2 * libata-core.c - helper library for ATA
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <linux/glob.h>
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_host.h>
66 #include <linux/libata.h>
67 #include <asm/byteorder.h>
68 #include <linux/cdrom.h>
69 #include <linux/ratelimit.h>
70 #include <linux/pm_runtime.h>
71 #include <linux/platform_device.h>
74 #include "libata-transport.h"
76 /* debounce timing parameters in msecs { interval, duration, timeout } */
77 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
78 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
79 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
81 const struct ata_port_operations ata_base_port_ops
= {
82 .prereset
= ata_std_prereset
,
83 .postreset
= ata_std_postreset
,
84 .error_handler
= ata_std_error_handler
,
85 .sched_eh
= ata_std_sched_eh
,
86 .end_eh
= ata_std_end_eh
,
89 const struct ata_port_operations sata_port_ops
= {
90 .inherits
= &ata_base_port_ops
,
92 .qc_defer
= ata_std_qc_defer
,
93 .hardreset
= sata_std_hardreset
,
96 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
97 u16 heads
, u16 sectors
);
98 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
99 static void ata_dev_xfermask(struct ata_device
*dev
);
100 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
102 atomic_t ata_print_id
= ATOMIC_INIT(0);
104 struct ata_force_param
{
108 unsigned long xfer_mask
;
109 unsigned int horkage_on
;
110 unsigned int horkage_off
;
114 struct ata_force_ent
{
117 struct ata_force_param param
;
120 static struct ata_force_ent
*ata_force_tbl
;
121 static int ata_force_tbl_size
;
123 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
124 /* param_buf is thrown away after initialization, disallow read */
125 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
126 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
128 static int atapi_enabled
= 1;
129 module_param(atapi_enabled
, int, 0444);
130 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
132 static int atapi_dmadir
= 0;
133 module_param(atapi_dmadir
, int, 0444);
134 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
136 int atapi_passthru16
= 1;
137 module_param(atapi_passthru16
, int, 0444);
138 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
141 module_param_named(fua
, libata_fua
, int, 0444);
142 MODULE_PARM_DESC(fua
, "FUA support (0=off [default], 1=on)");
144 static int ata_ignore_hpa
;
145 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
146 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
148 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
149 module_param_named(dma
, libata_dma_mask
, int, 0444);
150 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
152 static int ata_probe_timeout
;
153 module_param(ata_probe_timeout
, int, 0444);
154 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
156 int libata_noacpi
= 0;
157 module_param_named(noacpi
, libata_noacpi
, int, 0444);
158 MODULE_PARM_DESC(noacpi
, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
160 int libata_allow_tpm
= 0;
161 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
162 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands (0=off [default], 1=on)");
165 module_param(atapi_an
, int, 0444);
166 MODULE_PARM_DESC(atapi_an
, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
168 MODULE_AUTHOR("Jeff Garzik");
169 MODULE_DESCRIPTION("Library module for ATA devices");
170 MODULE_LICENSE("GPL");
171 MODULE_VERSION(DRV_VERSION
);
174 static bool ata_sstatus_online(u32 sstatus
)
176 return (sstatus
& 0xf) == 0x3;
180 * ata_link_next - link iteration helper
181 * @link: the previous link, NULL to start
182 * @ap: ATA port containing links to iterate
183 * @mode: iteration mode, one of ATA_LITER_*
186 * Host lock or EH context.
189 * Pointer to the next link.
191 struct ata_link
*ata_link_next(struct ata_link
*link
, struct ata_port
*ap
,
192 enum ata_link_iter_mode mode
)
194 BUG_ON(mode
!= ATA_LITER_EDGE
&&
195 mode
!= ATA_LITER_PMP_FIRST
&& mode
!= ATA_LITER_HOST_FIRST
);
197 /* NULL link indicates start of iteration */
201 case ATA_LITER_PMP_FIRST
:
202 if (sata_pmp_attached(ap
))
205 case ATA_LITER_HOST_FIRST
:
209 /* we just iterated over the host link, what's next? */
210 if (link
== &ap
->link
)
212 case ATA_LITER_HOST_FIRST
:
213 if (sata_pmp_attached(ap
))
216 case ATA_LITER_PMP_FIRST
:
217 if (unlikely(ap
->slave_link
))
218 return ap
->slave_link
;
224 /* slave_link excludes PMP */
225 if (unlikely(link
== ap
->slave_link
))
228 /* we were over a PMP link */
229 if (++link
< ap
->pmp_link
+ ap
->nr_pmp_links
)
232 if (mode
== ATA_LITER_PMP_FIRST
)
239 * ata_dev_next - device iteration helper
240 * @dev: the previous device, NULL to start
241 * @link: ATA link containing devices to iterate
242 * @mode: iteration mode, one of ATA_DITER_*
245 * Host lock or EH context.
248 * Pointer to the next device.
250 struct ata_device
*ata_dev_next(struct ata_device
*dev
, struct ata_link
*link
,
251 enum ata_dev_iter_mode mode
)
253 BUG_ON(mode
!= ATA_DITER_ENABLED
&& mode
!= ATA_DITER_ENABLED_REVERSE
&&
254 mode
!= ATA_DITER_ALL
&& mode
!= ATA_DITER_ALL_REVERSE
);
256 /* NULL dev indicates start of iteration */
259 case ATA_DITER_ENABLED
:
263 case ATA_DITER_ENABLED_REVERSE
:
264 case ATA_DITER_ALL_REVERSE
:
265 dev
= link
->device
+ ata_link_max_devices(link
) - 1;
270 /* move to the next one */
272 case ATA_DITER_ENABLED
:
274 if (++dev
< link
->device
+ ata_link_max_devices(link
))
277 case ATA_DITER_ENABLED_REVERSE
:
278 case ATA_DITER_ALL_REVERSE
:
279 if (--dev
>= link
->device
)
285 if ((mode
== ATA_DITER_ENABLED
|| mode
== ATA_DITER_ENABLED_REVERSE
) &&
286 !ata_dev_enabled(dev
))
292 * ata_dev_phys_link - find physical link for a device
293 * @dev: ATA device to look up physical link for
295 * Look up physical link which @dev is attached to. Note that
296 * this is different from @dev->link only when @dev is on slave
297 * link. For all other cases, it's the same as @dev->link.
303 * Pointer to the found physical link.
305 struct ata_link
*ata_dev_phys_link(struct ata_device
*dev
)
307 struct ata_port
*ap
= dev
->link
->ap
;
313 return ap
->slave_link
;
317 * ata_force_cbl - force cable type according to libata.force
318 * @ap: ATA port of interest
320 * Force cable type according to libata.force and whine about it.
321 * The last entry which has matching port number is used, so it
322 * can be specified as part of device force parameters. For
323 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
329 void ata_force_cbl(struct ata_port
*ap
)
333 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
334 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
336 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
339 if (fe
->param
.cbl
== ATA_CBL_NONE
)
342 ap
->cbl
= fe
->param
.cbl
;
343 ata_port_notice(ap
, "FORCE: cable set to %s\n", fe
->param
.name
);
349 * ata_force_link_limits - force link limits according to libata.force
350 * @link: ATA link of interest
352 * Force link flags and SATA spd limit according to libata.force
353 * and whine about it. When only the port part is specified
354 * (e.g. 1:), the limit applies to all links connected to both
355 * the host link and all fan-out ports connected via PMP. If the
356 * device part is specified as 0 (e.g. 1.00:), it specifies the
357 * first fan-out link not the host link. Device number 15 always
358 * points to the host link whether PMP is attached or not. If the
359 * controller has slave link, device number 16 points to it.
364 static void ata_force_link_limits(struct ata_link
*link
)
366 bool did_spd
= false;
367 int linkno
= link
->pmp
;
370 if (ata_is_host_link(link
))
373 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
374 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
376 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
379 if (fe
->device
!= -1 && fe
->device
!= linkno
)
382 /* only honor the first spd limit */
383 if (!did_spd
&& fe
->param
.spd_limit
) {
384 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
385 ata_link_notice(link
, "FORCE: PHY spd limit set to %s\n",
390 /* let lflags stack */
391 if (fe
->param
.lflags
) {
392 link
->flags
|= fe
->param
.lflags
;
393 ata_link_notice(link
,
394 "FORCE: link flag 0x%x forced -> 0x%x\n",
395 fe
->param
.lflags
, link
->flags
);
401 * ata_force_xfermask - force xfermask according to libata.force
402 * @dev: ATA device of interest
404 * Force xfer_mask according to libata.force and whine about it.
405 * For consistency with link selection, device number 15 selects
406 * the first device connected to the host link.
411 static void ata_force_xfermask(struct ata_device
*dev
)
413 int devno
= dev
->link
->pmp
+ dev
->devno
;
414 int alt_devno
= devno
;
417 /* allow n.15/16 for devices attached to host port */
418 if (ata_is_host_link(dev
->link
))
421 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
422 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
423 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
425 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
428 if (fe
->device
!= -1 && fe
->device
!= devno
&&
429 fe
->device
!= alt_devno
)
432 if (!fe
->param
.xfer_mask
)
435 ata_unpack_xfermask(fe
->param
.xfer_mask
,
436 &pio_mask
, &mwdma_mask
, &udma_mask
);
438 dev
->udma_mask
= udma_mask
;
439 else if (mwdma_mask
) {
441 dev
->mwdma_mask
= mwdma_mask
;
445 dev
->pio_mask
= pio_mask
;
448 ata_dev_notice(dev
, "FORCE: xfer_mask set to %s\n",
455 * ata_force_horkage - force horkage according to libata.force
456 * @dev: ATA device of interest
458 * Force horkage according to libata.force and whine about it.
459 * For consistency with link selection, device number 15 selects
460 * the first device connected to the host link.
465 static void ata_force_horkage(struct ata_device
*dev
)
467 int devno
= dev
->link
->pmp
+ dev
->devno
;
468 int alt_devno
= devno
;
471 /* allow n.15/16 for devices attached to host port */
472 if (ata_is_host_link(dev
->link
))
475 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
476 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
478 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
481 if (fe
->device
!= -1 && fe
->device
!= devno
&&
482 fe
->device
!= alt_devno
)
485 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
486 !(dev
->horkage
& fe
->param
.horkage_off
))
489 dev
->horkage
|= fe
->param
.horkage_on
;
490 dev
->horkage
&= ~fe
->param
.horkage_off
;
492 ata_dev_notice(dev
, "FORCE: horkage modified (%s)\n",
498 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
499 * @opcode: SCSI opcode
501 * Determine ATAPI command type from @opcode.
507 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
509 int atapi_cmd_type(u8 opcode
)
518 case GPCMD_WRITE_AND_VERIFY_10
:
522 case GPCMD_READ_CD_MSF
:
523 return ATAPI_READ_CD
;
527 if (atapi_passthru16
)
528 return ATAPI_PASS_THRU
;
536 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
537 * @tf: Taskfile to convert
538 * @pmp: Port multiplier port
539 * @is_cmd: This FIS is for command
540 * @fis: Buffer into which data will output
542 * Converts a standard ATA taskfile to a Serial ATA
543 * FIS structure (Register - Host to Device).
546 * Inherited from caller.
548 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
550 fis
[0] = 0x27; /* Register - Host to Device FIS */
551 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
553 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
555 fis
[2] = tf
->command
;
556 fis
[3] = tf
->feature
;
563 fis
[8] = tf
->hob_lbal
;
564 fis
[9] = tf
->hob_lbam
;
565 fis
[10] = tf
->hob_lbah
;
566 fis
[11] = tf
->hob_feature
;
569 fis
[13] = tf
->hob_nsect
;
573 fis
[16] = tf
->auxiliary
& 0xff;
574 fis
[17] = (tf
->auxiliary
>> 8) & 0xff;
575 fis
[18] = (tf
->auxiliary
>> 16) & 0xff;
576 fis
[19] = (tf
->auxiliary
>> 24) & 0xff;
580 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
581 * @fis: Buffer from which data will be input
582 * @tf: Taskfile to output
584 * Converts a serial ATA FIS structure to a standard ATA taskfile.
587 * Inherited from caller.
590 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
592 tf
->command
= fis
[2]; /* status */
593 tf
->feature
= fis
[3]; /* error */
600 tf
->hob_lbal
= fis
[8];
601 tf
->hob_lbam
= fis
[9];
602 tf
->hob_lbah
= fis
[10];
605 tf
->hob_nsect
= fis
[13];
608 static const u8 ata_rw_cmds
[] = {
612 ATA_CMD_READ_MULTI_EXT
,
613 ATA_CMD_WRITE_MULTI_EXT
,
617 ATA_CMD_WRITE_MULTI_FUA_EXT
,
621 ATA_CMD_PIO_READ_EXT
,
622 ATA_CMD_PIO_WRITE_EXT
,
635 ATA_CMD_WRITE_FUA_EXT
639 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
640 * @tf: command to examine and configure
641 * @dev: device tf belongs to
643 * Examine the device configuration and tf->flags to calculate
644 * the proper read/write commands and protocol to use.
649 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
653 int index
, fua
, lba48
, write
;
655 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
656 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
657 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
659 if (dev
->flags
& ATA_DFLAG_PIO
) {
660 tf
->protocol
= ATA_PROT_PIO
;
661 index
= dev
->multi_count
? 0 : 8;
662 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
663 /* Unable to use DMA due to host limitation */
664 tf
->protocol
= ATA_PROT_PIO
;
665 index
= dev
->multi_count
? 0 : 8;
667 tf
->protocol
= ATA_PROT_DMA
;
671 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
680 * ata_tf_read_block - Read block address from ATA taskfile
681 * @tf: ATA taskfile of interest
682 * @dev: ATA device @tf belongs to
687 * Read block address from @tf. This function can handle all
688 * three address formats - LBA, LBA48 and CHS. tf->protocol and
689 * flags select the address format to use.
692 * Block address read from @tf.
694 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
698 if (tf
->flags
& ATA_TFLAG_LBA
) {
699 if (tf
->flags
& ATA_TFLAG_LBA48
) {
700 block
|= (u64
)tf
->hob_lbah
<< 40;
701 block
|= (u64
)tf
->hob_lbam
<< 32;
702 block
|= (u64
)tf
->hob_lbal
<< 24;
704 block
|= (tf
->device
& 0xf) << 24;
706 block
|= tf
->lbah
<< 16;
707 block
|= tf
->lbam
<< 8;
712 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
713 head
= tf
->device
& 0xf;
718 "device reported invalid CHS sector 0\n");
719 sect
= 1; /* oh well */
722 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
- 1;
729 * ata_build_rw_tf - Build ATA taskfile for given read/write request
730 * @tf: Target ATA taskfile
731 * @dev: ATA device @tf belongs to
732 * @block: Block address
733 * @n_block: Number of blocks
734 * @tf_flags: RW/FUA etc...
740 * Build ATA taskfile @tf for read/write request described by
741 * @block, @n_block, @tf_flags and @tag on @dev.
745 * 0 on success, -ERANGE if the request is too large for @dev,
746 * -EINVAL if the request is invalid.
748 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
749 u64 block
, u32 n_block
, unsigned int tf_flags
,
752 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
753 tf
->flags
|= tf_flags
;
755 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
757 if (!lba_48_ok(block
, n_block
))
760 tf
->protocol
= ATA_PROT_NCQ
;
761 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
763 if (tf
->flags
& ATA_TFLAG_WRITE
)
764 tf
->command
= ATA_CMD_FPDMA_WRITE
;
766 tf
->command
= ATA_CMD_FPDMA_READ
;
768 tf
->nsect
= tag
<< 3;
769 tf
->hob_feature
= (n_block
>> 8) & 0xff;
770 tf
->feature
= n_block
& 0xff;
772 tf
->hob_lbah
= (block
>> 40) & 0xff;
773 tf
->hob_lbam
= (block
>> 32) & 0xff;
774 tf
->hob_lbal
= (block
>> 24) & 0xff;
775 tf
->lbah
= (block
>> 16) & 0xff;
776 tf
->lbam
= (block
>> 8) & 0xff;
777 tf
->lbal
= block
& 0xff;
779 tf
->device
= ATA_LBA
;
780 if (tf
->flags
& ATA_TFLAG_FUA
)
781 tf
->device
|= 1 << 7;
782 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
783 tf
->flags
|= ATA_TFLAG_LBA
;
785 if (lba_28_ok(block
, n_block
)) {
787 tf
->device
|= (block
>> 24) & 0xf;
788 } else if (lba_48_ok(block
, n_block
)) {
789 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
793 tf
->flags
|= ATA_TFLAG_LBA48
;
795 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
797 tf
->hob_lbah
= (block
>> 40) & 0xff;
798 tf
->hob_lbam
= (block
>> 32) & 0xff;
799 tf
->hob_lbal
= (block
>> 24) & 0xff;
801 /* request too large even for LBA48 */
804 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
807 tf
->nsect
= n_block
& 0xff;
809 tf
->lbah
= (block
>> 16) & 0xff;
810 tf
->lbam
= (block
>> 8) & 0xff;
811 tf
->lbal
= block
& 0xff;
813 tf
->device
|= ATA_LBA
;
816 u32 sect
, head
, cyl
, track
;
818 /* The request -may- be too large for CHS addressing. */
819 if (!lba_28_ok(block
, n_block
))
822 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
825 /* Convert LBA to CHS */
826 track
= (u32
)block
/ dev
->sectors
;
827 cyl
= track
/ dev
->heads
;
828 head
= track
% dev
->heads
;
829 sect
= (u32
)block
% dev
->sectors
+ 1;
831 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
832 (u32
)block
, track
, cyl
, head
, sect
);
834 /* Check whether the converted CHS can fit.
838 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
841 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
852 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
853 * @pio_mask: pio_mask
854 * @mwdma_mask: mwdma_mask
855 * @udma_mask: udma_mask
857 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
858 * unsigned int xfer_mask.
866 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
867 unsigned long mwdma_mask
,
868 unsigned long udma_mask
)
870 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
871 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
872 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
876 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
877 * @xfer_mask: xfer_mask to unpack
878 * @pio_mask: resulting pio_mask
879 * @mwdma_mask: resulting mwdma_mask
880 * @udma_mask: resulting udma_mask
882 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
883 * Any NULL distination masks will be ignored.
885 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
886 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
889 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
891 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
893 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
896 static const struct ata_xfer_ent
{
900 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
901 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
902 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
907 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
908 * @xfer_mask: xfer_mask of interest
910 * Return matching XFER_* value for @xfer_mask. Only the highest
911 * bit of @xfer_mask is considered.
917 * Matching XFER_* value, 0xff if no match found.
919 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
921 int highbit
= fls(xfer_mask
) - 1;
922 const struct ata_xfer_ent
*ent
;
924 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
925 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
926 return ent
->base
+ highbit
- ent
->shift
;
931 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
932 * @xfer_mode: XFER_* of interest
934 * Return matching xfer_mask for @xfer_mode.
940 * Matching xfer_mask, 0 if no match found.
942 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
944 const struct ata_xfer_ent
*ent
;
946 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
947 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
948 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
949 & ~((1 << ent
->shift
) - 1);
954 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
955 * @xfer_mode: XFER_* of interest
957 * Return matching xfer_shift for @xfer_mode.
963 * Matching xfer_shift, -1 if no match found.
965 int ata_xfer_mode2shift(unsigned long xfer_mode
)
967 const struct ata_xfer_ent
*ent
;
969 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
970 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
976 * ata_mode_string - convert xfer_mask to string
977 * @xfer_mask: mask of bits supported; only highest bit counts.
979 * Determine string which represents the highest speed
980 * (highest bit in @modemask).
986 * Constant C string representing highest speed listed in
987 * @mode_mask, or the constant C string "<n/a>".
989 const char *ata_mode_string(unsigned long xfer_mask
)
991 static const char * const xfer_mode_str
[] = {
1015 highbit
= fls(xfer_mask
) - 1;
1016 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
1017 return xfer_mode_str
[highbit
];
1021 const char *sata_spd_string(unsigned int spd
)
1023 static const char * const spd_str
[] = {
1029 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
1031 return spd_str
[spd
- 1];
1035 * ata_dev_classify - determine device type based on ATA-spec signature
1036 * @tf: ATA taskfile register set for device to be identified
1038 * Determine from taskfile register contents whether a device is
1039 * ATA or ATAPI, as per "Signature and persistence" section
1040 * of ATA/PI spec (volume 1, sect 5.14).
1046 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1047 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1049 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1051 /* Apple's open source Darwin code hints that some devices only
1052 * put a proper signature into the LBA mid/high registers,
1053 * So, we only check those. It's sufficient for uniqueness.
1055 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1056 * signatures for ATA and ATAPI devices attached on SerialATA,
1057 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1058 * spec has never mentioned about using different signatures
1059 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1060 * Multiplier specification began to use 0x69/0x96 to identify
1061 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1062 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1063 * 0x69/0x96 shortly and described them as reserved for
1066 * We follow the current spec and consider that 0x69/0x96
1067 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1068 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1069 * SEMB signature. This is worked around in
1070 * ata_dev_read_id().
1072 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1073 DPRINTK("found ATA device by sig\n");
1077 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1078 DPRINTK("found ATAPI device by sig\n");
1079 return ATA_DEV_ATAPI
;
1082 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1083 DPRINTK("found PMP device by sig\n");
1087 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1088 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1089 return ATA_DEV_SEMB
;
1092 if ((tf
->lbam
== 0xcd) && (tf
->lbah
== 0xab)) {
1093 DPRINTK("found ZAC device by sig\n");
1097 DPRINTK("unknown device\n");
1098 return ATA_DEV_UNKNOWN
;
1102 * ata_id_string - Convert IDENTIFY DEVICE page into string
1103 * @id: IDENTIFY DEVICE results we will examine
1104 * @s: string into which data is output
1105 * @ofs: offset into identify device page
1106 * @len: length of string to return. must be an even number.
1108 * The strings in the IDENTIFY DEVICE page are broken up into
1109 * 16-bit chunks. Run through the string, and output each
1110 * 8-bit chunk linearly, regardless of platform.
1116 void ata_id_string(const u16
*id
, unsigned char *s
,
1117 unsigned int ofs
, unsigned int len
)
1138 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1139 * @id: IDENTIFY DEVICE results we will examine
1140 * @s: string into which data is output
1141 * @ofs: offset into identify device page
1142 * @len: length of string to return. must be an odd number.
1144 * This function is identical to ata_id_string except that it
1145 * trims trailing spaces and terminates the resulting string with
1146 * null. @len must be actual maximum length (even number) + 1.
1151 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1152 unsigned int ofs
, unsigned int len
)
1156 ata_id_string(id
, s
, ofs
, len
- 1);
1158 p
= s
+ strnlen(s
, len
- 1);
1159 while (p
> s
&& p
[-1] == ' ')
1164 static u64
ata_id_n_sectors(const u16
*id
)
1166 if (ata_id_has_lba(id
)) {
1167 if (ata_id_has_lba48(id
))
1168 return ata_id_u64(id
, ATA_ID_LBA_CAPACITY_2
);
1170 return ata_id_u32(id
, ATA_ID_LBA_CAPACITY
);
1172 if (ata_id_current_chs_valid(id
))
1173 return id
[ATA_ID_CUR_CYLS
] * id
[ATA_ID_CUR_HEADS
] *
1174 id
[ATA_ID_CUR_SECTORS
];
1176 return id
[ATA_ID_CYLS
] * id
[ATA_ID_HEADS
] *
1181 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1185 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1186 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1187 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1188 sectors
|= (tf
->lbah
& 0xff) << 16;
1189 sectors
|= (tf
->lbam
& 0xff) << 8;
1190 sectors
|= (tf
->lbal
& 0xff);
1195 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1199 sectors
|= (tf
->device
& 0x0f) << 24;
1200 sectors
|= (tf
->lbah
& 0xff) << 16;
1201 sectors
|= (tf
->lbam
& 0xff) << 8;
1202 sectors
|= (tf
->lbal
& 0xff);
1208 * ata_read_native_max_address - Read native max address
1209 * @dev: target device
1210 * @max_sectors: out parameter for the result native max address
1212 * Perform an LBA48 or LBA28 native size query upon the device in
1216 * 0 on success, -EACCES if command is aborted by the drive.
1217 * -EIO on other errors.
1219 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1221 unsigned int err_mask
;
1222 struct ata_taskfile tf
;
1223 int lba48
= ata_id_has_lba48(dev
->id
);
1225 ata_tf_init(dev
, &tf
);
1227 /* always clear all address registers */
1228 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1231 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1232 tf
.flags
|= ATA_TFLAG_LBA48
;
1234 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1236 tf
.protocol
|= ATA_PROT_NODATA
;
1237 tf
.device
|= ATA_LBA
;
1239 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1242 "failed to read native max address (err_mask=0x%x)\n",
1244 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1250 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1252 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1253 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1259 * ata_set_max_sectors - Set max sectors
1260 * @dev: target device
1261 * @new_sectors: new max sectors value to set for the device
1263 * Set max sectors of @dev to @new_sectors.
1266 * 0 on success, -EACCES if command is aborted or denied (due to
1267 * previous non-volatile SET_MAX) by the drive. -EIO on other
1270 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1272 unsigned int err_mask
;
1273 struct ata_taskfile tf
;
1274 int lba48
= ata_id_has_lba48(dev
->id
);
1278 ata_tf_init(dev
, &tf
);
1280 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1283 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1284 tf
.flags
|= ATA_TFLAG_LBA48
;
1286 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1287 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1288 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1290 tf
.command
= ATA_CMD_SET_MAX
;
1292 tf
.device
|= (new_sectors
>> 24) & 0xf;
1295 tf
.protocol
|= ATA_PROT_NODATA
;
1296 tf
.device
|= ATA_LBA
;
1298 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1299 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1300 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1302 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1305 "failed to set max address (err_mask=0x%x)\n",
1307 if (err_mask
== AC_ERR_DEV
&&
1308 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1317 * ata_hpa_resize - Resize a device with an HPA set
1318 * @dev: Device to resize
1320 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1321 * it if required to the full size of the media. The caller must check
1322 * the drive has the HPA feature set enabled.
1325 * 0 on success, -errno on failure.
1327 static int ata_hpa_resize(struct ata_device
*dev
)
1329 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1330 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1331 bool unlock_hpa
= ata_ignore_hpa
|| dev
->flags
& ATA_DFLAG_UNLOCK_HPA
;
1332 u64 sectors
= ata_id_n_sectors(dev
->id
);
1336 /* do we need to do it? */
1337 if ((dev
->class != ATA_DEV_ATA
&& dev
->class != ATA_DEV_ZAC
) ||
1338 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1339 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1342 /* read native max address */
1343 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1345 /* If device aborted the command or HPA isn't going to
1346 * be unlocked, skip HPA resizing.
1348 if (rc
== -EACCES
|| !unlock_hpa
) {
1350 "HPA support seems broken, skipping HPA handling\n");
1351 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1353 /* we can continue if device aborted the command */
1360 dev
->n_native_sectors
= native_sectors
;
1362 /* nothing to do? */
1363 if (native_sectors
<= sectors
|| !unlock_hpa
) {
1364 if (!print_info
|| native_sectors
== sectors
)
1367 if (native_sectors
> sectors
)
1369 "HPA detected: current %llu, native %llu\n",
1370 (unsigned long long)sectors
,
1371 (unsigned long long)native_sectors
);
1372 else if (native_sectors
< sectors
)
1374 "native sectors (%llu) is smaller than sectors (%llu)\n",
1375 (unsigned long long)native_sectors
,
1376 (unsigned long long)sectors
);
1380 /* let's unlock HPA */
1381 rc
= ata_set_max_sectors(dev
, native_sectors
);
1382 if (rc
== -EACCES
) {
1383 /* if device aborted the command, skip HPA resizing */
1385 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1386 (unsigned long long)sectors
,
1387 (unsigned long long)native_sectors
);
1388 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1393 /* re-read IDENTIFY data */
1394 rc
= ata_dev_reread_id(dev
, 0);
1397 "failed to re-read IDENTIFY data after HPA resizing\n");
1402 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1404 "HPA unlocked: %llu -> %llu, native %llu\n",
1405 (unsigned long long)sectors
,
1406 (unsigned long long)new_sectors
,
1407 (unsigned long long)native_sectors
);
1414 * ata_dump_id - IDENTIFY DEVICE info debugging output
1415 * @id: IDENTIFY DEVICE page to dump
1417 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1424 static inline void ata_dump_id(const u16
*id
)
1426 DPRINTK("49==0x%04x "
1436 DPRINTK("80==0x%04x "
1446 DPRINTK("88==0x%04x "
1453 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1454 * @id: IDENTIFY data to compute xfer mask from
1456 * Compute the xfermask for this device. This is not as trivial
1457 * as it seems if we must consider early devices correctly.
1459 * FIXME: pre IDE drive timing (do we care ?).
1467 unsigned long ata_id_xfermask(const u16
*id
)
1469 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1471 /* Usual case. Word 53 indicates word 64 is valid */
1472 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1473 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1477 /* If word 64 isn't valid then Word 51 high byte holds
1478 * the PIO timing number for the maximum. Turn it into
1481 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1482 if (mode
< 5) /* Valid PIO range */
1483 pio_mask
= (2 << mode
) - 1;
1487 /* But wait.. there's more. Design your standards by
1488 * committee and you too can get a free iordy field to
1489 * process. However its the speeds not the modes that
1490 * are supported... Note drivers using the timing API
1491 * will get this right anyway
1495 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1497 if (ata_id_is_cfa(id
)) {
1499 * Process compact flash extended modes
1501 int pio
= (id
[ATA_ID_CFA_MODES
] >> 0) & 0x7;
1502 int dma
= (id
[ATA_ID_CFA_MODES
] >> 3) & 0x7;
1505 pio_mask
|= (1 << 5);
1507 pio_mask
|= (1 << 6);
1509 mwdma_mask
|= (1 << 3);
1511 mwdma_mask
|= (1 << 4);
1515 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1516 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1518 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1521 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1523 struct completion
*waiting
= qc
->private_data
;
1529 * ata_exec_internal_sg - execute libata internal command
1530 * @dev: Device to which the command is sent
1531 * @tf: Taskfile registers for the command and the result
1532 * @cdb: CDB for packet command
1533 * @dma_dir: Data transfer direction of the command
1534 * @sgl: sg list for the data buffer of the command
1535 * @n_elem: Number of sg entries
1536 * @timeout: Timeout in msecs (0 for default)
1538 * Executes libata internal command with timeout. @tf contains
1539 * command on entry and result on return. Timeout and error
1540 * conditions are reported via return value. No recovery action
1541 * is taken after a command times out. It's caller's duty to
1542 * clean up after timeout.
1545 * None. Should be called with kernel context, might sleep.
1548 * Zero on success, AC_ERR_* mask on failure
1550 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1551 struct ata_taskfile
*tf
, const u8
*cdb
,
1552 int dma_dir
, struct scatterlist
*sgl
,
1553 unsigned int n_elem
, unsigned long timeout
)
1555 struct ata_link
*link
= dev
->link
;
1556 struct ata_port
*ap
= link
->ap
;
1557 u8 command
= tf
->command
;
1558 int auto_timeout
= 0;
1559 struct ata_queued_cmd
*qc
;
1560 unsigned int tag
, preempted_tag
;
1561 u32 preempted_sactive
, preempted_qc_active
;
1562 int preempted_nr_active_links
;
1563 DECLARE_COMPLETION_ONSTACK(wait
);
1564 unsigned long flags
;
1565 unsigned int err_mask
;
1568 spin_lock_irqsave(ap
->lock
, flags
);
1570 /* no internal command while frozen */
1571 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1572 spin_unlock_irqrestore(ap
->lock
, flags
);
1573 return AC_ERR_SYSTEM
;
1576 /* initialize internal qc */
1578 /* XXX: Tag 0 is used for drivers with legacy EH as some
1579 * drivers choke if any other tag is given. This breaks
1580 * ata_tag_internal() test for those drivers. Don't use new
1581 * EH stuff without converting to it.
1583 if (ap
->ops
->error_handler
)
1584 tag
= ATA_TAG_INTERNAL
;
1588 qc
= __ata_qc_from_tag(ap
, tag
);
1596 preempted_tag
= link
->active_tag
;
1597 preempted_sactive
= link
->sactive
;
1598 preempted_qc_active
= ap
->qc_active
;
1599 preempted_nr_active_links
= ap
->nr_active_links
;
1600 link
->active_tag
= ATA_TAG_POISON
;
1603 ap
->nr_active_links
= 0;
1605 /* prepare & issue qc */
1608 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1610 /* some SATA bridges need us to indicate data xfer direction */
1611 if (tf
->protocol
== ATAPI_PROT_DMA
&& (dev
->flags
& ATA_DFLAG_DMADIR
) &&
1612 dma_dir
== DMA_FROM_DEVICE
)
1613 qc
->tf
.feature
|= ATAPI_DMADIR
;
1615 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1616 qc
->dma_dir
= dma_dir
;
1617 if (dma_dir
!= DMA_NONE
) {
1618 unsigned int i
, buflen
= 0;
1619 struct scatterlist
*sg
;
1621 for_each_sg(sgl
, sg
, n_elem
, i
)
1622 buflen
+= sg
->length
;
1624 ata_sg_init(qc
, sgl
, n_elem
);
1625 qc
->nbytes
= buflen
;
1628 qc
->private_data
= &wait
;
1629 qc
->complete_fn
= ata_qc_complete_internal
;
1633 spin_unlock_irqrestore(ap
->lock
, flags
);
1636 if (ata_probe_timeout
)
1637 timeout
= ata_probe_timeout
* 1000;
1639 timeout
= ata_internal_cmd_timeout(dev
, command
);
1644 if (ap
->ops
->error_handler
)
1647 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1649 if (ap
->ops
->error_handler
)
1652 ata_sff_flush_pio_task(ap
);
1655 spin_lock_irqsave(ap
->lock
, flags
);
1657 /* We're racing with irq here. If we lose, the
1658 * following test prevents us from completing the qc
1659 * twice. If we win, the port is frozen and will be
1660 * cleaned up by ->post_internal_cmd().
1662 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1663 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1665 if (ap
->ops
->error_handler
)
1666 ata_port_freeze(ap
);
1668 ata_qc_complete(qc
);
1670 if (ata_msg_warn(ap
))
1671 ata_dev_warn(dev
, "qc timeout (cmd 0x%x)\n",
1675 spin_unlock_irqrestore(ap
->lock
, flags
);
1678 /* do post_internal_cmd */
1679 if (ap
->ops
->post_internal_cmd
)
1680 ap
->ops
->post_internal_cmd(qc
);
1682 /* perform minimal error analysis */
1683 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1684 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1685 qc
->err_mask
|= AC_ERR_DEV
;
1688 qc
->err_mask
|= AC_ERR_OTHER
;
1690 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1691 qc
->err_mask
&= ~AC_ERR_OTHER
;
1695 spin_lock_irqsave(ap
->lock
, flags
);
1697 *tf
= qc
->result_tf
;
1698 err_mask
= qc
->err_mask
;
1701 link
->active_tag
= preempted_tag
;
1702 link
->sactive
= preempted_sactive
;
1703 ap
->qc_active
= preempted_qc_active
;
1704 ap
->nr_active_links
= preempted_nr_active_links
;
1706 spin_unlock_irqrestore(ap
->lock
, flags
);
1708 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1709 ata_internal_cmd_timed_out(dev
, command
);
1715 * ata_exec_internal - execute libata internal command
1716 * @dev: Device to which the command is sent
1717 * @tf: Taskfile registers for the command and the result
1718 * @cdb: CDB for packet command
1719 * @dma_dir: Data transfer direction of the command
1720 * @buf: Data buffer of the command
1721 * @buflen: Length of data buffer
1722 * @timeout: Timeout in msecs (0 for default)
1724 * Wrapper around ata_exec_internal_sg() which takes simple
1725 * buffer instead of sg list.
1728 * None. Should be called with kernel context, might sleep.
1731 * Zero on success, AC_ERR_* mask on failure
1733 unsigned ata_exec_internal(struct ata_device
*dev
,
1734 struct ata_taskfile
*tf
, const u8
*cdb
,
1735 int dma_dir
, void *buf
, unsigned int buflen
,
1736 unsigned long timeout
)
1738 struct scatterlist
*psg
= NULL
, sg
;
1739 unsigned int n_elem
= 0;
1741 if (dma_dir
!= DMA_NONE
) {
1743 sg_init_one(&sg
, buf
, buflen
);
1748 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1753 * ata_pio_need_iordy - check if iordy needed
1756 * Check if the current speed of the device requires IORDY. Used
1757 * by various controllers for chip configuration.
1759 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1761 /* Don't set IORDY if we're preparing for reset. IORDY may
1762 * lead to controller lock up on certain controllers if the
1763 * port is not occupied. See bko#11703 for details.
1765 if (adev
->link
->ap
->pflags
& ATA_PFLAG_RESETTING
)
1767 /* Controller doesn't support IORDY. Probably a pointless
1768 * check as the caller should know this.
1770 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1772 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1773 if (ata_id_is_cfa(adev
->id
)
1774 && (adev
->pio_mode
== XFER_PIO_5
|| adev
->pio_mode
== XFER_PIO_6
))
1776 /* PIO3 and higher it is mandatory */
1777 if (adev
->pio_mode
> XFER_PIO_2
)
1779 /* We turn it on when possible */
1780 if (ata_id_has_iordy(adev
->id
))
1786 * ata_pio_mask_no_iordy - Return the non IORDY mask
1789 * Compute the highest mode possible if we are not using iordy. Return
1790 * -1 if no iordy mode is available.
1792 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1794 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1795 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1796 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1797 /* Is the speed faster than the drive allows non IORDY ? */
1799 /* This is cycle times not frequency - watch the logic! */
1800 if (pio
> 240) /* PIO2 is 240nS per cycle */
1801 return 3 << ATA_SHIFT_PIO
;
1802 return 7 << ATA_SHIFT_PIO
;
1805 return 3 << ATA_SHIFT_PIO
;
1809 * ata_do_dev_read_id - default ID read method
1811 * @tf: proposed taskfile
1814 * Issue the identify taskfile and hand back the buffer containing
1815 * identify data. For some RAID controllers and for pre ATA devices
1816 * this function is wrapped or replaced by the driver
1818 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
1819 struct ata_taskfile
*tf
, u16
*id
)
1821 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
1822 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
1826 * ata_dev_read_id - Read ID data from the specified device
1827 * @dev: target device
1828 * @p_class: pointer to class of the target device (may be changed)
1829 * @flags: ATA_READID_* flags
1830 * @id: buffer to read IDENTIFY data into
1832 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1833 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1834 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1835 * for pre-ATA4 drives.
1837 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1838 * now we abort if we hit that case.
1841 * Kernel thread context (may sleep)
1844 * 0 on success, -errno otherwise.
1846 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1847 unsigned int flags
, u16
*id
)
1849 struct ata_port
*ap
= dev
->link
->ap
;
1850 unsigned int class = *p_class
;
1851 struct ata_taskfile tf
;
1852 unsigned int err_mask
= 0;
1854 bool is_semb
= class == ATA_DEV_SEMB
;
1855 int may_fallback
= 1, tried_spinup
= 0;
1858 if (ata_msg_ctl(ap
))
1859 ata_dev_dbg(dev
, "%s: ENTER\n", __func__
);
1862 ata_tf_init(dev
, &tf
);
1866 class = ATA_DEV_ATA
; /* some hard drives report SEMB sig */
1869 tf
.command
= ATA_CMD_ID_ATA
;
1872 tf
.command
= ATA_CMD_ID_ATAPI
;
1876 reason
= "unsupported class";
1880 tf
.protocol
= ATA_PROT_PIO
;
1882 /* Some devices choke if TF registers contain garbage. Make
1883 * sure those are properly initialized.
1885 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1887 /* Device presence detection is unreliable on some
1888 * controllers. Always poll IDENTIFY if available.
1890 tf
.flags
|= ATA_TFLAG_POLLING
;
1892 if (ap
->ops
->read_id
)
1893 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
1895 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
1898 if (err_mask
& AC_ERR_NODEV_HINT
) {
1899 ata_dev_dbg(dev
, "NODEV after polling detection\n");
1905 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1906 /* SEMB is not supported yet */
1907 *p_class
= ATA_DEV_SEMB_UNSUP
;
1911 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
1912 /* Device or controller might have reported
1913 * the wrong device class. Give a shot at the
1914 * other IDENTIFY if the current one is
1915 * aborted by the device.
1920 if (class == ATA_DEV_ATA
)
1921 class = ATA_DEV_ATAPI
;
1923 class = ATA_DEV_ATA
;
1927 /* Control reaches here iff the device aborted
1928 * both flavors of IDENTIFYs which happens
1929 * sometimes with phantom devices.
1932 "both IDENTIFYs aborted, assuming NODEV\n");
1937 reason
= "I/O error";
1941 if (dev
->horkage
& ATA_HORKAGE_DUMP_ID
) {
1942 ata_dev_dbg(dev
, "dumping IDENTIFY data, "
1943 "class=%d may_fallback=%d tried_spinup=%d\n",
1944 class, may_fallback
, tried_spinup
);
1945 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
,
1946 16, 2, id
, ATA_ID_WORDS
* sizeof(*id
), true);
1949 /* Falling back doesn't make sense if ID data was read
1950 * successfully at least once.
1954 swap_buf_le16(id
, ATA_ID_WORDS
);
1958 reason
= "device reports invalid type";
1960 if (class == ATA_DEV_ATA
|| class == ATA_DEV_ZAC
) {
1961 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1963 if (ap
->host
->flags
& ATA_HOST_IGNORE_ATA
&&
1964 ata_id_is_ata(id
)) {
1966 "host indicates ignore ATA devices, ignored\n");
1970 if (ata_id_is_ata(id
))
1974 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
1977 * Drive powered-up in standby mode, and requires a specific
1978 * SET_FEATURES spin-up subcommand before it will accept
1979 * anything other than the original IDENTIFY command.
1981 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
1982 if (err_mask
&& id
[2] != 0x738c) {
1984 reason
= "SPINUP failed";
1988 * If the drive initially returned incomplete IDENTIFY info,
1989 * we now must reissue the IDENTIFY command.
1991 if (id
[2] == 0x37c8)
1995 if ((flags
& ATA_READID_POSTRESET
) &&
1996 (class == ATA_DEV_ATA
|| class == ATA_DEV_ZAC
)) {
1998 * The exact sequence expected by certain pre-ATA4 drives is:
2000 * IDENTIFY (optional in early ATA)
2001 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2003 * Some drives were very specific about that exact sequence.
2005 * Note that ATA4 says lba is mandatory so the second check
2006 * should never trigger.
2008 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2009 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2012 reason
= "INIT_DEV_PARAMS failed";
2016 /* current CHS translation info (id[53-58]) might be
2017 * changed. reread the identify device info.
2019 flags
&= ~ATA_READID_POSTRESET
;
2029 if (ata_msg_warn(ap
))
2030 ata_dev_warn(dev
, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2035 static int ata_do_link_spd_horkage(struct ata_device
*dev
)
2037 struct ata_link
*plink
= ata_dev_phys_link(dev
);
2038 u32 target
, target_limit
;
2040 if (!sata_scr_valid(plink
))
2043 if (dev
->horkage
& ATA_HORKAGE_1_5_GBPS
)
2048 target_limit
= (1 << target
) - 1;
2050 /* if already on stricter limit, no need to push further */
2051 if (plink
->sata_spd_limit
<= target_limit
)
2054 plink
->sata_spd_limit
= target_limit
;
2056 /* Request another EH round by returning -EAGAIN if link is
2057 * going faster than the target speed. Forward progress is
2058 * guaranteed by setting sata_spd_limit to target_limit above.
2060 if (plink
->sata_spd
> target
) {
2061 ata_dev_info(dev
, "applying link speed limit horkage to %s\n",
2062 sata_spd_string(target
));
2068 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2070 struct ata_port
*ap
= dev
->link
->ap
;
2072 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_BRIDGE_OK
)
2075 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2078 static int ata_dev_config_ncq(struct ata_device
*dev
,
2079 char *desc
, size_t desc_sz
)
2081 struct ata_port
*ap
= dev
->link
->ap
;
2082 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2083 unsigned int err_mask
;
2086 if (!ata_id_has_ncq(dev
->id
)) {
2090 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2091 snprintf(desc
, desc_sz
, "NCQ (not used)");
2094 if (ap
->flags
& ATA_FLAG_NCQ
) {
2095 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2096 dev
->flags
|= ATA_DFLAG_NCQ
;
2099 if (!(dev
->horkage
& ATA_HORKAGE_BROKEN_FPDMA_AA
) &&
2100 (ap
->flags
& ATA_FLAG_FPDMA_AA
) &&
2101 ata_id_has_fpdma_aa(dev
->id
)) {
2102 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SATA_ENABLE
,
2106 "failed to enable AA (error_mask=0x%x)\n",
2108 if (err_mask
!= AC_ERR_DEV
) {
2109 dev
->horkage
|= ATA_HORKAGE_BROKEN_FPDMA_AA
;
2116 if (hdepth
>= ddepth
)
2117 snprintf(desc
, desc_sz
, "NCQ (depth %d)%s", ddepth
, aa_desc
);
2119 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)%s", hdepth
,
2122 if ((ap
->flags
& ATA_FLAG_FPDMA_AUX
) &&
2123 ata_id_has_ncq_send_and_recv(dev
->id
)) {
2124 err_mask
= ata_read_log_page(dev
, ATA_LOG_NCQ_SEND_RECV
,
2125 0, ap
->sector_buf
, 1);
2128 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2131 u8
*cmds
= dev
->ncq_send_recv_cmds
;
2133 dev
->flags
|= ATA_DFLAG_NCQ_SEND_RECV
;
2134 memcpy(cmds
, ap
->sector_buf
, ATA_LOG_NCQ_SEND_RECV_SIZE
);
2136 if (dev
->horkage
& ATA_HORKAGE_NO_NCQ_TRIM
) {
2137 ata_dev_dbg(dev
, "disabling queued TRIM support\n");
2138 cmds
[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET
] &=
2139 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM
;
2148 * ata_dev_configure - Configure the specified ATA/ATAPI device
2149 * @dev: Target device to configure
2151 * Configure @dev according to @dev->id. Generic and low-level
2152 * driver specific fixups are also applied.
2155 * Kernel thread context (may sleep)
2158 * 0 on success, -errno otherwise
2160 int ata_dev_configure(struct ata_device
*dev
)
2162 struct ata_port
*ap
= dev
->link
->ap
;
2163 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2164 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2165 const u16
*id
= dev
->id
;
2166 unsigned long xfer_mask
;
2167 unsigned int err_mask
;
2168 char revbuf
[7]; /* XYZ-99\0 */
2169 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2170 char modelbuf
[ATA_ID_PROD_LEN
+1];
2173 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2174 ata_dev_info(dev
, "%s: ENTER/EXIT -- nodev\n", __func__
);
2178 if (ata_msg_probe(ap
))
2179 ata_dev_dbg(dev
, "%s: ENTER\n", __func__
);
2182 dev
->horkage
|= ata_dev_blacklisted(dev
);
2183 ata_force_horkage(dev
);
2185 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2186 ata_dev_info(dev
, "unsupported device, disabling\n");
2187 ata_dev_disable(dev
);
2191 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2192 dev
->class == ATA_DEV_ATAPI
) {
2193 ata_dev_warn(dev
, "WARNING: ATAPI is %s, device ignored\n",
2194 atapi_enabled
? "not supported with this driver"
2196 ata_dev_disable(dev
);
2200 rc
= ata_do_link_spd_horkage(dev
);
2204 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2205 if ((dev
->horkage
& ATA_HORKAGE_WD_BROKEN_LPM
) &&
2206 (id
[ATA_ID_SATA_CAPABILITY
] & 0xe) == 0x2)
2207 dev
->horkage
|= ATA_HORKAGE_NOLPM
;
2209 if (dev
->horkage
& ATA_HORKAGE_NOLPM
) {
2210 ata_dev_warn(dev
, "LPM support broken, forcing max_power\n");
2211 dev
->link
->ap
->target_lpm_policy
= ATA_LPM_MAX_POWER
;
2214 /* let ACPI work its magic */
2215 rc
= ata_acpi_on_devcfg(dev
);
2219 /* massage HPA, do it early as it might change IDENTIFY data */
2220 rc
= ata_hpa_resize(dev
);
2224 /* print device capabilities */
2225 if (ata_msg_probe(ap
))
2227 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2228 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2230 id
[49], id
[82], id
[83], id
[84],
2231 id
[85], id
[86], id
[87], id
[88]);
2233 /* initialize to-be-configured parameters */
2234 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2235 dev
->max_sectors
= 0;
2241 dev
->multi_count
= 0;
2244 * common ATA, ATAPI feature tests
2247 /* find max transfer mode; for printk only */
2248 xfer_mask
= ata_id_xfermask(id
);
2250 if (ata_msg_probe(ap
))
2253 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2254 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2257 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2260 /* ATA-specific feature tests */
2261 if (dev
->class == ATA_DEV_ATA
|| dev
->class == ATA_DEV_ZAC
) {
2262 if (ata_id_is_cfa(id
)) {
2263 /* CPRM may make this media unusable */
2264 if (id
[ATA_ID_CFA_KEY_MGMT
] & 1)
2266 "supports DRM functions and may not be fully accessible\n");
2267 snprintf(revbuf
, 7, "CFA");
2269 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2270 /* Warn the user if the device has TPM extensions */
2271 if (ata_id_has_tpm(id
))
2273 "supports DRM functions and may not be fully accessible\n");
2276 dev
->n_sectors
= ata_id_n_sectors(id
);
2278 /* get current R/W Multiple count setting */
2279 if ((dev
->id
[47] >> 8) == 0x80 && (dev
->id
[59] & 0x100)) {
2280 unsigned int max
= dev
->id
[47] & 0xff;
2281 unsigned int cnt
= dev
->id
[59] & 0xff;
2282 /* only recognize/allow powers of two here */
2283 if (is_power_of_2(max
) && is_power_of_2(cnt
))
2285 dev
->multi_count
= cnt
;
2288 if (ata_id_has_lba(id
)) {
2289 const char *lba_desc
;
2293 dev
->flags
|= ATA_DFLAG_LBA
;
2294 if (ata_id_has_lba48(id
)) {
2295 dev
->flags
|= ATA_DFLAG_LBA48
;
2298 if (dev
->n_sectors
>= (1UL << 28) &&
2299 ata_id_has_flush_ext(id
))
2300 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2304 rc
= ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2308 /* print device info to dmesg */
2309 if (ata_msg_drv(ap
) && print_info
) {
2310 ata_dev_info(dev
, "%s: %s, %s, max %s\n",
2311 revbuf
, modelbuf
, fwrevbuf
,
2312 ata_mode_string(xfer_mask
));
2314 "%llu sectors, multi %u: %s %s\n",
2315 (unsigned long long)dev
->n_sectors
,
2316 dev
->multi_count
, lba_desc
, ncq_desc
);
2321 /* Default translation */
2322 dev
->cylinders
= id
[1];
2324 dev
->sectors
= id
[6];
2326 if (ata_id_current_chs_valid(id
)) {
2327 /* Current CHS translation is valid. */
2328 dev
->cylinders
= id
[54];
2329 dev
->heads
= id
[55];
2330 dev
->sectors
= id
[56];
2333 /* print device info to dmesg */
2334 if (ata_msg_drv(ap
) && print_info
) {
2335 ata_dev_info(dev
, "%s: %s, %s, max %s\n",
2336 revbuf
, modelbuf
, fwrevbuf
,
2337 ata_mode_string(xfer_mask
));
2339 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2340 (unsigned long long)dev
->n_sectors
,
2341 dev
->multi_count
, dev
->cylinders
,
2342 dev
->heads
, dev
->sectors
);
2346 /* Check and mark DevSlp capability. Get DevSlp timing variables
2347 * from SATA Settings page of Identify Device Data Log.
2349 if (ata_id_has_devslp(dev
->id
)) {
2350 u8
*sata_setting
= ap
->sector_buf
;
2353 dev
->flags
|= ATA_DFLAG_DEVSLP
;
2354 err_mask
= ata_read_log_page(dev
,
2355 ATA_LOG_SATA_ID_DEV_DATA
,
2356 ATA_LOG_SATA_SETTINGS
,
2361 "failed to get Identify Device Data, Emask 0x%x\n",
2364 for (i
= 0; i
< ATA_LOG_DEVSLP_SIZE
; i
++) {
2365 j
= ATA_LOG_DEVSLP_OFFSET
+ i
;
2366 dev
->devslp_timing
[i
] = sata_setting
[j
];
2373 /* ATAPI-specific feature tests */
2374 else if (dev
->class == ATA_DEV_ATAPI
) {
2375 const char *cdb_intr_string
= "";
2376 const char *atapi_an_string
= "";
2377 const char *dma_dir_string
= "";
2380 rc
= atapi_cdb_len(id
);
2381 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2382 if (ata_msg_warn(ap
))
2383 ata_dev_warn(dev
, "unsupported CDB len\n");
2387 dev
->cdb_len
= (unsigned int) rc
;
2389 /* Enable ATAPI AN if both the host and device have
2390 * the support. If PMP is attached, SNTF is required
2391 * to enable ATAPI AN to discern between PHY status
2392 * changed notifications and ATAPI ANs.
2395 (ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2396 (!sata_pmp_attached(ap
) ||
2397 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2398 /* issue SET feature command to turn this on */
2399 err_mask
= ata_dev_set_feature(dev
,
2400 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2403 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2406 dev
->flags
|= ATA_DFLAG_AN
;
2407 atapi_an_string
= ", ATAPI AN";
2411 if (ata_id_cdb_intr(dev
->id
)) {
2412 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2413 cdb_intr_string
= ", CDB intr";
2416 if (atapi_dmadir
|| (dev
->horkage
& ATA_HORKAGE_ATAPI_DMADIR
) || atapi_id_dmadir(dev
->id
)) {
2417 dev
->flags
|= ATA_DFLAG_DMADIR
;
2418 dma_dir_string
= ", DMADIR";
2421 if (ata_id_has_da(dev
->id
)) {
2422 dev
->flags
|= ATA_DFLAG_DA
;
2426 /* print device info to dmesg */
2427 if (ata_msg_drv(ap
) && print_info
)
2429 "ATAPI: %s, %s, max %s%s%s%s\n",
2431 ata_mode_string(xfer_mask
),
2432 cdb_intr_string
, atapi_an_string
,
2436 /* determine max_sectors */
2437 dev
->max_sectors
= ATA_MAX_SECTORS
;
2438 if (dev
->flags
& ATA_DFLAG_LBA48
)
2439 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2441 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2443 if (ata_dev_knobble(dev
)) {
2444 if (ata_msg_drv(ap
) && print_info
)
2445 ata_dev_info(dev
, "applying bridge limits\n");
2446 dev
->udma_mask
&= ATA_UDMA5
;
2447 dev
->max_sectors
= ATA_MAX_SECTORS
;
2450 if ((dev
->class == ATA_DEV_ATAPI
) &&
2451 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2452 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2453 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2456 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2457 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2460 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_LBA48
)
2461 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2463 if (ap
->ops
->dev_config
)
2464 ap
->ops
->dev_config(dev
);
2466 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2467 /* Let the user know. We don't want to disallow opens for
2468 rescue purposes, or in case the vendor is just a blithering
2469 idiot. Do this after the dev_config call as some controllers
2470 with buggy firmware may want to avoid reporting false device
2475 "Drive reports diagnostics failure. This may indicate a drive\n");
2477 "fault or invalid emulation. Contact drive vendor for information.\n");
2481 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2482 ata_dev_warn(dev
, "WARNING: device requires firmware update to be fully functional\n");
2483 ata_dev_warn(dev
, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2489 if (ata_msg_probe(ap
))
2490 ata_dev_dbg(dev
, "%s: EXIT, err\n", __func__
);
2495 * ata_cable_40wire - return 40 wire cable type
2498 * Helper method for drivers which want to hardwire 40 wire cable
2502 int ata_cable_40wire(struct ata_port
*ap
)
2504 return ATA_CBL_PATA40
;
2508 * ata_cable_80wire - return 80 wire cable type
2511 * Helper method for drivers which want to hardwire 80 wire cable
2515 int ata_cable_80wire(struct ata_port
*ap
)
2517 return ATA_CBL_PATA80
;
2521 * ata_cable_unknown - return unknown PATA cable.
2524 * Helper method for drivers which have no PATA cable detection.
2527 int ata_cable_unknown(struct ata_port
*ap
)
2529 return ATA_CBL_PATA_UNK
;
2533 * ata_cable_ignore - return ignored PATA cable.
2536 * Helper method for drivers which don't use cable type to limit
2539 int ata_cable_ignore(struct ata_port
*ap
)
2541 return ATA_CBL_PATA_IGN
;
2545 * ata_cable_sata - return SATA cable type
2548 * Helper method for drivers which have SATA cables
2551 int ata_cable_sata(struct ata_port
*ap
)
2553 return ATA_CBL_SATA
;
2557 * ata_bus_probe - Reset and probe ATA bus
2560 * Master ATA bus probing function. Initiates a hardware-dependent
2561 * bus reset, then attempts to identify any devices found on
2565 * PCI/etc. bus probe sem.
2568 * Zero on success, negative errno otherwise.
2571 int ata_bus_probe(struct ata_port
*ap
)
2573 unsigned int classes
[ATA_MAX_DEVICES
];
2574 int tries
[ATA_MAX_DEVICES
];
2576 struct ata_device
*dev
;
2578 ata_for_each_dev(dev
, &ap
->link
, ALL
)
2579 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2582 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2583 /* If we issue an SRST then an ATA drive (not ATAPI)
2584 * may change configuration and be in PIO0 timing. If
2585 * we do a hard reset (or are coming from power on)
2586 * this is true for ATA or ATAPI. Until we've set a
2587 * suitable controller mode we should not touch the
2588 * bus as we may be talking too fast.
2590 dev
->pio_mode
= XFER_PIO_0
;
2591 dev
->dma_mode
= 0xff;
2593 /* If the controller has a pio mode setup function
2594 * then use it to set the chipset to rights. Don't
2595 * touch the DMA setup as that will be dealt with when
2596 * configuring devices.
2598 if (ap
->ops
->set_piomode
)
2599 ap
->ops
->set_piomode(ap
, dev
);
2602 /* reset and determine device classes */
2603 ap
->ops
->phy_reset(ap
);
2605 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2606 if (dev
->class != ATA_DEV_UNKNOWN
)
2607 classes
[dev
->devno
] = dev
->class;
2609 classes
[dev
->devno
] = ATA_DEV_NONE
;
2611 dev
->class = ATA_DEV_UNKNOWN
;
2614 /* read IDENTIFY page and configure devices. We have to do the identify
2615 specific sequence bass-ackwards so that PDIAG- is released by
2618 ata_for_each_dev(dev
, &ap
->link
, ALL_REVERSE
) {
2619 if (tries
[dev
->devno
])
2620 dev
->class = classes
[dev
->devno
];
2622 if (!ata_dev_enabled(dev
))
2625 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2631 /* Now ask for the cable type as PDIAG- should have been released */
2632 if (ap
->ops
->cable_detect
)
2633 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2635 /* We may have SATA bridge glue hiding here irrespective of
2636 * the reported cable types and sensed types. When SATA
2637 * drives indicate we have a bridge, we don't know which end
2638 * of the link the bridge is which is a problem.
2640 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2641 if (ata_id_is_sata(dev
->id
))
2642 ap
->cbl
= ATA_CBL_SATA
;
2644 /* After the identify sequence we can now set up the devices. We do
2645 this in the normal order so that the user doesn't get confused */
2647 ata_for_each_dev(dev
, &ap
->link
, ENABLED
) {
2648 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2649 rc
= ata_dev_configure(dev
);
2650 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2655 /* configure transfer mode */
2656 rc
= ata_set_mode(&ap
->link
, &dev
);
2660 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2666 tries
[dev
->devno
]--;
2670 /* eeek, something went very wrong, give up */
2671 tries
[dev
->devno
] = 0;
2675 /* give it just one more chance */
2676 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2678 if (tries
[dev
->devno
] == 1) {
2679 /* This is the last chance, better to slow
2680 * down than lose it.
2682 sata_down_spd_limit(&ap
->link
, 0);
2683 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2687 if (!tries
[dev
->devno
])
2688 ata_dev_disable(dev
);
2694 * sata_print_link_status - Print SATA link status
2695 * @link: SATA link to printk link status about
2697 * This function prints link speed and status of a SATA link.
2702 static void sata_print_link_status(struct ata_link
*link
)
2704 u32 sstatus
, scontrol
, tmp
;
2706 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2708 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2710 if (ata_phys_link_online(link
)) {
2711 tmp
= (sstatus
>> 4) & 0xf;
2712 ata_link_info(link
, "SATA link up %s (SStatus %X SControl %X)\n",
2713 sata_spd_string(tmp
), sstatus
, scontrol
);
2715 ata_link_info(link
, "SATA link down (SStatus %X SControl %X)\n",
2721 * ata_dev_pair - return other device on cable
2724 * Obtain the other device on the same cable, or if none is
2725 * present NULL is returned
2728 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2730 struct ata_link
*link
= adev
->link
;
2731 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2732 if (!ata_dev_enabled(pair
))
2738 * sata_down_spd_limit - adjust SATA spd limit downward
2739 * @link: Link to adjust SATA spd limit for
2740 * @spd_limit: Additional limit
2742 * Adjust SATA spd limit of @link downward. Note that this
2743 * function only adjusts the limit. The change must be applied
2744 * using sata_set_spd().
2746 * If @spd_limit is non-zero, the speed is limited to equal to or
2747 * lower than @spd_limit if such speed is supported. If
2748 * @spd_limit is slower than any supported speed, only the lowest
2749 * supported speed is allowed.
2752 * Inherited from caller.
2755 * 0 on success, negative errno on failure
2757 int sata_down_spd_limit(struct ata_link
*link
, u32 spd_limit
)
2759 u32 sstatus
, spd
, mask
;
2762 if (!sata_scr_valid(link
))
2765 /* If SCR can be read, use it to determine the current SPD.
2766 * If not, use cached value in link->sata_spd.
2768 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2769 if (rc
== 0 && ata_sstatus_online(sstatus
))
2770 spd
= (sstatus
>> 4) & 0xf;
2772 spd
= link
->sata_spd
;
2774 mask
= link
->sata_spd_limit
;
2778 /* unconditionally mask off the highest bit */
2779 bit
= fls(mask
) - 1;
2780 mask
&= ~(1 << bit
);
2782 /* Mask off all speeds higher than or equal to the current
2783 * one. Force 1.5Gbps if current SPD is not available.
2786 mask
&= (1 << (spd
- 1)) - 1;
2790 /* were we already at the bottom? */
2795 if (mask
& ((1 << spd_limit
) - 1))
2796 mask
&= (1 << spd_limit
) - 1;
2798 bit
= ffs(mask
) - 1;
2803 link
->sata_spd_limit
= mask
;
2805 ata_link_warn(link
, "limiting SATA link speed to %s\n",
2806 sata_spd_string(fls(mask
)));
2811 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2813 struct ata_link
*host_link
= &link
->ap
->link
;
2814 u32 limit
, target
, spd
;
2816 limit
= link
->sata_spd_limit
;
2818 /* Don't configure downstream link faster than upstream link.
2819 * It doesn't speed up anything and some PMPs choke on such
2822 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2823 limit
&= (1 << host_link
->sata_spd
) - 1;
2825 if (limit
== UINT_MAX
)
2828 target
= fls(limit
);
2830 spd
= (*scontrol
>> 4) & 0xf;
2831 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2833 return spd
!= target
;
2837 * sata_set_spd_needed - is SATA spd configuration needed
2838 * @link: Link in question
2840 * Test whether the spd limit in SControl matches
2841 * @link->sata_spd_limit. This function is used to determine
2842 * whether hardreset is necessary to apply SATA spd
2846 * Inherited from caller.
2849 * 1 if SATA spd configuration is needed, 0 otherwise.
2851 static int sata_set_spd_needed(struct ata_link
*link
)
2855 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2858 return __sata_set_spd_needed(link
, &scontrol
);
2862 * sata_set_spd - set SATA spd according to spd limit
2863 * @link: Link to set SATA spd for
2865 * Set SATA spd of @link according to sata_spd_limit.
2868 * Inherited from caller.
2871 * 0 if spd doesn't need to be changed, 1 if spd has been
2872 * changed. Negative errno if SCR registers are inaccessible.
2874 int sata_set_spd(struct ata_link
*link
)
2879 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
2882 if (!__sata_set_spd_needed(link
, &scontrol
))
2885 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
2892 * This mode timing computation functionality is ported over from
2893 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2896 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2897 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2898 * for UDMA6, which is currently supported only by Maxtor drives.
2900 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2903 static const struct ata_timing ata_timing
[] = {
2904 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2905 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2906 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2907 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2908 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2909 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2910 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2911 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2913 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2914 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2915 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2917 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2918 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2919 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2920 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2921 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2923 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2924 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2925 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2926 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2927 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2928 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2929 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2930 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2935 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2936 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2938 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2940 q
->setup
= EZ(t
->setup
* 1000, T
);
2941 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2942 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2943 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2944 q
->active
= EZ(t
->active
* 1000, T
);
2945 q
->recover
= EZ(t
->recover
* 1000, T
);
2946 q
->dmack_hold
= EZ(t
->dmack_hold
* 1000, T
);
2947 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2948 q
->udma
= EZ(t
->udma
* 1000, UT
);
2951 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2952 struct ata_timing
*m
, unsigned int what
)
2954 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2955 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2956 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2957 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2958 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2959 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2960 if (what
& ATA_TIMING_DMACK_HOLD
) m
->dmack_hold
= max(a
->dmack_hold
, b
->dmack_hold
);
2961 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2962 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2965 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
2967 const struct ata_timing
*t
= ata_timing
;
2969 while (xfer_mode
> t
->mode
)
2972 if (xfer_mode
== t
->mode
)
2975 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2976 __func__
, xfer_mode
);
2981 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2982 struct ata_timing
*t
, int T
, int UT
)
2984 const u16
*id
= adev
->id
;
2985 const struct ata_timing
*s
;
2986 struct ata_timing p
;
2992 if (!(s
= ata_timing_find_mode(speed
)))
2995 memcpy(t
, s
, sizeof(*s
));
2998 * If the drive is an EIDE drive, it can tell us it needs extended
2999 * PIO/MW_DMA cycle timing.
3002 if (id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3003 memset(&p
, 0, sizeof(p
));
3005 if (speed
>= XFER_PIO_0
&& speed
< XFER_SW_DMA_0
) {
3006 if (speed
<= XFER_PIO_2
)
3007 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO
];
3008 else if ((speed
<= XFER_PIO_4
) ||
3009 (speed
== XFER_PIO_5
&& !ata_id_is_cfa(id
)))
3010 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO_IORDY
];
3011 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
)
3012 p
.cycle
= id
[ATA_ID_EIDE_DMA_MIN
];
3014 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3018 * Convert the timing to bus clock counts.
3021 ata_timing_quantize(t
, t
, T
, UT
);
3024 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3025 * S.M.A.R.T * and some other commands. We have to ensure that the
3026 * DMA cycle timing is slower/equal than the fastest PIO timing.
3029 if (speed
> XFER_PIO_6
) {
3030 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3031 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3035 * Lengthen active & recovery time so that cycle time is correct.
3038 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3039 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3040 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3043 if (t
->active
+ t
->recover
< t
->cycle
) {
3044 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3045 t
->recover
= t
->cycle
- t
->active
;
3048 /* In a few cases quantisation may produce enough errors to
3049 leave t->cycle too low for the sum of active and recovery
3050 if so we must correct this */
3051 if (t
->active
+ t
->recover
> t
->cycle
)
3052 t
->cycle
= t
->active
+ t
->recover
;
3058 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3059 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3060 * @cycle: cycle duration in ns
3062 * Return matching xfer mode for @cycle. The returned mode is of
3063 * the transfer type specified by @xfer_shift. If @cycle is too
3064 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3065 * than the fastest known mode, the fasted mode is returned.
3071 * Matching xfer_mode, 0xff if no match found.
3073 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3075 u8 base_mode
= 0xff, last_mode
= 0xff;
3076 const struct ata_xfer_ent
*ent
;
3077 const struct ata_timing
*t
;
3079 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3080 if (ent
->shift
== xfer_shift
)
3081 base_mode
= ent
->base
;
3083 for (t
= ata_timing_find_mode(base_mode
);
3084 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3085 unsigned short this_cycle
;
3087 switch (xfer_shift
) {
3089 case ATA_SHIFT_MWDMA
:
3090 this_cycle
= t
->cycle
;
3092 case ATA_SHIFT_UDMA
:
3093 this_cycle
= t
->udma
;
3099 if (cycle
> this_cycle
)
3102 last_mode
= t
->mode
;
3109 * ata_down_xfermask_limit - adjust dev xfer masks downward
3110 * @dev: Device to adjust xfer masks
3111 * @sel: ATA_DNXFER_* selector
3113 * Adjust xfer masks of @dev downward. Note that this function
3114 * does not apply the change. Invoking ata_set_mode() afterwards
3115 * will apply the limit.
3118 * Inherited from caller.
3121 * 0 on success, negative errno on failure
3123 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3126 unsigned long orig_mask
, xfer_mask
;
3127 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3130 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3131 sel
&= ~ATA_DNXFER_QUIET
;
3133 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3136 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3139 case ATA_DNXFER_PIO
:
3140 highbit
= fls(pio_mask
) - 1;
3141 pio_mask
&= ~(1 << highbit
);
3144 case ATA_DNXFER_DMA
:
3146 highbit
= fls(udma_mask
) - 1;
3147 udma_mask
&= ~(1 << highbit
);
3150 } else if (mwdma_mask
) {
3151 highbit
= fls(mwdma_mask
) - 1;
3152 mwdma_mask
&= ~(1 << highbit
);
3158 case ATA_DNXFER_40C
:
3159 udma_mask
&= ATA_UDMA_MASK_40C
;
3162 case ATA_DNXFER_FORCE_PIO0
:
3164 case ATA_DNXFER_FORCE_PIO
:
3173 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3175 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3179 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3180 snprintf(buf
, sizeof(buf
), "%s:%s",
3181 ata_mode_string(xfer_mask
),
3182 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3184 snprintf(buf
, sizeof(buf
), "%s",
3185 ata_mode_string(xfer_mask
));
3187 ata_dev_warn(dev
, "limiting speed to %s\n", buf
);
3190 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3196 static int ata_dev_set_mode(struct ata_device
*dev
)
3198 struct ata_port
*ap
= dev
->link
->ap
;
3199 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3200 const bool nosetxfer
= dev
->horkage
& ATA_HORKAGE_NOSETXFER
;
3201 const char *dev_err_whine
= "";
3202 int ign_dev_err
= 0;
3203 unsigned int err_mask
= 0;
3206 dev
->flags
&= ~ATA_DFLAG_PIO
;
3207 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3208 dev
->flags
|= ATA_DFLAG_PIO
;
3210 if (nosetxfer
&& ap
->flags
& ATA_FLAG_SATA
&& ata_id_is_sata(dev
->id
))
3211 dev_err_whine
= " (SET_XFERMODE skipped)";
3215 "NOSETXFER but PATA detected - can't "
3216 "skip SETXFER, might malfunction\n");
3217 err_mask
= ata_dev_set_xfermode(dev
);
3220 if (err_mask
& ~AC_ERR_DEV
)
3224 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3225 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3226 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3230 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3231 /* Old CFA may refuse this command, which is just fine */
3232 if (ata_id_is_cfa(dev
->id
))
3234 /* Catch several broken garbage emulations plus some pre
3236 if (ata_id_major_version(dev
->id
) == 0 &&
3237 dev
->pio_mode
<= XFER_PIO_2
)
3239 /* Some very old devices and some bad newer ones fail
3240 any kind of SET_XFERMODE request but support PIO0-2
3241 timings and no IORDY */
3242 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3245 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3246 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3247 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3248 dev
->dma_mode
== XFER_MW_DMA_0
&&
3249 (dev
->id
[63] >> 8) & 1)
3252 /* if the device is actually configured correctly, ignore dev err */
3253 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3256 if (err_mask
& AC_ERR_DEV
) {
3260 dev_err_whine
= " (device error ignored)";
3263 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3264 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3266 ata_dev_info(dev
, "configured for %s%s\n",
3267 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3273 ata_dev_err(dev
, "failed to set xfermode (err_mask=0x%x)\n", err_mask
);
3278 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3279 * @link: link on which timings will be programmed
3280 * @r_failed_dev: out parameter for failed device
3282 * Standard implementation of the function used to tune and set
3283 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3284 * ata_dev_set_mode() fails, pointer to the failing device is
3285 * returned in @r_failed_dev.
3288 * PCI/etc. bus probe sem.
3291 * 0 on success, negative errno otherwise
3294 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3296 struct ata_port
*ap
= link
->ap
;
3297 struct ata_device
*dev
;
3298 int rc
= 0, used_dma
= 0, found
= 0;
3300 /* step 1: calculate xfer_mask */
3301 ata_for_each_dev(dev
, link
, ENABLED
) {
3302 unsigned long pio_mask
, dma_mask
;
3303 unsigned int mode_mask
;
3305 mode_mask
= ATA_DMA_MASK_ATA
;
3306 if (dev
->class == ATA_DEV_ATAPI
)
3307 mode_mask
= ATA_DMA_MASK_ATAPI
;
3308 else if (ata_id_is_cfa(dev
->id
))
3309 mode_mask
= ATA_DMA_MASK_CFA
;
3311 ata_dev_xfermask(dev
);
3312 ata_force_xfermask(dev
);
3314 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3316 if (libata_dma_mask
& mode_mask
)
3317 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
,
3322 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3323 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3326 if (ata_dma_enabled(dev
))
3332 /* step 2: always set host PIO timings */
3333 ata_for_each_dev(dev
, link
, ENABLED
) {
3334 if (dev
->pio_mode
== 0xff) {
3335 ata_dev_warn(dev
, "no PIO support\n");
3340 dev
->xfer_mode
= dev
->pio_mode
;
3341 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3342 if (ap
->ops
->set_piomode
)
3343 ap
->ops
->set_piomode(ap
, dev
);
3346 /* step 3: set host DMA timings */
3347 ata_for_each_dev(dev
, link
, ENABLED
) {
3348 if (!ata_dma_enabled(dev
))
3351 dev
->xfer_mode
= dev
->dma_mode
;
3352 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3353 if (ap
->ops
->set_dmamode
)
3354 ap
->ops
->set_dmamode(ap
, dev
);
3357 /* step 4: update devices' xfer mode */
3358 ata_for_each_dev(dev
, link
, ENABLED
) {
3359 rc
= ata_dev_set_mode(dev
);
3364 /* Record simplex status. If we selected DMA then the other
3365 * host channels are not permitted to do so.
3367 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3368 ap
->host
->simplex_claimed
= ap
;
3372 *r_failed_dev
= dev
;
3377 * ata_wait_ready - wait for link to become ready
3378 * @link: link to be waited on
3379 * @deadline: deadline jiffies for the operation
3380 * @check_ready: callback to check link readiness
3382 * Wait for @link to become ready. @check_ready should return
3383 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3384 * link doesn't seem to be occupied, other errno for other error
3387 * Transient -ENODEV conditions are allowed for
3388 * ATA_TMOUT_FF_WAIT.
3394 * 0 if @linke is ready before @deadline; otherwise, -errno.
3396 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3397 int (*check_ready
)(struct ata_link
*link
))
3399 unsigned long start
= jiffies
;
3400 unsigned long nodev_deadline
;
3403 /* choose which 0xff timeout to use, read comment in libata.h */
3404 if (link
->ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
)
3405 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT_LONG
);
3407 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3409 /* Slave readiness can't be tested separately from master. On
3410 * M/S emulation configuration, this function should be called
3411 * only on the master and it will handle both master and slave.
3413 WARN_ON(link
== link
->ap
->slave_link
);
3415 if (time_after(nodev_deadline
, deadline
))
3416 nodev_deadline
= deadline
;
3419 unsigned long now
= jiffies
;
3422 ready
= tmp
= check_ready(link
);
3427 * -ENODEV could be transient. Ignore -ENODEV if link
3428 * is online. Also, some SATA devices take a long
3429 * time to clear 0xff after reset. Wait for
3430 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3433 * Note that some PATA controllers (pata_ali) explode
3434 * if status register is read more than once when
3435 * there's no device attached.
3437 if (ready
== -ENODEV
) {
3438 if (ata_link_online(link
))
3440 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3441 !ata_link_offline(link
) &&
3442 time_before(now
, nodev_deadline
))
3448 if (time_after(now
, deadline
))
3451 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3452 (deadline
- now
> 3 * HZ
)) {
3454 "link is slow to respond, please be patient "
3455 "(ready=%d)\n", tmp
);
3459 ata_msleep(link
->ap
, 50);
3464 * ata_wait_after_reset - wait for link to become ready after reset
3465 * @link: link to be waited on
3466 * @deadline: deadline jiffies for the operation
3467 * @check_ready: callback to check link readiness
3469 * Wait for @link to become ready after reset.
3475 * 0 if @linke is ready before @deadline; otherwise, -errno.
3477 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3478 int (*check_ready
)(struct ata_link
*link
))
3480 ata_msleep(link
->ap
, ATA_WAIT_AFTER_RESET
);
3482 return ata_wait_ready(link
, deadline
, check_ready
);
3486 * sata_link_debounce - debounce SATA phy status
3487 * @link: ATA link to debounce SATA phy status for
3488 * @params: timing parameters { interval, duratinon, timeout } in msec
3489 * @deadline: deadline jiffies for the operation
3491 * Make sure SStatus of @link reaches stable state, determined by
3492 * holding the same value where DET is not 1 for @duration polled
3493 * every @interval, before @timeout. Timeout constraints the
3494 * beginning of the stable state. Because DET gets stuck at 1 on
3495 * some controllers after hot unplugging, this functions waits
3496 * until timeout then returns 0 if DET is stable at 1.
3498 * @timeout is further limited by @deadline. The sooner of the
3502 * Kernel thread context (may sleep)
3505 * 0 on success, -errno on failure.
3507 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3508 unsigned long deadline
)
3510 unsigned long interval
= params
[0];
3511 unsigned long duration
= params
[1];
3512 unsigned long last_jiffies
, t
;
3516 t
= ata_deadline(jiffies
, params
[2]);
3517 if (time_before(t
, deadline
))
3520 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3525 last_jiffies
= jiffies
;
3528 ata_msleep(link
->ap
, interval
);
3529 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3535 if (cur
== 1 && time_before(jiffies
, deadline
))
3537 if (time_after(jiffies
,
3538 ata_deadline(last_jiffies
, duration
)))
3543 /* unstable, start over */
3545 last_jiffies
= jiffies
;
3547 /* Check deadline. If debouncing failed, return
3548 * -EPIPE to tell upper layer to lower link speed.
3550 if (time_after(jiffies
, deadline
))
3556 * sata_link_resume - resume SATA link
3557 * @link: ATA link to resume SATA
3558 * @params: timing parameters { interval, duratinon, timeout } in msec
3559 * @deadline: deadline jiffies for the operation
3561 * Resume SATA phy @link and debounce it.
3564 * Kernel thread context (may sleep)
3567 * 0 on success, -errno on failure.
3569 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3570 unsigned long deadline
)
3572 int tries
= ATA_LINK_RESUME_TRIES
;
3573 u32 scontrol
, serror
;
3576 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3580 * Writes to SControl sometimes get ignored under certain
3581 * controllers (ata_piix SIDPR). Make sure DET actually is
3585 scontrol
= (scontrol
& 0x0f0) | 0x300;
3586 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3589 * Some PHYs react badly if SStatus is pounded
3590 * immediately after resuming. Delay 200ms before
3593 ata_msleep(link
->ap
, 200);
3595 /* is SControl restored correctly? */
3596 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3598 } while ((scontrol
& 0xf0f) != 0x300 && --tries
);
3600 if ((scontrol
& 0xf0f) != 0x300) {
3601 ata_link_warn(link
, "failed to resume link (SControl %X)\n",
3606 if (tries
< ATA_LINK_RESUME_TRIES
)
3607 ata_link_warn(link
, "link resume succeeded after %d retries\n",
3608 ATA_LINK_RESUME_TRIES
- tries
);
3610 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3613 /* clear SError, some PHYs require this even for SRST to work */
3614 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3615 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3617 return rc
!= -EINVAL
? rc
: 0;
3621 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3622 * @link: ATA link to manipulate SControl for
3623 * @policy: LPM policy to configure
3624 * @spm_wakeup: initiate LPM transition to active state
3626 * Manipulate the IPM field of the SControl register of @link
3627 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3628 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3629 * the link. This function also clears PHYRDY_CHG before
3636 * 0 on succes, -errno otherwise.
3638 int sata_link_scr_lpm(struct ata_link
*link
, enum ata_lpm_policy policy
,
3641 struct ata_eh_context
*ehc
= &link
->eh_context
;
3642 bool woken_up
= false;
3646 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
3651 case ATA_LPM_MAX_POWER
:
3652 /* disable all LPM transitions */
3653 scontrol
|= (0x7 << 8);
3654 /* initiate transition to active state */
3656 scontrol
|= (0x4 << 12);
3660 case ATA_LPM_MED_POWER
:
3661 /* allow LPM to PARTIAL */
3662 scontrol
&= ~(0x1 << 8);
3663 scontrol
|= (0x6 << 8);
3665 case ATA_LPM_MIN_POWER
:
3666 if (ata_link_nr_enabled(link
) > 0)
3667 /* no restrictions on LPM transitions */
3668 scontrol
&= ~(0x7 << 8);
3670 /* empty port, power off */
3672 scontrol
|= (0x1 << 2);
3679 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
3683 /* give the link time to transit out of LPM state */
3687 /* clear PHYRDY_CHG from SError */
3688 ehc
->i
.serror
&= ~SERR_PHYRDY_CHG
;
3689 return sata_scr_write(link
, SCR_ERROR
, SERR_PHYRDY_CHG
);
3693 * ata_std_prereset - prepare for reset
3694 * @link: ATA link to be reset
3695 * @deadline: deadline jiffies for the operation
3697 * @link is about to be reset. Initialize it. Failure from
3698 * prereset makes libata abort whole reset sequence and give up
3699 * that port, so prereset should be best-effort. It does its
3700 * best to prepare for reset sequence but if things go wrong, it
3701 * should just whine, not fail.
3704 * Kernel thread context (may sleep)
3707 * 0 on success, -errno otherwise.
3709 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3711 struct ata_port
*ap
= link
->ap
;
3712 struct ata_eh_context
*ehc
= &link
->eh_context
;
3713 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3716 /* if we're about to do hardreset, nothing more to do */
3717 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3720 /* if SATA, resume link */
3721 if (ap
->flags
& ATA_FLAG_SATA
) {
3722 rc
= sata_link_resume(link
, timing
, deadline
);
3723 /* whine about phy resume failure but proceed */
3724 if (rc
&& rc
!= -EOPNOTSUPP
)
3726 "failed to resume link for reset (errno=%d)\n",
3730 /* no point in trying softreset on offline link */
3731 if (ata_phys_link_offline(link
))
3732 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3738 * sata_link_hardreset - reset link via SATA phy reset
3739 * @link: link to reset
3740 * @timing: timing parameters { interval, duratinon, timeout } in msec
3741 * @deadline: deadline jiffies for the operation
3742 * @online: optional out parameter indicating link onlineness
3743 * @check_ready: optional callback to check link readiness
3745 * SATA phy-reset @link using DET bits of SControl register.
3746 * After hardreset, link readiness is waited upon using
3747 * ata_wait_ready() if @check_ready is specified. LLDs are
3748 * allowed to not specify @check_ready and wait itself after this
3749 * function returns. Device classification is LLD's
3752 * *@online is set to one iff reset succeeded and @link is online
3756 * Kernel thread context (may sleep)
3759 * 0 on success, -errno otherwise.
3761 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3762 unsigned long deadline
,
3763 bool *online
, int (*check_ready
)(struct ata_link
*))
3773 if (sata_set_spd_needed(link
)) {
3774 /* SATA spec says nothing about how to reconfigure
3775 * spd. To be on the safe side, turn off phy during
3776 * reconfiguration. This works for at least ICH7 AHCI
3779 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3782 scontrol
= (scontrol
& 0x0f0) | 0x304;
3784 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3790 /* issue phy wake/reset */
3791 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3794 scontrol
= (scontrol
& 0x0f0) | 0x301;
3796 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3799 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3800 * 10.4.2 says at least 1 ms.
3802 ata_msleep(link
->ap
, 1);
3804 /* bring link back */
3805 rc
= sata_link_resume(link
, timing
, deadline
);
3808 /* if link is offline nothing more to do */
3809 if (ata_phys_link_offline(link
))
3812 /* Link is online. From this point, -ENODEV too is an error. */
3816 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3817 /* If PMP is supported, we have to do follow-up SRST.
3818 * Some PMPs don't send D2H Reg FIS after hardreset if
3819 * the first port is empty. Wait only for
3820 * ATA_TMOUT_PMP_SRST_WAIT.
3823 unsigned long pmp_deadline
;
3825 pmp_deadline
= ata_deadline(jiffies
,
3826 ATA_TMOUT_PMP_SRST_WAIT
);
3827 if (time_after(pmp_deadline
, deadline
))
3828 pmp_deadline
= deadline
;
3829 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3837 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3839 if (rc
&& rc
!= -EAGAIN
) {
3840 /* online is set iff link is online && reset succeeded */
3843 ata_link_err(link
, "COMRESET failed (errno=%d)\n", rc
);
3845 DPRINTK("EXIT, rc=%d\n", rc
);
3850 * sata_std_hardreset - COMRESET w/o waiting or classification
3851 * @link: link to reset
3852 * @class: resulting class of attached device
3853 * @deadline: deadline jiffies for the operation
3855 * Standard SATA COMRESET w/o waiting or classification.
3858 * Kernel thread context (may sleep)
3861 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3863 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3864 unsigned long deadline
)
3866 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3871 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
3872 return online
? -EAGAIN
: rc
;
3876 * ata_std_postreset - standard postreset callback
3877 * @link: the target ata_link
3878 * @classes: classes of attached devices
3880 * This function is invoked after a successful reset. Note that
3881 * the device might have been reset more than once using
3882 * different reset methods before postreset is invoked.
3885 * Kernel thread context (may sleep)
3887 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
3893 /* reset complete, clear SError */
3894 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
3895 sata_scr_write(link
, SCR_ERROR
, serror
);
3897 /* print link status */
3898 sata_print_link_status(link
);
3904 * ata_dev_same_device - Determine whether new ID matches configured device
3905 * @dev: device to compare against
3906 * @new_class: class of the new device
3907 * @new_id: IDENTIFY page of the new device
3909 * Compare @new_class and @new_id against @dev and determine
3910 * whether @dev is the device indicated by @new_class and
3917 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3919 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3922 const u16
*old_id
= dev
->id
;
3923 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3924 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3926 if (dev
->class != new_class
) {
3927 ata_dev_info(dev
, "class mismatch %d != %d\n",
3928 dev
->class, new_class
);
3932 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3933 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3934 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3935 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3937 if (strcmp(model
[0], model
[1])) {
3938 ata_dev_info(dev
, "model number mismatch '%s' != '%s'\n",
3939 model
[0], model
[1]);
3943 if (strcmp(serial
[0], serial
[1])) {
3944 ata_dev_info(dev
, "serial number mismatch '%s' != '%s'\n",
3945 serial
[0], serial
[1]);
3953 * ata_dev_reread_id - Re-read IDENTIFY data
3954 * @dev: target ATA device
3955 * @readid_flags: read ID flags
3957 * Re-read IDENTIFY page and make sure @dev is still attached to
3961 * Kernel thread context (may sleep)
3964 * 0 on success, negative errno otherwise
3966 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
3968 unsigned int class = dev
->class;
3969 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
3973 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3977 /* is the device still there? */
3978 if (!ata_dev_same_device(dev
, class, id
))
3981 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3986 * ata_dev_revalidate - Revalidate ATA device
3987 * @dev: device to revalidate
3988 * @new_class: new class code
3989 * @readid_flags: read ID flags
3991 * Re-read IDENTIFY page, make sure @dev is still attached to the
3992 * port and reconfigure it according to the new IDENTIFY page.
3995 * Kernel thread context (may sleep)
3998 * 0 on success, negative errno otherwise
4000 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4001 unsigned int readid_flags
)
4003 u64 n_sectors
= dev
->n_sectors
;
4004 u64 n_native_sectors
= dev
->n_native_sectors
;
4007 if (!ata_dev_enabled(dev
))
4010 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4011 if (ata_class_enabled(new_class
) &&
4012 new_class
!= ATA_DEV_ATA
&&
4013 new_class
!= ATA_DEV_ATAPI
&&
4014 new_class
!= ATA_DEV_ZAC
&&
4015 new_class
!= ATA_DEV_SEMB
) {
4016 ata_dev_info(dev
, "class mismatch %u != %u\n",
4017 dev
->class, new_class
);
4023 rc
= ata_dev_reread_id(dev
, readid_flags
);
4027 /* configure device according to the new ID */
4028 rc
= ata_dev_configure(dev
);
4032 /* verify n_sectors hasn't changed */
4033 if (dev
->class != ATA_DEV_ATA
|| !n_sectors
||
4034 dev
->n_sectors
== n_sectors
)
4037 /* n_sectors has changed */
4038 ata_dev_warn(dev
, "n_sectors mismatch %llu != %llu\n",
4039 (unsigned long long)n_sectors
,
4040 (unsigned long long)dev
->n_sectors
);
4043 * Something could have caused HPA to be unlocked
4044 * involuntarily. If n_native_sectors hasn't changed and the
4045 * new size matches it, keep the device.
4047 if (dev
->n_native_sectors
== n_native_sectors
&&
4048 dev
->n_sectors
> n_sectors
&& dev
->n_sectors
== n_native_sectors
) {
4050 "new n_sectors matches native, probably "
4051 "late HPA unlock, n_sectors updated\n");
4052 /* use the larger n_sectors */
4057 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4058 * unlocking HPA in those cases.
4060 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4062 if (dev
->n_native_sectors
== n_native_sectors
&&
4063 dev
->n_sectors
< n_sectors
&& n_sectors
== n_native_sectors
&&
4064 !(dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
)) {
4066 "old n_sectors matches native, probably "
4067 "late HPA lock, will try to unlock HPA\n");
4068 /* try unlocking HPA */
4069 dev
->flags
|= ATA_DFLAG_UNLOCK_HPA
;
4074 /* restore original n_[native_]sectors and fail */
4075 dev
->n_native_sectors
= n_native_sectors
;
4076 dev
->n_sectors
= n_sectors
;
4078 ata_dev_err(dev
, "revalidation failed (errno=%d)\n", rc
);
4082 struct ata_blacklist_entry
{
4083 const char *model_num
;
4084 const char *model_rev
;
4085 unsigned long horkage
;
4088 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4089 /* Devices with DMA related problems under Linux */
4090 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4091 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4092 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4093 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4094 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4095 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4096 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4097 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4098 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4099 { "CRD-848[02]B", NULL
, ATA_HORKAGE_NODMA
},
4100 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4101 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4102 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4103 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4104 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4105 { "HITACHI CDR-8[34]35",NULL
, ATA_HORKAGE_NODMA
},
4106 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4107 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4108 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4109 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4110 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4111 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4112 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4113 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4114 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4115 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4116 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4117 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4118 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA
},
4119 /* Odd clown on sil3726/4726 PMPs */
4120 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
4122 /* Weird ATAPI devices */
4123 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4124 { "QUANTUM DAT DAT72-000", NULL
, ATA_HORKAGE_ATAPI_MOD16_DMA
},
4125 { "Slimtype DVD A DS8A8SH", NULL
, ATA_HORKAGE_MAX_SEC_LBA48
},
4126 { "Slimtype DVD A DS8A9SH", NULL
, ATA_HORKAGE_MAX_SEC_LBA48
},
4128 /* Devices we expect to fail diagnostics */
4130 /* Devices where NCQ should be avoided */
4132 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4133 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4134 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4135 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4137 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4138 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4139 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4140 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4141 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ
},
4143 /* Seagate NCQ + FLUSH CACHE firmware bug */
4144 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4145 ATA_HORKAGE_FIRMWARE_WARN
},
4147 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4148 ATA_HORKAGE_FIRMWARE_WARN
},
4150 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4151 ATA_HORKAGE_FIRMWARE_WARN
},
4153 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4154 ATA_HORKAGE_FIRMWARE_WARN
},
4156 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4157 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA
},
4158 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA
},
4160 /* Blacklist entries taken from Silicon Image 3124/3132
4161 Windows driver .inf file - also several Linux problem reports */
4162 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4163 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4164 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4166 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4167 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ
, },
4169 /* devices which puke on READ_NATIVE_MAX */
4170 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4171 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4172 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4173 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4175 /* this one allows HPA unlocking but fails IOs on the area */
4176 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA
},
4178 /* Devices which report 1 sector over size HPA */
4179 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4180 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4181 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4183 /* Devices which get the IVB wrong */
4184 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4185 /* Maybe we should just blacklist TSSTcorp... */
4186 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB
, },
4188 /* Devices that do not need bridging limits applied */
4189 { "MTRON MSP-SATA*", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4190 { "BUFFALO HD-QSU2/R5", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4192 /* Devices which aren't very happy with higher link speeds */
4193 { "WD My Book", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4194 { "Seagate FreeAgent GoFlex", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4197 * Devices which choke on SETXFER. Applies only if both the
4198 * device and controller are SATA.
4200 { "PIONEER DVD-RW DVRTD08", NULL
, ATA_HORKAGE_NOSETXFER
},
4201 { "PIONEER DVD-RW DVRTD08A", NULL
, ATA_HORKAGE_NOSETXFER
},
4202 { "PIONEER DVD-RW DVR-215", NULL
, ATA_HORKAGE_NOSETXFER
},
4203 { "PIONEER DVD-RW DVR-212D", NULL
, ATA_HORKAGE_NOSETXFER
},
4204 { "PIONEER DVD-RW DVR-216D", NULL
, ATA_HORKAGE_NOSETXFER
},
4206 /* devices that don't properly handle queued TRIM commands */
4207 { "Micron_M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4208 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4209 { "Crucial_CT*M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4210 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4211 { "Micron_M5[15]0*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4212 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4213 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4214 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4215 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4216 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4217 { "Samsung SSD 850 PRO*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4218 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4221 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4222 * (Return Zero After Trim) flags in the ATA Command Set are
4223 * unreliable in the sense that they only define what happens if
4224 * the device successfully executed the DSM TRIM command. TRIM
4225 * is only advisory, however, and the device is free to silently
4226 * ignore all or parts of the request.
4228 * Whitelist drives that are known to reliably return zeroes
4233 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4234 * that model before whitelisting all other intel SSDs.
4236 { "INTEL*SSDSC2MH*", NULL
, 0, },
4238 { "Micron*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4239 { "Crucial*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4240 { "INTEL*SSD*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4241 { "SSD*INTEL*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4242 { "Samsung*SSD*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4243 { "SAMSUNG*SSD*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4244 { "ST[1248][0248]0[FH]*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4247 * Some WD SATA-I drives spin up and down erratically when the link
4248 * is put into the slumber mode. We don't have full list of the
4249 * affected devices. Disable LPM if the device matches one of the
4250 * known prefixes and is SATA-1. As a side effect LPM partial is
4253 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4255 { "WDC WD800JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4256 { "WDC WD1200JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4257 { "WDC WD1600JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4258 { "WDC WD2000JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4259 { "WDC WD2500JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4260 { "WDC WD3000JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4261 { "WDC WD3200JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4267 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4269 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4270 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4271 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4273 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4274 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4276 while (ad
->model_num
) {
4277 if (glob_match(ad
->model_num
, model_num
)) {
4278 if (ad
->model_rev
== NULL
)
4280 if (glob_match(ad
->model_rev
, model_rev
))
4288 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4290 /* We don't support polling DMA.
4291 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4292 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4294 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4295 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4297 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4301 * ata_is_40wire - check drive side detection
4304 * Perform drive side detection decoding, allowing for device vendors
4305 * who can't follow the documentation.
4308 static int ata_is_40wire(struct ata_device
*dev
)
4310 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4311 return ata_drive_40wire_relaxed(dev
->id
);
4312 return ata_drive_40wire(dev
->id
);
4316 * cable_is_40wire - 40/80/SATA decider
4317 * @ap: port to consider
4319 * This function encapsulates the policy for speed management
4320 * in one place. At the moment we don't cache the result but
4321 * there is a good case for setting ap->cbl to the result when
4322 * we are called with unknown cables (and figuring out if it
4323 * impacts hotplug at all).
4325 * Return 1 if the cable appears to be 40 wire.
4328 static int cable_is_40wire(struct ata_port
*ap
)
4330 struct ata_link
*link
;
4331 struct ata_device
*dev
;
4333 /* If the controller thinks we are 40 wire, we are. */
4334 if (ap
->cbl
== ATA_CBL_PATA40
)
4337 /* If the controller thinks we are 80 wire, we are. */
4338 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4341 /* If the system is known to be 40 wire short cable (eg
4342 * laptop), then we allow 80 wire modes even if the drive
4345 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4348 /* If the controller doesn't know, we scan.
4350 * Note: We look for all 40 wire detects at this point. Any
4351 * 80 wire detect is taken to be 80 wire cable because
4352 * - in many setups only the one drive (slave if present) will
4353 * give a valid detect
4354 * - if you have a non detect capable drive you don't want it
4355 * to colour the choice
4357 ata_for_each_link(link
, ap
, EDGE
) {
4358 ata_for_each_dev(dev
, link
, ENABLED
) {
4359 if (!ata_is_40wire(dev
))
4367 * ata_dev_xfermask - Compute supported xfermask of the given device
4368 * @dev: Device to compute xfermask for
4370 * Compute supported xfermask of @dev and store it in
4371 * dev->*_mask. This function is responsible for applying all
4372 * known limits including host controller limits, device
4378 static void ata_dev_xfermask(struct ata_device
*dev
)
4380 struct ata_link
*link
= dev
->link
;
4381 struct ata_port
*ap
= link
->ap
;
4382 struct ata_host
*host
= ap
->host
;
4383 unsigned long xfer_mask
;
4385 /* controller modes available */
4386 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4387 ap
->mwdma_mask
, ap
->udma_mask
);
4389 /* drive modes available */
4390 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4391 dev
->mwdma_mask
, dev
->udma_mask
);
4392 xfer_mask
&= ata_id_xfermask(dev
->id
);
4395 * CFA Advanced TrueIDE timings are not allowed on a shared
4398 if (ata_dev_pair(dev
)) {
4399 /* No PIO5 or PIO6 */
4400 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4401 /* No MWDMA3 or MWDMA 4 */
4402 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4405 if (ata_dma_blacklisted(dev
)) {
4406 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4408 "device is on DMA blacklist, disabling DMA\n");
4411 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4412 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4413 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4415 "simplex DMA is claimed by other device, disabling DMA\n");
4418 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4419 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4421 if (ap
->ops
->mode_filter
)
4422 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4424 /* Apply cable rule here. Don't apply it early because when
4425 * we handle hot plug the cable type can itself change.
4426 * Check this last so that we know if the transfer rate was
4427 * solely limited by the cable.
4428 * Unknown or 80 wire cables reported host side are checked
4429 * drive side as well. Cases where we know a 40wire cable
4430 * is used safely for 80 are not checked here.
4432 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4433 /* UDMA/44 or higher would be available */
4434 if (cable_is_40wire(ap
)) {
4436 "limited to UDMA/33 due to 40-wire cable\n");
4437 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4440 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4441 &dev
->mwdma_mask
, &dev
->udma_mask
);
4445 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4446 * @dev: Device to which command will be sent
4448 * Issue SET FEATURES - XFER MODE command to device @dev
4452 * PCI/etc. bus probe sem.
4455 * 0 on success, AC_ERR_* mask otherwise.
4458 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4460 struct ata_taskfile tf
;
4461 unsigned int err_mask
;
4463 /* set up set-features taskfile */
4464 DPRINTK("set features - xfer mode\n");
4466 /* Some controllers and ATAPI devices show flaky interrupt
4467 * behavior after setting xfer mode. Use polling instead.
4469 ata_tf_init(dev
, &tf
);
4470 tf
.command
= ATA_CMD_SET_FEATURES
;
4471 tf
.feature
= SETFEATURES_XFER
;
4472 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4473 tf
.protocol
= ATA_PROT_NODATA
;
4474 /* If we are using IORDY we must send the mode setting command */
4475 if (ata_pio_need_iordy(dev
))
4476 tf
.nsect
= dev
->xfer_mode
;
4477 /* If the device has IORDY and the controller does not - turn it off */
4478 else if (ata_id_has_iordy(dev
->id
))
4480 else /* In the ancient relic department - skip all of this */
4483 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4485 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4490 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4491 * @dev: Device to which command will be sent
4492 * @enable: Whether to enable or disable the feature
4493 * @feature: The sector count represents the feature to set
4495 * Issue SET FEATURES - SATA FEATURES command to device @dev
4496 * on port @ap with sector count
4499 * PCI/etc. bus probe sem.
4502 * 0 on success, AC_ERR_* mask otherwise.
4504 unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
, u8 feature
)
4506 struct ata_taskfile tf
;
4507 unsigned int err_mask
;
4509 /* set up set-features taskfile */
4510 DPRINTK("set features - SATA features\n");
4512 ata_tf_init(dev
, &tf
);
4513 tf
.command
= ATA_CMD_SET_FEATURES
;
4514 tf
.feature
= enable
;
4515 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4516 tf
.protocol
= ATA_PROT_NODATA
;
4519 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4521 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4524 EXPORT_SYMBOL_GPL(ata_dev_set_feature
);
4527 * ata_dev_init_params - Issue INIT DEV PARAMS command
4528 * @dev: Device to which command will be sent
4529 * @heads: Number of heads (taskfile parameter)
4530 * @sectors: Number of sectors (taskfile parameter)
4533 * Kernel thread context (may sleep)
4536 * 0 on success, AC_ERR_* mask otherwise.
4538 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4539 u16 heads
, u16 sectors
)
4541 struct ata_taskfile tf
;
4542 unsigned int err_mask
;
4544 /* Number of sectors per track 1-255. Number of heads 1-16 */
4545 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4546 return AC_ERR_INVALID
;
4548 /* set up init dev params taskfile */
4549 DPRINTK("init dev params \n");
4551 ata_tf_init(dev
, &tf
);
4552 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4553 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4554 tf
.protocol
= ATA_PROT_NODATA
;
4556 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4558 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4559 /* A clean abort indicates an original or just out of spec drive
4560 and we should continue as we issue the setup based on the
4561 drive reported working geometry */
4562 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4565 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4570 * ata_sg_clean - Unmap DMA memory associated with command
4571 * @qc: Command containing DMA memory to be released
4573 * Unmap all mapped DMA memory associated with this command.
4576 * spin_lock_irqsave(host lock)
4578 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4580 struct ata_port
*ap
= qc
->ap
;
4581 struct scatterlist
*sg
= qc
->sg
;
4582 int dir
= qc
->dma_dir
;
4584 WARN_ON_ONCE(sg
== NULL
);
4586 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4589 dma_unmap_sg(ap
->dev
, sg
, qc
->orig_n_elem
, dir
);
4591 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4596 * atapi_check_dma - Check whether ATAPI DMA can be supported
4597 * @qc: Metadata associated with taskfile to check
4599 * Allow low-level driver to filter ATA PACKET commands, returning
4600 * a status indicating whether or not it is OK to use DMA for the
4601 * supplied PACKET command.
4604 * spin_lock_irqsave(host lock)
4606 * RETURNS: 0 when ATAPI DMA can be used
4609 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4611 struct ata_port
*ap
= qc
->ap
;
4613 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4614 * few ATAPI devices choke on such DMA requests.
4616 if (!(qc
->dev
->horkage
& ATA_HORKAGE_ATAPI_MOD16_DMA
) &&
4617 unlikely(qc
->nbytes
& 15))
4620 if (ap
->ops
->check_atapi_dma
)
4621 return ap
->ops
->check_atapi_dma(qc
);
4627 * ata_std_qc_defer - Check whether a qc needs to be deferred
4628 * @qc: ATA command in question
4630 * Non-NCQ commands cannot run with any other command, NCQ or
4631 * not. As upper layer only knows the queue depth, we are
4632 * responsible for maintaining exclusion. This function checks
4633 * whether a new command @qc can be issued.
4636 * spin_lock_irqsave(host lock)
4639 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4641 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4643 struct ata_link
*link
= qc
->dev
->link
;
4645 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4646 if (!ata_tag_valid(link
->active_tag
))
4649 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4653 return ATA_DEFER_LINK
;
4656 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4659 * ata_sg_init - Associate command with scatter-gather table.
4660 * @qc: Command to be associated
4661 * @sg: Scatter-gather table.
4662 * @n_elem: Number of elements in s/g table.
4664 * Initialize the data-related elements of queued_cmd @qc
4665 * to point to a scatter-gather table @sg, containing @n_elem
4669 * spin_lock_irqsave(host lock)
4671 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4672 unsigned int n_elem
)
4675 qc
->n_elem
= n_elem
;
4680 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4681 * @qc: Command with scatter-gather table to be mapped.
4683 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4686 * spin_lock_irqsave(host lock)
4689 * Zero on success, negative on error.
4692 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4694 struct ata_port
*ap
= qc
->ap
;
4695 unsigned int n_elem
;
4697 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4699 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4703 DPRINTK("%d sg elements mapped\n", n_elem
);
4704 qc
->orig_n_elem
= qc
->n_elem
;
4705 qc
->n_elem
= n_elem
;
4706 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4712 * swap_buf_le16 - swap halves of 16-bit words in place
4713 * @buf: Buffer to swap
4714 * @buf_words: Number of 16-bit words in buffer.
4716 * Swap halves of 16-bit words if needed to convert from
4717 * little-endian byte order to native cpu byte order, or
4721 * Inherited from caller.
4723 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4728 for (i
= 0; i
< buf_words
; i
++)
4729 buf
[i
] = le16_to_cpu(buf
[i
]);
4730 #endif /* __BIG_ENDIAN */
4734 * ata_qc_new_init - Request an available ATA command, and initialize it
4735 * @dev: Device from whom we request an available command structure
4741 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
, int tag
)
4743 struct ata_port
*ap
= dev
->link
->ap
;
4744 struct ata_queued_cmd
*qc
;
4746 /* no command while frozen */
4747 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4751 if (ap
->flags
& ATA_FLAG_SAS_HOST
) {
4752 tag
= ata_sas_allocate_tag(ap
);
4757 qc
= __ata_qc_from_tag(ap
, tag
);
4769 * ata_qc_free - free unused ata_queued_cmd
4770 * @qc: Command to complete
4772 * Designed to free unused ata_queued_cmd object
4773 * in case something prevents using it.
4776 * spin_lock_irqsave(host lock)
4778 void ata_qc_free(struct ata_queued_cmd
*qc
)
4780 struct ata_port
*ap
;
4783 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4788 if (likely(ata_tag_valid(tag
))) {
4789 qc
->tag
= ATA_TAG_POISON
;
4790 if (ap
->flags
& ATA_FLAG_SAS_HOST
)
4791 ata_sas_free_tag(tag
, ap
);
4795 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4797 struct ata_port
*ap
;
4798 struct ata_link
*link
;
4800 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4801 WARN_ON_ONCE(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4803 link
= qc
->dev
->link
;
4805 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4808 /* command should be marked inactive atomically with qc completion */
4809 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4810 link
->sactive
&= ~(1 << qc
->tag
);
4812 ap
->nr_active_links
--;
4814 link
->active_tag
= ATA_TAG_POISON
;
4815 ap
->nr_active_links
--;
4818 /* clear exclusive status */
4819 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4820 ap
->excl_link
== link
))
4821 ap
->excl_link
= NULL
;
4823 /* atapi: mark qc as inactive to prevent the interrupt handler
4824 * from completing the command twice later, before the error handler
4825 * is called. (when rc != 0 and atapi request sense is needed)
4827 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4828 ap
->qc_active
&= ~(1 << qc
->tag
);
4830 /* call completion callback */
4831 qc
->complete_fn(qc
);
4834 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4836 struct ata_port
*ap
= qc
->ap
;
4838 qc
->result_tf
.flags
= qc
->tf
.flags
;
4839 ap
->ops
->qc_fill_rtf(qc
);
4842 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
4844 struct ata_device
*dev
= qc
->dev
;
4846 if (ata_is_nodata(qc
->tf
.protocol
))
4849 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
4852 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
4856 * ata_qc_complete - Complete an active ATA command
4857 * @qc: Command to complete
4859 * Indicate to the mid and upper layers that an ATA command has
4860 * completed, with either an ok or not-ok status.
4862 * Refrain from calling this function multiple times when
4863 * successfully completing multiple NCQ commands.
4864 * ata_qc_complete_multiple() should be used instead, which will
4865 * properly update IRQ expect state.
4868 * spin_lock_irqsave(host lock)
4870 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4872 struct ata_port
*ap
= qc
->ap
;
4874 /* XXX: New EH and old EH use different mechanisms to
4875 * synchronize EH with regular execution path.
4877 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4878 * Normal execution path is responsible for not accessing a
4879 * failed qc. libata core enforces the rule by returning NULL
4880 * from ata_qc_from_tag() for failed qcs.
4882 * Old EH depends on ata_qc_complete() nullifying completion
4883 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4884 * not synchronize with interrupt handler. Only PIO task is
4887 if (ap
->ops
->error_handler
) {
4888 struct ata_device
*dev
= qc
->dev
;
4889 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
4891 if (unlikely(qc
->err_mask
))
4892 qc
->flags
|= ATA_QCFLAG_FAILED
;
4895 * Finish internal commands without any further processing
4896 * and always with the result TF filled.
4898 if (unlikely(ata_tag_internal(qc
->tag
))) {
4900 __ata_qc_complete(qc
);
4905 * Non-internal qc has failed. Fill the result TF and
4908 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4910 ata_qc_schedule_eh(qc
);
4914 WARN_ON_ONCE(ap
->pflags
& ATA_PFLAG_FROZEN
);
4916 /* read result TF if requested */
4917 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4920 /* Some commands need post-processing after successful
4923 switch (qc
->tf
.command
) {
4924 case ATA_CMD_SET_FEATURES
:
4925 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
4926 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
4929 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
4930 case ATA_CMD_SET_MULTI
: /* multi_count changed */
4931 /* revalidate device */
4932 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
4933 ata_port_schedule_eh(ap
);
4937 dev
->flags
|= ATA_DFLAG_SLEEPING
;
4941 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
4942 ata_verify_xfer(qc
);
4944 __ata_qc_complete(qc
);
4946 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
4949 /* read result TF if failed or requested */
4950 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4953 __ata_qc_complete(qc
);
4958 * ata_qc_complete_multiple - Complete multiple qcs successfully
4959 * @ap: port in question
4960 * @qc_active: new qc_active mask
4962 * Complete in-flight commands. This functions is meant to be
4963 * called from low-level driver's interrupt routine to complete
4964 * requests normally. ap->qc_active and @qc_active is compared
4965 * and commands are completed accordingly.
4967 * Always use this function when completing multiple NCQ commands
4968 * from IRQ handlers instead of calling ata_qc_complete()
4969 * multiple times to keep IRQ expect status properly in sync.
4972 * spin_lock_irqsave(host lock)
4975 * Number of completed commands on success, -errno otherwise.
4977 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
4982 done_mask
= ap
->qc_active
^ qc_active
;
4984 if (unlikely(done_mask
& qc_active
)) {
4985 ata_port_err(ap
, "illegal qc_active transition (%08x->%08x)\n",
4986 ap
->qc_active
, qc_active
);
4991 struct ata_queued_cmd
*qc
;
4992 unsigned int tag
= __ffs(done_mask
);
4994 qc
= ata_qc_from_tag(ap
, tag
);
4996 ata_qc_complete(qc
);
4999 done_mask
&= ~(1 << tag
);
5006 * ata_qc_issue - issue taskfile to device
5007 * @qc: command to issue to device
5009 * Prepare an ATA command to submission to device.
5010 * This includes mapping the data into a DMA-able
5011 * area, filling in the S/G table, and finally
5012 * writing the taskfile to hardware, starting the command.
5015 * spin_lock_irqsave(host lock)
5017 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5019 struct ata_port
*ap
= qc
->ap
;
5020 struct ata_link
*link
= qc
->dev
->link
;
5021 u8 prot
= qc
->tf
.protocol
;
5023 /* Make sure only one non-NCQ command is outstanding. The
5024 * check is skipped for old EH because it reuses active qc to
5025 * request ATAPI sense.
5027 WARN_ON_ONCE(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5029 if (ata_is_ncq(prot
)) {
5030 WARN_ON_ONCE(link
->sactive
& (1 << qc
->tag
));
5033 ap
->nr_active_links
++;
5034 link
->sactive
|= 1 << qc
->tag
;
5036 WARN_ON_ONCE(link
->sactive
);
5038 ap
->nr_active_links
++;
5039 link
->active_tag
= qc
->tag
;
5042 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5043 ap
->qc_active
|= 1 << qc
->tag
;
5046 * We guarantee to LLDs that they will have at least one
5047 * non-zero sg if the command is a data command.
5049 if (WARN_ON_ONCE(ata_is_data(prot
) &&
5050 (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
)))
5053 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5054 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5055 if (ata_sg_setup(qc
))
5058 /* if device is sleeping, schedule reset and abort the link */
5059 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5060 link
->eh_info
.action
|= ATA_EH_RESET
;
5061 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5062 ata_link_abort(link
);
5066 ap
->ops
->qc_prep(qc
);
5068 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5069 if (unlikely(qc
->err_mask
))
5074 qc
->err_mask
|= AC_ERR_SYSTEM
;
5076 ata_qc_complete(qc
);
5080 * sata_scr_valid - test whether SCRs are accessible
5081 * @link: ATA link to test SCR accessibility for
5083 * Test whether SCRs are accessible for @link.
5089 * 1 if SCRs are accessible, 0 otherwise.
5091 int sata_scr_valid(struct ata_link
*link
)
5093 struct ata_port
*ap
= link
->ap
;
5095 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
5099 * sata_scr_read - read SCR register of the specified port
5100 * @link: ATA link to read SCR for
5102 * @val: Place to store read value
5104 * Read SCR register @reg of @link into *@val. This function is
5105 * guaranteed to succeed if @link is ap->link, the cable type of
5106 * the port is SATA and the port implements ->scr_read.
5109 * None if @link is ap->link. Kernel thread context otherwise.
5112 * 0 on success, negative errno on failure.
5114 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
5116 if (ata_is_host_link(link
)) {
5117 if (sata_scr_valid(link
))
5118 return link
->ap
->ops
->scr_read(link
, reg
, val
);
5122 return sata_pmp_scr_read(link
, reg
, val
);
5126 * sata_scr_write - write SCR register of the specified port
5127 * @link: ATA link to write SCR for
5128 * @reg: SCR to write
5129 * @val: value to write
5131 * Write @val to SCR register @reg of @link. This function is
5132 * guaranteed to succeed if @link is ap->link, the cable type of
5133 * the port is SATA and the port implements ->scr_read.
5136 * None if @link is ap->link. Kernel thread context otherwise.
5139 * 0 on success, negative errno on failure.
5141 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
5143 if (ata_is_host_link(link
)) {
5144 if (sata_scr_valid(link
))
5145 return link
->ap
->ops
->scr_write(link
, reg
, val
);
5149 return sata_pmp_scr_write(link
, reg
, val
);
5153 * sata_scr_write_flush - write SCR register of the specified port and flush
5154 * @link: ATA link to write SCR for
5155 * @reg: SCR to write
5156 * @val: value to write
5158 * This function is identical to sata_scr_write() except that this
5159 * function performs flush after writing to the register.
5162 * None if @link is ap->link. Kernel thread context otherwise.
5165 * 0 on success, negative errno on failure.
5167 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5169 if (ata_is_host_link(link
)) {
5172 if (sata_scr_valid(link
)) {
5173 rc
= link
->ap
->ops
->scr_write(link
, reg
, val
);
5175 rc
= link
->ap
->ops
->scr_read(link
, reg
, &val
);
5181 return sata_pmp_scr_write(link
, reg
, val
);
5185 * ata_phys_link_online - test whether the given link is online
5186 * @link: ATA link to test
5188 * Test whether @link is online. Note that this function returns
5189 * 0 if online status of @link cannot be obtained, so
5190 * ata_link_online(link) != !ata_link_offline(link).
5196 * True if the port online status is available and online.
5198 bool ata_phys_link_online(struct ata_link
*link
)
5202 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5203 ata_sstatus_online(sstatus
))
5209 * ata_phys_link_offline - test whether the given link is offline
5210 * @link: ATA link to test
5212 * Test whether @link is offline. Note that this function
5213 * returns 0 if offline status of @link cannot be obtained, so
5214 * ata_link_online(link) != !ata_link_offline(link).
5220 * True if the port offline status is available and offline.
5222 bool ata_phys_link_offline(struct ata_link
*link
)
5226 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5227 !ata_sstatus_online(sstatus
))
5233 * ata_link_online - test whether the given link is online
5234 * @link: ATA link to test
5236 * Test whether @link is online. This is identical to
5237 * ata_phys_link_online() when there's no slave link. When
5238 * there's a slave link, this function should only be called on
5239 * the master link and will return true if any of M/S links is
5246 * True if the port online status is available and online.
5248 bool ata_link_online(struct ata_link
*link
)
5250 struct ata_link
*slave
= link
->ap
->slave_link
;
5252 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5254 return ata_phys_link_online(link
) ||
5255 (slave
&& ata_phys_link_online(slave
));
5259 * ata_link_offline - test whether the given link is offline
5260 * @link: ATA link to test
5262 * Test whether @link is offline. This is identical to
5263 * ata_phys_link_offline() when there's no slave link. When
5264 * there's a slave link, this function should only be called on
5265 * the master link and will return true if both M/S links are
5272 * True if the port offline status is available and offline.
5274 bool ata_link_offline(struct ata_link
*link
)
5276 struct ata_link
*slave
= link
->ap
->slave_link
;
5278 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5280 return ata_phys_link_offline(link
) &&
5281 (!slave
|| ata_phys_link_offline(slave
));
5285 static void ata_port_request_pm(struct ata_port
*ap
, pm_message_t mesg
,
5286 unsigned int action
, unsigned int ehi_flags
,
5289 struct ata_link
*link
;
5290 unsigned long flags
;
5292 /* Previous resume operation might still be in
5293 * progress. Wait for PM_PENDING to clear.
5295 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5296 ata_port_wait_eh(ap
);
5297 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5300 /* request PM ops to EH */
5301 spin_lock_irqsave(ap
->lock
, flags
);
5304 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5305 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5306 link
->eh_info
.action
|= action
;
5307 link
->eh_info
.flags
|= ehi_flags
;
5310 ata_port_schedule_eh(ap
);
5312 spin_unlock_irqrestore(ap
->lock
, flags
);
5315 ata_port_wait_eh(ap
);
5316 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5321 * On some hardware, device fails to respond after spun down for suspend. As
5322 * the device won't be used before being resumed, we don't need to touch the
5323 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5325 * http://thread.gmane.org/gmane.linux.ide/46764
5327 static const unsigned int ata_port_suspend_ehi
= ATA_EHI_QUIET
5328 | ATA_EHI_NO_AUTOPSY
5329 | ATA_EHI_NO_RECOVERY
;
5331 static void ata_port_suspend(struct ata_port
*ap
, pm_message_t mesg
)
5333 ata_port_request_pm(ap
, mesg
, 0, ata_port_suspend_ehi
, false);
5336 static void ata_port_suspend_async(struct ata_port
*ap
, pm_message_t mesg
)
5338 ata_port_request_pm(ap
, mesg
, 0, ata_port_suspend_ehi
, true);
5341 static int ata_port_pm_suspend(struct device
*dev
)
5343 struct ata_port
*ap
= to_ata_port(dev
);
5345 if (pm_runtime_suspended(dev
))
5348 ata_port_suspend(ap
, PMSG_SUSPEND
);
5352 static int ata_port_pm_freeze(struct device
*dev
)
5354 struct ata_port
*ap
= to_ata_port(dev
);
5356 if (pm_runtime_suspended(dev
))
5359 ata_port_suspend(ap
, PMSG_FREEZE
);
5363 static int ata_port_pm_poweroff(struct device
*dev
)
5365 ata_port_suspend(to_ata_port(dev
), PMSG_HIBERNATE
);
5369 static const unsigned int ata_port_resume_ehi
= ATA_EHI_NO_AUTOPSY
5372 static void ata_port_resume(struct ata_port
*ap
, pm_message_t mesg
)
5374 ata_port_request_pm(ap
, mesg
, ATA_EH_RESET
, ata_port_resume_ehi
, false);
5377 static void ata_port_resume_async(struct ata_port
*ap
, pm_message_t mesg
)
5379 ata_port_request_pm(ap
, mesg
, ATA_EH_RESET
, ata_port_resume_ehi
, true);
5382 static int ata_port_pm_resume(struct device
*dev
)
5384 ata_port_resume_async(to_ata_port(dev
), PMSG_RESUME
);
5385 pm_runtime_disable(dev
);
5386 pm_runtime_set_active(dev
);
5387 pm_runtime_enable(dev
);
5392 * For ODDs, the upper layer will poll for media change every few seconds,
5393 * which will make it enter and leave suspend state every few seconds. And
5394 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5395 * is very little and the ODD may malfunction after constantly being reset.
5396 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5397 * ODD is attached to the port.
5399 static int ata_port_runtime_idle(struct device
*dev
)
5401 struct ata_port
*ap
= to_ata_port(dev
);
5402 struct ata_link
*link
;
5403 struct ata_device
*adev
;
5405 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5406 ata_for_each_dev(adev
, link
, ENABLED
)
5407 if (adev
->class == ATA_DEV_ATAPI
&&
5408 !zpodd_dev_enabled(adev
))
5415 static int ata_port_runtime_suspend(struct device
*dev
)
5417 ata_port_suspend(to_ata_port(dev
), PMSG_AUTO_SUSPEND
);
5421 static int ata_port_runtime_resume(struct device
*dev
)
5423 ata_port_resume(to_ata_port(dev
), PMSG_AUTO_RESUME
);
5427 static const struct dev_pm_ops ata_port_pm_ops
= {
5428 .suspend
= ata_port_pm_suspend
,
5429 .resume
= ata_port_pm_resume
,
5430 .freeze
= ata_port_pm_freeze
,
5431 .thaw
= ata_port_pm_resume
,
5432 .poweroff
= ata_port_pm_poweroff
,
5433 .restore
= ata_port_pm_resume
,
5435 .runtime_suspend
= ata_port_runtime_suspend
,
5436 .runtime_resume
= ata_port_runtime_resume
,
5437 .runtime_idle
= ata_port_runtime_idle
,
5440 /* sas ports don't participate in pm runtime management of ata_ports,
5441 * and need to resume ata devices at the domain level, not the per-port
5442 * level. sas suspend/resume is async to allow parallel port recovery
5443 * since sas has multiple ata_port instances per Scsi_Host.
5445 void ata_sas_port_suspend(struct ata_port
*ap
)
5447 ata_port_suspend_async(ap
, PMSG_SUSPEND
);
5449 EXPORT_SYMBOL_GPL(ata_sas_port_suspend
);
5451 void ata_sas_port_resume(struct ata_port
*ap
)
5453 ata_port_resume_async(ap
, PMSG_RESUME
);
5455 EXPORT_SYMBOL_GPL(ata_sas_port_resume
);
5458 * ata_host_suspend - suspend host
5459 * @host: host to suspend
5462 * Suspend @host. Actual operation is performed by port suspend.
5464 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5466 host
->dev
->power
.power_state
= mesg
;
5471 * ata_host_resume - resume host
5472 * @host: host to resume
5474 * Resume @host. Actual operation is performed by port resume.
5476 void ata_host_resume(struct ata_host
*host
)
5478 host
->dev
->power
.power_state
= PMSG_ON
;
5482 struct device_type ata_port_type
= {
5485 .pm
= &ata_port_pm_ops
,
5490 * ata_dev_init - Initialize an ata_device structure
5491 * @dev: Device structure to initialize
5493 * Initialize @dev in preparation for probing.
5496 * Inherited from caller.
5498 void ata_dev_init(struct ata_device
*dev
)
5500 struct ata_link
*link
= ata_dev_phys_link(dev
);
5501 struct ata_port
*ap
= link
->ap
;
5502 unsigned long flags
;
5504 /* SATA spd limit is bound to the attached device, reset together */
5505 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5508 /* High bits of dev->flags are used to record warm plug
5509 * requests which occur asynchronously. Synchronize using
5512 spin_lock_irqsave(ap
->lock
, flags
);
5513 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5515 spin_unlock_irqrestore(ap
->lock
, flags
);
5517 memset((void *)dev
+ ATA_DEVICE_CLEAR_BEGIN
, 0,
5518 ATA_DEVICE_CLEAR_END
- ATA_DEVICE_CLEAR_BEGIN
);
5519 dev
->pio_mask
= UINT_MAX
;
5520 dev
->mwdma_mask
= UINT_MAX
;
5521 dev
->udma_mask
= UINT_MAX
;
5525 * ata_link_init - Initialize an ata_link structure
5526 * @ap: ATA port link is attached to
5527 * @link: Link structure to initialize
5528 * @pmp: Port multiplier port number
5533 * Kernel thread context (may sleep)
5535 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5539 /* clear everything except for devices */
5540 memset((void *)link
+ ATA_LINK_CLEAR_BEGIN
, 0,
5541 ATA_LINK_CLEAR_END
- ATA_LINK_CLEAR_BEGIN
);
5545 link
->active_tag
= ATA_TAG_POISON
;
5546 link
->hw_sata_spd_limit
= UINT_MAX
;
5548 /* can't use iterator, ap isn't initialized yet */
5549 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5550 struct ata_device
*dev
= &link
->device
[i
];
5553 dev
->devno
= dev
- link
->device
;
5554 #ifdef CONFIG_ATA_ACPI
5555 dev
->gtf_filter
= ata_acpi_gtf_filter
;
5562 * sata_link_init_spd - Initialize link->sata_spd_limit
5563 * @link: Link to configure sata_spd_limit for
5565 * Initialize @link->[hw_]sata_spd_limit to the currently
5569 * Kernel thread context (may sleep).
5572 * 0 on success, -errno on failure.
5574 int sata_link_init_spd(struct ata_link
*link
)
5579 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5583 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5585 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5587 ata_force_link_limits(link
);
5589 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5595 * ata_port_alloc - allocate and initialize basic ATA port resources
5596 * @host: ATA host this allocated port belongs to
5598 * Allocate and initialize basic ATA port resources.
5601 * Allocate ATA port on success, NULL on failure.
5604 * Inherited from calling layer (may sleep).
5606 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5608 struct ata_port
*ap
;
5612 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5616 ap
->pflags
|= ATA_PFLAG_INITIALIZING
| ATA_PFLAG_FROZEN
;
5617 ap
->lock
= &host
->lock
;
5619 ap
->local_port_no
= -1;
5621 ap
->dev
= host
->dev
;
5623 #if defined(ATA_VERBOSE_DEBUG)
5624 /* turn on all debugging levels */
5625 ap
->msg_enable
= 0x00FF;
5626 #elif defined(ATA_DEBUG)
5627 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5629 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5632 mutex_init(&ap
->scsi_scan_mutex
);
5633 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5634 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5635 INIT_LIST_HEAD(&ap
->eh_done_q
);
5636 init_waitqueue_head(&ap
->eh_wait_q
);
5637 init_completion(&ap
->park_req_pending
);
5638 init_timer_deferrable(&ap
->fastdrain_timer
);
5639 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5640 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5642 ap
->cbl
= ATA_CBL_NONE
;
5644 ata_link_init(ap
, &ap
->link
, 0);
5647 ap
->stats
.unhandled_irq
= 1;
5648 ap
->stats
.idle_irq
= 1;
5650 ata_sff_port_init(ap
);
5655 static void ata_host_release(struct device
*gendev
, void *res
)
5657 struct ata_host
*host
= dev_get_drvdata(gendev
);
5660 for (i
= 0; i
< host
->n_ports
; i
++) {
5661 struct ata_port
*ap
= host
->ports
[i
];
5667 scsi_host_put(ap
->scsi_host
);
5669 kfree(ap
->pmp_link
);
5670 kfree(ap
->slave_link
);
5672 host
->ports
[i
] = NULL
;
5675 dev_set_drvdata(gendev
, NULL
);
5679 * ata_host_alloc - allocate and init basic ATA host resources
5680 * @dev: generic device this host is associated with
5681 * @max_ports: maximum number of ATA ports associated with this host
5683 * Allocate and initialize basic ATA host resources. LLD calls
5684 * this function to allocate a host, initializes it fully and
5685 * attaches it using ata_host_register().
5687 * @max_ports ports are allocated and host->n_ports is
5688 * initialized to @max_ports. The caller is allowed to decrease
5689 * host->n_ports before calling ata_host_register(). The unused
5690 * ports will be automatically freed on registration.
5693 * Allocate ATA host on success, NULL on failure.
5696 * Inherited from calling layer (may sleep).
5698 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5700 struct ata_host
*host
;
5706 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5709 /* alloc a container for our list of ATA ports (buses) */
5710 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5711 /* alloc a container for our list of ATA ports (buses) */
5712 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5716 devres_add(dev
, host
);
5717 dev_set_drvdata(dev
, host
);
5719 spin_lock_init(&host
->lock
);
5720 mutex_init(&host
->eh_mutex
);
5722 host
->n_ports
= max_ports
;
5724 /* allocate ports bound to this host */
5725 for (i
= 0; i
< max_ports
; i
++) {
5726 struct ata_port
*ap
;
5728 ap
= ata_port_alloc(host
);
5733 host
->ports
[i
] = ap
;
5736 devres_remove_group(dev
, NULL
);
5740 devres_release_group(dev
, NULL
);
5745 * ata_host_alloc_pinfo - alloc host and init with port_info array
5746 * @dev: generic device this host is associated with
5747 * @ppi: array of ATA port_info to initialize host with
5748 * @n_ports: number of ATA ports attached to this host
5750 * Allocate ATA host and initialize with info from @ppi. If NULL
5751 * terminated, @ppi may contain fewer entries than @n_ports. The
5752 * last entry will be used for the remaining ports.
5755 * Allocate ATA host on success, NULL on failure.
5758 * Inherited from calling layer (may sleep).
5760 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5761 const struct ata_port_info
* const * ppi
,
5764 const struct ata_port_info
*pi
;
5765 struct ata_host
*host
;
5768 host
= ata_host_alloc(dev
, n_ports
);
5772 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5773 struct ata_port
*ap
= host
->ports
[i
];
5778 ap
->pio_mask
= pi
->pio_mask
;
5779 ap
->mwdma_mask
= pi
->mwdma_mask
;
5780 ap
->udma_mask
= pi
->udma_mask
;
5781 ap
->flags
|= pi
->flags
;
5782 ap
->link
.flags
|= pi
->link_flags
;
5783 ap
->ops
= pi
->port_ops
;
5785 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5786 host
->ops
= pi
->port_ops
;
5793 * ata_slave_link_init - initialize slave link
5794 * @ap: port to initialize slave link for
5796 * Create and initialize slave link for @ap. This enables slave
5797 * link handling on the port.
5799 * In libata, a port contains links and a link contains devices.
5800 * There is single host link but if a PMP is attached to it,
5801 * there can be multiple fan-out links. On SATA, there's usually
5802 * a single device connected to a link but PATA and SATA
5803 * controllers emulating TF based interface can have two - master
5806 * However, there are a few controllers which don't fit into this
5807 * abstraction too well - SATA controllers which emulate TF
5808 * interface with both master and slave devices but also have
5809 * separate SCR register sets for each device. These controllers
5810 * need separate links for physical link handling
5811 * (e.g. onlineness, link speed) but should be treated like a
5812 * traditional M/S controller for everything else (e.g. command
5813 * issue, softreset).
5815 * slave_link is libata's way of handling this class of
5816 * controllers without impacting core layer too much. For
5817 * anything other than physical link handling, the default host
5818 * link is used for both master and slave. For physical link
5819 * handling, separate @ap->slave_link is used. All dirty details
5820 * are implemented inside libata core layer. From LLD's POV, the
5821 * only difference is that prereset, hardreset and postreset are
5822 * called once more for the slave link, so the reset sequence
5823 * looks like the following.
5825 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5826 * softreset(M) -> postreset(M) -> postreset(S)
5828 * Note that softreset is called only for the master. Softreset
5829 * resets both M/S by definition, so SRST on master should handle
5830 * both (the standard method will work just fine).
5833 * Should be called before host is registered.
5836 * 0 on success, -errno on failure.
5838 int ata_slave_link_init(struct ata_port
*ap
)
5840 struct ata_link
*link
;
5842 WARN_ON(ap
->slave_link
);
5843 WARN_ON(ap
->flags
& ATA_FLAG_PMP
);
5845 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
5849 ata_link_init(ap
, link
, 1);
5850 ap
->slave_link
= link
;
5854 static void ata_host_stop(struct device
*gendev
, void *res
)
5856 struct ata_host
*host
= dev_get_drvdata(gendev
);
5859 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5861 for (i
= 0; i
< host
->n_ports
; i
++) {
5862 struct ata_port
*ap
= host
->ports
[i
];
5864 if (ap
->ops
->port_stop
)
5865 ap
->ops
->port_stop(ap
);
5868 if (host
->ops
->host_stop
)
5869 host
->ops
->host_stop(host
);
5873 * ata_finalize_port_ops - finalize ata_port_operations
5874 * @ops: ata_port_operations to finalize
5876 * An ata_port_operations can inherit from another ops and that
5877 * ops can again inherit from another. This can go on as many
5878 * times as necessary as long as there is no loop in the
5879 * inheritance chain.
5881 * Ops tables are finalized when the host is started. NULL or
5882 * unspecified entries are inherited from the closet ancestor
5883 * which has the method and the entry is populated with it.
5884 * After finalization, the ops table directly points to all the
5885 * methods and ->inherits is no longer necessary and cleared.
5887 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5892 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5894 static DEFINE_SPINLOCK(lock
);
5895 const struct ata_port_operations
*cur
;
5896 void **begin
= (void **)ops
;
5897 void **end
= (void **)&ops
->inherits
;
5900 if (!ops
|| !ops
->inherits
)
5905 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
5906 void **inherit
= (void **)cur
;
5908 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
5913 for (pp
= begin
; pp
< end
; pp
++)
5917 ops
->inherits
= NULL
;
5923 * ata_host_start - start and freeze ports of an ATA host
5924 * @host: ATA host to start ports for
5926 * Start and then freeze ports of @host. Started status is
5927 * recorded in host->flags, so this function can be called
5928 * multiple times. Ports are guaranteed to get started only
5929 * once. If host->ops isn't initialized yet, its set to the
5930 * first non-dummy port ops.
5933 * Inherited from calling layer (may sleep).
5936 * 0 if all ports are started successfully, -errno otherwise.
5938 int ata_host_start(struct ata_host
*host
)
5941 void *start_dr
= NULL
;
5944 if (host
->flags
& ATA_HOST_STARTED
)
5947 ata_finalize_port_ops(host
->ops
);
5949 for (i
= 0; i
< host
->n_ports
; i
++) {
5950 struct ata_port
*ap
= host
->ports
[i
];
5952 ata_finalize_port_ops(ap
->ops
);
5954 if (!host
->ops
&& !ata_port_is_dummy(ap
))
5955 host
->ops
= ap
->ops
;
5957 if (ap
->ops
->port_stop
)
5961 if (host
->ops
->host_stop
)
5965 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
5970 for (i
= 0; i
< host
->n_ports
; i
++) {
5971 struct ata_port
*ap
= host
->ports
[i
];
5973 if (ap
->ops
->port_start
) {
5974 rc
= ap
->ops
->port_start(ap
);
5978 "failed to start port %d (errno=%d)\n",
5983 ata_eh_freeze_port(ap
);
5987 devres_add(host
->dev
, start_dr
);
5988 host
->flags
|= ATA_HOST_STARTED
;
5993 struct ata_port
*ap
= host
->ports
[i
];
5995 if (ap
->ops
->port_stop
)
5996 ap
->ops
->port_stop(ap
);
5998 devres_free(start_dr
);
6003 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6004 * @host: host to initialize
6005 * @dev: device host is attached to
6009 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6010 struct ata_port_operations
*ops
)
6012 spin_lock_init(&host
->lock
);
6013 mutex_init(&host
->eh_mutex
);
6014 host
->n_tags
= ATA_MAX_QUEUE
- 1;
6019 void __ata_port_probe(struct ata_port
*ap
)
6021 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6022 unsigned long flags
;
6024 /* kick EH for boot probing */
6025 spin_lock_irqsave(ap
->lock
, flags
);
6027 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
6028 ehi
->action
|= ATA_EH_RESET
;
6029 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6031 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
6032 ap
->pflags
|= ATA_PFLAG_LOADING
;
6033 ata_port_schedule_eh(ap
);
6035 spin_unlock_irqrestore(ap
->lock
, flags
);
6038 int ata_port_probe(struct ata_port
*ap
)
6042 if (ap
->ops
->error_handler
) {
6043 __ata_port_probe(ap
);
6044 ata_port_wait_eh(ap
);
6046 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6047 rc
= ata_bus_probe(ap
);
6048 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6054 static void async_port_probe(void *data
, async_cookie_t cookie
)
6056 struct ata_port
*ap
= data
;
6059 * If we're not allowed to scan this host in parallel,
6060 * we need to wait until all previous scans have completed
6061 * before going further.
6062 * Jeff Garzik says this is only within a controller, so we
6063 * don't need to wait for port 0, only for later ports.
6065 if (!(ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
) && ap
->port_no
!= 0)
6066 async_synchronize_cookie(cookie
);
6068 (void)ata_port_probe(ap
);
6070 /* in order to keep device order, we need to synchronize at this point */
6071 async_synchronize_cookie(cookie
);
6073 ata_scsi_scan_host(ap
, 1);
6077 * ata_host_register - register initialized ATA host
6078 * @host: ATA host to register
6079 * @sht: template for SCSI host
6081 * Register initialized ATA host. @host is allocated using
6082 * ata_host_alloc() and fully initialized by LLD. This function
6083 * starts ports, registers @host with ATA and SCSI layers and
6084 * probe registered devices.
6087 * Inherited from calling layer (may sleep).
6090 * 0 on success, -errno otherwise.
6092 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6096 host
->n_tags
= clamp(sht
->can_queue
, 1, ATA_MAX_QUEUE
- 1);
6098 /* host must have been started */
6099 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6100 dev_err(host
->dev
, "BUG: trying to register unstarted host\n");
6105 /* Blow away unused ports. This happens when LLD can't
6106 * determine the exact number of ports to allocate at
6109 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6110 kfree(host
->ports
[i
]);
6112 /* give ports names and add SCSI hosts */
6113 for (i
= 0; i
< host
->n_ports
; i
++) {
6114 host
->ports
[i
]->print_id
= atomic_inc_return(&ata_print_id
);
6115 host
->ports
[i
]->local_port_no
= i
+ 1;
6118 /* Create associated sysfs transport objects */
6119 for (i
= 0; i
< host
->n_ports
; i
++) {
6120 rc
= ata_tport_add(host
->dev
,host
->ports
[i
]);
6126 rc
= ata_scsi_add_hosts(host
, sht
);
6130 /* set cable, sata_spd_limit and report */
6131 for (i
= 0; i
< host
->n_ports
; i
++) {
6132 struct ata_port
*ap
= host
->ports
[i
];
6133 unsigned long xfer_mask
;
6135 /* set SATA cable type if still unset */
6136 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6137 ap
->cbl
= ATA_CBL_SATA
;
6139 /* init sata_spd_limit to the current value */
6140 sata_link_init_spd(&ap
->link
);
6142 sata_link_init_spd(ap
->slave_link
);
6144 /* print per-port info to dmesg */
6145 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6148 if (!ata_port_is_dummy(ap
)) {
6149 ata_port_info(ap
, "%cATA max %s %s\n",
6150 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
6151 ata_mode_string(xfer_mask
),
6152 ap
->link
.eh_info
.desc
);
6153 ata_ehi_clear_desc(&ap
->link
.eh_info
);
6155 ata_port_info(ap
, "DUMMY\n");
6158 /* perform each probe asynchronously */
6159 for (i
= 0; i
< host
->n_ports
; i
++) {
6160 struct ata_port
*ap
= host
->ports
[i
];
6161 async_schedule(async_port_probe
, ap
);
6168 ata_tport_delete(host
->ports
[i
]);
6175 * ata_host_activate - start host, request IRQ and register it
6176 * @host: target ATA host
6177 * @irq: IRQ to request
6178 * @irq_handler: irq_handler used when requesting IRQ
6179 * @irq_flags: irq_flags used when requesting IRQ
6180 * @sht: scsi_host_template to use when registering the host
6182 * After allocating an ATA host and initializing it, most libata
6183 * LLDs perform three steps to activate the host - start host,
6184 * request IRQ and register it. This helper takes necessasry
6185 * arguments and performs the three steps in one go.
6187 * An invalid IRQ skips the IRQ registration and expects the host to
6188 * have set polling mode on the port. In this case, @irq_handler
6192 * Inherited from calling layer (may sleep).
6195 * 0 on success, -errno otherwise.
6197 int ata_host_activate(struct ata_host
*host
, int irq
,
6198 irq_handler_t irq_handler
, unsigned long irq_flags
,
6199 struct scsi_host_template
*sht
)
6203 rc
= ata_host_start(host
);
6207 /* Special case for polling mode */
6209 WARN_ON(irq_handler
);
6210 return ata_host_register(host
, sht
);
6213 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6214 dev_name(host
->dev
), host
);
6218 for (i
= 0; i
< host
->n_ports
; i
++)
6219 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
6221 rc
= ata_host_register(host
, sht
);
6222 /* if failed, just free the IRQ and leave ports alone */
6224 devm_free_irq(host
->dev
, irq
, host
);
6230 * ata_port_detach - Detach ATA port in prepration of device removal
6231 * @ap: ATA port to be detached
6233 * Detach all ATA devices and the associated SCSI devices of @ap;
6234 * then, remove the associated SCSI host. @ap is guaranteed to
6235 * be quiescent on return from this function.
6238 * Kernel thread context (may sleep).
6240 static void ata_port_detach(struct ata_port
*ap
)
6242 unsigned long flags
;
6243 struct ata_link
*link
;
6244 struct ata_device
*dev
;
6246 if (!ap
->ops
->error_handler
)
6249 /* tell EH we're leaving & flush EH */
6250 spin_lock_irqsave(ap
->lock
, flags
);
6251 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6252 ata_port_schedule_eh(ap
);
6253 spin_unlock_irqrestore(ap
->lock
, flags
);
6255 /* wait till EH commits suicide */
6256 ata_port_wait_eh(ap
);
6258 /* it better be dead now */
6259 WARN_ON(!(ap
->pflags
& ATA_PFLAG_UNLOADED
));
6261 cancel_delayed_work_sync(&ap
->hotplug_task
);
6264 /* clean up zpodd on port removal */
6265 ata_for_each_link(link
, ap
, HOST_FIRST
) {
6266 ata_for_each_dev(dev
, link
, ALL
) {
6267 if (zpodd_dev_enabled(dev
))
6273 for (i
= 0; i
< SATA_PMP_MAX_PORTS
; i
++)
6274 ata_tlink_delete(&ap
->pmp_link
[i
]);
6276 /* remove the associated SCSI host */
6277 scsi_remove_host(ap
->scsi_host
);
6278 ata_tport_delete(ap
);
6282 * ata_host_detach - Detach all ports of an ATA host
6283 * @host: Host to detach
6285 * Detach all ports of @host.
6288 * Kernel thread context (may sleep).
6290 void ata_host_detach(struct ata_host
*host
)
6294 for (i
= 0; i
< host
->n_ports
; i
++)
6295 ata_port_detach(host
->ports
[i
]);
6297 /* the host is dead now, dissociate ACPI */
6298 ata_acpi_dissociate(host
);
6304 * ata_pci_remove_one - PCI layer callback for device removal
6305 * @pdev: PCI device that was removed
6307 * PCI layer indicates to libata via this hook that hot-unplug or
6308 * module unload event has occurred. Detach all ports. Resource
6309 * release is handled via devres.
6312 * Inherited from PCI layer (may sleep).
6314 void ata_pci_remove_one(struct pci_dev
*pdev
)
6316 struct ata_host
*host
= pci_get_drvdata(pdev
);
6318 ata_host_detach(host
);
6321 /* move to PCI subsystem */
6322 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6324 unsigned long tmp
= 0;
6326 switch (bits
->width
) {
6329 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6335 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6341 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6352 return (tmp
== bits
->val
) ? 1 : 0;
6356 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6358 pci_save_state(pdev
);
6359 pci_disable_device(pdev
);
6361 if (mesg
.event
& PM_EVENT_SLEEP
)
6362 pci_set_power_state(pdev
, PCI_D3hot
);
6365 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6369 pci_set_power_state(pdev
, PCI_D0
);
6370 pci_restore_state(pdev
);
6372 rc
= pcim_enable_device(pdev
);
6375 "failed to enable device after resume (%d)\n", rc
);
6379 pci_set_master(pdev
);
6383 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6385 struct ata_host
*host
= pci_get_drvdata(pdev
);
6388 rc
= ata_host_suspend(host
, mesg
);
6392 ata_pci_device_do_suspend(pdev
, mesg
);
6397 int ata_pci_device_resume(struct pci_dev
*pdev
)
6399 struct ata_host
*host
= pci_get_drvdata(pdev
);
6402 rc
= ata_pci_device_do_resume(pdev
);
6404 ata_host_resume(host
);
6407 #endif /* CONFIG_PM */
6409 #endif /* CONFIG_PCI */
6412 * ata_platform_remove_one - Platform layer callback for device removal
6413 * @pdev: Platform device that was removed
6415 * Platform layer indicates to libata via this hook that hot-unplug or
6416 * module unload event has occurred. Detach all ports. Resource
6417 * release is handled via devres.
6420 * Inherited from platform layer (may sleep).
6422 int ata_platform_remove_one(struct platform_device
*pdev
)
6424 struct ata_host
*host
= platform_get_drvdata(pdev
);
6426 ata_host_detach(host
);
6431 static int __init
ata_parse_force_one(char **cur
,
6432 struct ata_force_ent
*force_ent
,
6433 const char **reason
)
6435 /* FIXME: Currently, there's no way to tag init const data and
6436 * using __initdata causes build failure on some versions of
6437 * gcc. Once __initdataconst is implemented, add const to the
6438 * following structure.
6440 static struct ata_force_param force_tbl
[] __initdata
= {
6441 { "40c", .cbl
= ATA_CBL_PATA40
},
6442 { "80c", .cbl
= ATA_CBL_PATA80
},
6443 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6444 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6445 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6446 { "sata", .cbl
= ATA_CBL_SATA
},
6447 { "1.5Gbps", .spd_limit
= 1 },
6448 { "3.0Gbps", .spd_limit
= 2 },
6449 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6450 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6451 { "dump_id", .horkage_on
= ATA_HORKAGE_DUMP_ID
},
6452 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6453 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6454 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6455 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6456 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6457 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6458 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6459 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6460 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6461 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6462 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6463 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6464 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6465 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6466 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6467 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6468 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6469 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6470 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6471 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6472 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6473 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6474 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6475 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6476 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6477 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6478 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6479 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6480 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6481 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6482 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6483 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6484 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6485 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6486 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6487 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6488 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6489 { "rstonce", .lflags
= ATA_LFLAG_RST_ONCE
},
6490 { "atapi_dmadir", .horkage_on
= ATA_HORKAGE_ATAPI_DMADIR
},
6491 { "disable", .horkage_on
= ATA_HORKAGE_DISABLE
},
6493 char *start
= *cur
, *p
= *cur
;
6494 char *id
, *val
, *endp
;
6495 const struct ata_force_param
*match_fp
= NULL
;
6496 int nr_matches
= 0, i
;
6498 /* find where this param ends and update *cur */
6499 while (*p
!= '\0' && *p
!= ',')
6510 p
= strchr(start
, ':');
6512 val
= strstrip(start
);
6517 id
= strstrip(start
);
6518 val
= strstrip(p
+ 1);
6521 p
= strchr(id
, '.');
6524 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6525 if (p
== endp
|| *endp
!= '\0') {
6526 *reason
= "invalid device";
6531 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6532 if (p
== endp
|| *endp
!= '\0') {
6533 *reason
= "invalid port/link";
6538 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6539 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6540 const struct ata_force_param
*fp
= &force_tbl
[i
];
6542 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6548 if (strcasecmp(val
, fp
->name
) == 0) {
6555 *reason
= "unknown value";
6558 if (nr_matches
> 1) {
6559 *reason
= "ambigious value";
6563 force_ent
->param
= *match_fp
;
6568 static void __init
ata_parse_force_param(void)
6570 int idx
= 0, size
= 1;
6571 int last_port
= -1, last_device
= -1;
6572 char *p
, *cur
, *next
;
6574 /* calculate maximum number of params and allocate force_tbl */
6575 for (p
= ata_force_param_buf
; *p
; p
++)
6579 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6580 if (!ata_force_tbl
) {
6581 printk(KERN_WARNING
"ata: failed to extend force table, "
6582 "libata.force ignored\n");
6586 /* parse and populate the table */
6587 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6588 const char *reason
= "";
6589 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6592 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6593 printk(KERN_WARNING
"ata: failed to parse force "
6594 "parameter \"%s\" (%s)\n",
6599 if (te
.port
== -1) {
6600 te
.port
= last_port
;
6601 te
.device
= last_device
;
6604 ata_force_tbl
[idx
++] = te
;
6606 last_port
= te
.port
;
6607 last_device
= te
.device
;
6610 ata_force_tbl_size
= idx
;
6613 static int __init
ata_init(void)
6617 ata_parse_force_param();
6619 rc
= ata_sff_init();
6621 kfree(ata_force_tbl
);
6625 libata_transport_init();
6626 ata_scsi_transport_template
= ata_attach_transport();
6627 if (!ata_scsi_transport_template
) {
6633 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6640 static void __exit
ata_exit(void)
6642 ata_release_transport(ata_scsi_transport_template
);
6643 libata_transport_exit();
6645 kfree(ata_force_tbl
);
6648 subsys_initcall(ata_init
);
6649 module_exit(ata_exit
);
6651 static DEFINE_RATELIMIT_STATE(ratelimit
, HZ
/ 5, 1);
6653 int ata_ratelimit(void)
6655 return __ratelimit(&ratelimit
);
6659 * ata_msleep - ATA EH owner aware msleep
6660 * @ap: ATA port to attribute the sleep to
6661 * @msecs: duration to sleep in milliseconds
6663 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6664 * ownership is released before going to sleep and reacquired
6665 * after the sleep is complete. IOW, other ports sharing the
6666 * @ap->host will be allowed to own the EH while this task is
6672 void ata_msleep(struct ata_port
*ap
, unsigned int msecs
)
6674 bool owns_eh
= ap
&& ap
->host
->eh_owner
== current
;
6686 * ata_wait_register - wait until register value changes
6687 * @ap: ATA port to wait register for, can be NULL
6688 * @reg: IO-mapped register
6689 * @mask: Mask to apply to read register value
6690 * @val: Wait condition
6691 * @interval: polling interval in milliseconds
6692 * @timeout: timeout in milliseconds
6694 * Waiting for some bits of register to change is a common
6695 * operation for ATA controllers. This function reads 32bit LE
6696 * IO-mapped register @reg and tests for the following condition.
6698 * (*@reg & mask) != val
6700 * If the condition is met, it returns; otherwise, the process is
6701 * repeated after @interval_msec until timeout.
6704 * Kernel thread context (may sleep)
6707 * The final register value.
6709 u32
ata_wait_register(struct ata_port
*ap
, void __iomem
*reg
, u32 mask
, u32 val
,
6710 unsigned long interval
, unsigned long timeout
)
6712 unsigned long deadline
;
6715 tmp
= ioread32(reg
);
6717 /* Calculate timeout _after_ the first read to make sure
6718 * preceding writes reach the controller before starting to
6719 * eat away the timeout.
6721 deadline
= ata_deadline(jiffies
, timeout
);
6723 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
6724 ata_msleep(ap
, interval
);
6725 tmp
= ioread32(reg
);
6734 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6736 return AC_ERR_SYSTEM
;
6739 static void ata_dummy_error_handler(struct ata_port
*ap
)
6744 struct ata_port_operations ata_dummy_port_ops
= {
6745 .qc_prep
= ata_noop_qc_prep
,
6746 .qc_issue
= ata_dummy_qc_issue
,
6747 .error_handler
= ata_dummy_error_handler
,
6748 .sched_eh
= ata_std_sched_eh
,
6749 .end_eh
= ata_std_end_eh
,
6752 const struct ata_port_info ata_dummy_port_info
= {
6753 .port_ops
= &ata_dummy_port_ops
,
6757 * Utility print functions
6759 void ata_port_printk(const struct ata_port
*ap
, const char *level
,
6760 const char *fmt
, ...)
6762 struct va_format vaf
;
6765 va_start(args
, fmt
);
6770 printk("%sata%u: %pV", level
, ap
->print_id
, &vaf
);
6774 EXPORT_SYMBOL(ata_port_printk
);
6776 void ata_link_printk(const struct ata_link
*link
, const char *level
,
6777 const char *fmt
, ...)
6779 struct va_format vaf
;
6782 va_start(args
, fmt
);
6787 if (sata_pmp_attached(link
->ap
) || link
->ap
->slave_link
)
6788 printk("%sata%u.%02u: %pV",
6789 level
, link
->ap
->print_id
, link
->pmp
, &vaf
);
6791 printk("%sata%u: %pV",
6792 level
, link
->ap
->print_id
, &vaf
);
6796 EXPORT_SYMBOL(ata_link_printk
);
6798 void ata_dev_printk(const struct ata_device
*dev
, const char *level
,
6799 const char *fmt
, ...)
6801 struct va_format vaf
;
6804 va_start(args
, fmt
);
6809 printk("%sata%u.%02u: %pV",
6810 level
, dev
->link
->ap
->print_id
, dev
->link
->pmp
+ dev
->devno
,
6815 EXPORT_SYMBOL(ata_dev_printk
);
6817 void ata_print_version(const struct device
*dev
, const char *version
)
6819 dev_printk(KERN_DEBUG
, dev
, "version %s\n", version
);
6821 EXPORT_SYMBOL(ata_print_version
);
6824 * libata is essentially a library of internal helper functions for
6825 * low-level ATA host controller drivers. As such, the API/ABI is
6826 * likely to change as new drivers are added and updated.
6827 * Do not depend on ABI/API stability.
6829 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6830 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6831 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6832 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6833 EXPORT_SYMBOL_GPL(sata_port_ops
);
6834 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6835 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6836 EXPORT_SYMBOL_GPL(ata_link_next
);
6837 EXPORT_SYMBOL_GPL(ata_dev_next
);
6838 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6839 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity
);
6840 EXPORT_SYMBOL_GPL(ata_host_init
);
6841 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6842 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6843 EXPORT_SYMBOL_GPL(ata_slave_link_init
);
6844 EXPORT_SYMBOL_GPL(ata_host_start
);
6845 EXPORT_SYMBOL_GPL(ata_host_register
);
6846 EXPORT_SYMBOL_GPL(ata_host_activate
);
6847 EXPORT_SYMBOL_GPL(ata_host_detach
);
6848 EXPORT_SYMBOL_GPL(ata_sg_init
);
6849 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6850 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6851 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6852 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6853 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6854 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6855 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6856 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6857 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6858 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6859 EXPORT_SYMBOL_GPL(ata_mode_string
);
6860 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6861 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6862 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6863 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6864 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6865 EXPORT_SYMBOL_GPL(sata_set_spd
);
6866 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6867 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6868 EXPORT_SYMBOL_GPL(sata_link_resume
);
6869 EXPORT_SYMBOL_GPL(sata_link_scr_lpm
);
6870 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6871 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6872 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6873 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6874 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6875 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6876 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6877 EXPORT_SYMBOL_GPL(ata_msleep
);
6878 EXPORT_SYMBOL_GPL(ata_wait_register
);
6879 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6880 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6881 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6882 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6883 EXPORT_SYMBOL_GPL(__ata_change_queue_depth
);
6884 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6885 EXPORT_SYMBOL_GPL(sata_scr_read
);
6886 EXPORT_SYMBOL_GPL(sata_scr_write
);
6887 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6888 EXPORT_SYMBOL_GPL(ata_link_online
);
6889 EXPORT_SYMBOL_GPL(ata_link_offline
);
6891 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6892 EXPORT_SYMBOL_GPL(ata_host_resume
);
6893 #endif /* CONFIG_PM */
6894 EXPORT_SYMBOL_GPL(ata_id_string
);
6895 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6896 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
6897 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6899 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6900 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6901 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6902 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6903 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6906 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6907 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6909 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6910 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6911 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6912 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6913 #endif /* CONFIG_PM */
6914 #endif /* CONFIG_PCI */
6916 EXPORT_SYMBOL_GPL(ata_platform_remove_one
);
6918 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
6919 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
6920 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
6921 EXPORT_SYMBOL_GPL(ata_port_desc
);
6923 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
6924 #endif /* CONFIG_PCI */
6925 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6926 EXPORT_SYMBOL_GPL(ata_link_abort
);
6927 EXPORT_SYMBOL_GPL(ata_port_abort
);
6928 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6929 EXPORT_SYMBOL_GPL(sata_async_notification
);
6930 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6931 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6932 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6933 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6934 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
6935 EXPORT_SYMBOL_GPL(ata_do_eh
);
6936 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
6938 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6939 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6940 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6941 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
6942 EXPORT_SYMBOL_GPL(ata_cable_sata
);