Bluetooth: hci_uart: Use generic functionality from Broadcom module
[linux/fpc-iii.git] / drivers / ata / sata_dwc_460ex.c
blobfdb0f2879ea7c65a055eca20ccd8ba0642d0fc1e
1 /*
2 * drivers/ata/sata_dwc_460ex.c
4 * Synopsys DesignWare Cores (DWC) SATA host driver
6 * Author: Mark Miesfeld <mmiesfeld@amcc.com>
8 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9 * Copyright 2008 DENX Software Engineering
11 * Based on versions provided by AMCC and Synopsys which are:
12 * Copyright 2006 Applied Micro Circuits Corporation
13 * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
21 #ifdef CONFIG_SATA_DWC_DEBUG
22 #define DEBUG
23 #endif
25 #ifdef CONFIG_SATA_DWC_VDEBUG
26 #define VERBOSE_DEBUG
27 #define DEBUG_NCQ
28 #endif
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/device.h>
33 #include <linux/of_address.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_platform.h>
36 #include <linux/platform_device.h>
37 #include <linux/libata.h>
38 #include <linux/slab.h>
39 #include "libata.h"
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_cmnd.h>
44 /* These two are defined in "libata.h" */
45 #undef DRV_NAME
46 #undef DRV_VERSION
48 #define DRV_NAME "sata-dwc"
49 #define DRV_VERSION "1.3"
51 #ifndef out_le32
52 #define out_le32(a, v) __raw_writel(__cpu_to_le32(v), (void __iomem *)(a))
53 #endif
55 #ifndef in_le32
56 #define in_le32(a) __le32_to_cpu(__raw_readl((void __iomem *)(a)))
57 #endif
59 #ifndef NO_IRQ
60 #define NO_IRQ 0
61 #endif
63 /* SATA DMA driver Globals */
64 #define DMA_NUM_CHANS 1
65 #define DMA_NUM_CHAN_REGS 8
67 /* SATA DMA Register definitions */
68 #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/
70 struct dmareg {
71 u32 low; /* Low bits 0-31 */
72 u32 high; /* High bits 32-63 */
75 /* DMA Per Channel registers */
76 struct dma_chan_regs {
77 struct dmareg sar; /* Source Address */
78 struct dmareg dar; /* Destination address */
79 struct dmareg llp; /* Linked List Pointer */
80 struct dmareg ctl; /* Control */
81 struct dmareg sstat; /* Source Status not implemented in core */
82 struct dmareg dstat; /* Destination Status not implemented in core*/
83 struct dmareg sstatar; /* Source Status Address not impl in core */
84 struct dmareg dstatar; /* Destination Status Address not implemente */
85 struct dmareg cfg; /* Config */
86 struct dmareg sgr; /* Source Gather */
87 struct dmareg dsr; /* Destination Scatter */
90 /* Generic Interrupt Registers */
91 struct dma_interrupt_regs {
92 struct dmareg tfr; /* Transfer Interrupt */
93 struct dmareg block; /* Block Interrupt */
94 struct dmareg srctran; /* Source Transfer Interrupt */
95 struct dmareg dsttran; /* Dest Transfer Interrupt */
96 struct dmareg error; /* Error */
99 struct ahb_dma_regs {
100 struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS];
101 struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */
102 struct dma_interrupt_regs interrupt_status; /* Interrupt Status */
103 struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */
104 struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */
105 struct dmareg statusInt; /* Interrupt combined*/
106 struct dmareg rq_srcreg; /* Src Trans Req */
107 struct dmareg rq_dstreg; /* Dst Trans Req */
108 struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req*/
109 struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req*/
110 struct dmareg rq_lst_srcreg; /* Last Src Trans Req*/
111 struct dmareg rq_lst_dstreg; /* Last Dst Trans Req*/
112 struct dmareg dma_cfg; /* DMA Config */
113 struct dmareg dma_chan_en; /* DMA Channel Enable*/
114 struct dmareg dma_id; /* DMA ID */
115 struct dmareg dma_test; /* DMA Test */
116 struct dmareg res1; /* reserved */
117 struct dmareg res2; /* reserved */
119 * DMA Comp Params
120 * Param 6 = dma_param[0], Param 5 = dma_param[1],
121 * Param 4 = dma_param[2] ...
123 struct dmareg dma_params[6];
126 /* Data structure for linked list item */
127 struct lli {
128 u32 sar; /* Source Address */
129 u32 dar; /* Destination address */
130 u32 llp; /* Linked List Pointer */
131 struct dmareg ctl; /* Control */
132 struct dmareg dstat; /* Destination Status */
135 enum {
136 SATA_DWC_DMAC_LLI_SZ = (sizeof(struct lli)),
137 SATA_DWC_DMAC_LLI_NUM = 256,
138 SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \
139 SATA_DWC_DMAC_LLI_NUM),
140 SATA_DWC_DMAC_TWIDTH_BYTES = 4,
141 SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \
142 SATA_DWC_DMAC_TWIDTH_BYTES),
145 /* DMA Register Operation Bits */
146 enum {
147 DMA_EN = 0x00000001, /* Enable AHB DMA */
148 DMA_CTL_LLP_SRCEN = 0x10000000, /* Blk chain enable Src */
149 DMA_CTL_LLP_DSTEN = 0x08000000, /* Blk chain enable Dst */
152 #define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */
153 #define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */
154 /* Enable channel */
155 #define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \
156 ((0x000000001 << (ch)) << 8))
157 /* Disable channel */
158 #define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8))
159 /* Transfer Type & Flow Controller */
160 #define DMA_CTL_TTFC(type) (((type) & 0x7) << 20)
161 #define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */
162 #define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */
163 /* Src Burst Transaction Length */
164 #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
165 /* Dst Burst Transaction Length */
166 #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
167 /* Source Transfer Width */
168 #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
169 /* Destination Transfer Width */
170 #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
172 /* Assign HW handshaking interface (x) to destination / source peripheral */
173 #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
174 #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
175 #define DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5)
176 #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
179 * This define is used to set block chaining disabled in the control low
180 * register. It is already in little endian format so it can be &'d dirctly.
181 * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
183 enum {
184 DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7,
185 DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */
186 DMA_CTL_TTFC_M2P_PER = 0x00000003, /* Mem to per, peripheral cntr */
187 DMA_CTL_SINC_INC = 0x00000000, /* Source Address Increment */
188 DMA_CTL_SINC_DEC = 0x00000200,
189 DMA_CTL_SINC_NOCHANGE = 0x00000400,
190 DMA_CTL_DINC_INC = 0x00000000, /* Destination Address Increment */
191 DMA_CTL_DINC_DEC = 0x00000080,
192 DMA_CTL_DINC_NOCHANGE = 0x00000100,
193 DMA_CTL_INT_EN = 0x00000001, /* Interrupt Enable */
195 /* Channel Configuration Register high bits */
196 DMA_CFG_FCMOD_REQ = 0x00000001, /* Flow Control - request based */
197 DMA_CFG_PROTCTL = (0x00000003 << 2),/* Protection Control */
199 /* Channel Configuration Register low bits */
200 DMA_CFG_RELD_DST = 0x80000000, /* Reload Dest / Src Addr */
201 DMA_CFG_RELD_SRC = 0x40000000,
202 DMA_CFG_HS_SELSRC = 0x00000800, /* Software handshake Src/ Dest */
203 DMA_CFG_HS_SELDST = 0x00000400,
204 DMA_CFG_FIFOEMPTY = (0x00000001 << 9), /* FIFO Empty bit */
206 /* Channel Linked List Pointer Register */
207 DMA_LLP_AHBMASTER1 = 0, /* List Master Select */
208 DMA_LLP_AHBMASTER2 = 1,
210 SATA_DWC_MAX_PORTS = 1,
212 SATA_DWC_SCR_OFFSET = 0x24,
213 SATA_DWC_REG_OFFSET = 0x64,
216 /* DWC SATA Registers */
217 struct sata_dwc_regs {
218 u32 fptagr; /* 1st party DMA tag */
219 u32 fpbor; /* 1st party DMA buffer offset */
220 u32 fptcr; /* 1st party DMA Xfr count */
221 u32 dmacr; /* DMA Control */
222 u32 dbtsr; /* DMA Burst Transac size */
223 u32 intpr; /* Interrupt Pending */
224 u32 intmr; /* Interrupt Mask */
225 u32 errmr; /* Error Mask */
226 u32 llcr; /* Link Layer Control */
227 u32 phycr; /* PHY Control */
228 u32 physr; /* PHY Status */
229 u32 rxbistpd; /* Recvd BIST pattern def register */
230 u32 rxbistpd1; /* Recvd BIST data dword1 */
231 u32 rxbistpd2; /* Recvd BIST pattern data dword2 */
232 u32 txbistpd; /* Trans BIST pattern def register */
233 u32 txbistpd1; /* Trans BIST data dword1 */
234 u32 txbistpd2; /* Trans BIST data dword2 */
235 u32 bistcr; /* BIST Control Register */
236 u32 bistfctr; /* BIST FIS Count Register */
237 u32 bistsr; /* BIST Status Register */
238 u32 bistdecr; /* BIST Dword Error count register */
239 u32 res[15]; /* Reserved locations */
240 u32 testr; /* Test Register */
241 u32 versionr; /* Version Register */
242 u32 idr; /* ID Register */
243 u32 unimpl[192]; /* Unimplemented */
244 u32 dmadr[256]; /* FIFO Locations in DMA Mode */
247 enum {
248 SCR_SCONTROL_DET_ENABLE = 0x00000001,
249 SCR_SSTATUS_DET_PRESENT = 0x00000001,
250 SCR_SERROR_DIAG_X = 0x04000000,
251 /* DWC SATA Register Operations */
252 SATA_DWC_TXFIFO_DEPTH = 0x01FF,
253 SATA_DWC_RXFIFO_DEPTH = 0x01FF,
254 SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004,
255 SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
256 SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
257 SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN,
258 SATA_DWC_INTPR_DMAT = 0x00000001,
259 SATA_DWC_INTPR_NEWFP = 0x00000002,
260 SATA_DWC_INTPR_PMABRT = 0x00000004,
261 SATA_DWC_INTPR_ERR = 0x00000008,
262 SATA_DWC_INTPR_NEWBIST = 0x00000010,
263 SATA_DWC_INTPR_IPF = 0x10000000,
264 SATA_DWC_INTMR_DMATM = 0x00000001,
265 SATA_DWC_INTMR_NEWFPM = 0x00000002,
266 SATA_DWC_INTMR_PMABRTM = 0x00000004,
267 SATA_DWC_INTMR_ERRM = 0x00000008,
268 SATA_DWC_INTMR_NEWBISTM = 0x00000010,
269 SATA_DWC_LLCR_SCRAMEN = 0x00000001,
270 SATA_DWC_LLCR_DESCRAMEN = 0x00000002,
271 SATA_DWC_LLCR_RPDEN = 0x00000004,
272 /* This is all error bits, zero's are reserved fields. */
273 SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03
276 #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F)
277 #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
278 SATA_DWC_DMACR_TMOD_TXCHEN)
279 #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
280 SATA_DWC_DMACR_TMOD_TXCHEN)
281 #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
282 #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
283 << 16)
284 struct sata_dwc_device {
285 struct device *dev; /* generic device struct */
286 struct ata_probe_ent *pe; /* ptr to probe-ent */
287 struct ata_host *host;
288 u8 __iomem *reg_base;
289 struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */
290 int irq_dma;
293 #define SATA_DWC_QCMD_MAX 32
295 struct sata_dwc_device_port {
296 struct sata_dwc_device *hsdev;
297 int cmd_issued[SATA_DWC_QCMD_MAX];
298 struct lli *llit[SATA_DWC_QCMD_MAX]; /* DMA LLI table */
299 dma_addr_t llit_dma[SATA_DWC_QCMD_MAX];
300 u32 dma_chan[SATA_DWC_QCMD_MAX];
301 int dma_pending[SATA_DWC_QCMD_MAX];
305 * Commonly used DWC SATA driver Macros
307 #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\
308 (host)->private_data)
309 #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\
310 (ap)->host->private_data)
311 #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\
312 (ap)->private_data)
313 #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\
314 (qc)->ap->host->private_data)
315 #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\
316 (hsdevp)->hsdev)
318 enum {
319 SATA_DWC_CMD_ISSUED_NOT = 0,
320 SATA_DWC_CMD_ISSUED_PEND = 1,
321 SATA_DWC_CMD_ISSUED_EXEC = 2,
322 SATA_DWC_CMD_ISSUED_NODATA = 3,
324 SATA_DWC_DMA_PENDING_NONE = 0,
325 SATA_DWC_DMA_PENDING_TX = 1,
326 SATA_DWC_DMA_PENDING_RX = 2,
329 struct sata_dwc_host_priv {
330 void __iomem *scr_addr_sstatus;
331 u32 sata_dwc_sactive_issued ;
332 u32 sata_dwc_sactive_queued ;
333 u32 dma_interrupt_count;
334 struct ahb_dma_regs *sata_dma_regs;
335 struct device *dwc_dev;
336 int dma_channel;
339 static struct sata_dwc_host_priv host_pvt;
342 * Prototypes
344 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
345 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
346 u32 check_status);
347 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
348 static void sata_dwc_port_stop(struct ata_port *ap);
349 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
350 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq);
351 static void dma_dwc_exit(struct sata_dwc_device *hsdev);
352 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
353 struct lli *lli, dma_addr_t dma_lli,
354 void __iomem *addr, int dir);
355 static void dma_dwc_xfer_start(int dma_ch);
357 static const char *get_prot_descript(u8 protocol)
359 switch ((enum ata_tf_protocols)protocol) {
360 case ATA_PROT_NODATA:
361 return "ATA no data";
362 case ATA_PROT_PIO:
363 return "ATA PIO";
364 case ATA_PROT_DMA:
365 return "ATA DMA";
366 case ATA_PROT_NCQ:
367 return "ATA NCQ";
368 case ATAPI_PROT_NODATA:
369 return "ATAPI no data";
370 case ATAPI_PROT_PIO:
371 return "ATAPI PIO";
372 case ATAPI_PROT_DMA:
373 return "ATAPI DMA";
374 default:
375 return "unknown";
379 static const char *get_dma_dir_descript(int dma_dir)
381 switch ((enum dma_data_direction)dma_dir) {
382 case DMA_BIDIRECTIONAL:
383 return "bidirectional";
384 case DMA_TO_DEVICE:
385 return "to device";
386 case DMA_FROM_DEVICE:
387 return "from device";
388 default:
389 return "none";
393 static void sata_dwc_tf_dump(struct ata_taskfile *tf)
395 dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:"
396 "0x%lx device: %x\n", tf->command,
397 get_prot_descript(tf->protocol), tf->flags, tf->device);
398 dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
399 "lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal,
400 tf->lbam, tf->lbah);
401 dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x "
402 "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
403 tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
404 tf->hob_lbah);
408 * Function: get_burst_length_encode
409 * arguments: datalength: length in bytes of data
410 * returns value to be programmed in register corresponding to data length
411 * This value is effectively the log(base 2) of the length
413 static int get_burst_length_encode(int datalength)
415 int items = datalength >> 2; /* div by 4 to get lword count */
417 if (items >= 64)
418 return 5;
420 if (items >= 32)
421 return 4;
423 if (items >= 16)
424 return 3;
426 if (items >= 8)
427 return 2;
429 if (items >= 4)
430 return 1;
432 return 0;
435 static void clear_chan_interrupts(int c)
437 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low),
438 DMA_CHANNEL(c));
439 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low),
440 DMA_CHANNEL(c));
441 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low),
442 DMA_CHANNEL(c));
443 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low),
444 DMA_CHANNEL(c));
445 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low),
446 DMA_CHANNEL(c));
450 * Function: dma_request_channel
451 * arguments: None
452 * returns channel number if available else -1
453 * This function assigns the next available DMA channel from the list to the
454 * requester
456 static int dma_request_channel(void)
458 /* Check if the channel is not currently in use */
459 if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &
460 DMA_CHANNEL(host_pvt.dma_channel)))
461 return host_pvt.dma_channel;
462 dev_err(host_pvt.dwc_dev, "%s Channel %d is currently in use\n",
463 __func__, host_pvt.dma_channel);
464 return -1;
468 * Function: dma_dwc_interrupt
469 * arguments: irq, dev_id, pt_regs
470 * returns channel number if available else -1
471 * Interrupt Handler for DW AHB SATA DMA
473 static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance)
475 int chan;
476 u32 tfr_reg, err_reg;
477 unsigned long flags;
478 struct sata_dwc_device *hsdev = hsdev_instance;
479 struct ata_host *host = (struct ata_host *)hsdev->host;
480 struct ata_port *ap;
481 struct sata_dwc_device_port *hsdevp;
482 u8 tag = 0;
483 unsigned int port = 0;
485 spin_lock_irqsave(&host->lock, flags);
486 ap = host->ports[port];
487 hsdevp = HSDEVP_FROM_AP(ap);
488 tag = ap->link.active_tag;
490 tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\
491 .low));
492 err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\
493 .low));
495 dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
496 tfr_reg, err_reg, hsdevp->dma_pending[tag], port);
498 chan = host_pvt.dma_channel;
499 if (chan >= 0) {
500 /* Check for end-of-transfer interrupt. */
501 if (tfr_reg & DMA_CHANNEL(chan)) {
503 * Each DMA command produces 2 interrupts. Only
504 * complete the command after both interrupts have been
505 * seen. (See sata_dwc_isr())
507 host_pvt.dma_interrupt_count++;
508 sata_dwc_clear_dmacr(hsdevp, tag);
510 if (hsdevp->dma_pending[tag] ==
511 SATA_DWC_DMA_PENDING_NONE) {
512 dev_err(ap->dev, "DMA not pending eot=0x%08x "
513 "err=0x%08x tag=0x%02x pending=%d\n",
514 tfr_reg, err_reg, tag,
515 hsdevp->dma_pending[tag]);
518 if ((host_pvt.dma_interrupt_count % 2) == 0)
519 sata_dwc_dma_xfer_complete(ap, 1);
521 /* Clear the interrupt */
522 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
523 .tfr.low),
524 DMA_CHANNEL(chan));
527 /* Check for error interrupt. */
528 if (err_reg & DMA_CHANNEL(chan)) {
529 /* TODO Need error handler ! */
530 dev_err(ap->dev, "error interrupt err_reg=0x%08x\n",
531 err_reg);
533 /* Clear the interrupt. */
534 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
535 .error.low),
536 DMA_CHANNEL(chan));
539 spin_unlock_irqrestore(&host->lock, flags);
540 return IRQ_HANDLED;
544 * Function: dma_request_interrupts
545 * arguments: hsdev
546 * returns status
547 * This function registers ISR for a particular DMA channel interrupt
549 static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq)
551 int retval = 0;
552 int chan = host_pvt.dma_channel;
554 if (chan >= 0) {
555 /* Unmask error interrupt */
556 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low,
557 DMA_ENABLE_CHAN(chan));
559 /* Unmask end-of-transfer interrupt */
560 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low,
561 DMA_ENABLE_CHAN(chan));
564 retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev);
565 if (retval) {
566 dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n",
567 __func__, irq);
568 return -ENODEV;
571 /* Mark this interrupt as requested */
572 hsdev->irq_dma = irq;
573 return 0;
577 * Function: map_sg_to_lli
578 * The Synopsis driver has a comment proposing that better performance
579 * is possible by only enabling interrupts on the last item in the linked list.
580 * However, it seems that could be a problem if an error happened on one of the
581 * first items. The transfer would halt, but no error interrupt would occur.
582 * Currently this function sets interrupts enabled for each linked list item:
583 * DMA_CTL_INT_EN.
585 static int map_sg_to_lli(struct scatterlist *sg, int num_elems,
586 struct lli *lli, dma_addr_t dma_lli,
587 void __iomem *dmadr_addr, int dir)
589 int i, idx = 0;
590 int fis_len = 0;
591 dma_addr_t next_llp;
592 int bl;
593 int sms_val, dms_val;
595 sms_val = 0;
596 dms_val = 1 + host_pvt.dma_channel;
597 dev_dbg(host_pvt.dwc_dev,
598 "%s: sg=%p nelem=%d lli=%p dma_lli=0x%pad dmadr=0x%p\n",
599 __func__, sg, num_elems, lli, &dma_lli, dmadr_addr);
601 bl = get_burst_length_encode(AHB_DMA_BRST_DFLT);
603 for (i = 0; i < num_elems; i++, sg++) {
604 u32 addr, offset;
605 u32 sg_len, len;
607 addr = (u32) sg_dma_address(sg);
608 sg_len = sg_dma_len(sg);
610 dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len"
611 "=%d\n", __func__, i, addr, sg_len);
613 while (sg_len) {
614 if (idx >= SATA_DWC_DMAC_LLI_NUM) {
615 /* The LLI table is not large enough. */
616 dev_err(host_pvt.dwc_dev, "LLI table overrun "
617 "(idx=%d)\n", idx);
618 break;
620 len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ?
621 SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len;
623 offset = addr & 0xffff;
624 if ((offset + sg_len) > 0x10000)
625 len = 0x10000 - offset;
628 * Make sure a LLI block is not created that will span
629 * 8K max FIS boundary. If the block spans such a FIS
630 * boundary, there is a chance that a DMA burst will
631 * cross that boundary -- this results in an error in
632 * the host controller.
634 if (fis_len + len > 8192) {
635 dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len="
636 "%d(0x%x) len=%d(0x%x)\n", fis_len,
637 fis_len, len, len);
638 len = 8192 - fis_len;
639 fis_len = 0;
640 } else {
641 fis_len += len;
643 if (fis_len == 8192)
644 fis_len = 0;
647 * Set DMA addresses and lower half of control register
648 * based on direction.
650 if (dir == DMA_FROM_DEVICE) {
651 lli[idx].dar = cpu_to_le32(addr);
652 lli[idx].sar = cpu_to_le32((u32)dmadr_addr);
654 lli[idx].ctl.low = cpu_to_le32(
655 DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) |
656 DMA_CTL_SMS(sms_val) |
657 DMA_CTL_DMS(dms_val) |
658 DMA_CTL_SRC_MSIZE(bl) |
659 DMA_CTL_DST_MSIZE(bl) |
660 DMA_CTL_SINC_NOCHANGE |
661 DMA_CTL_SRC_TRWID(2) |
662 DMA_CTL_DST_TRWID(2) |
663 DMA_CTL_INT_EN |
664 DMA_CTL_LLP_SRCEN |
665 DMA_CTL_LLP_DSTEN);
666 } else { /* DMA_TO_DEVICE */
667 lli[idx].sar = cpu_to_le32(addr);
668 lli[idx].dar = cpu_to_le32((u32)dmadr_addr);
670 lli[idx].ctl.low = cpu_to_le32(
671 DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) |
672 DMA_CTL_SMS(dms_val) |
673 DMA_CTL_DMS(sms_val) |
674 DMA_CTL_SRC_MSIZE(bl) |
675 DMA_CTL_DST_MSIZE(bl) |
676 DMA_CTL_DINC_NOCHANGE |
677 DMA_CTL_SRC_TRWID(2) |
678 DMA_CTL_DST_TRWID(2) |
679 DMA_CTL_INT_EN |
680 DMA_CTL_LLP_SRCEN |
681 DMA_CTL_LLP_DSTEN);
684 dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: "
685 "0x%08x val: 0x%08x\n", __func__,
686 len, DMA_CTL_BLK_TS(len / 4));
688 /* Program the LLI CTL high register */
689 lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\
690 (len / 4));
692 /* Program the next pointer. The next pointer must be
693 * the physical address, not the virtual address.
695 next_llp = (dma_lli + ((idx + 1) * sizeof(struct \
696 lli)));
698 /* The last 2 bits encode the list master select. */
699 next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2);
701 lli[idx].llp = cpu_to_le32(next_llp);
702 idx++;
703 sg_len -= len;
704 addr += len;
709 * The last next ptr has to be zero and the last control low register
710 * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
711 * and destination enable) set back to 0 (disabled.) This is what tells
712 * the core that this is the last item in the linked list.
714 if (idx) {
715 lli[idx-1].llp = 0x00000000;
716 lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32;
718 /* Flush cache to memory */
719 dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx),
720 DMA_BIDIRECTIONAL);
723 return idx;
727 * Function: dma_dwc_xfer_start
728 * arguments: Channel number
729 * Return : None
730 * Enables the DMA channel
732 static void dma_dwc_xfer_start(int dma_ch)
734 /* Enable the DMA channel */
735 out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low),
736 in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) |
737 DMA_ENABLE_CHAN(dma_ch));
740 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
741 struct lli *lli, dma_addr_t dma_lli,
742 void __iomem *addr, int dir)
744 int dma_ch;
745 int num_lli;
746 /* Acquire DMA channel */
747 dma_ch = dma_request_channel();
748 if (dma_ch == -1) {
749 dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n",
750 __func__);
751 return -EAGAIN;
754 /* Convert SG list to linked list of items (LLIs) for AHB DMA */
755 num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir);
757 dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
758 " 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems,
759 lli, (u32)dma_lli, addr, num_lli);
761 clear_chan_interrupts(dma_ch);
763 /* Program the CFG register. */
764 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high),
765 DMA_CFG_HW_HS_SRC(dma_ch) | DMA_CFG_HW_HS_DEST(dma_ch) |
766 DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ);
767 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low),
768 DMA_CFG_HW_CH_PRIOR(dma_ch));
770 /* Program the address of the linked list */
771 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low),
772 DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2));
774 /* Program the CTL register with src enable / dst enable */
775 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low),
776 DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN);
777 return dma_ch;
781 * Function: dma_dwc_exit
782 * arguments: None
783 * returns status
784 * This function exits the SATA DMA driver
786 static void dma_dwc_exit(struct sata_dwc_device *hsdev)
788 dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__);
789 if (host_pvt.sata_dma_regs) {
790 iounmap((void __iomem *)host_pvt.sata_dma_regs);
791 host_pvt.sata_dma_regs = NULL;
794 if (hsdev->irq_dma) {
795 free_irq(hsdev->irq_dma, hsdev);
796 hsdev->irq_dma = 0;
801 * Function: dma_dwc_init
802 * arguments: hsdev
803 * returns status
804 * This function initializes the SATA DMA driver
806 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq)
808 int err;
810 err = dma_request_interrupts(hsdev, irq);
811 if (err) {
812 dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns"
813 " %d\n", __func__, err);
814 return err;
817 /* Enabe DMA */
818 out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN);
820 dev_notice(host_pvt.dwc_dev, "DMA initialized\n");
821 dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\
822 sata_dma_regs);
824 return 0;
827 static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
829 if (scr > SCR_NOTIFICATION) {
830 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
831 __func__, scr);
832 return -EINVAL;
835 *val = in_le32(link->ap->ioaddr.scr_addr + (scr * 4));
836 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
837 __func__, link->ap->print_id, scr, *val);
839 return 0;
842 static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
844 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
845 __func__, link->ap->print_id, scr, val);
846 if (scr > SCR_NOTIFICATION) {
847 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
848 __func__, scr);
849 return -EINVAL;
851 out_le32(link->ap->ioaddr.scr_addr + (scr * 4), val);
853 return 0;
856 static u32 core_scr_read(unsigned int scr)
858 return in_le32(host_pvt.scr_addr_sstatus + (scr * 4));
861 static void core_scr_write(unsigned int scr, u32 val)
863 out_le32(host_pvt.scr_addr_sstatus + (scr * 4), val);
866 static void clear_serror(void)
868 u32 val;
869 val = core_scr_read(SCR_ERROR);
870 core_scr_write(SCR_ERROR, val);
873 static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
875 out_le32(&hsdev->sata_dwc_regs->intpr,
876 in_le32(&hsdev->sata_dwc_regs->intpr));
879 static u32 qcmd_tag_to_mask(u8 tag)
881 return 0x00000001 << (tag & 0x1f);
884 /* See ahci.c */
885 static void sata_dwc_error_intr(struct ata_port *ap,
886 struct sata_dwc_device *hsdev, uint intpr)
888 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
889 struct ata_eh_info *ehi = &ap->link.eh_info;
890 unsigned int err_mask = 0, action = 0;
891 struct ata_queued_cmd *qc;
892 u32 serror;
893 u8 status, tag;
894 u32 err_reg;
896 ata_ehi_clear_desc(ehi);
898 serror = core_scr_read(SCR_ERROR);
899 status = ap->ops->sff_check_status(ap);
901 err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\
902 low));
903 tag = ap->link.active_tag;
905 dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
906 "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
907 __func__, serror, intpr, status, host_pvt.dma_interrupt_count,
908 hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg);
910 /* Clear error register and interrupt bit */
911 clear_serror();
912 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
914 /* This is the only error happening now. TODO check for exact error */
916 err_mask |= AC_ERR_HOST_BUS;
917 action |= ATA_EH_RESET;
919 /* Pass this on to EH */
920 ehi->serror |= serror;
921 ehi->action |= action;
923 qc = ata_qc_from_tag(ap, tag);
924 if (qc)
925 qc->err_mask |= err_mask;
926 else
927 ehi->err_mask |= err_mask;
929 ata_port_abort(ap);
933 * Function : sata_dwc_isr
934 * arguments : irq, void *dev_instance, struct pt_regs *regs
935 * Return value : irqreturn_t - status of IRQ
936 * This Interrupt handler called via port ops registered function.
937 * .irq_handler = sata_dwc_isr
939 static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
941 struct ata_host *host = (struct ata_host *)dev_instance;
942 struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
943 struct ata_port *ap;
944 struct ata_queued_cmd *qc;
945 unsigned long flags;
946 u8 status, tag;
947 int handled, num_processed, port = 0;
948 uint intpr, sactive, sactive2, tag_mask;
949 struct sata_dwc_device_port *hsdevp;
950 host_pvt.sata_dwc_sactive_issued = 0;
952 spin_lock_irqsave(&host->lock, flags);
954 /* Read the interrupt register */
955 intpr = in_le32(&hsdev->sata_dwc_regs->intpr);
957 ap = host->ports[port];
958 hsdevp = HSDEVP_FROM_AP(ap);
960 dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
961 ap->link.active_tag);
963 /* Check for error interrupt */
964 if (intpr & SATA_DWC_INTPR_ERR) {
965 sata_dwc_error_intr(ap, hsdev, intpr);
966 handled = 1;
967 goto DONE;
970 /* Check for DMA SETUP FIS (FP DMA) interrupt */
971 if (intpr & SATA_DWC_INTPR_NEWFP) {
972 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
974 tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr));
975 dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
976 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
977 dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
979 host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag);
981 qc = ata_qc_from_tag(ap, tag);
983 * Start FP DMA for NCQ command. At this point the tag is the
984 * active tag. It is the tag that matches the command about to
985 * be completed.
987 qc->ap->link.active_tag = tag;
988 sata_dwc_bmdma_start_by_tag(qc, tag);
990 handled = 1;
991 goto DONE;
993 sactive = core_scr_read(SCR_ACTIVE);
994 tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
996 /* If no sactive issued and tag_mask is zero then this is not NCQ */
997 if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) {
998 if (ap->link.active_tag == ATA_TAG_POISON)
999 tag = 0;
1000 else
1001 tag = ap->link.active_tag;
1002 qc = ata_qc_from_tag(ap, tag);
1004 /* DEV interrupt w/ no active qc? */
1005 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
1006 dev_err(ap->dev, "%s interrupt with no active qc "
1007 "qc=%p\n", __func__, qc);
1008 ap->ops->sff_check_status(ap);
1009 handled = 1;
1010 goto DONE;
1012 status = ap->ops->sff_check_status(ap);
1014 qc->ap->link.active_tag = tag;
1015 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1017 if (status & ATA_ERR) {
1018 dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
1019 sata_dwc_qc_complete(ap, qc, 1);
1020 handled = 1;
1021 goto DONE;
1024 dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
1025 __func__, get_prot_descript(qc->tf.protocol));
1026 DRVSTILLBUSY:
1027 if (ata_is_dma(qc->tf.protocol)) {
1029 * Each DMA transaction produces 2 interrupts. The DMAC
1030 * transfer complete interrupt and the SATA controller
1031 * operation done interrupt. The command should be
1032 * completed only after both interrupts are seen.
1034 host_pvt.dma_interrupt_count++;
1035 if (hsdevp->dma_pending[tag] == \
1036 SATA_DWC_DMA_PENDING_NONE) {
1037 dev_err(ap->dev, "%s: DMA not pending "
1038 "intpr=0x%08x status=0x%08x pending"
1039 "=%d\n", __func__, intpr, status,
1040 hsdevp->dma_pending[tag]);
1043 if ((host_pvt.dma_interrupt_count % 2) == 0)
1044 sata_dwc_dma_xfer_complete(ap, 1);
1045 } else if (ata_is_pio(qc->tf.protocol)) {
1046 ata_sff_hsm_move(ap, qc, status, 0);
1047 handled = 1;
1048 goto DONE;
1049 } else {
1050 if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1051 goto DRVSTILLBUSY;
1054 handled = 1;
1055 goto DONE;
1059 * This is a NCQ command. At this point we need to figure out for which
1060 * tags we have gotten a completion interrupt. One interrupt may serve
1061 * as completion for more than one operation when commands are queued
1062 * (NCQ). We need to process each completed command.
1065 /* process completed commands */
1066 sactive = core_scr_read(SCR_ACTIVE);
1067 tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
1069 if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \
1070 tag_mask > 1) {
1071 dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x"
1072 "tag_mask=0x%08x\n", __func__, sactive,
1073 host_pvt.sata_dwc_sactive_issued, tag_mask);
1076 if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \
1077 (host_pvt.sata_dwc_sactive_issued)) {
1078 dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x "
1079 "(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask"
1080 "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued,
1081 tag_mask);
1084 /* read just to clear ... not bad if currently still busy */
1085 status = ap->ops->sff_check_status(ap);
1086 dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
1088 tag = 0;
1089 num_processed = 0;
1090 while (tag_mask) {
1091 num_processed++;
1092 while (!(tag_mask & 0x00000001)) {
1093 tag++;
1094 tag_mask <<= 1;
1097 tag_mask &= (~0x00000001);
1098 qc = ata_qc_from_tag(ap, tag);
1100 /* To be picked up by completion functions */
1101 qc->ap->link.active_tag = tag;
1102 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1104 /* Let libata/scsi layers handle error */
1105 if (status & ATA_ERR) {
1106 dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
1107 status);
1108 sata_dwc_qc_complete(ap, qc, 1);
1109 handled = 1;
1110 goto DONE;
1113 /* Process completed command */
1114 dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
1115 get_prot_descript(qc->tf.protocol));
1116 if (ata_is_dma(qc->tf.protocol)) {
1117 host_pvt.dma_interrupt_count++;
1118 if (hsdevp->dma_pending[tag] == \
1119 SATA_DWC_DMA_PENDING_NONE)
1120 dev_warn(ap->dev, "%s: DMA not pending?\n",
1121 __func__);
1122 if ((host_pvt.dma_interrupt_count % 2) == 0)
1123 sata_dwc_dma_xfer_complete(ap, 1);
1124 } else {
1125 if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1126 goto STILLBUSY;
1128 continue;
1130 STILLBUSY:
1131 ap->stats.idle_irq++;
1132 dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
1133 ap->print_id);
1134 } /* while tag_mask */
1137 * Check to see if any commands completed while we were processing our
1138 * initial set of completed commands (read status clears interrupts,
1139 * so we might miss a completed command interrupt if one came in while
1140 * we were processing --we read status as part of processing a completed
1141 * command).
1143 sactive2 = core_scr_read(SCR_ACTIVE);
1144 if (sactive2 != sactive) {
1145 dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2"
1146 "=0x%x\n", sactive, sactive2);
1148 handled = 1;
1150 DONE:
1151 spin_unlock_irqrestore(&host->lock, flags);
1152 return IRQ_RETVAL(handled);
1155 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
1157 struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
1159 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
1160 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1161 SATA_DWC_DMACR_RX_CLEAR(
1162 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1163 } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
1164 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1165 SATA_DWC_DMACR_TX_CLEAR(
1166 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1167 } else {
1169 * This should not happen, it indicates the driver is out of
1170 * sync. If it does happen, clear dmacr anyway.
1172 dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and"
1173 "TX DMA not pending tag=0x%02x pending=%d"
1174 " dmacr: 0x%08x\n", __func__, tag,
1175 hsdevp->dma_pending[tag],
1176 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1177 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1178 SATA_DWC_DMACR_TXRXCH_CLEAR);
1182 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
1184 struct ata_queued_cmd *qc;
1185 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1186 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1187 u8 tag = 0;
1189 tag = ap->link.active_tag;
1190 qc = ata_qc_from_tag(ap, tag);
1191 if (!qc) {
1192 dev_err(ap->dev, "failed to get qc");
1193 return;
1196 #ifdef DEBUG_NCQ
1197 if (tag > 0) {
1198 dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1199 "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command,
1200 get_dma_dir_descript(qc->dma_dir),
1201 get_prot_descript(qc->tf.protocol),
1202 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1204 #endif
1206 if (ata_is_dma(qc->tf.protocol)) {
1207 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
1208 dev_err(ap->dev, "%s DMA protocol RX and TX DMA not "
1209 "pending dmacr: 0x%08x\n", __func__,
1210 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1213 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
1214 sata_dwc_qc_complete(ap, qc, check_status);
1215 ap->link.active_tag = ATA_TAG_POISON;
1216 } else {
1217 sata_dwc_qc_complete(ap, qc, check_status);
1221 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
1222 u32 check_status)
1224 u8 status = 0;
1225 u32 mask = 0x0;
1226 u8 tag = qc->tag;
1227 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1228 host_pvt.sata_dwc_sactive_queued = 0;
1229 dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);
1231 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
1232 dev_err(ap->dev, "TX DMA PENDING\n");
1233 else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
1234 dev_err(ap->dev, "RX DMA PENDING\n");
1235 dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1236 " protocol=%d\n", qc->tf.command, status, ap->print_id,
1237 qc->tf.protocol);
1239 /* clear active bit */
1240 mask = (~(qcmd_tag_to_mask(tag)));
1241 host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \
1242 & mask;
1243 host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \
1244 & mask;
1245 ata_qc_complete(qc);
1246 return 0;
1249 static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
1251 /* Enable selective interrupts by setting the interrupt maskregister*/
1252 out_le32(&hsdev->sata_dwc_regs->intmr,
1253 SATA_DWC_INTMR_ERRM |
1254 SATA_DWC_INTMR_NEWFPM |
1255 SATA_DWC_INTMR_PMABRTM |
1256 SATA_DWC_INTMR_DMATM);
1258 * Unmask the error bits that should trigger an error interrupt by
1259 * setting the error mask register.
1261 out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
1263 dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1264 __func__, in_le32(&hsdev->sata_dwc_regs->intmr),
1265 in_le32(&hsdev->sata_dwc_regs->errmr));
1268 static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base)
1270 port->cmd_addr = (void __iomem *)base + 0x00;
1271 port->data_addr = (void __iomem *)base + 0x00;
1273 port->error_addr = (void __iomem *)base + 0x04;
1274 port->feature_addr = (void __iomem *)base + 0x04;
1276 port->nsect_addr = (void __iomem *)base + 0x08;
1278 port->lbal_addr = (void __iomem *)base + 0x0c;
1279 port->lbam_addr = (void __iomem *)base + 0x10;
1280 port->lbah_addr = (void __iomem *)base + 0x14;
1282 port->device_addr = (void __iomem *)base + 0x18;
1283 port->command_addr = (void __iomem *)base + 0x1c;
1284 port->status_addr = (void __iomem *)base + 0x1c;
1286 port->altstatus_addr = (void __iomem *)base + 0x20;
1287 port->ctl_addr = (void __iomem *)base + 0x20;
1291 * Function : sata_dwc_port_start
1292 * arguments : struct ata_ioports *port
1293 * Return value : returns 0 if success, error code otherwise
1294 * This function allocates the scatter gather LLI table for AHB DMA
1296 static int sata_dwc_port_start(struct ata_port *ap)
1298 int err = 0;
1299 struct sata_dwc_device *hsdev;
1300 struct sata_dwc_device_port *hsdevp = NULL;
1301 struct device *pdev;
1302 int i;
1304 hsdev = HSDEV_FROM_AP(ap);
1306 dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
1308 hsdev->host = ap->host;
1309 pdev = ap->host->dev;
1310 if (!pdev) {
1311 dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
1312 err = -ENODEV;
1313 goto CLEANUP;
1316 /* Allocate Port Struct */
1317 hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
1318 if (!hsdevp) {
1319 dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
1320 err = -ENOMEM;
1321 goto CLEANUP;
1323 hsdevp->hsdev = hsdev;
1325 for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
1326 hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
1328 ap->bmdma_prd = NULL; /* set these so libata doesn't use them */
1329 ap->bmdma_prd_dma = 0;
1332 * DMA - Assign scatter gather LLI table. We can't use the libata
1333 * version since it's PRD is IDE PCI specific.
1335 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1336 hsdevp->llit[i] = dma_alloc_coherent(pdev,
1337 SATA_DWC_DMAC_LLI_TBL_SZ,
1338 &(hsdevp->llit_dma[i]),
1339 GFP_ATOMIC);
1340 if (!hsdevp->llit[i]) {
1341 dev_err(ap->dev, "%s: dma_alloc_coherent failed\n",
1342 __func__);
1343 err = -ENOMEM;
1344 goto CLEANUP_ALLOC;
1348 if (ap->port_no == 0) {
1349 dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1350 __func__);
1351 out_le32(&hsdev->sata_dwc_regs->dmacr,
1352 SATA_DWC_DMACR_TXRXCH_CLEAR);
1354 dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
1355 __func__);
1356 out_le32(&hsdev->sata_dwc_regs->dbtsr,
1357 (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1358 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
1361 /* Clear any error bits before libata starts issuing commands */
1362 clear_serror();
1363 ap->private_data = hsdevp;
1364 dev_dbg(ap->dev, "%s: done\n", __func__);
1365 return 0;
1367 CLEANUP_ALLOC:
1368 kfree(hsdevp);
1369 CLEANUP:
1370 dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id);
1371 return err;
1374 static void sata_dwc_port_stop(struct ata_port *ap)
1376 int i;
1377 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1378 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1380 dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
1382 if (hsdevp && hsdev) {
1383 /* deallocate LLI table */
1384 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1385 dma_free_coherent(ap->host->dev,
1386 SATA_DWC_DMAC_LLI_TBL_SZ,
1387 hsdevp->llit[i], hsdevp->llit_dma[i]);
1390 kfree(hsdevp);
1392 ap->private_data = NULL;
1396 * Function : sata_dwc_exec_command_by_tag
1397 * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1398 * Return value : None
1399 * This function keeps track of individual command tag ids and calls
1400 * ata_exec_command in libata
1402 static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
1403 struct ata_taskfile *tf,
1404 u8 tag, u32 cmd_issued)
1406 unsigned long flags;
1407 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1409 dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
1410 ata_get_cmd_descript(tf->command), tag);
1412 spin_lock_irqsave(&ap->host->lock, flags);
1413 hsdevp->cmd_issued[tag] = cmd_issued;
1414 spin_unlock_irqrestore(&ap->host->lock, flags);
1416 * Clear SError before executing a new command.
1417 * sata_dwc_scr_write and read can not be used here. Clearing the PM
1418 * managed SError register for the disk needs to be done before the
1419 * task file is loaded.
1421 clear_serror();
1422 ata_sff_exec_command(ap, tf);
1425 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
1427 sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
1428 SATA_DWC_CMD_ISSUED_PEND);
1431 static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
1433 u8 tag = qc->tag;
1435 if (ata_is_ncq(qc->tf.protocol)) {
1436 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1437 __func__, qc->ap->link.sactive, tag);
1438 } else {
1439 tag = 0;
1441 sata_dwc_bmdma_setup_by_tag(qc, tag);
1444 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
1446 int start_dma;
1447 u32 reg, dma_chan;
1448 struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
1449 struct ata_port *ap = qc->ap;
1450 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1451 int dir = qc->dma_dir;
1452 dma_chan = hsdevp->dma_chan[tag];
1454 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
1455 start_dma = 1;
1456 if (dir == DMA_TO_DEVICE)
1457 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
1458 else
1459 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
1460 } else {
1461 dev_err(ap->dev, "%s: Command not pending cmd_issued=%d "
1462 "(tag=%d) DMA NOT started\n", __func__,
1463 hsdevp->cmd_issued[tag], tag);
1464 start_dma = 0;
1467 dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1468 "start_dma? %x\n", __func__, qc, tag, qc->tf.command,
1469 get_dma_dir_descript(qc->dma_dir), start_dma);
1470 sata_dwc_tf_dump(&(qc->tf));
1472 if (start_dma) {
1473 reg = core_scr_read(SCR_ERROR);
1474 if (reg & SATA_DWC_SERROR_ERR_BITS) {
1475 dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
1476 __func__, reg);
1479 if (dir == DMA_TO_DEVICE)
1480 out_le32(&hsdev->sata_dwc_regs->dmacr,
1481 SATA_DWC_DMACR_TXCHEN);
1482 else
1483 out_le32(&hsdev->sata_dwc_regs->dmacr,
1484 SATA_DWC_DMACR_RXCHEN);
1486 /* Enable AHB DMA transfer on the specified channel */
1487 dma_dwc_xfer_start(dma_chan);
1491 static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
1493 u8 tag = qc->tag;
1495 if (ata_is_ncq(qc->tf.protocol)) {
1496 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1497 __func__, qc->ap->link.sactive, tag);
1498 } else {
1499 tag = 0;
1501 dev_dbg(qc->ap->dev, "%s\n", __func__);
1502 sata_dwc_bmdma_start_by_tag(qc, tag);
1506 * Function : sata_dwc_qc_prep_by_tag
1507 * arguments : ata_queued_cmd *qc, u8 tag
1508 * Return value : None
1509 * qc_prep for a particular queued command based on tag
1511 static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag)
1513 struct scatterlist *sg = qc->sg;
1514 struct ata_port *ap = qc->ap;
1515 int dma_chan;
1516 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1517 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1519 dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n",
1520 __func__, ap->port_no, get_dma_dir_descript(qc->dma_dir),
1521 qc->n_elem);
1523 dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag],
1524 hsdevp->llit_dma[tag],
1525 (void __iomem *)&hsdev->sata_dwc_regs->dmadr,
1526 qc->dma_dir);
1527 if (dma_chan < 0) {
1528 dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n",
1529 __func__, dma_chan);
1530 return;
1532 hsdevp->dma_chan[tag] = dma_chan;
1535 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
1537 u32 sactive;
1538 u8 tag = qc->tag;
1539 struct ata_port *ap = qc->ap;
1541 #ifdef DEBUG_NCQ
1542 if (qc->tag > 0 || ap->link.sactive > 1)
1543 dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1544 "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1545 __func__, ap->print_id, qc->tf.command,
1546 ata_get_cmd_descript(qc->tf.command),
1547 qc->tag, get_prot_descript(qc->tf.protocol),
1548 ap->link.active_tag, ap->link.sactive);
1549 #endif
1551 if (!ata_is_ncq(qc->tf.protocol))
1552 tag = 0;
1553 sata_dwc_qc_prep_by_tag(qc, tag);
1555 if (ata_is_ncq(qc->tf.protocol)) {
1556 sactive = core_scr_read(SCR_ACTIVE);
1557 sactive |= (0x00000001 << tag);
1558 core_scr_write(SCR_ACTIVE, sactive);
1560 dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x "
1561 "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive,
1562 sactive);
1564 ap->ops->sff_tf_load(ap, &qc->tf);
1565 sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag,
1566 SATA_DWC_CMD_ISSUED_PEND);
1567 } else {
1568 ata_sff_qc_issue(qc);
1570 return 0;
1574 * Function : sata_dwc_qc_prep
1575 * arguments : ata_queued_cmd *qc
1576 * Return value : None
1577 * qc_prep for a particular queued command
1580 static void sata_dwc_qc_prep(struct ata_queued_cmd *qc)
1582 if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO))
1583 return;
1585 #ifdef DEBUG_NCQ
1586 if (qc->tag > 0)
1587 dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1588 __func__, qc->tag, qc->ap->link.active_tag);
1590 return ;
1591 #endif
1594 static void sata_dwc_error_handler(struct ata_port *ap)
1596 ata_sff_error_handler(ap);
1599 static int sata_dwc_hardreset(struct ata_link *link, unsigned int *class,
1600 unsigned long deadline)
1602 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap);
1603 int ret;
1605 ret = sata_sff_hardreset(link, class, deadline);
1607 sata_dwc_enable_interrupts(hsdev);
1609 /* Reconfigure the DMA control register */
1610 out_le32(&hsdev->sata_dwc_regs->dmacr,
1611 SATA_DWC_DMACR_TXRXCH_CLEAR);
1613 /* Reconfigure the DMA Burst Transaction Size register */
1614 out_le32(&hsdev->sata_dwc_regs->dbtsr,
1615 SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1616 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT));
1618 return ret;
1622 * scsi mid-layer and libata interface structures
1624 static struct scsi_host_template sata_dwc_sht = {
1625 ATA_NCQ_SHT(DRV_NAME),
1627 * test-only: Currently this driver doesn't handle NCQ
1628 * correctly. We enable NCQ but set the queue depth to a
1629 * max of 1. This will get fixed in in a future release.
1631 .sg_tablesize = LIBATA_MAX_PRD,
1632 /* .can_queue = ATA_MAX_QUEUE, */
1633 .dma_boundary = ATA_DMA_BOUNDARY,
1636 static struct ata_port_operations sata_dwc_ops = {
1637 .inherits = &ata_sff_port_ops,
1639 .error_handler = sata_dwc_error_handler,
1640 .hardreset = sata_dwc_hardreset,
1642 .qc_prep = sata_dwc_qc_prep,
1643 .qc_issue = sata_dwc_qc_issue,
1645 .scr_read = sata_dwc_scr_read,
1646 .scr_write = sata_dwc_scr_write,
1648 .port_start = sata_dwc_port_start,
1649 .port_stop = sata_dwc_port_stop,
1651 .bmdma_setup = sata_dwc_bmdma_setup,
1652 .bmdma_start = sata_dwc_bmdma_start,
1655 static const struct ata_port_info sata_dwc_port_info[] = {
1657 .flags = ATA_FLAG_SATA | ATA_FLAG_NCQ,
1658 .pio_mask = ATA_PIO4,
1659 .udma_mask = ATA_UDMA6,
1660 .port_ops = &sata_dwc_ops,
1664 static int sata_dwc_probe(struct platform_device *ofdev)
1666 struct sata_dwc_device *hsdev;
1667 u32 idr, versionr;
1668 char *ver = (char *)&versionr;
1669 u8 __iomem *base;
1670 int err = 0;
1671 int irq;
1672 struct ata_host *host;
1673 struct ata_port_info pi = sata_dwc_port_info[0];
1674 const struct ata_port_info *ppi[] = { &pi, NULL };
1675 struct device_node *np = ofdev->dev.of_node;
1676 u32 dma_chan;
1678 /* Allocate DWC SATA device */
1679 host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
1680 hsdev = devm_kzalloc(&ofdev->dev, sizeof(*hsdev), GFP_KERNEL);
1681 if (!host || !hsdev)
1682 return -ENOMEM;
1684 host->private_data = hsdev;
1686 if (of_property_read_u32(np, "dma-channel", &dma_chan)) {
1687 dev_warn(&ofdev->dev, "no dma-channel property set."
1688 " Use channel 0\n");
1689 dma_chan = 0;
1691 host_pvt.dma_channel = dma_chan;
1693 /* Ioremap SATA registers */
1694 base = of_iomap(np, 0);
1695 if (!base) {
1696 dev_err(&ofdev->dev, "ioremap failed for SATA register"
1697 " address\n");
1698 return -ENODEV;
1700 hsdev->reg_base = base;
1701 dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");
1703 /* Synopsys DWC SATA specific Registers */
1704 hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
1706 /* Setup port */
1707 host->ports[0]->ioaddr.cmd_addr = base;
1708 host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
1709 host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
1710 sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base);
1712 /* Read the ID and Version Registers */
1713 idr = in_le32(&hsdev->sata_dwc_regs->idr);
1714 versionr = in_le32(&hsdev->sata_dwc_regs->versionr);
1715 dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
1716 idr, ver[0], ver[1], ver[2]);
1718 /* Get SATA DMA interrupt number */
1719 irq = irq_of_parse_and_map(np, 1);
1720 if (irq == NO_IRQ) {
1721 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1722 err = -ENODEV;
1723 goto error_iomap;
1726 /* Get physical SATA DMA register base address */
1727 host_pvt.sata_dma_regs = (void *)of_iomap(np, 1);
1728 if (!(host_pvt.sata_dma_regs)) {
1729 dev_err(&ofdev->dev, "ioremap failed for AHBDMA register"
1730 " address\n");
1731 err = -ENODEV;
1732 goto error_iomap;
1735 /* Save dev for later use in dev_xxx() routines */
1736 host_pvt.dwc_dev = &ofdev->dev;
1738 /* Initialize AHB DMAC */
1739 err = dma_dwc_init(hsdev, irq);
1740 if (err)
1741 goto error_dma_iomap;
1743 /* Enable SATA Interrupts */
1744 sata_dwc_enable_interrupts(hsdev);
1746 /* Get SATA interrupt number */
1747 irq = irq_of_parse_and_map(np, 0);
1748 if (irq == NO_IRQ) {
1749 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1750 err = -ENODEV;
1751 goto error_out;
1755 * Now, register with libATA core, this will also initiate the
1756 * device discovery process, invoking our port_start() handler &
1757 * error_handler() to execute a dummy Softreset EH session
1759 err = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
1760 if (err)
1761 dev_err(&ofdev->dev, "failed to activate host");
1763 dev_set_drvdata(&ofdev->dev, host);
1764 return 0;
1766 error_out:
1767 /* Free SATA DMA resources */
1768 dma_dwc_exit(hsdev);
1769 error_dma_iomap:
1770 iounmap((void __iomem *)host_pvt.sata_dma_regs);
1771 error_iomap:
1772 iounmap(base);
1773 return err;
1776 static int sata_dwc_remove(struct platform_device *ofdev)
1778 struct device *dev = &ofdev->dev;
1779 struct ata_host *host = dev_get_drvdata(dev);
1780 struct sata_dwc_device *hsdev = host->private_data;
1782 ata_host_detach(host);
1784 /* Free SATA DMA resources */
1785 dma_dwc_exit(hsdev);
1787 iounmap((void __iomem *)host_pvt.sata_dma_regs);
1788 iounmap(hsdev->reg_base);
1789 dev_dbg(&ofdev->dev, "done\n");
1790 return 0;
1793 static const struct of_device_id sata_dwc_match[] = {
1794 { .compatible = "amcc,sata-460ex", },
1797 MODULE_DEVICE_TABLE(of, sata_dwc_match);
1799 static struct platform_driver sata_dwc_driver = {
1800 .driver = {
1801 .name = DRV_NAME,
1802 .of_match_table = sata_dwc_match,
1804 .probe = sata_dwc_probe,
1805 .remove = sata_dwc_remove,
1808 module_platform_driver(sata_dwc_driver);
1810 MODULE_LICENSE("GPL");
1811 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1812 MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1813 MODULE_VERSION(DRV_VERSION);