2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
23 #include <linux/sunrpc/clnt.h>
27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28 #define RPCDBG_FACILITY RPCDBG_SCHED
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
35 * RPC slabs and memory pools
37 #define RPC_BUFFER_MAXSIZE (2048)
38 #define RPC_BUFFER_POOLSIZE (8)
39 #define RPC_TASK_POOLSIZE (8)
40 static struct kmem_cache
*rpc_task_slabp __read_mostly
;
41 static struct kmem_cache
*rpc_buffer_slabp __read_mostly
;
42 static mempool_t
*rpc_task_mempool __read_mostly
;
43 static mempool_t
*rpc_buffer_mempool __read_mostly
;
45 static void rpc_async_schedule(struct work_struct
*);
46 static void rpc_release_task(struct rpc_task
*task
);
47 static void __rpc_queue_timer_fn(unsigned long ptr
);
50 * RPC tasks sit here while waiting for conditions to improve.
52 static struct rpc_wait_queue delay_queue
;
55 * rpciod-related stuff
57 struct workqueue_struct
*rpciod_workqueue __read_mostly
;
58 struct workqueue_struct
*xprtiod_workqueue __read_mostly
;
61 * Disable the timer for a given RPC task. Should be called with
62 * queue->lock and bh_disabled in order to avoid races within
66 __rpc_disable_timer(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
68 if (task
->tk_timeout
== 0)
70 dprintk("RPC: %5u disabling timer\n", task
->tk_pid
);
72 list_del(&task
->u
.tk_wait
.timer_list
);
73 if (list_empty(&queue
->timer_list
.list
))
74 del_timer(&queue
->timer_list
.timer
);
78 rpc_set_queue_timer(struct rpc_wait_queue
*queue
, unsigned long expires
)
80 queue
->timer_list
.expires
= expires
;
81 mod_timer(&queue
->timer_list
.timer
, expires
);
85 * Set up a timer for the current task.
88 __rpc_add_timer(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
90 if (!task
->tk_timeout
)
93 dprintk("RPC: %5u setting alarm for %u ms\n",
94 task
->tk_pid
, jiffies_to_msecs(task
->tk_timeout
));
96 task
->u
.tk_wait
.expires
= jiffies
+ task
->tk_timeout
;
97 if (list_empty(&queue
->timer_list
.list
) || time_before(task
->u
.tk_wait
.expires
, queue
->timer_list
.expires
))
98 rpc_set_queue_timer(queue
, task
->u
.tk_wait
.expires
);
99 list_add(&task
->u
.tk_wait
.timer_list
, &queue
->timer_list
.list
);
102 static void rpc_rotate_queue_owner(struct rpc_wait_queue
*queue
)
104 struct list_head
*q
= &queue
->tasks
[queue
->priority
];
105 struct rpc_task
*task
;
107 if (!list_empty(q
)) {
108 task
= list_first_entry(q
, struct rpc_task
, u
.tk_wait
.list
);
109 if (task
->tk_owner
== queue
->owner
)
110 list_move_tail(&task
->u
.tk_wait
.list
, q
);
114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue
*queue
, int priority
)
116 if (queue
->priority
!= priority
) {
117 /* Fairness: rotate the list when changing priority */
118 rpc_rotate_queue_owner(queue
);
119 queue
->priority
= priority
;
123 static void rpc_set_waitqueue_owner(struct rpc_wait_queue
*queue
, pid_t pid
)
126 queue
->nr
= RPC_BATCH_COUNT
;
129 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue
*queue
)
131 rpc_set_waitqueue_priority(queue
, queue
->maxpriority
);
132 rpc_set_waitqueue_owner(queue
, 0);
136 * Add new request to a priority queue.
138 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue
*queue
,
139 struct rpc_task
*task
,
140 unsigned char queue_priority
)
145 INIT_LIST_HEAD(&task
->u
.tk_wait
.links
);
146 if (unlikely(queue_priority
> queue
->maxpriority
))
147 queue_priority
= queue
->maxpriority
;
148 if (queue_priority
> queue
->priority
)
149 rpc_set_waitqueue_priority(queue
, queue_priority
);
150 q
= &queue
->tasks
[queue_priority
];
151 list_for_each_entry(t
, q
, u
.tk_wait
.list
) {
152 if (t
->tk_owner
== task
->tk_owner
) {
153 list_add_tail(&task
->u
.tk_wait
.list
, &t
->u
.tk_wait
.links
);
157 list_add_tail(&task
->u
.tk_wait
.list
, q
);
161 * Add new request to wait queue.
163 * Swapper tasks always get inserted at the head of the queue.
164 * This should avoid many nasty memory deadlocks and hopefully
165 * improve overall performance.
166 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
168 static void __rpc_add_wait_queue(struct rpc_wait_queue
*queue
,
169 struct rpc_task
*task
,
170 unsigned char queue_priority
)
172 WARN_ON_ONCE(RPC_IS_QUEUED(task
));
173 if (RPC_IS_QUEUED(task
))
176 if (RPC_IS_PRIORITY(queue
))
177 __rpc_add_wait_queue_priority(queue
, task
, queue_priority
);
178 else if (RPC_IS_SWAPPER(task
))
179 list_add(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
181 list_add_tail(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
182 task
->tk_waitqueue
= queue
;
184 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
186 rpc_set_queued(task
);
188 dprintk("RPC: %5u added to queue %p \"%s\"\n",
189 task
->tk_pid
, queue
, rpc_qname(queue
));
193 * Remove request from a priority queue.
195 static void __rpc_remove_wait_queue_priority(struct rpc_task
*task
)
199 if (!list_empty(&task
->u
.tk_wait
.links
)) {
200 t
= list_entry(task
->u
.tk_wait
.links
.next
, struct rpc_task
, u
.tk_wait
.list
);
201 list_move(&t
->u
.tk_wait
.list
, &task
->u
.tk_wait
.list
);
202 list_splice_init(&task
->u
.tk_wait
.links
, &t
->u
.tk_wait
.links
);
207 * Remove request from queue.
208 * Note: must be called with spin lock held.
210 static void __rpc_remove_wait_queue(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
212 __rpc_disable_timer(queue
, task
);
213 if (RPC_IS_PRIORITY(queue
))
214 __rpc_remove_wait_queue_priority(task
);
215 list_del(&task
->u
.tk_wait
.list
);
217 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
218 task
->tk_pid
, queue
, rpc_qname(queue
));
221 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
, unsigned char nr_queues
)
225 spin_lock_init(&queue
->lock
);
226 for (i
= 0; i
< ARRAY_SIZE(queue
->tasks
); i
++)
227 INIT_LIST_HEAD(&queue
->tasks
[i
]);
228 queue
->maxpriority
= nr_queues
- 1;
229 rpc_reset_waitqueue_priority(queue
);
231 setup_timer(&queue
->timer_list
.timer
, __rpc_queue_timer_fn
, (unsigned long)queue
);
232 INIT_LIST_HEAD(&queue
->timer_list
.list
);
233 rpc_assign_waitqueue_name(queue
, qname
);
236 void rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
238 __rpc_init_priority_wait_queue(queue
, qname
, RPC_NR_PRIORITY
);
240 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue
);
242 void rpc_init_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
244 __rpc_init_priority_wait_queue(queue
, qname
, 1);
246 EXPORT_SYMBOL_GPL(rpc_init_wait_queue
);
248 void rpc_destroy_wait_queue(struct rpc_wait_queue
*queue
)
250 del_timer_sync(&queue
->timer_list
.timer
);
252 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue
);
254 static int rpc_wait_bit_killable(struct wait_bit_key
*key
, int mode
)
256 freezable_schedule_unsafe();
257 if (signal_pending_state(mode
, current
))
262 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
263 static void rpc_task_set_debuginfo(struct rpc_task
*task
)
265 static atomic_t rpc_pid
;
267 task
->tk_pid
= atomic_inc_return(&rpc_pid
);
270 static inline void rpc_task_set_debuginfo(struct rpc_task
*task
)
275 static void rpc_set_active(struct rpc_task
*task
)
277 trace_rpc_task_begin(task
->tk_client
, task
, NULL
);
279 rpc_task_set_debuginfo(task
);
280 set_bit(RPC_TASK_ACTIVE
, &task
->tk_runstate
);
284 * Mark an RPC call as having completed by clearing the 'active' bit
285 * and then waking up all tasks that were sleeping.
287 static int rpc_complete_task(struct rpc_task
*task
)
289 void *m
= &task
->tk_runstate
;
290 wait_queue_head_t
*wq
= bit_waitqueue(m
, RPC_TASK_ACTIVE
);
291 struct wait_bit_key k
= __WAIT_BIT_KEY_INITIALIZER(m
, RPC_TASK_ACTIVE
);
295 trace_rpc_task_complete(task
->tk_client
, task
, NULL
);
297 spin_lock_irqsave(&wq
->lock
, flags
);
298 clear_bit(RPC_TASK_ACTIVE
, &task
->tk_runstate
);
299 ret
= atomic_dec_and_test(&task
->tk_count
);
300 if (waitqueue_active(wq
))
301 __wake_up_locked_key(wq
, TASK_NORMAL
, &k
);
302 spin_unlock_irqrestore(&wq
->lock
, flags
);
307 * Allow callers to wait for completion of an RPC call
309 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
310 * to enforce taking of the wq->lock and hence avoid races with
311 * rpc_complete_task().
313 int __rpc_wait_for_completion_task(struct rpc_task
*task
, wait_bit_action_f
*action
)
316 action
= rpc_wait_bit_killable
;
317 return out_of_line_wait_on_bit(&task
->tk_runstate
, RPC_TASK_ACTIVE
,
318 action
, TASK_KILLABLE
);
320 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task
);
323 * Make an RPC task runnable.
325 * Note: If the task is ASYNC, and is being made runnable after sitting on an
326 * rpc_wait_queue, this must be called with the queue spinlock held to protect
327 * the wait queue operation.
328 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
329 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
330 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
331 * the RPC_TASK_RUNNING flag.
333 static void rpc_make_runnable(struct workqueue_struct
*wq
,
334 struct rpc_task
*task
)
336 bool need_wakeup
= !rpc_test_and_set_running(task
);
338 rpc_clear_queued(task
);
341 if (RPC_IS_ASYNC(task
)) {
342 INIT_WORK(&task
->u
.tk_work
, rpc_async_schedule
);
343 queue_work(wq
, &task
->u
.tk_work
);
345 wake_up_bit(&task
->tk_runstate
, RPC_TASK_QUEUED
);
349 * Prepare for sleeping on a wait queue.
350 * By always appending tasks to the list we ensure FIFO behavior.
351 * NB: An RPC task will only receive interrupt-driven events as long
352 * as it's on a wait queue.
354 static void __rpc_sleep_on_priority(struct rpc_wait_queue
*q
,
355 struct rpc_task
*task
,
357 unsigned char queue_priority
)
359 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
360 task
->tk_pid
, rpc_qname(q
), jiffies
);
362 trace_rpc_task_sleep(task
->tk_client
, task
, q
);
364 __rpc_add_wait_queue(q
, task
, queue_priority
);
366 WARN_ON_ONCE(task
->tk_callback
!= NULL
);
367 task
->tk_callback
= action
;
368 __rpc_add_timer(q
, task
);
371 void rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
374 /* We shouldn't ever put an inactive task to sleep */
375 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task
));
376 if (!RPC_IS_ACTIVATED(task
)) {
377 task
->tk_status
= -EIO
;
378 rpc_put_task_async(task
);
383 * Protect the queue operations.
385 spin_lock_bh(&q
->lock
);
386 __rpc_sleep_on_priority(q
, task
, action
, task
->tk_priority
);
387 spin_unlock_bh(&q
->lock
);
389 EXPORT_SYMBOL_GPL(rpc_sleep_on
);
391 void rpc_sleep_on_priority(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
392 rpc_action action
, int priority
)
394 /* We shouldn't ever put an inactive task to sleep */
395 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task
));
396 if (!RPC_IS_ACTIVATED(task
)) {
397 task
->tk_status
= -EIO
;
398 rpc_put_task_async(task
);
403 * Protect the queue operations.
405 spin_lock_bh(&q
->lock
);
406 __rpc_sleep_on_priority(q
, task
, action
, priority
- RPC_PRIORITY_LOW
);
407 spin_unlock_bh(&q
->lock
);
409 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority
);
412 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
413 * @wq: workqueue on which to run task
415 * @task: task to be woken up
417 * Caller must hold queue->lock, and have cleared the task queued flag.
419 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct
*wq
,
420 struct rpc_wait_queue
*queue
,
421 struct rpc_task
*task
)
423 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
424 task
->tk_pid
, jiffies
);
426 /* Has the task been executed yet? If not, we cannot wake it up! */
427 if (!RPC_IS_ACTIVATED(task
)) {
428 printk(KERN_ERR
"RPC: Inactive task (%p) being woken up!\n", task
);
432 trace_rpc_task_wakeup(task
->tk_client
, task
, queue
);
434 __rpc_remove_wait_queue(queue
, task
);
436 rpc_make_runnable(wq
, task
);
438 dprintk("RPC: __rpc_wake_up_task done\n");
442 * Wake up a queued task while the queue lock is being held
444 static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct
*wq
,
445 struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
447 if (RPC_IS_QUEUED(task
)) {
449 if (task
->tk_waitqueue
== queue
)
450 __rpc_do_wake_up_task_on_wq(wq
, queue
, task
);
455 * Wake up a queued task while the queue lock is being held
457 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
459 rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue
, queue
, task
);
463 * Wake up a task on a specific queue
465 void rpc_wake_up_queued_task(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
467 spin_lock_bh(&queue
->lock
);
468 rpc_wake_up_task_queue_locked(queue
, task
);
469 spin_unlock_bh(&queue
->lock
);
471 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task
);
474 * Wake up the next task on a priority queue.
476 static struct rpc_task
*__rpc_find_next_queued_priority(struct rpc_wait_queue
*queue
)
479 struct rpc_task
*task
;
482 * Service a batch of tasks from a single owner.
484 q
= &queue
->tasks
[queue
->priority
];
485 if (!list_empty(q
)) {
486 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
487 if (queue
->owner
== task
->tk_owner
) {
490 list_move_tail(&task
->u
.tk_wait
.list
, q
);
493 * Check if we need to switch queues.
499 * Service the next queue.
502 if (q
== &queue
->tasks
[0])
503 q
= &queue
->tasks
[queue
->maxpriority
];
506 if (!list_empty(q
)) {
507 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
510 } while (q
!= &queue
->tasks
[queue
->priority
]);
512 rpc_reset_waitqueue_priority(queue
);
516 rpc_set_waitqueue_priority(queue
, (unsigned int)(q
- &queue
->tasks
[0]));
518 rpc_set_waitqueue_owner(queue
, task
->tk_owner
);
523 static struct rpc_task
*__rpc_find_next_queued(struct rpc_wait_queue
*queue
)
525 if (RPC_IS_PRIORITY(queue
))
526 return __rpc_find_next_queued_priority(queue
);
527 if (!list_empty(&queue
->tasks
[0]))
528 return list_first_entry(&queue
->tasks
[0], struct rpc_task
, u
.tk_wait
.list
);
533 * Wake up the first task on the wait queue.
535 struct rpc_task
*rpc_wake_up_first_on_wq(struct workqueue_struct
*wq
,
536 struct rpc_wait_queue
*queue
,
537 bool (*func
)(struct rpc_task
*, void *), void *data
)
539 struct rpc_task
*task
= NULL
;
541 dprintk("RPC: wake_up_first(%p \"%s\")\n",
542 queue
, rpc_qname(queue
));
543 spin_lock_bh(&queue
->lock
);
544 task
= __rpc_find_next_queued(queue
);
546 if (func(task
, data
))
547 rpc_wake_up_task_on_wq_queue_locked(wq
, queue
, task
);
551 spin_unlock_bh(&queue
->lock
);
557 * Wake up the first task on the wait queue.
559 struct rpc_task
*rpc_wake_up_first(struct rpc_wait_queue
*queue
,
560 bool (*func
)(struct rpc_task
*, void *), void *data
)
562 return rpc_wake_up_first_on_wq(rpciod_workqueue
, queue
, func
, data
);
564 EXPORT_SYMBOL_GPL(rpc_wake_up_first
);
566 static bool rpc_wake_up_next_func(struct rpc_task
*task
, void *data
)
572 * Wake up the next task on the wait queue.
574 struct rpc_task
*rpc_wake_up_next(struct rpc_wait_queue
*queue
)
576 return rpc_wake_up_first(queue
, rpc_wake_up_next_func
, NULL
);
578 EXPORT_SYMBOL_GPL(rpc_wake_up_next
);
581 * rpc_wake_up - wake up all rpc_tasks
582 * @queue: rpc_wait_queue on which the tasks are sleeping
586 void rpc_wake_up(struct rpc_wait_queue
*queue
)
588 struct list_head
*head
;
590 spin_lock_bh(&queue
->lock
);
591 head
= &queue
->tasks
[queue
->maxpriority
];
593 while (!list_empty(head
)) {
594 struct rpc_task
*task
;
595 task
= list_first_entry(head
,
598 rpc_wake_up_task_queue_locked(queue
, task
);
600 if (head
== &queue
->tasks
[0])
604 spin_unlock_bh(&queue
->lock
);
606 EXPORT_SYMBOL_GPL(rpc_wake_up
);
609 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
610 * @queue: rpc_wait_queue on which the tasks are sleeping
611 * @status: status value to set
615 void rpc_wake_up_status(struct rpc_wait_queue
*queue
, int status
)
617 struct list_head
*head
;
619 spin_lock_bh(&queue
->lock
);
620 head
= &queue
->tasks
[queue
->maxpriority
];
622 while (!list_empty(head
)) {
623 struct rpc_task
*task
;
624 task
= list_first_entry(head
,
627 task
->tk_status
= status
;
628 rpc_wake_up_task_queue_locked(queue
, task
);
630 if (head
== &queue
->tasks
[0])
634 spin_unlock_bh(&queue
->lock
);
636 EXPORT_SYMBOL_GPL(rpc_wake_up_status
);
638 static void __rpc_queue_timer_fn(unsigned long ptr
)
640 struct rpc_wait_queue
*queue
= (struct rpc_wait_queue
*)ptr
;
641 struct rpc_task
*task
, *n
;
642 unsigned long expires
, now
, timeo
;
644 spin_lock(&queue
->lock
);
645 expires
= now
= jiffies
;
646 list_for_each_entry_safe(task
, n
, &queue
->timer_list
.list
, u
.tk_wait
.timer_list
) {
647 timeo
= task
->u
.tk_wait
.expires
;
648 if (time_after_eq(now
, timeo
)) {
649 dprintk("RPC: %5u timeout\n", task
->tk_pid
);
650 task
->tk_status
= -ETIMEDOUT
;
651 rpc_wake_up_task_queue_locked(queue
, task
);
654 if (expires
== now
|| time_after(expires
, timeo
))
657 if (!list_empty(&queue
->timer_list
.list
))
658 rpc_set_queue_timer(queue
, expires
);
659 spin_unlock(&queue
->lock
);
662 static void __rpc_atrun(struct rpc_task
*task
)
664 if (task
->tk_status
== -ETIMEDOUT
)
669 * Run a task at a later time
671 void rpc_delay(struct rpc_task
*task
, unsigned long delay
)
673 task
->tk_timeout
= delay
;
674 rpc_sleep_on(&delay_queue
, task
, __rpc_atrun
);
676 EXPORT_SYMBOL_GPL(rpc_delay
);
679 * Helper to call task->tk_ops->rpc_call_prepare
681 void rpc_prepare_task(struct rpc_task
*task
)
683 task
->tk_ops
->rpc_call_prepare(task
, task
->tk_calldata
);
687 rpc_init_task_statistics(struct rpc_task
*task
)
689 /* Initialize retry counters */
690 task
->tk_garb_retry
= 2;
691 task
->tk_cred_retry
= 2;
692 task
->tk_rebind_retry
= 2;
694 /* starting timestamp */
695 task
->tk_start
= ktime_get();
699 rpc_reset_task_statistics(struct rpc_task
*task
)
701 task
->tk_timeouts
= 0;
702 task
->tk_flags
&= ~(RPC_CALL_MAJORSEEN
|RPC_TASK_KILLED
|RPC_TASK_SENT
);
704 rpc_init_task_statistics(task
);
708 * Helper that calls task->tk_ops->rpc_call_done if it exists
710 void rpc_exit_task(struct rpc_task
*task
)
712 task
->tk_action
= NULL
;
713 if (task
->tk_ops
->rpc_call_done
!= NULL
) {
714 task
->tk_ops
->rpc_call_done(task
, task
->tk_calldata
);
715 if (task
->tk_action
!= NULL
) {
716 WARN_ON(RPC_ASSASSINATED(task
));
717 /* Always release the RPC slot and buffer memory */
719 rpc_reset_task_statistics(task
);
724 void rpc_exit(struct rpc_task
*task
, int status
)
726 task
->tk_status
= status
;
727 task
->tk_action
= rpc_exit_task
;
728 if (RPC_IS_QUEUED(task
))
729 rpc_wake_up_queued_task(task
->tk_waitqueue
, task
);
731 EXPORT_SYMBOL_GPL(rpc_exit
);
733 void rpc_release_calldata(const struct rpc_call_ops
*ops
, void *calldata
)
735 if (ops
->rpc_release
!= NULL
)
736 ops
->rpc_release(calldata
);
740 * This is the RPC `scheduler' (or rather, the finite state machine).
742 static void __rpc_execute(struct rpc_task
*task
)
744 struct rpc_wait_queue
*queue
;
745 int task_is_async
= RPC_IS_ASYNC(task
);
748 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
749 task
->tk_pid
, task
->tk_flags
);
751 WARN_ON_ONCE(RPC_IS_QUEUED(task
));
752 if (RPC_IS_QUEUED(task
))
756 void (*do_action
)(struct rpc_task
*);
759 * Execute any pending callback first.
761 do_action
= task
->tk_callback
;
762 task
->tk_callback
= NULL
;
763 if (do_action
== NULL
) {
765 * Perform the next FSM step.
766 * tk_action may be NULL if the task has been killed.
767 * In particular, note that rpc_killall_tasks may
768 * do this at any time, so beware when dereferencing.
770 do_action
= task
->tk_action
;
771 if (do_action
== NULL
)
774 trace_rpc_task_run_action(task
->tk_client
, task
, task
->tk_action
);
778 * Lockless check for whether task is sleeping or not.
780 if (!RPC_IS_QUEUED(task
))
783 * The queue->lock protects against races with
784 * rpc_make_runnable().
786 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
787 * rpc_task, rpc_make_runnable() can assign it to a
788 * different workqueue. We therefore cannot assume that the
789 * rpc_task pointer may still be dereferenced.
791 queue
= task
->tk_waitqueue
;
792 spin_lock_bh(&queue
->lock
);
793 if (!RPC_IS_QUEUED(task
)) {
794 spin_unlock_bh(&queue
->lock
);
797 rpc_clear_running(task
);
798 spin_unlock_bh(&queue
->lock
);
802 /* sync task: sleep here */
803 dprintk("RPC: %5u sync task going to sleep\n", task
->tk_pid
);
804 status
= out_of_line_wait_on_bit(&task
->tk_runstate
,
805 RPC_TASK_QUEUED
, rpc_wait_bit_killable
,
807 if (status
== -ERESTARTSYS
) {
809 * When a sync task receives a signal, it exits with
810 * -ERESTARTSYS. In order to catch any callbacks that
811 * clean up after sleeping on some queue, we don't
812 * break the loop here, but go around once more.
814 dprintk("RPC: %5u got signal\n", task
->tk_pid
);
815 task
->tk_flags
|= RPC_TASK_KILLED
;
816 rpc_exit(task
, -ERESTARTSYS
);
818 dprintk("RPC: %5u sync task resuming\n", task
->tk_pid
);
821 dprintk("RPC: %5u return %d, status %d\n", task
->tk_pid
, status
,
823 /* Release all resources associated with the task */
824 rpc_release_task(task
);
828 * User-visible entry point to the scheduler.
830 * This may be called recursively if e.g. an async NFS task updates
831 * the attributes and finds that dirty pages must be flushed.
832 * NOTE: Upon exit of this function the task is guaranteed to be
833 * released. In particular note that tk_release() will have
834 * been called, so your task memory may have been freed.
836 void rpc_execute(struct rpc_task
*task
)
838 bool is_async
= RPC_IS_ASYNC(task
);
840 rpc_set_active(task
);
841 rpc_make_runnable(rpciod_workqueue
, task
);
846 static void rpc_async_schedule(struct work_struct
*work
)
848 __rpc_execute(container_of(work
, struct rpc_task
, u
.tk_work
));
852 * rpc_malloc - allocate RPC buffer resources
855 * A single memory region is allocated, which is split between the
856 * RPC call and RPC reply that this task is being used for. When
857 * this RPC is retired, the memory is released by calling rpc_free.
859 * To prevent rpciod from hanging, this allocator never sleeps,
860 * returning -ENOMEM and suppressing warning if the request cannot
861 * be serviced immediately. The caller can arrange to sleep in a
862 * way that is safe for rpciod.
864 * Most requests are 'small' (under 2KiB) and can be serviced from a
865 * mempool, ensuring that NFS reads and writes can always proceed,
866 * and that there is good locality of reference for these buffers.
868 * In order to avoid memory starvation triggering more writebacks of
869 * NFS requests, we avoid using GFP_KERNEL.
871 int rpc_malloc(struct rpc_task
*task
)
873 struct rpc_rqst
*rqst
= task
->tk_rqstp
;
874 size_t size
= rqst
->rq_callsize
+ rqst
->rq_rcvsize
;
875 struct rpc_buffer
*buf
;
876 gfp_t gfp
= GFP_NOIO
| __GFP_NOWARN
;
878 if (RPC_IS_SWAPPER(task
))
879 gfp
= __GFP_MEMALLOC
| GFP_NOWAIT
| __GFP_NOWARN
;
881 size
+= sizeof(struct rpc_buffer
);
882 if (size
<= RPC_BUFFER_MAXSIZE
)
883 buf
= mempool_alloc(rpc_buffer_mempool
, gfp
);
885 buf
= kmalloc(size
, gfp
);
891 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
892 task
->tk_pid
, size
, buf
);
893 rqst
->rq_buffer
= buf
->data
;
894 rqst
->rq_rbuffer
= (char *)rqst
->rq_buffer
+ rqst
->rq_callsize
;
897 EXPORT_SYMBOL_GPL(rpc_malloc
);
900 * rpc_free - free RPC buffer resources allocated via rpc_malloc
904 void rpc_free(struct rpc_task
*task
)
906 void *buffer
= task
->tk_rqstp
->rq_buffer
;
908 struct rpc_buffer
*buf
;
910 buf
= container_of(buffer
, struct rpc_buffer
, data
);
913 dprintk("RPC: freeing buffer of size %zu at %p\n",
916 if (size
<= RPC_BUFFER_MAXSIZE
)
917 mempool_free(buf
, rpc_buffer_mempool
);
921 EXPORT_SYMBOL_GPL(rpc_free
);
924 * Creation and deletion of RPC task structures
926 static void rpc_init_task(struct rpc_task
*task
, const struct rpc_task_setup
*task_setup_data
)
928 memset(task
, 0, sizeof(*task
));
929 atomic_set(&task
->tk_count
, 1);
930 task
->tk_flags
= task_setup_data
->flags
;
931 task
->tk_ops
= task_setup_data
->callback_ops
;
932 task
->tk_calldata
= task_setup_data
->callback_data
;
933 INIT_LIST_HEAD(&task
->tk_task
);
935 task
->tk_priority
= task_setup_data
->priority
- RPC_PRIORITY_LOW
;
936 task
->tk_owner
= current
->tgid
;
938 /* Initialize workqueue for async tasks */
939 task
->tk_workqueue
= task_setup_data
->workqueue
;
941 task
->tk_xprt
= xprt_get(task_setup_data
->rpc_xprt
);
943 if (task
->tk_ops
->rpc_call_prepare
!= NULL
)
944 task
->tk_action
= rpc_prepare_task
;
946 rpc_init_task_statistics(task
);
948 dprintk("RPC: new task initialized, procpid %u\n",
949 task_pid_nr(current
));
952 static struct rpc_task
*
955 return (struct rpc_task
*)mempool_alloc(rpc_task_mempool
, GFP_NOIO
);
959 * Create a new task for the specified client.
961 struct rpc_task
*rpc_new_task(const struct rpc_task_setup
*setup_data
)
963 struct rpc_task
*task
= setup_data
->task
;
964 unsigned short flags
= 0;
967 task
= rpc_alloc_task();
968 flags
= RPC_TASK_DYNAMIC
;
971 rpc_init_task(task
, setup_data
);
972 task
->tk_flags
|= flags
;
973 dprintk("RPC: allocated task %p\n", task
);
978 * rpc_free_task - release rpc task and perform cleanups
980 * Note that we free up the rpc_task _after_ rpc_release_calldata()
981 * in order to work around a workqueue dependency issue.
984 * "Workqueue currently considers two work items to be the same if they're
985 * on the same address and won't execute them concurrently - ie. it
986 * makes a work item which is queued again while being executed wait
987 * for the previous execution to complete.
989 * If a work function frees the work item, and then waits for an event
990 * which should be performed by another work item and *that* work item
991 * recycles the freed work item, it can create a false dependency loop.
992 * There really is no reliable way to detect this short of verifying
993 * every memory free."
996 static void rpc_free_task(struct rpc_task
*task
)
998 unsigned short tk_flags
= task
->tk_flags
;
1000 rpc_release_calldata(task
->tk_ops
, task
->tk_calldata
);
1002 if (tk_flags
& RPC_TASK_DYNAMIC
) {
1003 dprintk("RPC: %5u freeing task\n", task
->tk_pid
);
1004 mempool_free(task
, rpc_task_mempool
);
1008 static void rpc_async_release(struct work_struct
*work
)
1010 rpc_free_task(container_of(work
, struct rpc_task
, u
.tk_work
));
1013 static void rpc_release_resources_task(struct rpc_task
*task
)
1016 if (task
->tk_msg
.rpc_cred
) {
1017 put_rpccred(task
->tk_msg
.rpc_cred
);
1018 task
->tk_msg
.rpc_cred
= NULL
;
1020 rpc_task_release_client(task
);
1023 static void rpc_final_put_task(struct rpc_task
*task
,
1024 struct workqueue_struct
*q
)
1027 INIT_WORK(&task
->u
.tk_work
, rpc_async_release
);
1028 queue_work(q
, &task
->u
.tk_work
);
1030 rpc_free_task(task
);
1033 static void rpc_do_put_task(struct rpc_task
*task
, struct workqueue_struct
*q
)
1035 if (atomic_dec_and_test(&task
->tk_count
)) {
1036 rpc_release_resources_task(task
);
1037 rpc_final_put_task(task
, q
);
1041 void rpc_put_task(struct rpc_task
*task
)
1043 rpc_do_put_task(task
, NULL
);
1045 EXPORT_SYMBOL_GPL(rpc_put_task
);
1047 void rpc_put_task_async(struct rpc_task
*task
)
1049 rpc_do_put_task(task
, task
->tk_workqueue
);
1051 EXPORT_SYMBOL_GPL(rpc_put_task_async
);
1053 static void rpc_release_task(struct rpc_task
*task
)
1055 dprintk("RPC: %5u release task\n", task
->tk_pid
);
1057 WARN_ON_ONCE(RPC_IS_QUEUED(task
));
1059 rpc_release_resources_task(task
);
1062 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1063 * so it should be safe to use task->tk_count as a test for whether
1064 * or not any other processes still hold references to our rpc_task.
1066 if (atomic_read(&task
->tk_count
) != 1 + !RPC_IS_ASYNC(task
)) {
1067 /* Wake up anyone who may be waiting for task completion */
1068 if (!rpc_complete_task(task
))
1071 if (!atomic_dec_and_test(&task
->tk_count
))
1074 rpc_final_put_task(task
, task
->tk_workqueue
);
1079 return try_module_get(THIS_MODULE
) ? 0 : -EINVAL
;
1082 void rpciod_down(void)
1084 module_put(THIS_MODULE
);
1088 * Start up the rpciod workqueue.
1090 static int rpciod_start(void)
1092 struct workqueue_struct
*wq
;
1095 * Create the rpciod thread and wait for it to start.
1097 dprintk("RPC: creating workqueue rpciod\n");
1098 wq
= alloc_workqueue("rpciod", WQ_MEM_RECLAIM
, 0);
1101 rpciod_workqueue
= wq
;
1102 /* Note: highpri because network receive is latency sensitive */
1103 wq
= alloc_workqueue("xprtiod", WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
1106 xprtiod_workqueue
= wq
;
1109 wq
= rpciod_workqueue
;
1110 rpciod_workqueue
= NULL
;
1111 destroy_workqueue(wq
);
1116 static void rpciod_stop(void)
1118 struct workqueue_struct
*wq
= NULL
;
1120 if (rpciod_workqueue
== NULL
)
1122 dprintk("RPC: destroying workqueue rpciod\n");
1124 wq
= rpciod_workqueue
;
1125 rpciod_workqueue
= NULL
;
1126 destroy_workqueue(wq
);
1127 wq
= xprtiod_workqueue
;
1128 xprtiod_workqueue
= NULL
;
1129 destroy_workqueue(wq
);
1133 rpc_destroy_mempool(void)
1136 mempool_destroy(rpc_buffer_mempool
);
1137 mempool_destroy(rpc_task_mempool
);
1138 kmem_cache_destroy(rpc_task_slabp
);
1139 kmem_cache_destroy(rpc_buffer_slabp
);
1140 rpc_destroy_wait_queue(&delay_queue
);
1144 rpc_init_mempool(void)
1147 * The following is not strictly a mempool initialisation,
1148 * but there is no harm in doing it here
1150 rpc_init_wait_queue(&delay_queue
, "delayq");
1151 if (!rpciod_start())
1154 rpc_task_slabp
= kmem_cache_create("rpc_tasks",
1155 sizeof(struct rpc_task
),
1156 0, SLAB_HWCACHE_ALIGN
,
1158 if (!rpc_task_slabp
)
1160 rpc_buffer_slabp
= kmem_cache_create("rpc_buffers",
1162 0, SLAB_HWCACHE_ALIGN
,
1164 if (!rpc_buffer_slabp
)
1166 rpc_task_mempool
= mempool_create_slab_pool(RPC_TASK_POOLSIZE
,
1168 if (!rpc_task_mempool
)
1170 rpc_buffer_mempool
= mempool_create_slab_pool(RPC_BUFFER_POOLSIZE
,
1172 if (!rpc_buffer_mempool
)
1176 rpc_destroy_mempool();