2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
8 * This software is available to you under a choice of one of two
9 * licenses. You may choose to be licensed under the terms of the GNU
10 * General Public License (GPL) Version 2, available from the file
11 * COPYING in the main directory of this source tree, or the
12 * OpenIB.org BSD license below:
14 * Redistribution and use in source and binary forms, with or
15 * without modification, are permitted provided that the following
18 * - Redistributions of source code must retain the above
19 * copyright notice, this list of conditions and the following
22 * - Redistributions in binary form must reproduce the above
23 * copyright notice, this list of conditions and the following
24 * disclaimer in the documentation and/or other materials
25 * provided with the distribution.
27 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
28 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
29 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
30 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
31 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
32 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
33 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
37 #include <linux/module.h>
38 #include <crypto/aead.h>
42 static inline void tls_make_aad(int recv
,
45 char *record_sequence
,
46 int record_sequence_size
,
47 unsigned char record_type
)
49 memcpy(buf
, record_sequence
, record_sequence_size
);
52 buf
[9] = TLS_1_2_VERSION_MAJOR
;
53 buf
[10] = TLS_1_2_VERSION_MINOR
;
55 buf
[12] = size
& 0xFF;
58 static void trim_sg(struct sock
*sk
, struct scatterlist
*sg
,
59 int *sg_num_elem
, unsigned int *sg_size
, int target_size
)
61 int i
= *sg_num_elem
- 1;
62 int trim
= *sg_size
- target_size
;
69 *sg_size
= target_size
;
70 while (trim
>= sg
[i
].length
) {
72 sk_mem_uncharge(sk
, sg
[i
].length
);
73 put_page(sg_page(&sg
[i
]));
81 sk_mem_uncharge(sk
, trim
);
87 static void trim_both_sgl(struct sock
*sk
, int target_size
)
89 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
90 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
92 trim_sg(sk
, ctx
->sg_plaintext_data
,
93 &ctx
->sg_plaintext_num_elem
,
94 &ctx
->sg_plaintext_size
,
98 target_size
+= tls_ctx
->overhead_size
;
100 trim_sg(sk
, ctx
->sg_encrypted_data
,
101 &ctx
->sg_encrypted_num_elem
,
102 &ctx
->sg_encrypted_size
,
106 static int alloc_sg(struct sock
*sk
, int len
, struct scatterlist
*sg
,
107 int *sg_num_elem
, unsigned int *sg_size
,
110 struct page_frag
*pfrag
;
111 unsigned int size
= *sg_size
;
112 int num_elem
= *sg_num_elem
, use
= 0, rc
= 0;
113 struct scatterlist
*sge
;
114 unsigned int orig_offset
;
117 pfrag
= sk_page_frag(sk
);
120 if (!sk_page_frag_refill(sk
, pfrag
)) {
125 use
= min_t(int, len
, pfrag
->size
- pfrag
->offset
);
127 if (!sk_wmem_schedule(sk
, use
)) {
132 sk_mem_charge(sk
, use
);
134 orig_offset
= pfrag
->offset
;
135 pfrag
->offset
+= use
;
137 sge
= sg
+ num_elem
- 1;
138 if (num_elem
> first_coalesce
&& sg_page(sg
) == pfrag
->page
&&
139 sg
->offset
+ sg
->length
== orig_offset
) {
144 sg_set_page(sge
, pfrag
->page
, use
, orig_offset
);
145 get_page(pfrag
->page
);
147 if (num_elem
== MAX_SKB_FRAGS
) {
159 *sg_num_elem
= num_elem
;
163 static int alloc_encrypted_sg(struct sock
*sk
, int len
)
165 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
166 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
169 rc
= alloc_sg(sk
, len
, ctx
->sg_encrypted_data
,
170 &ctx
->sg_encrypted_num_elem
, &ctx
->sg_encrypted_size
, 0);
175 static int alloc_plaintext_sg(struct sock
*sk
, int len
)
177 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
178 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
181 rc
= alloc_sg(sk
, len
, ctx
->sg_plaintext_data
,
182 &ctx
->sg_plaintext_num_elem
, &ctx
->sg_plaintext_size
,
183 tls_ctx
->pending_open_record_frags
);
188 static void free_sg(struct sock
*sk
, struct scatterlist
*sg
,
189 int *sg_num_elem
, unsigned int *sg_size
)
191 int i
, n
= *sg_num_elem
;
193 for (i
= 0; i
< n
; ++i
) {
194 sk_mem_uncharge(sk
, sg
[i
].length
);
195 put_page(sg_page(&sg
[i
]));
201 static void tls_free_both_sg(struct sock
*sk
)
203 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
204 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
206 free_sg(sk
, ctx
->sg_encrypted_data
, &ctx
->sg_encrypted_num_elem
,
207 &ctx
->sg_encrypted_size
);
209 free_sg(sk
, ctx
->sg_plaintext_data
, &ctx
->sg_plaintext_num_elem
,
210 &ctx
->sg_plaintext_size
);
213 static int tls_do_encryption(struct tls_context
*tls_ctx
,
214 struct tls_sw_context
*ctx
, size_t data_len
,
217 unsigned int req_size
= sizeof(struct aead_request
) +
218 crypto_aead_reqsize(ctx
->aead_send
);
219 struct aead_request
*aead_req
;
222 aead_req
= kmalloc(req_size
, flags
);
226 ctx
->sg_encrypted_data
[0].offset
+= tls_ctx
->prepend_size
;
227 ctx
->sg_encrypted_data
[0].length
-= tls_ctx
->prepend_size
;
229 aead_request_set_tfm(aead_req
, ctx
->aead_send
);
230 aead_request_set_ad(aead_req
, TLS_AAD_SPACE_SIZE
);
231 aead_request_set_crypt(aead_req
, ctx
->sg_aead_in
, ctx
->sg_aead_out
,
232 data_len
, tls_ctx
->iv
);
233 rc
= crypto_aead_encrypt(aead_req
);
235 ctx
->sg_encrypted_data
[0].offset
-= tls_ctx
->prepend_size
;
236 ctx
->sg_encrypted_data
[0].length
+= tls_ctx
->prepend_size
;
242 static int tls_push_record(struct sock
*sk
, int flags
,
243 unsigned char record_type
)
245 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
246 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
249 sg_mark_end(ctx
->sg_plaintext_data
+ ctx
->sg_plaintext_num_elem
- 1);
250 sg_mark_end(ctx
->sg_encrypted_data
+ ctx
->sg_encrypted_num_elem
- 1);
252 tls_make_aad(0, ctx
->aad_space
, ctx
->sg_plaintext_size
,
253 tls_ctx
->rec_seq
, tls_ctx
->rec_seq_size
,
256 tls_fill_prepend(tls_ctx
,
257 page_address(sg_page(&ctx
->sg_encrypted_data
[0])) +
258 ctx
->sg_encrypted_data
[0].offset
,
259 ctx
->sg_plaintext_size
, record_type
);
261 tls_ctx
->pending_open_record_frags
= 0;
262 set_bit(TLS_PENDING_CLOSED_RECORD
, &tls_ctx
->flags
);
264 rc
= tls_do_encryption(tls_ctx
, ctx
, ctx
->sg_plaintext_size
,
267 /* If we are called from write_space and
268 * we fail, we need to set this SOCK_NOSPACE
269 * to trigger another write_space in the future.
271 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
275 free_sg(sk
, ctx
->sg_plaintext_data
, &ctx
->sg_plaintext_num_elem
,
276 &ctx
->sg_plaintext_size
);
278 ctx
->sg_encrypted_num_elem
= 0;
279 ctx
->sg_encrypted_size
= 0;
281 /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
282 rc
= tls_push_sg(sk
, tls_ctx
, ctx
->sg_encrypted_data
, 0, flags
);
283 if (rc
< 0 && rc
!= -EAGAIN
)
286 tls_advance_record_sn(sk
, tls_ctx
);
290 static int tls_sw_push_pending_record(struct sock
*sk
, int flags
)
292 return tls_push_record(sk
, flags
, TLS_RECORD_TYPE_DATA
);
295 static int zerocopy_from_iter(struct sock
*sk
, struct iov_iter
*from
,
298 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
299 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
300 struct page
*pages
[MAX_SKB_FRAGS
];
305 unsigned int size
= ctx
->sg_plaintext_size
;
306 int num_elem
= ctx
->sg_plaintext_num_elem
;
312 maxpages
= ARRAY_SIZE(ctx
->sg_plaintext_data
) - num_elem
;
317 copied
= iov_iter_get_pages(from
, pages
,
325 iov_iter_advance(from
, copied
);
330 use
= min_t(int, copied
, PAGE_SIZE
- offset
);
332 sg_set_page(&ctx
->sg_plaintext_data
[num_elem
],
333 pages
[i
], use
, offset
);
334 sg_unmark_end(&ctx
->sg_plaintext_data
[num_elem
]);
335 sk_mem_charge(sk
, use
);
346 ctx
->sg_plaintext_size
= size
;
347 ctx
->sg_plaintext_num_elem
= num_elem
;
351 static int memcopy_from_iter(struct sock
*sk
, struct iov_iter
*from
,
354 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
355 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
356 struct scatterlist
*sg
= ctx
->sg_plaintext_data
;
359 for (i
= tls_ctx
->pending_open_record_frags
;
360 i
< ctx
->sg_plaintext_num_elem
; ++i
) {
363 page_address(sg_page(&sg
[i
])) + sg
[i
].offset
,
364 copy
, from
) != copy
) {
370 ++tls_ctx
->pending_open_record_frags
;
380 int tls_sw_sendmsg(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
382 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
383 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
386 long timeo
= sock_sndtimeo(sk
, msg
->msg_flags
& MSG_DONTWAIT
);
387 bool eor
= !(msg
->msg_flags
& MSG_MORE
);
388 size_t try_to_copy
, copied
= 0;
389 unsigned char record_type
= TLS_RECORD_TYPE_DATA
;
394 if (msg
->msg_flags
& ~(MSG_MORE
| MSG_DONTWAIT
| MSG_NOSIGNAL
))
399 if (tls_complete_pending_work(sk
, tls_ctx
, msg
->msg_flags
, &timeo
))
402 if (unlikely(msg
->msg_controllen
)) {
403 ret
= tls_proccess_cmsg(sk
, msg
, &record_type
);
408 while (msg_data_left(msg
)) {
414 orig_size
= ctx
->sg_plaintext_size
;
416 try_to_copy
= msg_data_left(msg
);
417 record_room
= TLS_MAX_PAYLOAD_SIZE
- ctx
->sg_plaintext_size
;
418 if (try_to_copy
>= record_room
) {
419 try_to_copy
= record_room
;
423 required_size
= ctx
->sg_plaintext_size
+ try_to_copy
+
424 tls_ctx
->overhead_size
;
426 if (!sk_stream_memory_free(sk
))
427 goto wait_for_sndbuf
;
429 ret
= alloc_encrypted_sg(sk
, required_size
);
432 goto wait_for_memory
;
434 /* Adjust try_to_copy according to the amount that was
435 * actually allocated. The difference is due
436 * to max sg elements limit
438 try_to_copy
-= required_size
- ctx
->sg_encrypted_size
;
442 if (full_record
|| eor
) {
443 ret
= zerocopy_from_iter(sk
, &msg
->msg_iter
,
446 goto fallback_to_reg_send
;
448 copied
+= try_to_copy
;
449 ret
= tls_push_record(sk
, msg
->msg_flags
, record_type
);
455 copied
-= try_to_copy
;
456 fallback_to_reg_send
:
457 iov_iter_revert(&msg
->msg_iter
,
458 ctx
->sg_plaintext_size
- orig_size
);
459 trim_sg(sk
, ctx
->sg_plaintext_data
,
460 &ctx
->sg_plaintext_num_elem
,
461 &ctx
->sg_plaintext_size
,
465 required_size
= ctx
->sg_plaintext_size
+ try_to_copy
;
467 ret
= alloc_plaintext_sg(sk
, required_size
);
470 goto wait_for_memory
;
472 /* Adjust try_to_copy according to the amount that was
473 * actually allocated. The difference is due
474 * to max sg elements limit
476 try_to_copy
-= required_size
- ctx
->sg_plaintext_size
;
479 trim_sg(sk
, ctx
->sg_encrypted_data
,
480 &ctx
->sg_encrypted_num_elem
,
481 &ctx
->sg_encrypted_size
,
482 ctx
->sg_plaintext_size
+
483 tls_ctx
->overhead_size
);
486 ret
= memcopy_from_iter(sk
, &msg
->msg_iter
, try_to_copy
);
490 copied
+= try_to_copy
;
491 if (full_record
|| eor
) {
493 ret
= tls_push_record(sk
, msg
->msg_flags
, record_type
);
496 goto wait_for_memory
;
505 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
507 ret
= sk_stream_wait_memory(sk
, &timeo
);
510 trim_both_sgl(sk
, orig_size
);
514 if (tls_is_pending_closed_record(tls_ctx
))
517 if (ctx
->sg_encrypted_size
< required_size
)
518 goto alloc_encrypted
;
520 goto alloc_plaintext
;
524 ret
= sk_stream_error(sk
, msg
->msg_flags
, ret
);
527 return copied
? copied
: ret
;
530 int tls_sw_sendpage(struct sock
*sk
, struct page
*page
,
531 int offset
, size_t size
, int flags
)
533 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
534 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
536 long timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
538 size_t orig_size
= size
;
539 unsigned char record_type
= TLS_RECORD_TYPE_DATA
;
540 struct scatterlist
*sg
;
544 if (flags
& ~(MSG_MORE
| MSG_DONTWAIT
| MSG_NOSIGNAL
|
545 MSG_SENDPAGE_NOTLAST
))
548 /* No MSG_EOR from splice, only look at MSG_MORE */
549 eor
= !(flags
& (MSG_MORE
| MSG_SENDPAGE_NOTLAST
));
553 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
555 if (tls_complete_pending_work(sk
, tls_ctx
, flags
, &timeo
))
558 /* Call the sk_stream functions to manage the sndbuf mem. */
560 size_t copy
, required_size
;
568 record_room
= TLS_MAX_PAYLOAD_SIZE
- ctx
->sg_plaintext_size
;
570 if (copy
>= record_room
) {
574 required_size
= ctx
->sg_plaintext_size
+ copy
+
575 tls_ctx
->overhead_size
;
577 if (!sk_stream_memory_free(sk
))
578 goto wait_for_sndbuf
;
580 ret
= alloc_encrypted_sg(sk
, required_size
);
583 goto wait_for_memory
;
585 /* Adjust copy according to the amount that was
586 * actually allocated. The difference is due
587 * to max sg elements limit
589 copy
-= required_size
- ctx
->sg_plaintext_size
;
594 sg
= ctx
->sg_plaintext_data
+ ctx
->sg_plaintext_num_elem
;
595 sg_set_page(sg
, page
, copy
, offset
);
596 ctx
->sg_plaintext_num_elem
++;
598 sk_mem_charge(sk
, copy
);
601 ctx
->sg_plaintext_size
+= copy
;
602 tls_ctx
->pending_open_record_frags
= ctx
->sg_plaintext_num_elem
;
604 if (full_record
|| eor
||
605 ctx
->sg_plaintext_num_elem
==
606 ARRAY_SIZE(ctx
->sg_plaintext_data
)) {
608 ret
= tls_push_record(sk
, flags
, record_type
);
611 goto wait_for_memory
;
618 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
620 ret
= sk_stream_wait_memory(sk
, &timeo
);
622 trim_both_sgl(sk
, ctx
->sg_plaintext_size
);
626 if (tls_is_pending_closed_record(tls_ctx
))
633 if (orig_size
> size
)
634 ret
= orig_size
- size
;
636 ret
= sk_stream_error(sk
, flags
, ret
);
642 void tls_sw_free_resources(struct sock
*sk
)
644 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
645 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
648 crypto_free_aead(ctx
->aead_send
);
650 tls_free_both_sg(sk
);
655 int tls_set_sw_offload(struct sock
*sk
, struct tls_context
*ctx
)
657 char keyval
[TLS_CIPHER_AES_GCM_128_KEY_SIZE
];
658 struct tls_crypto_info
*crypto_info
;
659 struct tls12_crypto_info_aes_gcm_128
*gcm_128_info
;
660 struct tls_sw_context
*sw_ctx
;
661 u16 nonce_size
, tag_size
, iv_size
, rec_seq_size
;
675 sw_ctx
= kzalloc(sizeof(*sw_ctx
), GFP_KERNEL
);
681 ctx
->priv_ctx
= (struct tls_offload_context
*)sw_ctx
;
682 ctx
->free_resources
= tls_sw_free_resources
;
684 crypto_info
= &ctx
->crypto_send
;
685 switch (crypto_info
->cipher_type
) {
686 case TLS_CIPHER_AES_GCM_128
: {
687 nonce_size
= TLS_CIPHER_AES_GCM_128_IV_SIZE
;
688 tag_size
= TLS_CIPHER_AES_GCM_128_TAG_SIZE
;
689 iv_size
= TLS_CIPHER_AES_GCM_128_IV_SIZE
;
690 iv
= ((struct tls12_crypto_info_aes_gcm_128
*)crypto_info
)->iv
;
691 rec_seq_size
= TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE
;
693 ((struct tls12_crypto_info_aes_gcm_128
*)crypto_info
)->rec_seq
;
695 (struct tls12_crypto_info_aes_gcm_128
*)crypto_info
;
703 ctx
->prepend_size
= TLS_HEADER_SIZE
+ nonce_size
;
704 ctx
->tag_size
= tag_size
;
705 ctx
->overhead_size
= ctx
->prepend_size
+ ctx
->tag_size
;
706 ctx
->iv_size
= iv_size
;
707 ctx
->iv
= kmalloc(iv_size
+ TLS_CIPHER_AES_GCM_128_SALT_SIZE
,
713 memcpy(ctx
->iv
, gcm_128_info
->salt
, TLS_CIPHER_AES_GCM_128_SALT_SIZE
);
714 memcpy(ctx
->iv
+ TLS_CIPHER_AES_GCM_128_SALT_SIZE
, iv
, iv_size
);
715 ctx
->rec_seq_size
= rec_seq_size
;
716 ctx
->rec_seq
= kmalloc(rec_seq_size
, GFP_KERNEL
);
721 memcpy(ctx
->rec_seq
, rec_seq
, rec_seq_size
);
723 sg_init_table(sw_ctx
->sg_encrypted_data
,
724 ARRAY_SIZE(sw_ctx
->sg_encrypted_data
));
725 sg_init_table(sw_ctx
->sg_plaintext_data
,
726 ARRAY_SIZE(sw_ctx
->sg_plaintext_data
));
728 sg_init_table(sw_ctx
->sg_aead_in
, 2);
729 sg_set_buf(&sw_ctx
->sg_aead_in
[0], sw_ctx
->aad_space
,
730 sizeof(sw_ctx
->aad_space
));
731 sg_unmark_end(&sw_ctx
->sg_aead_in
[1]);
732 sg_chain(sw_ctx
->sg_aead_in
, 2, sw_ctx
->sg_plaintext_data
);
733 sg_init_table(sw_ctx
->sg_aead_out
, 2);
734 sg_set_buf(&sw_ctx
->sg_aead_out
[0], sw_ctx
->aad_space
,
735 sizeof(sw_ctx
->aad_space
));
736 sg_unmark_end(&sw_ctx
->sg_aead_out
[1]);
737 sg_chain(sw_ctx
->sg_aead_out
, 2, sw_ctx
->sg_encrypted_data
);
739 if (!sw_ctx
->aead_send
) {
740 sw_ctx
->aead_send
= crypto_alloc_aead("gcm(aes)", 0, 0);
741 if (IS_ERR(sw_ctx
->aead_send
)) {
742 rc
= PTR_ERR(sw_ctx
->aead_send
);
743 sw_ctx
->aead_send
= NULL
;
748 ctx
->push_pending_record
= tls_sw_push_pending_record
;
750 memcpy(keyval
, gcm_128_info
->key
, TLS_CIPHER_AES_GCM_128_KEY_SIZE
);
752 rc
= crypto_aead_setkey(sw_ctx
->aead_send
, keyval
,
753 TLS_CIPHER_AES_GCM_128_KEY_SIZE
);
757 rc
= crypto_aead_setauthsize(sw_ctx
->aead_send
, ctx
->tag_size
);
762 crypto_free_aead(sw_ctx
->aead_send
);
763 sw_ctx
->aead_send
= NULL
;