Linux 4.13.16
[linux/fpc-iii.git] / mm / vmalloc.c
blobceacc6e019043f72c35d015a4a760d1a8a7ee7e3
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
39 #include "internal.h"
41 struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
47 static void __vunmap(const void *, int);
49 static void free_work(struct work_struct *w)
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *llnode = llist_del_all(&p->list);
53 while (llnode) {
54 void *p = llnode;
55 llnode = llist_next(llnode);
56 __vunmap(p, 1);
60 /*** Page table manipulation functions ***/
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64 pte_t *pte;
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
75 pmd_t *pmd;
76 unsigned long next;
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
81 if (pmd_clear_huge(pmd))
82 continue;
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
89 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
91 pud_t *pud;
92 unsigned long next;
94 pud = pud_offset(p4d, addr);
95 do {
96 next = pud_addr_end(addr, end);
97 if (pud_clear_huge(pud))
98 continue;
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
105 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107 p4d_t *p4d;
108 unsigned long next;
110 p4d = p4d_offset(pgd, addr);
111 do {
112 next = p4d_addr_end(addr, end);
113 if (p4d_clear_huge(p4d))
114 continue;
115 if (p4d_none_or_clear_bad(p4d))
116 continue;
117 vunmap_pud_range(p4d, addr, next);
118 } while (p4d++, addr = next, addr != end);
121 static void vunmap_page_range(unsigned long addr, unsigned long end)
123 pgd_t *pgd;
124 unsigned long next;
126 BUG_ON(addr >= end);
127 pgd = pgd_offset_k(addr);
128 do {
129 next = pgd_addr_end(addr, end);
130 if (pgd_none_or_clear_bad(pgd))
131 continue;
132 vunmap_p4d_range(pgd, addr, next);
133 } while (pgd++, addr = next, addr != end);
136 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
137 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
139 pte_t *pte;
142 * nr is a running index into the array which helps higher level
143 * callers keep track of where we're up to.
146 pte = pte_alloc_kernel(pmd, addr);
147 if (!pte)
148 return -ENOMEM;
149 do {
150 struct page *page = pages[*nr];
152 if (WARN_ON(!pte_none(*pte)))
153 return -EBUSY;
154 if (WARN_ON(!page))
155 return -ENOMEM;
156 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
157 (*nr)++;
158 } while (pte++, addr += PAGE_SIZE, addr != end);
159 return 0;
162 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
163 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 pmd_t *pmd;
166 unsigned long next;
168 pmd = pmd_alloc(&init_mm, pud, addr);
169 if (!pmd)
170 return -ENOMEM;
171 do {
172 next = pmd_addr_end(addr, end);
173 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
174 return -ENOMEM;
175 } while (pmd++, addr = next, addr != end);
176 return 0;
179 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
180 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
182 pud_t *pud;
183 unsigned long next;
185 pud = pud_alloc(&init_mm, p4d, addr);
186 if (!pud)
187 return -ENOMEM;
188 do {
189 next = pud_addr_end(addr, end);
190 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
191 return -ENOMEM;
192 } while (pud++, addr = next, addr != end);
193 return 0;
196 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
197 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199 p4d_t *p4d;
200 unsigned long next;
202 p4d = p4d_alloc(&init_mm, pgd, addr);
203 if (!p4d)
204 return -ENOMEM;
205 do {
206 next = p4d_addr_end(addr, end);
207 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
208 return -ENOMEM;
209 } while (p4d++, addr = next, addr != end);
210 return 0;
214 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
215 * will have pfns corresponding to the "pages" array.
217 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
220 pgprot_t prot, struct page **pages)
222 pgd_t *pgd;
223 unsigned long next;
224 unsigned long addr = start;
225 int err = 0;
226 int nr = 0;
228 BUG_ON(addr >= end);
229 pgd = pgd_offset_k(addr);
230 do {
231 next = pgd_addr_end(addr, end);
232 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
233 if (err)
234 return err;
235 } while (pgd++, addr = next, addr != end);
237 return nr;
240 static int vmap_page_range(unsigned long start, unsigned long end,
241 pgprot_t prot, struct page **pages)
243 int ret;
245 ret = vmap_page_range_noflush(start, end, prot, pages);
246 flush_cache_vmap(start, end);
247 return ret;
250 int is_vmalloc_or_module_addr(const void *x)
253 * ARM, x86-64 and sparc64 put modules in a special place,
254 * and fall back on vmalloc() if that fails. Others
255 * just put it in the vmalloc space.
257 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
258 unsigned long addr = (unsigned long)x;
259 if (addr >= MODULES_VADDR && addr < MODULES_END)
260 return 1;
261 #endif
262 return is_vmalloc_addr(x);
266 * Walk a vmap address to the struct page it maps.
268 struct page *vmalloc_to_page(const void *vmalloc_addr)
270 unsigned long addr = (unsigned long) vmalloc_addr;
271 struct page *page = NULL;
272 pgd_t *pgd = pgd_offset_k(addr);
273 p4d_t *p4d;
274 pud_t *pud;
275 pmd_t *pmd;
276 pte_t *ptep, pte;
279 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
280 * architectures that do not vmalloc module space
282 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
284 if (pgd_none(*pgd))
285 return NULL;
286 p4d = p4d_offset(pgd, addr);
287 if (p4d_none(*p4d))
288 return NULL;
289 pud = pud_offset(p4d, addr);
292 * Don't dereference bad PUD or PMD (below) entries. This will also
293 * identify huge mappings, which we may encounter on architectures
294 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
295 * identified as vmalloc addresses by is_vmalloc_addr(), but are
296 * not [unambiguously] associated with a struct page, so there is
297 * no correct value to return for them.
299 WARN_ON_ONCE(pud_bad(*pud));
300 if (pud_none(*pud) || pud_bad(*pud))
301 return NULL;
302 pmd = pmd_offset(pud, addr);
303 WARN_ON_ONCE(pmd_bad(*pmd));
304 if (pmd_none(*pmd) || pmd_bad(*pmd))
305 return NULL;
307 ptep = pte_offset_map(pmd, addr);
308 pte = *ptep;
309 if (pte_present(pte))
310 page = pte_page(pte);
311 pte_unmap(ptep);
312 return page;
314 EXPORT_SYMBOL(vmalloc_to_page);
317 * Map a vmalloc()-space virtual address to the physical page frame number.
319 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323 EXPORT_SYMBOL(vmalloc_to_pfn);
326 /*** Global kva allocator ***/
328 #define VM_LAZY_FREE 0x02
329 #define VM_VM_AREA 0x04
331 static DEFINE_SPINLOCK(vmap_area_lock);
332 /* Export for kexec only */
333 LIST_HEAD(vmap_area_list);
334 static LLIST_HEAD(vmap_purge_list);
335 static struct rb_root vmap_area_root = RB_ROOT;
337 /* The vmap cache globals are protected by vmap_area_lock */
338 static struct rb_node *free_vmap_cache;
339 static unsigned long cached_hole_size;
340 static unsigned long cached_vstart;
341 static unsigned long cached_align;
343 static unsigned long vmap_area_pcpu_hole;
345 static struct vmap_area *__find_vmap_area(unsigned long addr)
347 struct rb_node *n = vmap_area_root.rb_node;
349 while (n) {
350 struct vmap_area *va;
352 va = rb_entry(n, struct vmap_area, rb_node);
353 if (addr < va->va_start)
354 n = n->rb_left;
355 else if (addr >= va->va_end)
356 n = n->rb_right;
357 else
358 return va;
361 return NULL;
364 static void __insert_vmap_area(struct vmap_area *va)
366 struct rb_node **p = &vmap_area_root.rb_node;
367 struct rb_node *parent = NULL;
368 struct rb_node *tmp;
370 while (*p) {
371 struct vmap_area *tmp_va;
373 parent = *p;
374 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
375 if (va->va_start < tmp_va->va_end)
376 p = &(*p)->rb_left;
377 else if (va->va_end > tmp_va->va_start)
378 p = &(*p)->rb_right;
379 else
380 BUG();
383 rb_link_node(&va->rb_node, parent, p);
384 rb_insert_color(&va->rb_node, &vmap_area_root);
386 /* address-sort this list */
387 tmp = rb_prev(&va->rb_node);
388 if (tmp) {
389 struct vmap_area *prev;
390 prev = rb_entry(tmp, struct vmap_area, rb_node);
391 list_add_rcu(&va->list, &prev->list);
392 } else
393 list_add_rcu(&va->list, &vmap_area_list);
396 static void purge_vmap_area_lazy(void);
398 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
401 * Allocate a region of KVA of the specified size and alignment, within the
402 * vstart and vend.
404 static struct vmap_area *alloc_vmap_area(unsigned long size,
405 unsigned long align,
406 unsigned long vstart, unsigned long vend,
407 int node, gfp_t gfp_mask)
409 struct vmap_area *va;
410 struct rb_node *n;
411 unsigned long addr;
412 int purged = 0;
413 struct vmap_area *first;
415 BUG_ON(!size);
416 BUG_ON(offset_in_page(size));
417 BUG_ON(!is_power_of_2(align));
419 might_sleep();
421 va = kmalloc_node(sizeof(struct vmap_area),
422 gfp_mask & GFP_RECLAIM_MASK, node);
423 if (unlikely(!va))
424 return ERR_PTR(-ENOMEM);
427 * Only scan the relevant parts containing pointers to other objects
428 * to avoid false negatives.
430 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
432 retry:
433 spin_lock(&vmap_area_lock);
435 * Invalidate cache if we have more permissive parameters.
436 * cached_hole_size notes the largest hole noticed _below_
437 * the vmap_area cached in free_vmap_cache: if size fits
438 * into that hole, we want to scan from vstart to reuse
439 * the hole instead of allocating above free_vmap_cache.
440 * Note that __free_vmap_area may update free_vmap_cache
441 * without updating cached_hole_size or cached_align.
443 if (!free_vmap_cache ||
444 size < cached_hole_size ||
445 vstart < cached_vstart ||
446 align < cached_align) {
447 nocache:
448 cached_hole_size = 0;
449 free_vmap_cache = NULL;
451 /* record if we encounter less permissive parameters */
452 cached_vstart = vstart;
453 cached_align = align;
455 /* find starting point for our search */
456 if (free_vmap_cache) {
457 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
458 addr = ALIGN(first->va_end, align);
459 if (addr < vstart)
460 goto nocache;
461 if (addr + size < addr)
462 goto overflow;
464 } else {
465 addr = ALIGN(vstart, align);
466 if (addr + size < addr)
467 goto overflow;
469 n = vmap_area_root.rb_node;
470 first = NULL;
472 while (n) {
473 struct vmap_area *tmp;
474 tmp = rb_entry(n, struct vmap_area, rb_node);
475 if (tmp->va_end >= addr) {
476 first = tmp;
477 if (tmp->va_start <= addr)
478 break;
479 n = n->rb_left;
480 } else
481 n = n->rb_right;
484 if (!first)
485 goto found;
488 /* from the starting point, walk areas until a suitable hole is found */
489 while (addr + size > first->va_start && addr + size <= vend) {
490 if (addr + cached_hole_size < first->va_start)
491 cached_hole_size = first->va_start - addr;
492 addr = ALIGN(first->va_end, align);
493 if (addr + size < addr)
494 goto overflow;
496 if (list_is_last(&first->list, &vmap_area_list))
497 goto found;
499 first = list_next_entry(first, list);
502 found:
503 if (addr + size > vend)
504 goto overflow;
506 va->va_start = addr;
507 va->va_end = addr + size;
508 va->flags = 0;
509 __insert_vmap_area(va);
510 free_vmap_cache = &va->rb_node;
511 spin_unlock(&vmap_area_lock);
513 BUG_ON(!IS_ALIGNED(va->va_start, align));
514 BUG_ON(va->va_start < vstart);
515 BUG_ON(va->va_end > vend);
517 return va;
519 overflow:
520 spin_unlock(&vmap_area_lock);
521 if (!purged) {
522 purge_vmap_area_lazy();
523 purged = 1;
524 goto retry;
527 if (gfpflags_allow_blocking(gfp_mask)) {
528 unsigned long freed = 0;
529 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
530 if (freed > 0) {
531 purged = 0;
532 goto retry;
536 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
537 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
538 size);
539 kfree(va);
540 return ERR_PTR(-EBUSY);
543 int register_vmap_purge_notifier(struct notifier_block *nb)
545 return blocking_notifier_chain_register(&vmap_notify_list, nb);
547 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
549 int unregister_vmap_purge_notifier(struct notifier_block *nb)
551 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
553 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
555 static void __free_vmap_area(struct vmap_area *va)
557 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
559 if (free_vmap_cache) {
560 if (va->va_end < cached_vstart) {
561 free_vmap_cache = NULL;
562 } else {
563 struct vmap_area *cache;
564 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
565 if (va->va_start <= cache->va_start) {
566 free_vmap_cache = rb_prev(&va->rb_node);
568 * We don't try to update cached_hole_size or
569 * cached_align, but it won't go very wrong.
574 rb_erase(&va->rb_node, &vmap_area_root);
575 RB_CLEAR_NODE(&va->rb_node);
576 list_del_rcu(&va->list);
579 * Track the highest possible candidate for pcpu area
580 * allocation. Areas outside of vmalloc area can be returned
581 * here too, consider only end addresses which fall inside
582 * vmalloc area proper.
584 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
585 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
587 kfree_rcu(va, rcu_head);
591 * Free a region of KVA allocated by alloc_vmap_area
593 static void free_vmap_area(struct vmap_area *va)
595 spin_lock(&vmap_area_lock);
596 __free_vmap_area(va);
597 spin_unlock(&vmap_area_lock);
601 * Clear the pagetable entries of a given vmap_area
603 static void unmap_vmap_area(struct vmap_area *va)
605 vunmap_page_range(va->va_start, va->va_end);
608 static void vmap_debug_free_range(unsigned long start, unsigned long end)
611 * Unmap page tables and force a TLB flush immediately if pagealloc
612 * debugging is enabled. This catches use after free bugs similarly to
613 * those in linear kernel virtual address space after a page has been
614 * freed.
616 * All the lazy freeing logic is still retained, in order to minimise
617 * intrusiveness of this debugging feature.
619 * This is going to be *slow* (linear kernel virtual address debugging
620 * doesn't do a broadcast TLB flush so it is a lot faster).
622 if (debug_pagealloc_enabled()) {
623 vunmap_page_range(start, end);
624 flush_tlb_kernel_range(start, end);
629 * lazy_max_pages is the maximum amount of virtual address space we gather up
630 * before attempting to purge with a TLB flush.
632 * There is a tradeoff here: a larger number will cover more kernel page tables
633 * and take slightly longer to purge, but it will linearly reduce the number of
634 * global TLB flushes that must be performed. It would seem natural to scale
635 * this number up linearly with the number of CPUs (because vmapping activity
636 * could also scale linearly with the number of CPUs), however it is likely
637 * that in practice, workloads might be constrained in other ways that mean
638 * vmap activity will not scale linearly with CPUs. Also, I want to be
639 * conservative and not introduce a big latency on huge systems, so go with
640 * a less aggressive log scale. It will still be an improvement over the old
641 * code, and it will be simple to change the scale factor if we find that it
642 * becomes a problem on bigger systems.
644 static unsigned long lazy_max_pages(void)
646 unsigned int log;
648 log = fls(num_online_cpus());
650 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
653 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
656 * Serialize vmap purging. There is no actual criticial section protected
657 * by this look, but we want to avoid concurrent calls for performance
658 * reasons and to make the pcpu_get_vm_areas more deterministic.
660 static DEFINE_MUTEX(vmap_purge_lock);
662 /* for per-CPU blocks */
663 static void purge_fragmented_blocks_allcpus(void);
666 * called before a call to iounmap() if the caller wants vm_area_struct's
667 * immediately freed.
669 void set_iounmap_nonlazy(void)
671 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
675 * Purges all lazily-freed vmap areas.
677 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
679 struct llist_node *valist;
680 struct vmap_area *va;
681 struct vmap_area *n_va;
682 bool do_free = false;
684 lockdep_assert_held(&vmap_purge_lock);
686 valist = llist_del_all(&vmap_purge_list);
687 llist_for_each_entry(va, valist, purge_list) {
688 if (va->va_start < start)
689 start = va->va_start;
690 if (va->va_end > end)
691 end = va->va_end;
692 do_free = true;
695 if (!do_free)
696 return false;
698 flush_tlb_kernel_range(start, end);
700 spin_lock(&vmap_area_lock);
701 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
702 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
704 __free_vmap_area(va);
705 atomic_sub(nr, &vmap_lazy_nr);
706 cond_resched_lock(&vmap_area_lock);
708 spin_unlock(&vmap_area_lock);
709 return true;
713 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
714 * is already purging.
716 static void try_purge_vmap_area_lazy(void)
718 if (mutex_trylock(&vmap_purge_lock)) {
719 __purge_vmap_area_lazy(ULONG_MAX, 0);
720 mutex_unlock(&vmap_purge_lock);
725 * Kick off a purge of the outstanding lazy areas.
727 static void purge_vmap_area_lazy(void)
729 mutex_lock(&vmap_purge_lock);
730 purge_fragmented_blocks_allcpus();
731 __purge_vmap_area_lazy(ULONG_MAX, 0);
732 mutex_unlock(&vmap_purge_lock);
736 * Free a vmap area, caller ensuring that the area has been unmapped
737 * and flush_cache_vunmap had been called for the correct range
738 * previously.
740 static void free_vmap_area_noflush(struct vmap_area *va)
742 int nr_lazy;
744 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
745 &vmap_lazy_nr);
747 /* After this point, we may free va at any time */
748 llist_add(&va->purge_list, &vmap_purge_list);
750 if (unlikely(nr_lazy > lazy_max_pages()))
751 try_purge_vmap_area_lazy();
755 * Free and unmap a vmap area
757 static void free_unmap_vmap_area(struct vmap_area *va)
759 flush_cache_vunmap(va->va_start, va->va_end);
760 unmap_vmap_area(va);
761 free_vmap_area_noflush(va);
764 static struct vmap_area *find_vmap_area(unsigned long addr)
766 struct vmap_area *va;
768 spin_lock(&vmap_area_lock);
769 va = __find_vmap_area(addr);
770 spin_unlock(&vmap_area_lock);
772 return va;
775 /*** Per cpu kva allocator ***/
778 * vmap space is limited especially on 32 bit architectures. Ensure there is
779 * room for at least 16 percpu vmap blocks per CPU.
782 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
783 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
784 * instead (we just need a rough idea)
786 #if BITS_PER_LONG == 32
787 #define VMALLOC_SPACE (128UL*1024*1024)
788 #else
789 #define VMALLOC_SPACE (128UL*1024*1024*1024)
790 #endif
792 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
793 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
794 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
795 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
796 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
797 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
798 #define VMAP_BBMAP_BITS \
799 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
800 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
801 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
803 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
805 static bool vmap_initialized __read_mostly = false;
807 struct vmap_block_queue {
808 spinlock_t lock;
809 struct list_head free;
812 struct vmap_block {
813 spinlock_t lock;
814 struct vmap_area *va;
815 unsigned long free, dirty;
816 unsigned long dirty_min, dirty_max; /*< dirty range */
817 struct list_head free_list;
818 struct rcu_head rcu_head;
819 struct list_head purge;
822 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
823 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
826 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
827 * in the free path. Could get rid of this if we change the API to return a
828 * "cookie" from alloc, to be passed to free. But no big deal yet.
830 static DEFINE_SPINLOCK(vmap_block_tree_lock);
831 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
834 * We should probably have a fallback mechanism to allocate virtual memory
835 * out of partially filled vmap blocks. However vmap block sizing should be
836 * fairly reasonable according to the vmalloc size, so it shouldn't be a
837 * big problem.
840 static unsigned long addr_to_vb_idx(unsigned long addr)
842 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
843 addr /= VMAP_BLOCK_SIZE;
844 return addr;
847 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
849 unsigned long addr;
851 addr = va_start + (pages_off << PAGE_SHIFT);
852 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
853 return (void *)addr;
857 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
858 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
859 * @order: how many 2^order pages should be occupied in newly allocated block
860 * @gfp_mask: flags for the page level allocator
862 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
864 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
866 struct vmap_block_queue *vbq;
867 struct vmap_block *vb;
868 struct vmap_area *va;
869 unsigned long vb_idx;
870 int node, err;
871 void *vaddr;
873 node = numa_node_id();
875 vb = kmalloc_node(sizeof(struct vmap_block),
876 gfp_mask & GFP_RECLAIM_MASK, node);
877 if (unlikely(!vb))
878 return ERR_PTR(-ENOMEM);
880 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
881 VMALLOC_START, VMALLOC_END,
882 node, gfp_mask);
883 if (IS_ERR(va)) {
884 kfree(vb);
885 return ERR_CAST(va);
888 err = radix_tree_preload(gfp_mask);
889 if (unlikely(err)) {
890 kfree(vb);
891 free_vmap_area(va);
892 return ERR_PTR(err);
895 vaddr = vmap_block_vaddr(va->va_start, 0);
896 spin_lock_init(&vb->lock);
897 vb->va = va;
898 /* At least something should be left free */
899 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
900 vb->free = VMAP_BBMAP_BITS - (1UL << order);
901 vb->dirty = 0;
902 vb->dirty_min = VMAP_BBMAP_BITS;
903 vb->dirty_max = 0;
904 INIT_LIST_HEAD(&vb->free_list);
906 vb_idx = addr_to_vb_idx(va->va_start);
907 spin_lock(&vmap_block_tree_lock);
908 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
909 spin_unlock(&vmap_block_tree_lock);
910 BUG_ON(err);
911 radix_tree_preload_end();
913 vbq = &get_cpu_var(vmap_block_queue);
914 spin_lock(&vbq->lock);
915 list_add_tail_rcu(&vb->free_list, &vbq->free);
916 spin_unlock(&vbq->lock);
917 put_cpu_var(vmap_block_queue);
919 return vaddr;
922 static void free_vmap_block(struct vmap_block *vb)
924 struct vmap_block *tmp;
925 unsigned long vb_idx;
927 vb_idx = addr_to_vb_idx(vb->va->va_start);
928 spin_lock(&vmap_block_tree_lock);
929 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
930 spin_unlock(&vmap_block_tree_lock);
931 BUG_ON(tmp != vb);
933 free_vmap_area_noflush(vb->va);
934 kfree_rcu(vb, rcu_head);
937 static void purge_fragmented_blocks(int cpu)
939 LIST_HEAD(purge);
940 struct vmap_block *vb;
941 struct vmap_block *n_vb;
942 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
944 rcu_read_lock();
945 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
947 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
948 continue;
950 spin_lock(&vb->lock);
951 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
952 vb->free = 0; /* prevent further allocs after releasing lock */
953 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
954 vb->dirty_min = 0;
955 vb->dirty_max = VMAP_BBMAP_BITS;
956 spin_lock(&vbq->lock);
957 list_del_rcu(&vb->free_list);
958 spin_unlock(&vbq->lock);
959 spin_unlock(&vb->lock);
960 list_add_tail(&vb->purge, &purge);
961 } else
962 spin_unlock(&vb->lock);
964 rcu_read_unlock();
966 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
967 list_del(&vb->purge);
968 free_vmap_block(vb);
972 static void purge_fragmented_blocks_allcpus(void)
974 int cpu;
976 for_each_possible_cpu(cpu)
977 purge_fragmented_blocks(cpu);
980 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
982 struct vmap_block_queue *vbq;
983 struct vmap_block *vb;
984 void *vaddr = NULL;
985 unsigned int order;
987 BUG_ON(offset_in_page(size));
988 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
989 if (WARN_ON(size == 0)) {
991 * Allocating 0 bytes isn't what caller wants since
992 * get_order(0) returns funny result. Just warn and terminate
993 * early.
995 return NULL;
997 order = get_order(size);
999 rcu_read_lock();
1000 vbq = &get_cpu_var(vmap_block_queue);
1001 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1002 unsigned long pages_off;
1004 spin_lock(&vb->lock);
1005 if (vb->free < (1UL << order)) {
1006 spin_unlock(&vb->lock);
1007 continue;
1010 pages_off = VMAP_BBMAP_BITS - vb->free;
1011 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1012 vb->free -= 1UL << order;
1013 if (vb->free == 0) {
1014 spin_lock(&vbq->lock);
1015 list_del_rcu(&vb->free_list);
1016 spin_unlock(&vbq->lock);
1019 spin_unlock(&vb->lock);
1020 break;
1023 put_cpu_var(vmap_block_queue);
1024 rcu_read_unlock();
1026 /* Allocate new block if nothing was found */
1027 if (!vaddr)
1028 vaddr = new_vmap_block(order, gfp_mask);
1030 return vaddr;
1033 static void vb_free(const void *addr, unsigned long size)
1035 unsigned long offset;
1036 unsigned long vb_idx;
1037 unsigned int order;
1038 struct vmap_block *vb;
1040 BUG_ON(offset_in_page(size));
1041 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1043 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1045 order = get_order(size);
1047 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1048 offset >>= PAGE_SHIFT;
1050 vb_idx = addr_to_vb_idx((unsigned long)addr);
1051 rcu_read_lock();
1052 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1053 rcu_read_unlock();
1054 BUG_ON(!vb);
1056 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1058 spin_lock(&vb->lock);
1060 /* Expand dirty range */
1061 vb->dirty_min = min(vb->dirty_min, offset);
1062 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1064 vb->dirty += 1UL << order;
1065 if (vb->dirty == VMAP_BBMAP_BITS) {
1066 BUG_ON(vb->free);
1067 spin_unlock(&vb->lock);
1068 free_vmap_block(vb);
1069 } else
1070 spin_unlock(&vb->lock);
1074 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1076 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1077 * to amortize TLB flushing overheads. What this means is that any page you
1078 * have now, may, in a former life, have been mapped into kernel virtual
1079 * address by the vmap layer and so there might be some CPUs with TLB entries
1080 * still referencing that page (additional to the regular 1:1 kernel mapping).
1082 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1083 * be sure that none of the pages we have control over will have any aliases
1084 * from the vmap layer.
1086 void vm_unmap_aliases(void)
1088 unsigned long start = ULONG_MAX, end = 0;
1089 int cpu;
1090 int flush = 0;
1092 if (unlikely(!vmap_initialized))
1093 return;
1095 might_sleep();
1097 for_each_possible_cpu(cpu) {
1098 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1099 struct vmap_block *vb;
1101 rcu_read_lock();
1102 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1103 spin_lock(&vb->lock);
1104 if (vb->dirty) {
1105 unsigned long va_start = vb->va->va_start;
1106 unsigned long s, e;
1108 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1109 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1111 start = min(s, start);
1112 end = max(e, end);
1114 flush = 1;
1116 spin_unlock(&vb->lock);
1118 rcu_read_unlock();
1121 mutex_lock(&vmap_purge_lock);
1122 purge_fragmented_blocks_allcpus();
1123 if (!__purge_vmap_area_lazy(start, end) && flush)
1124 flush_tlb_kernel_range(start, end);
1125 mutex_unlock(&vmap_purge_lock);
1127 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1130 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1131 * @mem: the pointer returned by vm_map_ram
1132 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1134 void vm_unmap_ram(const void *mem, unsigned int count)
1136 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1137 unsigned long addr = (unsigned long)mem;
1138 struct vmap_area *va;
1140 might_sleep();
1141 BUG_ON(!addr);
1142 BUG_ON(addr < VMALLOC_START);
1143 BUG_ON(addr > VMALLOC_END);
1144 BUG_ON(!PAGE_ALIGNED(addr));
1146 debug_check_no_locks_freed(mem, size);
1147 vmap_debug_free_range(addr, addr+size);
1149 if (likely(count <= VMAP_MAX_ALLOC)) {
1150 vb_free(mem, size);
1151 return;
1154 va = find_vmap_area(addr);
1155 BUG_ON(!va);
1156 free_unmap_vmap_area(va);
1158 EXPORT_SYMBOL(vm_unmap_ram);
1161 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1162 * @pages: an array of pointers to the pages to be mapped
1163 * @count: number of pages
1164 * @node: prefer to allocate data structures on this node
1165 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1167 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1168 * faster than vmap so it's good. But if you mix long-life and short-life
1169 * objects with vm_map_ram(), it could consume lots of address space through
1170 * fragmentation (especially on a 32bit machine). You could see failures in
1171 * the end. Please use this function for short-lived objects.
1173 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1175 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1177 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1178 unsigned long addr;
1179 void *mem;
1181 if (likely(count <= VMAP_MAX_ALLOC)) {
1182 mem = vb_alloc(size, GFP_KERNEL);
1183 if (IS_ERR(mem))
1184 return NULL;
1185 addr = (unsigned long)mem;
1186 } else {
1187 struct vmap_area *va;
1188 va = alloc_vmap_area(size, PAGE_SIZE,
1189 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1190 if (IS_ERR(va))
1191 return NULL;
1193 addr = va->va_start;
1194 mem = (void *)addr;
1196 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1197 vm_unmap_ram(mem, count);
1198 return NULL;
1200 return mem;
1202 EXPORT_SYMBOL(vm_map_ram);
1204 static struct vm_struct *vmlist __initdata;
1206 * vm_area_add_early - add vmap area early during boot
1207 * @vm: vm_struct to add
1209 * This function is used to add fixed kernel vm area to vmlist before
1210 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1211 * should contain proper values and the other fields should be zero.
1213 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1215 void __init vm_area_add_early(struct vm_struct *vm)
1217 struct vm_struct *tmp, **p;
1219 BUG_ON(vmap_initialized);
1220 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1221 if (tmp->addr >= vm->addr) {
1222 BUG_ON(tmp->addr < vm->addr + vm->size);
1223 break;
1224 } else
1225 BUG_ON(tmp->addr + tmp->size > vm->addr);
1227 vm->next = *p;
1228 *p = vm;
1232 * vm_area_register_early - register vmap area early during boot
1233 * @vm: vm_struct to register
1234 * @align: requested alignment
1236 * This function is used to register kernel vm area before
1237 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1238 * proper values on entry and other fields should be zero. On return,
1239 * vm->addr contains the allocated address.
1241 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1243 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1245 static size_t vm_init_off __initdata;
1246 unsigned long addr;
1248 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1249 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1251 vm->addr = (void *)addr;
1253 vm_area_add_early(vm);
1256 void __init vmalloc_init(void)
1258 struct vmap_area *va;
1259 struct vm_struct *tmp;
1260 int i;
1262 for_each_possible_cpu(i) {
1263 struct vmap_block_queue *vbq;
1264 struct vfree_deferred *p;
1266 vbq = &per_cpu(vmap_block_queue, i);
1267 spin_lock_init(&vbq->lock);
1268 INIT_LIST_HEAD(&vbq->free);
1269 p = &per_cpu(vfree_deferred, i);
1270 init_llist_head(&p->list);
1271 INIT_WORK(&p->wq, free_work);
1274 /* Import existing vmlist entries. */
1275 for (tmp = vmlist; tmp; tmp = tmp->next) {
1276 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1277 va->flags = VM_VM_AREA;
1278 va->va_start = (unsigned long)tmp->addr;
1279 va->va_end = va->va_start + tmp->size;
1280 va->vm = tmp;
1281 __insert_vmap_area(va);
1284 vmap_area_pcpu_hole = VMALLOC_END;
1286 vmap_initialized = true;
1290 * map_kernel_range_noflush - map kernel VM area with the specified pages
1291 * @addr: start of the VM area to map
1292 * @size: size of the VM area to map
1293 * @prot: page protection flags to use
1294 * @pages: pages to map
1296 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1297 * specify should have been allocated using get_vm_area() and its
1298 * friends.
1300 * NOTE:
1301 * This function does NOT do any cache flushing. The caller is
1302 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1303 * before calling this function.
1305 * RETURNS:
1306 * The number of pages mapped on success, -errno on failure.
1308 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1309 pgprot_t prot, struct page **pages)
1311 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1315 * unmap_kernel_range_noflush - unmap kernel VM area
1316 * @addr: start of the VM area to unmap
1317 * @size: size of the VM area to unmap
1319 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1320 * specify should have been allocated using get_vm_area() and its
1321 * friends.
1323 * NOTE:
1324 * This function does NOT do any cache flushing. The caller is
1325 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1326 * before calling this function and flush_tlb_kernel_range() after.
1328 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1330 vunmap_page_range(addr, addr + size);
1332 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1335 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1336 * @addr: start of the VM area to unmap
1337 * @size: size of the VM area to unmap
1339 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1340 * the unmapping and tlb after.
1342 void unmap_kernel_range(unsigned long addr, unsigned long size)
1344 unsigned long end = addr + size;
1346 flush_cache_vunmap(addr, end);
1347 vunmap_page_range(addr, end);
1348 flush_tlb_kernel_range(addr, end);
1350 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1352 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1354 unsigned long addr = (unsigned long)area->addr;
1355 unsigned long end = addr + get_vm_area_size(area);
1356 int err;
1358 err = vmap_page_range(addr, end, prot, pages);
1360 return err > 0 ? 0 : err;
1362 EXPORT_SYMBOL_GPL(map_vm_area);
1364 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1365 unsigned long flags, const void *caller)
1367 spin_lock(&vmap_area_lock);
1368 vm->flags = flags;
1369 vm->addr = (void *)va->va_start;
1370 vm->size = va->va_end - va->va_start;
1371 vm->caller = caller;
1372 va->vm = vm;
1373 va->flags |= VM_VM_AREA;
1374 spin_unlock(&vmap_area_lock);
1377 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1380 * Before removing VM_UNINITIALIZED,
1381 * we should make sure that vm has proper values.
1382 * Pair with smp_rmb() in show_numa_info().
1384 smp_wmb();
1385 vm->flags &= ~VM_UNINITIALIZED;
1388 static struct vm_struct *__get_vm_area_node(unsigned long size,
1389 unsigned long align, unsigned long flags, unsigned long start,
1390 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1392 struct vmap_area *va;
1393 struct vm_struct *area;
1395 BUG_ON(in_interrupt());
1396 size = PAGE_ALIGN(size);
1397 if (unlikely(!size))
1398 return NULL;
1400 if (flags & VM_IOREMAP)
1401 align = 1ul << clamp_t(int, get_count_order_long(size),
1402 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1404 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1405 if (unlikely(!area))
1406 return NULL;
1408 if (!(flags & VM_NO_GUARD))
1409 size += PAGE_SIZE;
1411 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1412 if (IS_ERR(va)) {
1413 kfree(area);
1414 return NULL;
1417 setup_vmalloc_vm(area, va, flags, caller);
1419 return area;
1422 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1423 unsigned long start, unsigned long end)
1425 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1426 GFP_KERNEL, __builtin_return_address(0));
1428 EXPORT_SYMBOL_GPL(__get_vm_area);
1430 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1431 unsigned long start, unsigned long end,
1432 const void *caller)
1434 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1435 GFP_KERNEL, caller);
1439 * get_vm_area - reserve a contiguous kernel virtual area
1440 * @size: size of the area
1441 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1443 * Search an area of @size in the kernel virtual mapping area,
1444 * and reserved it for out purposes. Returns the area descriptor
1445 * on success or %NULL on failure.
1447 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1449 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1450 NUMA_NO_NODE, GFP_KERNEL,
1451 __builtin_return_address(0));
1454 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1455 const void *caller)
1457 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1458 NUMA_NO_NODE, GFP_KERNEL, caller);
1462 * find_vm_area - find a continuous kernel virtual area
1463 * @addr: base address
1465 * Search for the kernel VM area starting at @addr, and return it.
1466 * It is up to the caller to do all required locking to keep the returned
1467 * pointer valid.
1469 struct vm_struct *find_vm_area(const void *addr)
1471 struct vmap_area *va;
1473 va = find_vmap_area((unsigned long)addr);
1474 if (va && va->flags & VM_VM_AREA)
1475 return va->vm;
1477 return NULL;
1481 * remove_vm_area - find and remove a continuous kernel virtual area
1482 * @addr: base address
1484 * Search for the kernel VM area starting at @addr, and remove it.
1485 * This function returns the found VM area, but using it is NOT safe
1486 * on SMP machines, except for its size or flags.
1488 struct vm_struct *remove_vm_area(const void *addr)
1490 struct vmap_area *va;
1492 might_sleep();
1494 va = find_vmap_area((unsigned long)addr);
1495 if (va && va->flags & VM_VM_AREA) {
1496 struct vm_struct *vm = va->vm;
1498 spin_lock(&vmap_area_lock);
1499 va->vm = NULL;
1500 va->flags &= ~VM_VM_AREA;
1501 va->flags |= VM_LAZY_FREE;
1502 spin_unlock(&vmap_area_lock);
1504 vmap_debug_free_range(va->va_start, va->va_end);
1505 kasan_free_shadow(vm);
1506 free_unmap_vmap_area(va);
1508 return vm;
1510 return NULL;
1513 static void __vunmap(const void *addr, int deallocate_pages)
1515 struct vm_struct *area;
1517 if (!addr)
1518 return;
1520 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1521 addr))
1522 return;
1524 area = remove_vm_area(addr);
1525 if (unlikely(!area)) {
1526 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1527 addr);
1528 return;
1531 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1532 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1534 if (deallocate_pages) {
1535 int i;
1537 for (i = 0; i < area->nr_pages; i++) {
1538 struct page *page = area->pages[i];
1540 BUG_ON(!page);
1541 __free_pages(page, 0);
1544 kvfree(area->pages);
1547 kfree(area);
1548 return;
1551 static inline void __vfree_deferred(const void *addr)
1554 * Use raw_cpu_ptr() because this can be called from preemptible
1555 * context. Preemption is absolutely fine here, because the llist_add()
1556 * implementation is lockless, so it works even if we are adding to
1557 * nother cpu's list. schedule_work() should be fine with this too.
1559 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1561 if (llist_add((struct llist_node *)addr, &p->list))
1562 schedule_work(&p->wq);
1566 * vfree_atomic - release memory allocated by vmalloc()
1567 * @addr: memory base address
1569 * This one is just like vfree() but can be called in any atomic context
1570 * except NMIs.
1572 void vfree_atomic(const void *addr)
1574 BUG_ON(in_nmi());
1576 kmemleak_free(addr);
1578 if (!addr)
1579 return;
1580 __vfree_deferred(addr);
1584 * vfree - release memory allocated by vmalloc()
1585 * @addr: memory base address
1587 * Free the virtually continuous memory area starting at @addr, as
1588 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1589 * NULL, no operation is performed.
1591 * Must not be called in NMI context (strictly speaking, only if we don't
1592 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1593 * conventions for vfree() arch-depenedent would be a really bad idea)
1595 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1597 void vfree(const void *addr)
1599 BUG_ON(in_nmi());
1601 kmemleak_free(addr);
1603 if (!addr)
1604 return;
1605 if (unlikely(in_interrupt()))
1606 __vfree_deferred(addr);
1607 else
1608 __vunmap(addr, 1);
1610 EXPORT_SYMBOL(vfree);
1613 * vunmap - release virtual mapping obtained by vmap()
1614 * @addr: memory base address
1616 * Free the virtually contiguous memory area starting at @addr,
1617 * which was created from the page array passed to vmap().
1619 * Must not be called in interrupt context.
1621 void vunmap(const void *addr)
1623 BUG_ON(in_interrupt());
1624 might_sleep();
1625 if (addr)
1626 __vunmap(addr, 0);
1628 EXPORT_SYMBOL(vunmap);
1631 * vmap - map an array of pages into virtually contiguous space
1632 * @pages: array of page pointers
1633 * @count: number of pages to map
1634 * @flags: vm_area->flags
1635 * @prot: page protection for the mapping
1637 * Maps @count pages from @pages into contiguous kernel virtual
1638 * space.
1640 void *vmap(struct page **pages, unsigned int count,
1641 unsigned long flags, pgprot_t prot)
1643 struct vm_struct *area;
1644 unsigned long size; /* In bytes */
1646 might_sleep();
1648 if (count > totalram_pages)
1649 return NULL;
1651 size = (unsigned long)count << PAGE_SHIFT;
1652 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1653 if (!area)
1654 return NULL;
1656 if (map_vm_area(area, prot, pages)) {
1657 vunmap(area->addr);
1658 return NULL;
1661 return area->addr;
1663 EXPORT_SYMBOL(vmap);
1665 static void *__vmalloc_node(unsigned long size, unsigned long align,
1666 gfp_t gfp_mask, pgprot_t prot,
1667 int node, const void *caller);
1668 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1669 pgprot_t prot, int node)
1671 struct page **pages;
1672 unsigned int nr_pages, array_size, i;
1673 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1674 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1675 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1677 __GFP_HIGHMEM;
1679 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1680 array_size = (nr_pages * sizeof(struct page *));
1682 area->nr_pages = nr_pages;
1683 /* Please note that the recursion is strictly bounded. */
1684 if (array_size > PAGE_SIZE) {
1685 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1686 PAGE_KERNEL, node, area->caller);
1687 } else {
1688 pages = kmalloc_node(array_size, nested_gfp, node);
1690 area->pages = pages;
1691 if (!area->pages) {
1692 remove_vm_area(area->addr);
1693 kfree(area);
1694 return NULL;
1697 for (i = 0; i < area->nr_pages; i++) {
1698 struct page *page;
1700 if (node == NUMA_NO_NODE)
1701 page = alloc_page(alloc_mask|highmem_mask);
1702 else
1703 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1705 if (unlikely(!page)) {
1706 /* Successfully allocated i pages, free them in __vunmap() */
1707 area->nr_pages = i;
1708 goto fail;
1710 area->pages[i] = page;
1711 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1712 cond_resched();
1715 if (map_vm_area(area, prot, pages))
1716 goto fail;
1717 return area->addr;
1719 fail:
1720 warn_alloc(gfp_mask, NULL,
1721 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1722 (area->nr_pages*PAGE_SIZE), area->size);
1723 vfree(area->addr);
1724 return NULL;
1728 * __vmalloc_node_range - allocate virtually contiguous memory
1729 * @size: allocation size
1730 * @align: desired alignment
1731 * @start: vm area range start
1732 * @end: vm area range end
1733 * @gfp_mask: flags for the page level allocator
1734 * @prot: protection mask for the allocated pages
1735 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1736 * @node: node to use for allocation or NUMA_NO_NODE
1737 * @caller: caller's return address
1739 * Allocate enough pages to cover @size from the page level
1740 * allocator with @gfp_mask flags. Map them into contiguous
1741 * kernel virtual space, using a pagetable protection of @prot.
1743 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1744 unsigned long start, unsigned long end, gfp_t gfp_mask,
1745 pgprot_t prot, unsigned long vm_flags, int node,
1746 const void *caller)
1748 struct vm_struct *area;
1749 void *addr;
1750 unsigned long real_size = size;
1752 size = PAGE_ALIGN(size);
1753 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1754 goto fail;
1756 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1757 vm_flags, start, end, node, gfp_mask, caller);
1758 if (!area)
1759 goto fail;
1761 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1762 if (!addr)
1763 return NULL;
1766 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1767 * flag. It means that vm_struct is not fully initialized.
1768 * Now, it is fully initialized, so remove this flag here.
1770 clear_vm_uninitialized_flag(area);
1772 kmemleak_vmalloc(area, size, gfp_mask);
1774 return addr;
1776 fail:
1777 warn_alloc(gfp_mask, NULL,
1778 "vmalloc: allocation failure: %lu bytes", real_size);
1779 return NULL;
1783 * __vmalloc_node - allocate virtually contiguous memory
1784 * @size: allocation size
1785 * @align: desired alignment
1786 * @gfp_mask: flags for the page level allocator
1787 * @prot: protection mask for the allocated pages
1788 * @node: node to use for allocation or NUMA_NO_NODE
1789 * @caller: caller's return address
1791 * Allocate enough pages to cover @size from the page level
1792 * allocator with @gfp_mask flags. Map them into contiguous
1793 * kernel virtual space, using a pagetable protection of @prot.
1795 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1796 * and __GFP_NOFAIL are not supported
1798 * Any use of gfp flags outside of GFP_KERNEL should be consulted
1799 * with mm people.
1802 static void *__vmalloc_node(unsigned long size, unsigned long align,
1803 gfp_t gfp_mask, pgprot_t prot,
1804 int node, const void *caller)
1806 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1807 gfp_mask, prot, 0, node, caller);
1810 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1812 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1813 __builtin_return_address(0));
1815 EXPORT_SYMBOL(__vmalloc);
1817 static inline void *__vmalloc_node_flags(unsigned long size,
1818 int node, gfp_t flags)
1820 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1821 node, __builtin_return_address(0));
1825 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1826 void *caller)
1828 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1832 * vmalloc - allocate virtually contiguous memory
1833 * @size: allocation size
1834 * Allocate enough pages to cover @size from the page level
1835 * allocator and map them into contiguous kernel virtual space.
1837 * For tight control over page level allocator and protection flags
1838 * use __vmalloc() instead.
1840 void *vmalloc(unsigned long size)
1842 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1843 GFP_KERNEL);
1845 EXPORT_SYMBOL(vmalloc);
1848 * vzalloc - allocate virtually contiguous memory with zero fill
1849 * @size: allocation size
1850 * Allocate enough pages to cover @size from the page level
1851 * allocator and map them into contiguous kernel virtual space.
1852 * The memory allocated is set to zero.
1854 * For tight control over page level allocator and protection flags
1855 * use __vmalloc() instead.
1857 void *vzalloc(unsigned long size)
1859 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1860 GFP_KERNEL | __GFP_ZERO);
1862 EXPORT_SYMBOL(vzalloc);
1865 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1866 * @size: allocation size
1868 * The resulting memory area is zeroed so it can be mapped to userspace
1869 * without leaking data.
1871 void *vmalloc_user(unsigned long size)
1873 struct vm_struct *area;
1874 void *ret;
1876 ret = __vmalloc_node(size, SHMLBA,
1877 GFP_KERNEL | __GFP_ZERO,
1878 PAGE_KERNEL, NUMA_NO_NODE,
1879 __builtin_return_address(0));
1880 if (ret) {
1881 area = find_vm_area(ret);
1882 area->flags |= VM_USERMAP;
1884 return ret;
1886 EXPORT_SYMBOL(vmalloc_user);
1889 * vmalloc_node - allocate memory on a specific node
1890 * @size: allocation size
1891 * @node: numa node
1893 * Allocate enough pages to cover @size from the page level
1894 * allocator and map them into contiguous kernel virtual space.
1896 * For tight control over page level allocator and protection flags
1897 * use __vmalloc() instead.
1899 void *vmalloc_node(unsigned long size, int node)
1901 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1902 node, __builtin_return_address(0));
1904 EXPORT_SYMBOL(vmalloc_node);
1907 * vzalloc_node - allocate memory on a specific node with zero fill
1908 * @size: allocation size
1909 * @node: numa node
1911 * Allocate enough pages to cover @size from the page level
1912 * allocator and map them into contiguous kernel virtual space.
1913 * The memory allocated is set to zero.
1915 * For tight control over page level allocator and protection flags
1916 * use __vmalloc_node() instead.
1918 void *vzalloc_node(unsigned long size, int node)
1920 return __vmalloc_node_flags(size, node,
1921 GFP_KERNEL | __GFP_ZERO);
1923 EXPORT_SYMBOL(vzalloc_node);
1925 #ifndef PAGE_KERNEL_EXEC
1926 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1927 #endif
1930 * vmalloc_exec - allocate virtually contiguous, executable memory
1931 * @size: allocation size
1933 * Kernel-internal function to allocate enough pages to cover @size
1934 * the page level allocator and map them into contiguous and
1935 * executable kernel virtual space.
1937 * For tight control over page level allocator and protection flags
1938 * use __vmalloc() instead.
1941 void *vmalloc_exec(unsigned long size)
1943 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1944 NUMA_NO_NODE, __builtin_return_address(0));
1947 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1948 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1949 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1950 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1951 #else
1952 #define GFP_VMALLOC32 GFP_KERNEL
1953 #endif
1956 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1957 * @size: allocation size
1959 * Allocate enough 32bit PA addressable pages to cover @size from the
1960 * page level allocator and map them into contiguous kernel virtual space.
1962 void *vmalloc_32(unsigned long size)
1964 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1965 NUMA_NO_NODE, __builtin_return_address(0));
1967 EXPORT_SYMBOL(vmalloc_32);
1970 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1971 * @size: allocation size
1973 * The resulting memory area is 32bit addressable and zeroed so it can be
1974 * mapped to userspace without leaking data.
1976 void *vmalloc_32_user(unsigned long size)
1978 struct vm_struct *area;
1979 void *ret;
1981 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1982 NUMA_NO_NODE, __builtin_return_address(0));
1983 if (ret) {
1984 area = find_vm_area(ret);
1985 area->flags |= VM_USERMAP;
1987 return ret;
1989 EXPORT_SYMBOL(vmalloc_32_user);
1992 * small helper routine , copy contents to buf from addr.
1993 * If the page is not present, fill zero.
1996 static int aligned_vread(char *buf, char *addr, unsigned long count)
1998 struct page *p;
1999 int copied = 0;
2001 while (count) {
2002 unsigned long offset, length;
2004 offset = offset_in_page(addr);
2005 length = PAGE_SIZE - offset;
2006 if (length > count)
2007 length = count;
2008 p = vmalloc_to_page(addr);
2010 * To do safe access to this _mapped_ area, we need
2011 * lock. But adding lock here means that we need to add
2012 * overhead of vmalloc()/vfree() calles for this _debug_
2013 * interface, rarely used. Instead of that, we'll use
2014 * kmap() and get small overhead in this access function.
2016 if (p) {
2018 * we can expect USER0 is not used (see vread/vwrite's
2019 * function description)
2021 void *map = kmap_atomic(p);
2022 memcpy(buf, map + offset, length);
2023 kunmap_atomic(map);
2024 } else
2025 memset(buf, 0, length);
2027 addr += length;
2028 buf += length;
2029 copied += length;
2030 count -= length;
2032 return copied;
2035 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2037 struct page *p;
2038 int copied = 0;
2040 while (count) {
2041 unsigned long offset, length;
2043 offset = offset_in_page(addr);
2044 length = PAGE_SIZE - offset;
2045 if (length > count)
2046 length = count;
2047 p = vmalloc_to_page(addr);
2049 * To do safe access to this _mapped_ area, we need
2050 * lock. But adding lock here means that we need to add
2051 * overhead of vmalloc()/vfree() calles for this _debug_
2052 * interface, rarely used. Instead of that, we'll use
2053 * kmap() and get small overhead in this access function.
2055 if (p) {
2057 * we can expect USER0 is not used (see vread/vwrite's
2058 * function description)
2060 void *map = kmap_atomic(p);
2061 memcpy(map + offset, buf, length);
2062 kunmap_atomic(map);
2064 addr += length;
2065 buf += length;
2066 copied += length;
2067 count -= length;
2069 return copied;
2073 * vread() - read vmalloc area in a safe way.
2074 * @buf: buffer for reading data
2075 * @addr: vm address.
2076 * @count: number of bytes to be read.
2078 * Returns # of bytes which addr and buf should be increased.
2079 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2080 * includes any intersect with alive vmalloc area.
2082 * This function checks that addr is a valid vmalloc'ed area, and
2083 * copy data from that area to a given buffer. If the given memory range
2084 * of [addr...addr+count) includes some valid address, data is copied to
2085 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2086 * IOREMAP area is treated as memory hole and no copy is done.
2088 * If [addr...addr+count) doesn't includes any intersects with alive
2089 * vm_struct area, returns 0. @buf should be kernel's buffer.
2091 * Note: In usual ops, vread() is never necessary because the caller
2092 * should know vmalloc() area is valid and can use memcpy().
2093 * This is for routines which have to access vmalloc area without
2094 * any informaion, as /dev/kmem.
2098 long vread(char *buf, char *addr, unsigned long count)
2100 struct vmap_area *va;
2101 struct vm_struct *vm;
2102 char *vaddr, *buf_start = buf;
2103 unsigned long buflen = count;
2104 unsigned long n;
2106 /* Don't allow overflow */
2107 if ((unsigned long) addr + count < count)
2108 count = -(unsigned long) addr;
2110 spin_lock(&vmap_area_lock);
2111 list_for_each_entry(va, &vmap_area_list, list) {
2112 if (!count)
2113 break;
2115 if (!(va->flags & VM_VM_AREA))
2116 continue;
2118 vm = va->vm;
2119 vaddr = (char *) vm->addr;
2120 if (addr >= vaddr + get_vm_area_size(vm))
2121 continue;
2122 while (addr < vaddr) {
2123 if (count == 0)
2124 goto finished;
2125 *buf = '\0';
2126 buf++;
2127 addr++;
2128 count--;
2130 n = vaddr + get_vm_area_size(vm) - addr;
2131 if (n > count)
2132 n = count;
2133 if (!(vm->flags & VM_IOREMAP))
2134 aligned_vread(buf, addr, n);
2135 else /* IOREMAP area is treated as memory hole */
2136 memset(buf, 0, n);
2137 buf += n;
2138 addr += n;
2139 count -= n;
2141 finished:
2142 spin_unlock(&vmap_area_lock);
2144 if (buf == buf_start)
2145 return 0;
2146 /* zero-fill memory holes */
2147 if (buf != buf_start + buflen)
2148 memset(buf, 0, buflen - (buf - buf_start));
2150 return buflen;
2154 * vwrite() - write vmalloc area in a safe way.
2155 * @buf: buffer for source data
2156 * @addr: vm address.
2157 * @count: number of bytes to be read.
2159 * Returns # of bytes which addr and buf should be incresed.
2160 * (same number to @count).
2161 * If [addr...addr+count) doesn't includes any intersect with valid
2162 * vmalloc area, returns 0.
2164 * This function checks that addr is a valid vmalloc'ed area, and
2165 * copy data from a buffer to the given addr. If specified range of
2166 * [addr...addr+count) includes some valid address, data is copied from
2167 * proper area of @buf. If there are memory holes, no copy to hole.
2168 * IOREMAP area is treated as memory hole and no copy is done.
2170 * If [addr...addr+count) doesn't includes any intersects with alive
2171 * vm_struct area, returns 0. @buf should be kernel's buffer.
2173 * Note: In usual ops, vwrite() is never necessary because the caller
2174 * should know vmalloc() area is valid and can use memcpy().
2175 * This is for routines which have to access vmalloc area without
2176 * any informaion, as /dev/kmem.
2179 long vwrite(char *buf, char *addr, unsigned long count)
2181 struct vmap_area *va;
2182 struct vm_struct *vm;
2183 char *vaddr;
2184 unsigned long n, buflen;
2185 int copied = 0;
2187 /* Don't allow overflow */
2188 if ((unsigned long) addr + count < count)
2189 count = -(unsigned long) addr;
2190 buflen = count;
2192 spin_lock(&vmap_area_lock);
2193 list_for_each_entry(va, &vmap_area_list, list) {
2194 if (!count)
2195 break;
2197 if (!(va->flags & VM_VM_AREA))
2198 continue;
2200 vm = va->vm;
2201 vaddr = (char *) vm->addr;
2202 if (addr >= vaddr + get_vm_area_size(vm))
2203 continue;
2204 while (addr < vaddr) {
2205 if (count == 0)
2206 goto finished;
2207 buf++;
2208 addr++;
2209 count--;
2211 n = vaddr + get_vm_area_size(vm) - addr;
2212 if (n > count)
2213 n = count;
2214 if (!(vm->flags & VM_IOREMAP)) {
2215 aligned_vwrite(buf, addr, n);
2216 copied++;
2218 buf += n;
2219 addr += n;
2220 count -= n;
2222 finished:
2223 spin_unlock(&vmap_area_lock);
2224 if (!copied)
2225 return 0;
2226 return buflen;
2230 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2231 * @vma: vma to cover
2232 * @uaddr: target user address to start at
2233 * @kaddr: virtual address of vmalloc kernel memory
2234 * @size: size of map area
2236 * Returns: 0 for success, -Exxx on failure
2238 * This function checks that @kaddr is a valid vmalloc'ed area,
2239 * and that it is big enough to cover the range starting at
2240 * @uaddr in @vma. Will return failure if that criteria isn't
2241 * met.
2243 * Similar to remap_pfn_range() (see mm/memory.c)
2245 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2246 void *kaddr, unsigned long size)
2248 struct vm_struct *area;
2250 size = PAGE_ALIGN(size);
2252 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2253 return -EINVAL;
2255 area = find_vm_area(kaddr);
2256 if (!area)
2257 return -EINVAL;
2259 if (!(area->flags & VM_USERMAP))
2260 return -EINVAL;
2262 if (kaddr + size > area->addr + area->size)
2263 return -EINVAL;
2265 do {
2266 struct page *page = vmalloc_to_page(kaddr);
2267 int ret;
2269 ret = vm_insert_page(vma, uaddr, page);
2270 if (ret)
2271 return ret;
2273 uaddr += PAGE_SIZE;
2274 kaddr += PAGE_SIZE;
2275 size -= PAGE_SIZE;
2276 } while (size > 0);
2278 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2280 return 0;
2282 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2285 * remap_vmalloc_range - map vmalloc pages to userspace
2286 * @vma: vma to cover (map full range of vma)
2287 * @addr: vmalloc memory
2288 * @pgoff: number of pages into addr before first page to map
2290 * Returns: 0 for success, -Exxx on failure
2292 * This function checks that addr is a valid vmalloc'ed area, and
2293 * that it is big enough to cover the vma. Will return failure if
2294 * that criteria isn't met.
2296 * Similar to remap_pfn_range() (see mm/memory.c)
2298 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2299 unsigned long pgoff)
2301 return remap_vmalloc_range_partial(vma, vma->vm_start,
2302 addr + (pgoff << PAGE_SHIFT),
2303 vma->vm_end - vma->vm_start);
2305 EXPORT_SYMBOL(remap_vmalloc_range);
2308 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2309 * have one.
2311 void __weak vmalloc_sync_all(void)
2316 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2318 pte_t ***p = data;
2320 if (p) {
2321 *(*p) = pte;
2322 (*p)++;
2324 return 0;
2328 * alloc_vm_area - allocate a range of kernel address space
2329 * @size: size of the area
2330 * @ptes: returns the PTEs for the address space
2332 * Returns: NULL on failure, vm_struct on success
2334 * This function reserves a range of kernel address space, and
2335 * allocates pagetables to map that range. No actual mappings
2336 * are created.
2338 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2339 * allocated for the VM area are returned.
2341 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2343 struct vm_struct *area;
2345 area = get_vm_area_caller(size, VM_IOREMAP,
2346 __builtin_return_address(0));
2347 if (area == NULL)
2348 return NULL;
2351 * This ensures that page tables are constructed for this region
2352 * of kernel virtual address space and mapped into init_mm.
2354 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2355 size, f, ptes ? &ptes : NULL)) {
2356 free_vm_area(area);
2357 return NULL;
2360 return area;
2362 EXPORT_SYMBOL_GPL(alloc_vm_area);
2364 void free_vm_area(struct vm_struct *area)
2366 struct vm_struct *ret;
2367 ret = remove_vm_area(area->addr);
2368 BUG_ON(ret != area);
2369 kfree(area);
2371 EXPORT_SYMBOL_GPL(free_vm_area);
2373 #ifdef CONFIG_SMP
2374 static struct vmap_area *node_to_va(struct rb_node *n)
2376 return rb_entry_safe(n, struct vmap_area, rb_node);
2380 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2381 * @end: target address
2382 * @pnext: out arg for the next vmap_area
2383 * @pprev: out arg for the previous vmap_area
2385 * Returns: %true if either or both of next and prev are found,
2386 * %false if no vmap_area exists
2388 * Find vmap_areas end addresses of which enclose @end. ie. if not
2389 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2391 static bool pvm_find_next_prev(unsigned long end,
2392 struct vmap_area **pnext,
2393 struct vmap_area **pprev)
2395 struct rb_node *n = vmap_area_root.rb_node;
2396 struct vmap_area *va = NULL;
2398 while (n) {
2399 va = rb_entry(n, struct vmap_area, rb_node);
2400 if (end < va->va_end)
2401 n = n->rb_left;
2402 else if (end > va->va_end)
2403 n = n->rb_right;
2404 else
2405 break;
2408 if (!va)
2409 return false;
2411 if (va->va_end > end) {
2412 *pnext = va;
2413 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2414 } else {
2415 *pprev = va;
2416 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2418 return true;
2422 * pvm_determine_end - find the highest aligned address between two vmap_areas
2423 * @pnext: in/out arg for the next vmap_area
2424 * @pprev: in/out arg for the previous vmap_area
2425 * @align: alignment
2427 * Returns: determined end address
2429 * Find the highest aligned address between *@pnext and *@pprev below
2430 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2431 * down address is between the end addresses of the two vmap_areas.
2433 * Please note that the address returned by this function may fall
2434 * inside *@pnext vmap_area. The caller is responsible for checking
2435 * that.
2437 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2438 struct vmap_area **pprev,
2439 unsigned long align)
2441 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2442 unsigned long addr;
2444 if (*pnext)
2445 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2446 else
2447 addr = vmalloc_end;
2449 while (*pprev && (*pprev)->va_end > addr) {
2450 *pnext = *pprev;
2451 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2454 return addr;
2458 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2459 * @offsets: array containing offset of each area
2460 * @sizes: array containing size of each area
2461 * @nr_vms: the number of areas to allocate
2462 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2464 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2465 * vm_structs on success, %NULL on failure
2467 * Percpu allocator wants to use congruent vm areas so that it can
2468 * maintain the offsets among percpu areas. This function allocates
2469 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2470 * be scattered pretty far, distance between two areas easily going up
2471 * to gigabytes. To avoid interacting with regular vmallocs, these
2472 * areas are allocated from top.
2474 * Despite its complicated look, this allocator is rather simple. It
2475 * does everything top-down and scans areas from the end looking for
2476 * matching slot. While scanning, if any of the areas overlaps with
2477 * existing vmap_area, the base address is pulled down to fit the
2478 * area. Scanning is repeated till all the areas fit and then all
2479 * necessary data structres are inserted and the result is returned.
2481 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2482 const size_t *sizes, int nr_vms,
2483 size_t align)
2485 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2486 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2487 struct vmap_area **vas, *prev, *next;
2488 struct vm_struct **vms;
2489 int area, area2, last_area, term_area;
2490 unsigned long base, start, end, last_end;
2491 bool purged = false;
2493 /* verify parameters and allocate data structures */
2494 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2495 for (last_area = 0, area = 0; area < nr_vms; area++) {
2496 start = offsets[area];
2497 end = start + sizes[area];
2499 /* is everything aligned properly? */
2500 BUG_ON(!IS_ALIGNED(offsets[area], align));
2501 BUG_ON(!IS_ALIGNED(sizes[area], align));
2503 /* detect the area with the highest address */
2504 if (start > offsets[last_area])
2505 last_area = area;
2507 for (area2 = 0; area2 < nr_vms; area2++) {
2508 unsigned long start2 = offsets[area2];
2509 unsigned long end2 = start2 + sizes[area2];
2511 if (area2 == area)
2512 continue;
2514 BUG_ON(start2 >= start && start2 < end);
2515 BUG_ON(end2 <= end && end2 > start);
2518 last_end = offsets[last_area] + sizes[last_area];
2520 if (vmalloc_end - vmalloc_start < last_end) {
2521 WARN_ON(true);
2522 return NULL;
2525 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2526 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2527 if (!vas || !vms)
2528 goto err_free2;
2530 for (area = 0; area < nr_vms; area++) {
2531 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2532 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2533 if (!vas[area] || !vms[area])
2534 goto err_free;
2536 retry:
2537 spin_lock(&vmap_area_lock);
2539 /* start scanning - we scan from the top, begin with the last area */
2540 area = term_area = last_area;
2541 start = offsets[area];
2542 end = start + sizes[area];
2544 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2545 base = vmalloc_end - last_end;
2546 goto found;
2548 base = pvm_determine_end(&next, &prev, align) - end;
2550 while (true) {
2551 BUG_ON(next && next->va_end <= base + end);
2552 BUG_ON(prev && prev->va_end > base + end);
2555 * base might have underflowed, add last_end before
2556 * comparing.
2558 if (base + last_end < vmalloc_start + last_end) {
2559 spin_unlock(&vmap_area_lock);
2560 if (!purged) {
2561 purge_vmap_area_lazy();
2562 purged = true;
2563 goto retry;
2565 goto err_free;
2569 * If next overlaps, move base downwards so that it's
2570 * right below next and then recheck.
2572 if (next && next->va_start < base + end) {
2573 base = pvm_determine_end(&next, &prev, align) - end;
2574 term_area = area;
2575 continue;
2579 * If prev overlaps, shift down next and prev and move
2580 * base so that it's right below new next and then
2581 * recheck.
2583 if (prev && prev->va_end > base + start) {
2584 next = prev;
2585 prev = node_to_va(rb_prev(&next->rb_node));
2586 base = pvm_determine_end(&next, &prev, align) - end;
2587 term_area = area;
2588 continue;
2592 * This area fits, move on to the previous one. If
2593 * the previous one is the terminal one, we're done.
2595 area = (area + nr_vms - 1) % nr_vms;
2596 if (area == term_area)
2597 break;
2598 start = offsets[area];
2599 end = start + sizes[area];
2600 pvm_find_next_prev(base + end, &next, &prev);
2602 found:
2603 /* we've found a fitting base, insert all va's */
2604 for (area = 0; area < nr_vms; area++) {
2605 struct vmap_area *va = vas[area];
2607 va->va_start = base + offsets[area];
2608 va->va_end = va->va_start + sizes[area];
2609 __insert_vmap_area(va);
2612 vmap_area_pcpu_hole = base + offsets[last_area];
2614 spin_unlock(&vmap_area_lock);
2616 /* insert all vm's */
2617 for (area = 0; area < nr_vms; area++)
2618 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2619 pcpu_get_vm_areas);
2621 kfree(vas);
2622 return vms;
2624 err_free:
2625 for (area = 0; area < nr_vms; area++) {
2626 kfree(vas[area]);
2627 kfree(vms[area]);
2629 err_free2:
2630 kfree(vas);
2631 kfree(vms);
2632 return NULL;
2636 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2637 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2638 * @nr_vms: the number of allocated areas
2640 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2642 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2644 int i;
2646 for (i = 0; i < nr_vms; i++)
2647 free_vm_area(vms[i]);
2648 kfree(vms);
2650 #endif /* CONFIG_SMP */
2652 #ifdef CONFIG_PROC_FS
2653 static void *s_start(struct seq_file *m, loff_t *pos)
2654 __acquires(&vmap_area_lock)
2656 spin_lock(&vmap_area_lock);
2657 return seq_list_start(&vmap_area_list, *pos);
2660 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2662 return seq_list_next(p, &vmap_area_list, pos);
2665 static void s_stop(struct seq_file *m, void *p)
2666 __releases(&vmap_area_lock)
2668 spin_unlock(&vmap_area_lock);
2671 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2673 if (IS_ENABLED(CONFIG_NUMA)) {
2674 unsigned int nr, *counters = m->private;
2676 if (!counters)
2677 return;
2679 if (v->flags & VM_UNINITIALIZED)
2680 return;
2681 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2682 smp_rmb();
2684 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2686 for (nr = 0; nr < v->nr_pages; nr++)
2687 counters[page_to_nid(v->pages[nr])]++;
2689 for_each_node_state(nr, N_HIGH_MEMORY)
2690 if (counters[nr])
2691 seq_printf(m, " N%u=%u", nr, counters[nr]);
2695 static int s_show(struct seq_file *m, void *p)
2697 struct vmap_area *va;
2698 struct vm_struct *v;
2700 va = list_entry(p, struct vmap_area, list);
2703 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2704 * behalf of vmap area is being tear down or vm_map_ram allocation.
2706 if (!(va->flags & VM_VM_AREA)) {
2707 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2708 (void *)va->va_start, (void *)va->va_end,
2709 va->va_end - va->va_start,
2710 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2712 return 0;
2715 v = va->vm;
2717 seq_printf(m, "0x%pK-0x%pK %7ld",
2718 v->addr, v->addr + v->size, v->size);
2720 if (v->caller)
2721 seq_printf(m, " %pS", v->caller);
2723 if (v->nr_pages)
2724 seq_printf(m, " pages=%d", v->nr_pages);
2726 if (v->phys_addr)
2727 seq_printf(m, " phys=%pa", &v->phys_addr);
2729 if (v->flags & VM_IOREMAP)
2730 seq_puts(m, " ioremap");
2732 if (v->flags & VM_ALLOC)
2733 seq_puts(m, " vmalloc");
2735 if (v->flags & VM_MAP)
2736 seq_puts(m, " vmap");
2738 if (v->flags & VM_USERMAP)
2739 seq_puts(m, " user");
2741 if (is_vmalloc_addr(v->pages))
2742 seq_puts(m, " vpages");
2744 show_numa_info(m, v);
2745 seq_putc(m, '\n');
2746 return 0;
2749 static const struct seq_operations vmalloc_op = {
2750 .start = s_start,
2751 .next = s_next,
2752 .stop = s_stop,
2753 .show = s_show,
2756 static int vmalloc_open(struct inode *inode, struct file *file)
2758 if (IS_ENABLED(CONFIG_NUMA))
2759 return seq_open_private(file, &vmalloc_op,
2760 nr_node_ids * sizeof(unsigned int));
2761 else
2762 return seq_open(file, &vmalloc_op);
2765 static const struct file_operations proc_vmalloc_operations = {
2766 .open = vmalloc_open,
2767 .read = seq_read,
2768 .llseek = seq_lseek,
2769 .release = seq_release_private,
2772 static int __init proc_vmalloc_init(void)
2774 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2775 return 0;
2777 module_init(proc_vmalloc_init);
2779 #endif