPL(__page_file_mapping
);
3233 pgoff_t
__page_file_index(struct page
*page
)
3235 swp_entry_t swap
= { .val
= page_private(page
) };
3236 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
3237 return swp_offset(swap
);
3239 EXPORT_SYMBOL_GPL(__page_file_index
);
3242 * add_swap_count_continuation - called when a swap count is duplicated
3243 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3244 * page of the original vmalloc'ed swap_map, to hold the continuation count
3245 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3246 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3248 * These continuation pages are seldom referenced: the common paths all work
3249 * on the original swap_map, only referring to a continuation page when the
3250 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3252 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3253 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3254 * can be called after dropping locks.
3256 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
3258 struct swap_info_struct
*si
;
3259 struct swap_cluster_info
*ci
;
3262 struct page
*list_page
;
3264 unsigned char count
;
3267 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3268 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3270 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
3272 si
= swap_info_get(entry
);
3275 * An acceptable race has occurred since the failing
3276 * __swap_duplicate(): the swap entry has been freed,
3277 * perhaps even the whole swap_map cleared for swapoff.
3282 offset
= swp_offset(entry
);
3284 ci
= lock_cluster(si
, offset
);
3286 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
3288 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
3290 * The higher the swap count, the more likely it is that tasks
3291 * will race to add swap count continuation: we need to avoid
3292 * over-provisioning.
3299 spin_unlock(&si
->lock
);
3304 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3305 * no architecture is using highmem pages for kernel page tables: so it
3306 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3308 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3309 offset
&= ~PAGE_MASK
;
3311 spin_lock(&si
->cont_lock
);
3313 * Page allocation does not initialize the page's lru field,
3314 * but it does always reset its private field.
3316 if (!page_private(head
)) {
3317 BUG_ON(count
& COUNT_CONTINUED
);
3318 INIT_LIST_HEAD(&head
->lru
);
3319 set_page_private(head
, SWP_CONTINUED
);
3320 si
->flags
|= SWP_CONTINUED
;
3323 list_for_each_entry(list_page
, &head
->lru
, lru
) {
3327 * If the previous map said no continuation, but we've found
3328 * a continuation page, free our allocation and use this one.
3330 if (!(count
& COUNT_CONTINUED
))
3331 goto out_unlock_cont
;
3333 map
= kmap_atomic(list_page
) + offset
;
3338 * If this continuation count now has some space in it,
3339 * free our allocation and use this one.
3341 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
3342 goto out_unlock_cont
;
3345 list_add_tail(&page
->lru
, &head
->lru
);
3346 page
= NULL
; /* now it's attached, don't free it */
3348 spin_unlock(&si
->cont_lock
);
3351 spin_unlock(&si
->lock
);
3359 * swap_count_continued - when the original swap_map count is incremented
3360 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3361 * into, carry if so, or else fail until a new continuation page is allocated;
3362 * when the original swap_map count is decremented from 0 with continuation,
3363 * borrow from the continuation and report whether it still holds more.
3364 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3367 static bool swap_count_continued(struct swap_info_struct
*si
,
3368 pgoff_t offset
, unsigned char count
)
3375 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3376 if (page_private(head
) != SWP_CONTINUED
) {
3377 BUG_ON(count
& COUNT_CONTINUED
);
3378 return false; /* need to add count continuation */
3381 spin_lock(&si
->cont_lock
);
3382 offset
&= ~PAGE_MASK
;
3383 page
= list_entry(head
->lru
.next
, struct page
, lru
);
3384 map
= kmap_atomic(page
) + offset
;
3386 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
3387 goto init_map
; /* jump over SWAP_CONT_MAX checks */
3389 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
3391 * Think of how you add 1 to 999
3393 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
3395 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3396 BUG_ON(page
== head
);
3397 map
= kmap_atomic(page
) + offset
;
3399 if (*map
== SWAP_CONT_MAX
) {
3401 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3403 ret
= false; /* add count continuation */
3406 map
= kmap_atomic(page
) + offset
;
3407 init_map
: *map
= 0; /* we didn't zero the page */
3411 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3412 while (page
!= head
) {
3413 map
= kmap_atomic(page
) + offset
;
3414 *map
= COUNT_CONTINUED
;
3416 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3418 ret
= true; /* incremented */
3420 } else { /* decrementing */
3422 * Think of how you subtract 1 from 1000
3424 BUG_ON(count
!= COUNT_CONTINUED
);
3425 while (*map
== COUNT_CONTINUED
) {
3427 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3428 BUG_ON(page
== head
);
3429 map
= kmap_atomic(page
) + offset
;
3436 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3437 while (page
!= head
) {
3438 map
= kmap_atomic(page
) + offset
;
3439 *map
= SWAP_CONT_MAX
| count
;
3440 count
= COUNT_CONTINUED
;
3442 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3444 ret
= count
== COUNT_CONTINUED
;
3447 spin_unlock(&si
->cont_lock
);
3452 * free_swap_count_continuations - swapoff free all the continuation pages
3453 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3455 static void free_swap_count_continuations(struct swap_info_struct
*si
)
3459 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
3461 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3462 if (page_private(head
)) {
3463 struct page
*page
, *next
;
3465 list_for_each_entry_safe(page
, next
, &head
->lru
, lru
) {
3466 list_del(&page
->lru
);