2 * drivers/ata/sata_dwc_460ex.c
4 * Synopsys DesignWare Cores (DWC) SATA host driver
6 * Author: Mark Miesfeld <mmiesfeld@amcc.com>
8 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9 * Copyright 2008 DENX Software Engineering
11 * Based on versions provided by AMCC and Synopsys which are:
12 * Copyright 2006 Applied Micro Circuits Corporation
13 * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
21 #ifdef CONFIG_SATA_DWC_DEBUG
25 #ifdef CONFIG_SATA_DWC_VDEBUG
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/device.h>
33 #include <linux/of_address.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_platform.h>
36 #include <linux/platform_device.h>
37 #include <linux/libata.h>
38 #include <linux/slab.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_cmnd.h>
44 /* These two are defined in "libata.h" */
48 #define DRV_NAME "sata-dwc"
49 #define DRV_VERSION "1.3"
52 #define out_le32(a, v) __raw_writel(__cpu_to_le32(v), (void __iomem *)(a))
56 #define in_le32(a) __le32_to_cpu(__raw_readl((void __iomem *)(a)))
63 /* SATA DMA driver Globals */
64 #define DMA_NUM_CHANS 1
65 #define DMA_NUM_CHAN_REGS 8
67 /* SATA DMA Register definitions */
68 #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/
71 u32 low
; /* Low bits 0-31 */
72 u32 high
; /* High bits 32-63 */
75 /* DMA Per Channel registers */
76 struct dma_chan_regs
{
77 struct dmareg sar
; /* Source Address */
78 struct dmareg dar
; /* Destination address */
79 struct dmareg llp
; /* Linked List Pointer */
80 struct dmareg ctl
; /* Control */
81 struct dmareg sstat
; /* Source Status not implemented in core */
82 struct dmareg dstat
; /* Destination Status not implemented in core*/
83 struct dmareg sstatar
; /* Source Status Address not impl in core */
84 struct dmareg dstatar
; /* Destination Status Address not implemente */
85 struct dmareg cfg
; /* Config */
86 struct dmareg sgr
; /* Source Gather */
87 struct dmareg dsr
; /* Destination Scatter */
90 /* Generic Interrupt Registers */
91 struct dma_interrupt_regs
{
92 struct dmareg tfr
; /* Transfer Interrupt */
93 struct dmareg block
; /* Block Interrupt */
94 struct dmareg srctran
; /* Source Transfer Interrupt */
95 struct dmareg dsttran
; /* Dest Transfer Interrupt */
96 struct dmareg error
; /* Error */
100 struct dma_chan_regs chan_regs
[DMA_NUM_CHAN_REGS
];
101 struct dma_interrupt_regs interrupt_raw
; /* Raw Interrupt */
102 struct dma_interrupt_regs interrupt_status
; /* Interrupt Status */
103 struct dma_interrupt_regs interrupt_mask
; /* Interrupt Mask */
104 struct dma_interrupt_regs interrupt_clear
; /* Interrupt Clear */
105 struct dmareg statusInt
; /* Interrupt combined*/
106 struct dmareg rq_srcreg
; /* Src Trans Req */
107 struct dmareg rq_dstreg
; /* Dst Trans Req */
108 struct dmareg rq_sgl_srcreg
; /* Sngl Src Trans Req*/
109 struct dmareg rq_sgl_dstreg
; /* Sngl Dst Trans Req*/
110 struct dmareg rq_lst_srcreg
; /* Last Src Trans Req*/
111 struct dmareg rq_lst_dstreg
; /* Last Dst Trans Req*/
112 struct dmareg dma_cfg
; /* DMA Config */
113 struct dmareg dma_chan_en
; /* DMA Channel Enable*/
114 struct dmareg dma_id
; /* DMA ID */
115 struct dmareg dma_test
; /* DMA Test */
116 struct dmareg res1
; /* reserved */
117 struct dmareg res2
; /* reserved */
120 * Param 6 = dma_param[0], Param 5 = dma_param[1],
121 * Param 4 = dma_param[2] ...
123 struct dmareg dma_params
[6];
126 /* Data structure for linked list item */
128 u32 sar
; /* Source Address */
129 u32 dar
; /* Destination address */
130 u32 llp
; /* Linked List Pointer */
131 struct dmareg ctl
; /* Control */
132 struct dmareg dstat
; /* Destination Status */
136 SATA_DWC_DMAC_LLI_SZ
= (sizeof(struct lli
)),
137 SATA_DWC_DMAC_LLI_NUM
= 256,
138 SATA_DWC_DMAC_LLI_TBL_SZ
= (SATA_DWC_DMAC_LLI_SZ
* \
139 SATA_DWC_DMAC_LLI_NUM
),
140 SATA_DWC_DMAC_TWIDTH_BYTES
= 4,
141 SATA_DWC_DMAC_CTRL_TSIZE_MAX
= (0x00000800 * \
142 SATA_DWC_DMAC_TWIDTH_BYTES
),
145 /* DMA Register Operation Bits */
147 DMA_EN
= 0x00000001, /* Enable AHB DMA */
148 DMA_CTL_LLP_SRCEN
= 0x10000000, /* Blk chain enable Src */
149 DMA_CTL_LLP_DSTEN
= 0x08000000, /* Blk chain enable Dst */
152 #define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */
153 #define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */
155 #define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \
156 ((0x000000001 << (ch)) << 8))
157 /* Disable channel */
158 #define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8))
159 /* Transfer Type & Flow Controller */
160 #define DMA_CTL_TTFC(type) (((type) & 0x7) << 20)
161 #define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */
162 #define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */
163 /* Src Burst Transaction Length */
164 #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
165 /* Dst Burst Transaction Length */
166 #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
167 /* Source Transfer Width */
168 #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
169 /* Destination Transfer Width */
170 #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
172 /* Assign HW handshaking interface (x) to destination / source peripheral */
173 #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
174 #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
175 #define DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5)
176 #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
179 * This define is used to set block chaining disabled in the control low
180 * register. It is already in little endian format so it can be &'d dirctly.
181 * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
184 DMA_CTL_LLP_DISABLE_LE32
= 0xffffffe7,
185 DMA_CTL_TTFC_P2M_DMAC
= 0x00000002, /* Per to mem, DMAC cntr */
186 DMA_CTL_TTFC_M2P_PER
= 0x00000003, /* Mem to per, peripheral cntr */
187 DMA_CTL_SINC_INC
= 0x00000000, /* Source Address Increment */
188 DMA_CTL_SINC_DEC
= 0x00000200,
189 DMA_CTL_SINC_NOCHANGE
= 0x00000400,
190 DMA_CTL_DINC_INC
= 0x00000000, /* Destination Address Increment */
191 DMA_CTL_DINC_DEC
= 0x00000080,
192 DMA_CTL_DINC_NOCHANGE
= 0x00000100,
193 DMA_CTL_INT_EN
= 0x00000001, /* Interrupt Enable */
195 /* Channel Configuration Register high bits */
196 DMA_CFG_FCMOD_REQ
= 0x00000001, /* Flow Control - request based */
197 DMA_CFG_PROTCTL
= (0x00000003 << 2),/* Protection Control */
199 /* Channel Configuration Register low bits */
200 DMA_CFG_RELD_DST
= 0x80000000, /* Reload Dest / Src Addr */
201 DMA_CFG_RELD_SRC
= 0x40000000,
202 DMA_CFG_HS_SELSRC
= 0x00000800, /* Software handshake Src/ Dest */
203 DMA_CFG_HS_SELDST
= 0x00000400,
204 DMA_CFG_FIFOEMPTY
= (0x00000001 << 9), /* FIFO Empty bit */
206 /* Channel Linked List Pointer Register */
207 DMA_LLP_AHBMASTER1
= 0, /* List Master Select */
208 DMA_LLP_AHBMASTER2
= 1,
210 SATA_DWC_MAX_PORTS
= 1,
212 SATA_DWC_SCR_OFFSET
= 0x24,
213 SATA_DWC_REG_OFFSET
= 0x64,
216 /* DWC SATA Registers */
217 struct sata_dwc_regs
{
218 u32 fptagr
; /* 1st party DMA tag */
219 u32 fpbor
; /* 1st party DMA buffer offset */
220 u32 fptcr
; /* 1st party DMA Xfr count */
221 u32 dmacr
; /* DMA Control */
222 u32 dbtsr
; /* DMA Burst Transac size */
223 u32 intpr
; /* Interrupt Pending */
224 u32 intmr
; /* Interrupt Mask */
225 u32 errmr
; /* Error Mask */
226 u32 llcr
; /* Link Layer Control */
227 u32 phycr
; /* PHY Control */
228 u32 physr
; /* PHY Status */
229 u32 rxbistpd
; /* Recvd BIST pattern def register */
230 u32 rxbistpd1
; /* Recvd BIST data dword1 */
231 u32 rxbistpd2
; /* Recvd BIST pattern data dword2 */
232 u32 txbistpd
; /* Trans BIST pattern def register */
233 u32 txbistpd1
; /* Trans BIST data dword1 */
234 u32 txbistpd2
; /* Trans BIST data dword2 */
235 u32 bistcr
; /* BIST Control Register */
236 u32 bistfctr
; /* BIST FIS Count Register */
237 u32 bistsr
; /* BIST Status Register */
238 u32 bistdecr
; /* BIST Dword Error count register */
239 u32 res
[15]; /* Reserved locations */
240 u32 testr
; /* Test Register */
241 u32 versionr
; /* Version Register */
242 u32 idr
; /* ID Register */
243 u32 unimpl
[192]; /* Unimplemented */
244 u32 dmadr
[256]; /* FIFO Locations in DMA Mode */
248 SCR_SCONTROL_DET_ENABLE
= 0x00000001,
249 SCR_SSTATUS_DET_PRESENT
= 0x00000001,
250 SCR_SERROR_DIAG_X
= 0x04000000,
251 /* DWC SATA Register Operations */
252 SATA_DWC_TXFIFO_DEPTH
= 0x01FF,
253 SATA_DWC_RXFIFO_DEPTH
= 0x01FF,
254 SATA_DWC_DMACR_TMOD_TXCHEN
= 0x00000004,
255 SATA_DWC_DMACR_TXCHEN
= (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN
),
256 SATA_DWC_DMACR_RXCHEN
= (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN
),
257 SATA_DWC_DMACR_TXRXCH_CLEAR
= SATA_DWC_DMACR_TMOD_TXCHEN
,
258 SATA_DWC_INTPR_DMAT
= 0x00000001,
259 SATA_DWC_INTPR_NEWFP
= 0x00000002,
260 SATA_DWC_INTPR_PMABRT
= 0x00000004,
261 SATA_DWC_INTPR_ERR
= 0x00000008,
262 SATA_DWC_INTPR_NEWBIST
= 0x00000010,
263 SATA_DWC_INTPR_IPF
= 0x10000000,
264 SATA_DWC_INTMR_DMATM
= 0x00000001,
265 SATA_DWC_INTMR_NEWFPM
= 0x00000002,
266 SATA_DWC_INTMR_PMABRTM
= 0x00000004,
267 SATA_DWC_INTMR_ERRM
= 0x00000008,
268 SATA_DWC_INTMR_NEWBISTM
= 0x00000010,
269 SATA_DWC_LLCR_SCRAMEN
= 0x00000001,
270 SATA_DWC_LLCR_DESCRAMEN
= 0x00000002,
271 SATA_DWC_LLCR_RPDEN
= 0x00000004,
272 /* This is all error bits, zero's are reserved fields. */
273 SATA_DWC_SERROR_ERR_BITS
= 0x0FFF0F03
276 #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F)
277 #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
278 SATA_DWC_DMACR_TMOD_TXCHEN)
279 #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
280 SATA_DWC_DMACR_TMOD_TXCHEN)
281 #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
282 #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
284 struct sata_dwc_device
{
285 struct device
*dev
; /* generic device struct */
286 struct ata_probe_ent
*pe
; /* ptr to probe-ent */
287 struct ata_host
*host
;
288 u8 __iomem
*reg_base
;
289 struct sata_dwc_regs
*sata_dwc_regs
; /* DW Synopsys SATA specific */
293 #define SATA_DWC_QCMD_MAX 32
295 struct sata_dwc_device_port
{
296 struct sata_dwc_device
*hsdev
;
297 int cmd_issued
[SATA_DWC_QCMD_MAX
];
298 struct lli
*llit
[SATA_DWC_QCMD_MAX
]; /* DMA LLI table */
299 dma_addr_t llit_dma
[SATA_DWC_QCMD_MAX
];
300 u32 dma_chan
[SATA_DWC_QCMD_MAX
];
301 int dma_pending
[SATA_DWC_QCMD_MAX
];
305 * Commonly used DWC SATA driver Macros
307 #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\
308 (host)->private_data)
309 #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\
310 (ap)->host->private_data)
311 #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\
313 #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\
314 (qc)->ap->host->private_data)
315 #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\
319 SATA_DWC_CMD_ISSUED_NOT
= 0,
320 SATA_DWC_CMD_ISSUED_PEND
= 1,
321 SATA_DWC_CMD_ISSUED_EXEC
= 2,
322 SATA_DWC_CMD_ISSUED_NODATA
= 3,
324 SATA_DWC_DMA_PENDING_NONE
= 0,
325 SATA_DWC_DMA_PENDING_TX
= 1,
326 SATA_DWC_DMA_PENDING_RX
= 2,
329 struct sata_dwc_host_priv
{
330 void __iomem
*scr_addr_sstatus
;
331 u32 sata_dwc_sactive_issued
;
332 u32 sata_dwc_sactive_queued
;
333 u32 dma_interrupt_count
;
334 struct ahb_dma_regs
*sata_dma_regs
;
335 struct device
*dwc_dev
;
339 static struct sata_dwc_host_priv host_pvt
;
344 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd
*qc
, u8 tag
);
345 static int sata_dwc_qc_complete(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
347 static void sata_dwc_dma_xfer_complete(struct ata_port
*ap
, u32 check_status
);
348 static void sata_dwc_port_stop(struct ata_port
*ap
);
349 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port
*hsdevp
, u8 tag
);
350 static int dma_dwc_init(struct sata_dwc_device
*hsdev
, int irq
);
351 static void dma_dwc_exit(struct sata_dwc_device
*hsdev
);
352 static int dma_dwc_xfer_setup(struct scatterlist
*sg
, int num_elems
,
353 struct lli
*lli
, dma_addr_t dma_lli
,
354 void __iomem
*addr
, int dir
);
355 static void dma_dwc_xfer_start(int dma_ch
);
357 static const char *get_prot_descript(u8 protocol
)
359 switch ((enum ata_tf_protocols
)protocol
) {
360 case ATA_PROT_NODATA
:
361 return "ATA no data";
368 case ATAPI_PROT_NODATA
:
369 return "ATAPI no data";
379 static const char *get_dma_dir_descript(int dma_dir
)
381 switch ((enum dma_data_direction
)dma_dir
) {
382 case DMA_BIDIRECTIONAL
:
383 return "bidirectional";
386 case DMA_FROM_DEVICE
:
387 return "from device";
393 static void sata_dwc_tf_dump(struct ata_taskfile
*tf
)
395 dev_vdbg(host_pvt
.dwc_dev
, "taskfile cmd: 0x%02x protocol: %s flags:"
396 "0x%lx device: %x\n", tf
->command
,
397 get_prot_descript(tf
->protocol
), tf
->flags
, tf
->device
);
398 dev_vdbg(host_pvt
.dwc_dev
, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
399 "lbam: 0x%x lbah: 0x%x\n", tf
->feature
, tf
->nsect
, tf
->lbal
,
401 dev_vdbg(host_pvt
.dwc_dev
, "hob_feature: 0x%02x hob_nsect: 0x%x "
402 "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
403 tf
->hob_feature
, tf
->hob_nsect
, tf
->hob_lbal
, tf
->hob_lbam
,
408 * Function: get_burst_length_encode
409 * arguments: datalength: length in bytes of data
410 * returns value to be programmed in register corresponding to data length
411 * This value is effectively the log(base 2) of the length
413 static int get_burst_length_encode(int datalength
)
415 int items
= datalength
>> 2; /* div by 4 to get lword count */
435 static void clear_chan_interrupts(int c
)
437 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.tfr
.low
),
439 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.block
.low
),
441 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.srctran
.low
),
443 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.dsttran
.low
),
445 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.error
.low
),
450 * Function: dma_request_channel
452 * returns channel number if available else -1
453 * This function assigns the next available DMA channel from the list to the
456 static int dma_request_channel(void)
458 /* Check if the channel is not currently in use */
459 if (!(in_le32(&(host_pvt
.sata_dma_regs
->dma_chan_en
.low
)) &
460 DMA_CHANNEL(host_pvt
.dma_channel
)))
461 return host_pvt
.dma_channel
;
462 dev_err(host_pvt
.dwc_dev
, "%s Channel %d is currently in use\n",
463 __func__
, host_pvt
.dma_channel
);
468 * Function: dma_dwc_interrupt
469 * arguments: irq, dev_id, pt_regs
470 * returns channel number if available else -1
471 * Interrupt Handler for DW AHB SATA DMA
473 static irqreturn_t
dma_dwc_interrupt(int irq
, void *hsdev_instance
)
476 u32 tfr_reg
, err_reg
;
478 struct sata_dwc_device
*hsdev
= hsdev_instance
;
479 struct ata_host
*host
= (struct ata_host
*)hsdev
->host
;
481 struct sata_dwc_device_port
*hsdevp
;
483 unsigned int port
= 0;
485 spin_lock_irqsave(&host
->lock
, flags
);
486 ap
= host
->ports
[port
];
487 hsdevp
= HSDEVP_FROM_AP(ap
);
488 tag
= ap
->link
.active_tag
;
490 tfr_reg
= in_le32(&(host_pvt
.sata_dma_regs
->interrupt_status
.tfr\
492 err_reg
= in_le32(&(host_pvt
.sata_dma_regs
->interrupt_status
.error\
495 dev_dbg(ap
->dev
, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
496 tfr_reg
, err_reg
, hsdevp
->dma_pending
[tag
], port
);
498 chan
= host_pvt
.dma_channel
;
500 /* Check for end-of-transfer interrupt. */
501 if (tfr_reg
& DMA_CHANNEL(chan
)) {
503 * Each DMA command produces 2 interrupts. Only
504 * complete the command after both interrupts have been
505 * seen. (See sata_dwc_isr())
507 host_pvt
.dma_interrupt_count
++;
508 sata_dwc_clear_dmacr(hsdevp
, tag
);
510 if (hsdevp
->dma_pending
[tag
] ==
511 SATA_DWC_DMA_PENDING_NONE
) {
512 dev_err(ap
->dev
, "DMA not pending eot=0x%08x "
513 "err=0x%08x tag=0x%02x pending=%d\n",
514 tfr_reg
, err_reg
, tag
,
515 hsdevp
->dma_pending
[tag
]);
518 if ((host_pvt
.dma_interrupt_count
% 2) == 0)
519 sata_dwc_dma_xfer_complete(ap
, 1);
521 /* Clear the interrupt */
522 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear\
527 /* Check for error interrupt. */
528 if (err_reg
& DMA_CHANNEL(chan
)) {
529 /* TODO Need error handler ! */
530 dev_err(ap
->dev
, "error interrupt err_reg=0x%08x\n",
533 /* Clear the interrupt. */
534 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear\
539 spin_unlock_irqrestore(&host
->lock
, flags
);
544 * Function: dma_request_interrupts
547 * This function registers ISR for a particular DMA channel interrupt
549 static int dma_request_interrupts(struct sata_dwc_device
*hsdev
, int irq
)
552 int chan
= host_pvt
.dma_channel
;
555 /* Unmask error interrupt */
556 out_le32(&(host_pvt
.sata_dma_regs
)->interrupt_mask
.error
.low
,
557 DMA_ENABLE_CHAN(chan
));
559 /* Unmask end-of-transfer interrupt */
560 out_le32(&(host_pvt
.sata_dma_regs
)->interrupt_mask
.tfr
.low
,
561 DMA_ENABLE_CHAN(chan
));
564 retval
= request_irq(irq
, dma_dwc_interrupt
, 0, "SATA DMA", hsdev
);
566 dev_err(host_pvt
.dwc_dev
, "%s: could not get IRQ %d\n",
571 /* Mark this interrupt as requested */
572 hsdev
->irq_dma
= irq
;
577 * Function: map_sg_to_lli
578 * The Synopsis driver has a comment proposing that better performance
579 * is possible by only enabling interrupts on the last item in the linked list.
580 * However, it seems that could be a problem if an error happened on one of the
581 * first items. The transfer would halt, but no error interrupt would occur.
582 * Currently this function sets interrupts enabled for each linked list item:
585 static int map_sg_to_lli(struct scatterlist
*sg
, int num_elems
,
586 struct lli
*lli
, dma_addr_t dma_lli
,
587 void __iomem
*dmadr_addr
, int dir
)
593 int sms_val
, dms_val
;
596 dms_val
= 1 + host_pvt
.dma_channel
;
597 dev_dbg(host_pvt
.dwc_dev
,
598 "%s: sg=%p nelem=%d lli=%p dma_lli=0x%pad dmadr=0x%p\n",
599 __func__
, sg
, num_elems
, lli
, &dma_lli
, dmadr_addr
);
601 bl
= get_burst_length_encode(AHB_DMA_BRST_DFLT
);
603 for (i
= 0; i
< num_elems
; i
++, sg
++) {
607 addr
= (u32
) sg_dma_address(sg
);
608 sg_len
= sg_dma_len(sg
);
610 dev_dbg(host_pvt
.dwc_dev
, "%s: elem=%d sg_addr=0x%x sg_len"
611 "=%d\n", __func__
, i
, addr
, sg_len
);
614 if (idx
>= SATA_DWC_DMAC_LLI_NUM
) {
615 /* The LLI table is not large enough. */
616 dev_err(host_pvt
.dwc_dev
, "LLI table overrun "
620 len
= (sg_len
> SATA_DWC_DMAC_CTRL_TSIZE_MAX
) ?
621 SATA_DWC_DMAC_CTRL_TSIZE_MAX
: sg_len
;
623 offset
= addr
& 0xffff;
624 if ((offset
+ sg_len
) > 0x10000)
625 len
= 0x10000 - offset
;
628 * Make sure a LLI block is not created that will span
629 * 8K max FIS boundary. If the block spans such a FIS
630 * boundary, there is a chance that a DMA burst will
631 * cross that boundary -- this results in an error in
632 * the host controller.
634 if (fis_len
+ len
> 8192) {
635 dev_dbg(host_pvt
.dwc_dev
, "SPLITTING: fis_len="
636 "%d(0x%x) len=%d(0x%x)\n", fis_len
,
638 len
= 8192 - fis_len
;
647 * Set DMA addresses and lower half of control register
648 * based on direction.
650 if (dir
== DMA_FROM_DEVICE
) {
651 lli
[idx
].dar
= cpu_to_le32(addr
);
652 lli
[idx
].sar
= cpu_to_le32((u32
)dmadr_addr
);
654 lli
[idx
].ctl
.low
= cpu_to_le32(
655 DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC
) |
656 DMA_CTL_SMS(sms_val
) |
657 DMA_CTL_DMS(dms_val
) |
658 DMA_CTL_SRC_MSIZE(bl
) |
659 DMA_CTL_DST_MSIZE(bl
) |
660 DMA_CTL_SINC_NOCHANGE
|
661 DMA_CTL_SRC_TRWID(2) |
662 DMA_CTL_DST_TRWID(2) |
666 } else { /* DMA_TO_DEVICE */
667 lli
[idx
].sar
= cpu_to_le32(addr
);
668 lli
[idx
].dar
= cpu_to_le32((u32
)dmadr_addr
);
670 lli
[idx
].ctl
.low
= cpu_to_le32(
671 DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER
) |
672 DMA_CTL_SMS(dms_val
) |
673 DMA_CTL_DMS(sms_val
) |
674 DMA_CTL_SRC_MSIZE(bl
) |
675 DMA_CTL_DST_MSIZE(bl
) |
676 DMA_CTL_DINC_NOCHANGE
|
677 DMA_CTL_SRC_TRWID(2) |
678 DMA_CTL_DST_TRWID(2) |
684 dev_dbg(host_pvt
.dwc_dev
, "%s setting ctl.high len: "
685 "0x%08x val: 0x%08x\n", __func__
,
686 len
, DMA_CTL_BLK_TS(len
/ 4));
688 /* Program the LLI CTL high register */
689 lli
[idx
].ctl
.high
= cpu_to_le32(DMA_CTL_BLK_TS\
692 /* Program the next pointer. The next pointer must be
693 * the physical address, not the virtual address.
695 next_llp
= (dma_lli
+ ((idx
+ 1) * sizeof(struct \
698 /* The last 2 bits encode the list master select. */
699 next_llp
= DMA_LLP_LMS(next_llp
, DMA_LLP_AHBMASTER2
);
701 lli
[idx
].llp
= cpu_to_le32(next_llp
);
709 * The last next ptr has to be zero and the last control low register
710 * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
711 * and destination enable) set back to 0 (disabled.) This is what tells
712 * the core that this is the last item in the linked list.
715 lli
[idx
-1].llp
= 0x00000000;
716 lli
[idx
-1].ctl
.low
&= DMA_CTL_LLP_DISABLE_LE32
;
718 /* Flush cache to memory */
719 dma_cache_sync(NULL
, lli
, (sizeof(struct lli
) * idx
),
727 * Function: dma_dwc_xfer_start
728 * arguments: Channel number
730 * Enables the DMA channel
732 static void dma_dwc_xfer_start(int dma_ch
)
734 /* Enable the DMA channel */
735 out_le32(&(host_pvt
.sata_dma_regs
->dma_chan_en
.low
),
736 in_le32(&(host_pvt
.sata_dma_regs
->dma_chan_en
.low
)) |
737 DMA_ENABLE_CHAN(dma_ch
));
740 static int dma_dwc_xfer_setup(struct scatterlist
*sg
, int num_elems
,
741 struct lli
*lli
, dma_addr_t dma_lli
,
742 void __iomem
*addr
, int dir
)
746 /* Acquire DMA channel */
747 dma_ch
= dma_request_channel();
749 dev_err(host_pvt
.dwc_dev
, "%s: dma channel unavailable\n",
754 /* Convert SG list to linked list of items (LLIs) for AHB DMA */
755 num_lli
= map_sg_to_lli(sg
, num_elems
, lli
, dma_lli
, addr
, dir
);
757 dev_dbg(host_pvt
.dwc_dev
, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
758 " 0x%0xlx addr: %p lli count: %d\n", __func__
, sg
, num_elems
,
759 lli
, (u32
)dma_lli
, addr
, num_lli
);
761 clear_chan_interrupts(dma_ch
);
763 /* Program the CFG register. */
764 out_le32(&(host_pvt
.sata_dma_regs
->chan_regs
[dma_ch
].cfg
.high
),
765 DMA_CFG_HW_HS_SRC(dma_ch
) | DMA_CFG_HW_HS_DEST(dma_ch
) |
766 DMA_CFG_PROTCTL
| DMA_CFG_FCMOD_REQ
);
767 out_le32(&(host_pvt
.sata_dma_regs
->chan_regs
[dma_ch
].cfg
.low
),
768 DMA_CFG_HW_CH_PRIOR(dma_ch
));
770 /* Program the address of the linked list */
771 out_le32(&(host_pvt
.sata_dma_regs
->chan_regs
[dma_ch
].llp
.low
),
772 DMA_LLP_LMS(dma_lli
, DMA_LLP_AHBMASTER2
));
774 /* Program the CTL register with src enable / dst enable */
775 out_le32(&(host_pvt
.sata_dma_regs
->chan_regs
[dma_ch
].ctl
.low
),
776 DMA_CTL_LLP_SRCEN
| DMA_CTL_LLP_DSTEN
);
781 * Function: dma_dwc_exit
784 * This function exits the SATA DMA driver
786 static void dma_dwc_exit(struct sata_dwc_device
*hsdev
)
788 dev_dbg(host_pvt
.dwc_dev
, "%s:\n", __func__
);
789 if (host_pvt
.sata_dma_regs
) {
790 iounmap((void __iomem
*)host_pvt
.sata_dma_regs
);
791 host_pvt
.sata_dma_regs
= NULL
;
794 if (hsdev
->irq_dma
) {
795 free_irq(hsdev
->irq_dma
, hsdev
);
801 * Function: dma_dwc_init
804 * This function initializes the SATA DMA driver
806 static int dma_dwc_init(struct sata_dwc_device
*hsdev
, int irq
)
810 err
= dma_request_interrupts(hsdev
, irq
);
812 dev_err(host_pvt
.dwc_dev
, "%s: dma_request_interrupts returns"
813 " %d\n", __func__
, err
);
818 out_le32(&(host_pvt
.sata_dma_regs
->dma_cfg
.low
), DMA_EN
);
820 dev_notice(host_pvt
.dwc_dev
, "DMA initialized\n");
821 dev_dbg(host_pvt
.dwc_dev
, "SATA DMA registers=0x%p\n", host_pvt
.\
827 static int sata_dwc_scr_read(struct ata_link
*link
, unsigned int scr
, u32
*val
)
829 if (scr
> SCR_NOTIFICATION
) {
830 dev_err(link
->ap
->dev
, "%s: Incorrect SCR offset 0x%02x\n",
835 *val
= in_le32(link
->ap
->ioaddr
.scr_addr
+ (scr
* 4));
836 dev_dbg(link
->ap
->dev
, "%s: id=%d reg=%d val=val=0x%08x\n",
837 __func__
, link
->ap
->print_id
, scr
, *val
);
842 static int sata_dwc_scr_write(struct ata_link
*link
, unsigned int scr
, u32 val
)
844 dev_dbg(link
->ap
->dev
, "%s: id=%d reg=%d val=val=0x%08x\n",
845 __func__
, link
->ap
->print_id
, scr
, val
);
846 if (scr
> SCR_NOTIFICATION
) {
847 dev_err(link
->ap
->dev
, "%s: Incorrect SCR offset 0x%02x\n",
851 out_le32(link
->ap
->ioaddr
.scr_addr
+ (scr
* 4), val
);
856 static u32
core_scr_read(unsigned int scr
)
858 return in_le32(host_pvt
.scr_addr_sstatus
+ (scr
* 4));
861 static void core_scr_write(unsigned int scr
, u32 val
)
863 out_le32(host_pvt
.scr_addr_sstatus
+ (scr
* 4), val
);
866 static void clear_serror(void)
869 val
= core_scr_read(SCR_ERROR
);
870 core_scr_write(SCR_ERROR
, val
);
873 static void clear_interrupt_bit(struct sata_dwc_device
*hsdev
, u32 bit
)
875 out_le32(&hsdev
->sata_dwc_regs
->intpr
,
876 in_le32(&hsdev
->sata_dwc_regs
->intpr
));
879 static u32
qcmd_tag_to_mask(u8 tag
)
881 return 0x00000001 << (tag
& 0x1f);
885 static void sata_dwc_error_intr(struct ata_port
*ap
,
886 struct sata_dwc_device
*hsdev
, uint intpr
)
888 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
889 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
890 unsigned int err_mask
= 0, action
= 0;
891 struct ata_queued_cmd
*qc
;
896 ata_ehi_clear_desc(ehi
);
898 serror
= core_scr_read(SCR_ERROR
);
899 status
= ap
->ops
->sff_check_status(ap
);
901 err_reg
= in_le32(&(host_pvt
.sata_dma_regs
->interrupt_status
.error
.\
903 tag
= ap
->link
.active_tag
;
905 dev_err(ap
->dev
, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
906 "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
907 __func__
, serror
, intpr
, status
, host_pvt
.dma_interrupt_count
,
908 hsdevp
->dma_pending
[tag
], hsdevp
->cmd_issued
[tag
], err_reg
);
910 /* Clear error register and interrupt bit */
912 clear_interrupt_bit(hsdev
, SATA_DWC_INTPR_ERR
);
914 /* This is the only error happening now. TODO check for exact error */
916 err_mask
|= AC_ERR_HOST_BUS
;
917 action
|= ATA_EH_RESET
;
919 /* Pass this on to EH */
920 ehi
->serror
|= serror
;
921 ehi
->action
|= action
;
923 qc
= ata_qc_from_tag(ap
, tag
);
925 qc
->err_mask
|= err_mask
;
927 ehi
->err_mask
|= err_mask
;
933 * Function : sata_dwc_isr
934 * arguments : irq, void *dev_instance, struct pt_regs *regs
935 * Return value : irqreturn_t - status of IRQ
936 * This Interrupt handler called via port ops registered function.
937 * .irq_handler = sata_dwc_isr
939 static irqreturn_t
sata_dwc_isr(int irq
, void *dev_instance
)
941 struct ata_host
*host
= (struct ata_host
*)dev_instance
;
942 struct sata_dwc_device
*hsdev
= HSDEV_FROM_HOST(host
);
944 struct ata_queued_cmd
*qc
;
947 int handled
, num_processed
, port
= 0;
948 uint intpr
, sactive
, sactive2
, tag_mask
;
949 struct sata_dwc_device_port
*hsdevp
;
950 host_pvt
.sata_dwc_sactive_issued
= 0;
952 spin_lock_irqsave(&host
->lock
, flags
);
954 /* Read the interrupt register */
955 intpr
= in_le32(&hsdev
->sata_dwc_regs
->intpr
);
957 ap
= host
->ports
[port
];
958 hsdevp
= HSDEVP_FROM_AP(ap
);
960 dev_dbg(ap
->dev
, "%s intpr=0x%08x active_tag=%d\n", __func__
, intpr
,
961 ap
->link
.active_tag
);
963 /* Check for error interrupt */
964 if (intpr
& SATA_DWC_INTPR_ERR
) {
965 sata_dwc_error_intr(ap
, hsdev
, intpr
);
970 /* Check for DMA SETUP FIS (FP DMA) interrupt */
971 if (intpr
& SATA_DWC_INTPR_NEWFP
) {
972 clear_interrupt_bit(hsdev
, SATA_DWC_INTPR_NEWFP
);
974 tag
= (u8
)(in_le32(&hsdev
->sata_dwc_regs
->fptagr
));
975 dev_dbg(ap
->dev
, "%s: NEWFP tag=%d\n", __func__
, tag
);
976 if (hsdevp
->cmd_issued
[tag
] != SATA_DWC_CMD_ISSUED_PEND
)
977 dev_warn(ap
->dev
, "CMD tag=%d not pending?\n", tag
);
979 host_pvt
.sata_dwc_sactive_issued
|= qcmd_tag_to_mask(tag
);
981 qc
= ata_qc_from_tag(ap
, tag
);
983 * Start FP DMA for NCQ command. At this point the tag is the
984 * active tag. It is the tag that matches the command about to
987 qc
->ap
->link
.active_tag
= tag
;
988 sata_dwc_bmdma_start_by_tag(qc
, tag
);
993 sactive
= core_scr_read(SCR_ACTIVE
);
994 tag_mask
= (host_pvt
.sata_dwc_sactive_issued
| sactive
) ^ sactive
;
996 /* If no sactive issued and tag_mask is zero then this is not NCQ */
997 if (host_pvt
.sata_dwc_sactive_issued
== 0 && tag_mask
== 0) {
998 if (ap
->link
.active_tag
== ATA_TAG_POISON
)
1001 tag
= ap
->link
.active_tag
;
1002 qc
= ata_qc_from_tag(ap
, tag
);
1004 /* DEV interrupt w/ no active qc? */
1005 if (unlikely(!qc
|| (qc
->tf
.flags
& ATA_TFLAG_POLLING
))) {
1006 dev_err(ap
->dev
, "%s interrupt with no active qc "
1007 "qc=%p\n", __func__
, qc
);
1008 ap
->ops
->sff_check_status(ap
);
1012 status
= ap
->ops
->sff_check_status(ap
);
1014 qc
->ap
->link
.active_tag
= tag
;
1015 hsdevp
->cmd_issued
[tag
] = SATA_DWC_CMD_ISSUED_NOT
;
1017 if (status
& ATA_ERR
) {
1018 dev_dbg(ap
->dev
, "interrupt ATA_ERR (0x%x)\n", status
);
1019 sata_dwc_qc_complete(ap
, qc
, 1);
1024 dev_dbg(ap
->dev
, "%s non-NCQ cmd interrupt, protocol: %s\n",
1025 __func__
, get_prot_descript(qc
->tf
.protocol
));
1027 if (ata_is_dma(qc
->tf
.protocol
)) {
1029 * Each DMA transaction produces 2 interrupts. The DMAC
1030 * transfer complete interrupt and the SATA controller
1031 * operation done interrupt. The command should be
1032 * completed only after both interrupts are seen.
1034 host_pvt
.dma_interrupt_count
++;
1035 if (hsdevp
->dma_pending
[tag
] == \
1036 SATA_DWC_DMA_PENDING_NONE
) {
1037 dev_err(ap
->dev
, "%s: DMA not pending "
1038 "intpr=0x%08x status=0x%08x pending"
1039 "=%d\n", __func__
, intpr
, status
,
1040 hsdevp
->dma_pending
[tag
]);
1043 if ((host_pvt
.dma_interrupt_count
% 2) == 0)
1044 sata_dwc_dma_xfer_complete(ap
, 1);
1045 } else if (ata_is_pio(qc
->tf
.protocol
)) {
1046 ata_sff_hsm_move(ap
, qc
, status
, 0);
1050 if (unlikely(sata_dwc_qc_complete(ap
, qc
, 1)))
1059 * This is a NCQ command. At this point we need to figure out for which
1060 * tags we have gotten a completion interrupt. One interrupt may serve
1061 * as completion for more than one operation when commands are queued
1062 * (NCQ). We need to process each completed command.
1065 /* process completed commands */
1066 sactive
= core_scr_read(SCR_ACTIVE
);
1067 tag_mask
= (host_pvt
.sata_dwc_sactive_issued
| sactive
) ^ sactive
;
1069 if (sactive
!= 0 || (host_pvt
.sata_dwc_sactive_issued
) > 1 || \
1071 dev_dbg(ap
->dev
, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x"
1072 "tag_mask=0x%08x\n", __func__
, sactive
,
1073 host_pvt
.sata_dwc_sactive_issued
, tag_mask
);
1076 if ((tag_mask
| (host_pvt
.sata_dwc_sactive_issued
)) != \
1077 (host_pvt
.sata_dwc_sactive_issued
)) {
1078 dev_warn(ap
->dev
, "Bad tag mask? sactive=0x%08x "
1079 "(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask"
1080 "=0x%08x\n", sactive
, host_pvt
.sata_dwc_sactive_issued
,
1084 /* read just to clear ... not bad if currently still busy */
1085 status
= ap
->ops
->sff_check_status(ap
);
1086 dev_dbg(ap
->dev
, "%s ATA status register=0x%x\n", __func__
, status
);
1092 while (!(tag_mask
& 0x00000001)) {
1097 tag_mask
&= (~0x00000001);
1098 qc
= ata_qc_from_tag(ap
, tag
);
1100 /* To be picked up by completion functions */
1101 qc
->ap
->link
.active_tag
= tag
;
1102 hsdevp
->cmd_issued
[tag
] = SATA_DWC_CMD_ISSUED_NOT
;
1104 /* Let libata/scsi layers handle error */
1105 if (status
& ATA_ERR
) {
1106 dev_dbg(ap
->dev
, "%s ATA_ERR (0x%x)\n", __func__
,
1108 sata_dwc_qc_complete(ap
, qc
, 1);
1113 /* Process completed command */
1114 dev_dbg(ap
->dev
, "%s NCQ command, protocol: %s\n", __func__
,
1115 get_prot_descript(qc
->tf
.protocol
));
1116 if (ata_is_dma(qc
->tf
.protocol
)) {
1117 host_pvt
.dma_interrupt_count
++;
1118 if (hsdevp
->dma_pending
[tag
] == \
1119 SATA_DWC_DMA_PENDING_NONE
)
1120 dev_warn(ap
->dev
, "%s: DMA not pending?\n",
1122 if ((host_pvt
.dma_interrupt_count
% 2) == 0)
1123 sata_dwc_dma_xfer_complete(ap
, 1);
1125 if (unlikely(sata_dwc_qc_complete(ap
, qc
, 1)))
1131 ap
->stats
.idle_irq
++;
1132 dev_warn(ap
->dev
, "STILL BUSY IRQ ata%d: irq trap\n",
1134 } /* while tag_mask */
1137 * Check to see if any commands completed while we were processing our
1138 * initial set of completed commands (read status clears interrupts,
1139 * so we might miss a completed command interrupt if one came in while
1140 * we were processing --we read status as part of processing a completed
1143 sactive2
= core_scr_read(SCR_ACTIVE
);
1144 if (sactive2
!= sactive
) {
1145 dev_dbg(ap
->dev
, "More completed - sactive=0x%x sactive2"
1146 "=0x%x\n", sactive
, sactive2
);
1151 spin_unlock_irqrestore(&host
->lock
, flags
);
1152 return IRQ_RETVAL(handled
);
1155 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port
*hsdevp
, u8 tag
)
1157 struct sata_dwc_device
*hsdev
= HSDEV_FROM_HSDEVP(hsdevp
);
1159 if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_RX
) {
1160 out_le32(&(hsdev
->sata_dwc_regs
->dmacr
),
1161 SATA_DWC_DMACR_RX_CLEAR(
1162 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
))));
1163 } else if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_TX
) {
1164 out_le32(&(hsdev
->sata_dwc_regs
->dmacr
),
1165 SATA_DWC_DMACR_TX_CLEAR(
1166 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
))));
1169 * This should not happen, it indicates the driver is out of
1170 * sync. If it does happen, clear dmacr anyway.
1172 dev_err(host_pvt
.dwc_dev
, "%s DMA protocol RX and"
1173 "TX DMA not pending tag=0x%02x pending=%d"
1174 " dmacr: 0x%08x\n", __func__
, tag
,
1175 hsdevp
->dma_pending
[tag
],
1176 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
)));
1177 out_le32(&(hsdev
->sata_dwc_regs
->dmacr
),
1178 SATA_DWC_DMACR_TXRXCH_CLEAR
);
1182 static void sata_dwc_dma_xfer_complete(struct ata_port
*ap
, u32 check_status
)
1184 struct ata_queued_cmd
*qc
;
1185 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1186 struct sata_dwc_device
*hsdev
= HSDEV_FROM_AP(ap
);
1189 tag
= ap
->link
.active_tag
;
1190 qc
= ata_qc_from_tag(ap
, tag
);
1192 dev_err(ap
->dev
, "failed to get qc");
1198 dev_info(ap
->dev
, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1199 "dmacr=0x%08x\n", __func__
, qc
->tag
, qc
->tf
.command
,
1200 get_dma_dir_descript(qc
->dma_dir
),
1201 get_prot_descript(qc
->tf
.protocol
),
1202 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
)));
1206 if (ata_is_dma(qc
->tf
.protocol
)) {
1207 if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_NONE
) {
1208 dev_err(ap
->dev
, "%s DMA protocol RX and TX DMA not "
1209 "pending dmacr: 0x%08x\n", __func__
,
1210 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
)));
1213 hsdevp
->dma_pending
[tag
] = SATA_DWC_DMA_PENDING_NONE
;
1214 sata_dwc_qc_complete(ap
, qc
, check_status
);
1215 ap
->link
.active_tag
= ATA_TAG_POISON
;
1217 sata_dwc_qc_complete(ap
, qc
, check_status
);
1221 static int sata_dwc_qc_complete(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
1227 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1228 host_pvt
.sata_dwc_sactive_queued
= 0;
1229 dev_dbg(ap
->dev
, "%s checkstatus? %x\n", __func__
, check_status
);
1231 if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_TX
)
1232 dev_err(ap
->dev
, "TX DMA PENDING\n");
1233 else if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_RX
)
1234 dev_err(ap
->dev
, "RX DMA PENDING\n");
1235 dev_dbg(ap
->dev
, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1236 " protocol=%d\n", qc
->tf
.command
, status
, ap
->print_id
,
1239 /* clear active bit */
1240 mask
= (~(qcmd_tag_to_mask(tag
)));
1241 host_pvt
.sata_dwc_sactive_queued
= (host_pvt
.sata_dwc_sactive_queued
) \
1243 host_pvt
.sata_dwc_sactive_issued
= (host_pvt
.sata_dwc_sactive_issued
) \
1245 ata_qc_complete(qc
);
1249 static void sata_dwc_enable_interrupts(struct sata_dwc_device
*hsdev
)
1251 /* Enable selective interrupts by setting the interrupt maskregister*/
1252 out_le32(&hsdev
->sata_dwc_regs
->intmr
,
1253 SATA_DWC_INTMR_ERRM
|
1254 SATA_DWC_INTMR_NEWFPM
|
1255 SATA_DWC_INTMR_PMABRTM
|
1256 SATA_DWC_INTMR_DMATM
);
1258 * Unmask the error bits that should trigger an error interrupt by
1259 * setting the error mask register.
1261 out_le32(&hsdev
->sata_dwc_regs
->errmr
, SATA_DWC_SERROR_ERR_BITS
);
1263 dev_dbg(host_pvt
.dwc_dev
, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1264 __func__
, in_le32(&hsdev
->sata_dwc_regs
->intmr
),
1265 in_le32(&hsdev
->sata_dwc_regs
->errmr
));
1268 static void sata_dwc_setup_port(struct ata_ioports
*port
, unsigned long base
)
1270 port
->cmd_addr
= (void __iomem
*)base
+ 0x00;
1271 port
->data_addr
= (void __iomem
*)base
+ 0x00;
1273 port
->error_addr
= (void __iomem
*)base
+ 0x04;
1274 port
->feature_addr
= (void __iomem
*)base
+ 0x04;
1276 port
->nsect_addr
= (void __iomem
*)base
+ 0x08;
1278 port
->lbal_addr
= (void __iomem
*)base
+ 0x0c;
1279 port
->lbam_addr
= (void __iomem
*)base
+ 0x10;
1280 port
->lbah_addr
= (void __iomem
*)base
+ 0x14;
1282 port
->device_addr
= (void __iomem
*)base
+ 0x18;
1283 port
->command_addr
= (void __iomem
*)base
+ 0x1c;
1284 port
->status_addr
= (void __iomem
*)base
+ 0x1c;
1286 port
->altstatus_addr
= (void __iomem
*)base
+ 0x20;
1287 port
->ctl_addr
= (void __iomem
*)base
+ 0x20;
1291 * Function : sata_dwc_port_start
1292 * arguments : struct ata_ioports *port
1293 * Return value : returns 0 if success, error code otherwise
1294 * This function allocates the scatter gather LLI table for AHB DMA
1296 static int sata_dwc_port_start(struct ata_port
*ap
)
1299 struct sata_dwc_device
*hsdev
;
1300 struct sata_dwc_device_port
*hsdevp
= NULL
;
1301 struct device
*pdev
;
1304 hsdev
= HSDEV_FROM_AP(ap
);
1306 dev_dbg(ap
->dev
, "%s: port_no=%d\n", __func__
, ap
->port_no
);
1308 hsdev
->host
= ap
->host
;
1309 pdev
= ap
->host
->dev
;
1311 dev_err(ap
->dev
, "%s: no ap->host->dev\n", __func__
);
1316 /* Allocate Port Struct */
1317 hsdevp
= kzalloc(sizeof(*hsdevp
), GFP_KERNEL
);
1319 dev_err(ap
->dev
, "%s: kmalloc failed for hsdevp\n", __func__
);
1323 hsdevp
->hsdev
= hsdev
;
1325 for (i
= 0; i
< SATA_DWC_QCMD_MAX
; i
++)
1326 hsdevp
->cmd_issued
[i
] = SATA_DWC_CMD_ISSUED_NOT
;
1328 ap
->bmdma_prd
= NULL
; /* set these so libata doesn't use them */
1329 ap
->bmdma_prd_dma
= 0;
1332 * DMA - Assign scatter gather LLI table. We can't use the libata
1333 * version since it's PRD is IDE PCI specific.
1335 for (i
= 0; i
< SATA_DWC_QCMD_MAX
; i
++) {
1336 hsdevp
->llit
[i
] = dma_alloc_coherent(pdev
,
1337 SATA_DWC_DMAC_LLI_TBL_SZ
,
1338 &(hsdevp
->llit_dma
[i
]),
1340 if (!hsdevp
->llit
[i
]) {
1341 dev_err(ap
->dev
, "%s: dma_alloc_coherent failed\n",
1348 if (ap
->port_no
== 0) {
1349 dev_dbg(ap
->dev
, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1351 out_le32(&hsdev
->sata_dwc_regs
->dmacr
,
1352 SATA_DWC_DMACR_TXRXCH_CLEAR
);
1354 dev_dbg(ap
->dev
, "%s: setting burst size in DBTSR\n",
1356 out_le32(&hsdev
->sata_dwc_regs
->dbtsr
,
1357 (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT
) |
1358 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT
)));
1361 /* Clear any error bits before libata starts issuing commands */
1363 ap
->private_data
= hsdevp
;
1364 dev_dbg(ap
->dev
, "%s: done\n", __func__
);
1370 dev_dbg(ap
->dev
, "%s: fail. ap->id = %d\n", __func__
, ap
->print_id
);
1374 static void sata_dwc_port_stop(struct ata_port
*ap
)
1377 struct sata_dwc_device
*hsdev
= HSDEV_FROM_AP(ap
);
1378 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1380 dev_dbg(ap
->dev
, "%s: ap->id = %d\n", __func__
, ap
->print_id
);
1382 if (hsdevp
&& hsdev
) {
1383 /* deallocate LLI table */
1384 for (i
= 0; i
< SATA_DWC_QCMD_MAX
; i
++) {
1385 dma_free_coherent(ap
->host
->dev
,
1386 SATA_DWC_DMAC_LLI_TBL_SZ
,
1387 hsdevp
->llit
[i
], hsdevp
->llit_dma
[i
]);
1392 ap
->private_data
= NULL
;
1396 * Function : sata_dwc_exec_command_by_tag
1397 * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1398 * Return value : None
1399 * This function keeps track of individual command tag ids and calls
1400 * ata_exec_command in libata
1402 static void sata_dwc_exec_command_by_tag(struct ata_port
*ap
,
1403 struct ata_taskfile
*tf
,
1404 u8 tag
, u32 cmd_issued
)
1406 unsigned long flags
;
1407 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1409 dev_dbg(ap
->dev
, "%s cmd(0x%02x): %s tag=%d\n", __func__
, tf
->command
,
1410 ata_get_cmd_descript(tf
->command
), tag
);
1412 spin_lock_irqsave(&ap
->host
->lock
, flags
);
1413 hsdevp
->cmd_issued
[tag
] = cmd_issued
;
1414 spin_unlock_irqrestore(&ap
->host
->lock
, flags
);
1416 * Clear SError before executing a new command.
1417 * sata_dwc_scr_write and read can not be used here. Clearing the PM
1418 * managed SError register for the disk needs to be done before the
1419 * task file is loaded.
1422 ata_sff_exec_command(ap
, tf
);
1425 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd
*qc
, u8 tag
)
1427 sata_dwc_exec_command_by_tag(qc
->ap
, &qc
->tf
, tag
,
1428 SATA_DWC_CMD_ISSUED_PEND
);
1431 static void sata_dwc_bmdma_setup(struct ata_queued_cmd
*qc
)
1435 if (ata_is_ncq(qc
->tf
.protocol
)) {
1436 dev_dbg(qc
->ap
->dev
, "%s: ap->link.sactive=0x%08x tag=%d\n",
1437 __func__
, qc
->ap
->link
.sactive
, tag
);
1441 sata_dwc_bmdma_setup_by_tag(qc
, tag
);
1444 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd
*qc
, u8 tag
)
1448 struct sata_dwc_device
*hsdev
= HSDEV_FROM_QC(qc
);
1449 struct ata_port
*ap
= qc
->ap
;
1450 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1451 int dir
= qc
->dma_dir
;
1452 dma_chan
= hsdevp
->dma_chan
[tag
];
1454 if (hsdevp
->cmd_issued
[tag
] != SATA_DWC_CMD_ISSUED_NOT
) {
1456 if (dir
== DMA_TO_DEVICE
)
1457 hsdevp
->dma_pending
[tag
] = SATA_DWC_DMA_PENDING_TX
;
1459 hsdevp
->dma_pending
[tag
] = SATA_DWC_DMA_PENDING_RX
;
1461 dev_err(ap
->dev
, "%s: Command not pending cmd_issued=%d "
1462 "(tag=%d) DMA NOT started\n", __func__
,
1463 hsdevp
->cmd_issued
[tag
], tag
);
1467 dev_dbg(ap
->dev
, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1468 "start_dma? %x\n", __func__
, qc
, tag
, qc
->tf
.command
,
1469 get_dma_dir_descript(qc
->dma_dir
), start_dma
);
1470 sata_dwc_tf_dump(&(qc
->tf
));
1473 reg
= core_scr_read(SCR_ERROR
);
1474 if (reg
& SATA_DWC_SERROR_ERR_BITS
) {
1475 dev_err(ap
->dev
, "%s: ****** SError=0x%08x ******\n",
1479 if (dir
== DMA_TO_DEVICE
)
1480 out_le32(&hsdev
->sata_dwc_regs
->dmacr
,
1481 SATA_DWC_DMACR_TXCHEN
);
1483 out_le32(&hsdev
->sata_dwc_regs
->dmacr
,
1484 SATA_DWC_DMACR_RXCHEN
);
1486 /* Enable AHB DMA transfer on the specified channel */
1487 dma_dwc_xfer_start(dma_chan
);
1491 static void sata_dwc_bmdma_start(struct ata_queued_cmd
*qc
)
1495 if (ata_is_ncq(qc
->tf
.protocol
)) {
1496 dev_dbg(qc
->ap
->dev
, "%s: ap->link.sactive=0x%08x tag=%d\n",
1497 __func__
, qc
->ap
->link
.sactive
, tag
);
1501 dev_dbg(qc
->ap
->dev
, "%s\n", __func__
);
1502 sata_dwc_bmdma_start_by_tag(qc
, tag
);
1506 * Function : sata_dwc_qc_prep_by_tag
1507 * arguments : ata_queued_cmd *qc, u8 tag
1508 * Return value : None
1509 * qc_prep for a particular queued command based on tag
1511 static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd
*qc
, u8 tag
)
1513 struct scatterlist
*sg
= qc
->sg
;
1514 struct ata_port
*ap
= qc
->ap
;
1516 struct sata_dwc_device
*hsdev
= HSDEV_FROM_AP(ap
);
1517 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1519 dev_dbg(ap
->dev
, "%s: port=%d dma dir=%s n_elem=%d\n",
1520 __func__
, ap
->port_no
, get_dma_dir_descript(qc
->dma_dir
),
1523 dma_chan
= dma_dwc_xfer_setup(sg
, qc
->n_elem
, hsdevp
->llit
[tag
],
1524 hsdevp
->llit_dma
[tag
],
1525 (void __iomem
*)&hsdev
->sata_dwc_regs
->dmadr
,
1528 dev_err(ap
->dev
, "%s: dma_dwc_xfer_setup returns err %d\n",
1529 __func__
, dma_chan
);
1532 hsdevp
->dma_chan
[tag
] = dma_chan
;
1535 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd
*qc
)
1539 struct ata_port
*ap
= qc
->ap
;
1542 if (qc
->tag
> 0 || ap
->link
.sactive
> 1)
1543 dev_info(ap
->dev
, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1544 "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1545 __func__
, ap
->print_id
, qc
->tf
.command
,
1546 ata_get_cmd_descript(qc
->tf
.command
),
1547 qc
->tag
, get_prot_descript(qc
->tf
.protocol
),
1548 ap
->link
.active_tag
, ap
->link
.sactive
);
1551 if (!ata_is_ncq(qc
->tf
.protocol
))
1553 sata_dwc_qc_prep_by_tag(qc
, tag
);
1555 if (ata_is_ncq(qc
->tf
.protocol
)) {
1556 sactive
= core_scr_read(SCR_ACTIVE
);
1557 sactive
|= (0x00000001 << tag
);
1558 core_scr_write(SCR_ACTIVE
, sactive
);
1560 dev_dbg(qc
->ap
->dev
, "%s: tag=%d ap->link.sactive = 0x%08x "
1561 "sactive=0x%08x\n", __func__
, tag
, qc
->ap
->link
.sactive
,
1564 ap
->ops
->sff_tf_load(ap
, &qc
->tf
);
1565 sata_dwc_exec_command_by_tag(ap
, &qc
->tf
, qc
->tag
,
1566 SATA_DWC_CMD_ISSUED_PEND
);
1568 ata_sff_qc_issue(qc
);
1574 * Function : sata_dwc_qc_prep
1575 * arguments : ata_queued_cmd *qc
1576 * Return value : None
1577 * qc_prep for a particular queued command
1580 static void sata_dwc_qc_prep(struct ata_queued_cmd
*qc
)
1582 if ((qc
->dma_dir
== DMA_NONE
) || (qc
->tf
.protocol
== ATA_PROT_PIO
))
1587 dev_info(qc
->ap
->dev
, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1588 __func__
, qc
->tag
, qc
->ap
->link
.active_tag
);
1594 static void sata_dwc_error_handler(struct ata_port
*ap
)
1596 ata_sff_error_handler(ap
);
1599 static int sata_dwc_hardreset(struct ata_link
*link
, unsigned int *class,
1600 unsigned long deadline
)
1602 struct sata_dwc_device
*hsdev
= HSDEV_FROM_AP(link
->ap
);
1605 ret
= sata_sff_hardreset(link
, class, deadline
);
1607 sata_dwc_enable_interrupts(hsdev
);
1609 /* Reconfigure the DMA control register */
1610 out_le32(&hsdev
->sata_dwc_regs
->dmacr
,
1611 SATA_DWC_DMACR_TXRXCH_CLEAR
);
1613 /* Reconfigure the DMA Burst Transaction Size register */
1614 out_le32(&hsdev
->sata_dwc_regs
->dbtsr
,
1615 SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT
) |
1616 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT
));
1622 * scsi mid-layer and libata interface structures
1624 static struct scsi_host_template sata_dwc_sht
= {
1625 ATA_NCQ_SHT(DRV_NAME
),
1627 * test-only: Currently this driver doesn't handle NCQ
1628 * correctly. We enable NCQ but set the queue depth to a
1629 * max of 1. This will get fixed in in a future release.
1631 .sg_tablesize
= LIBATA_MAX_PRD
,
1632 /* .can_queue = ATA_MAX_QUEUE, */
1633 .dma_boundary
= ATA_DMA_BOUNDARY
,
1636 static struct ata_port_operations sata_dwc_ops
= {
1637 .inherits
= &ata_sff_port_ops
,
1639 .error_handler
= sata_dwc_error_handler
,
1640 .hardreset
= sata_dwc_hardreset
,
1642 .qc_prep
= sata_dwc_qc_prep
,
1643 .qc_issue
= sata_dwc_qc_issue
,
1645 .scr_read
= sata_dwc_scr_read
,
1646 .scr_write
= sata_dwc_scr_write
,
1648 .port_start
= sata_dwc_port_start
,
1649 .port_stop
= sata_dwc_port_stop
,
1651 .bmdma_setup
= sata_dwc_bmdma_setup
,
1652 .bmdma_start
= sata_dwc_bmdma_start
,
1655 static const struct ata_port_info sata_dwc_port_info
[] = {
1657 .flags
= ATA_FLAG_SATA
| ATA_FLAG_NCQ
,
1658 .pio_mask
= ATA_PIO4
,
1659 .udma_mask
= ATA_UDMA6
,
1660 .port_ops
= &sata_dwc_ops
,
1664 static int sata_dwc_probe(struct platform_device
*ofdev
)
1666 struct sata_dwc_device
*hsdev
;
1668 char *ver
= (char *)&versionr
;
1672 struct ata_host
*host
;
1673 struct ata_port_info pi
= sata_dwc_port_info
[0];
1674 const struct ata_port_info
*ppi
[] = { &pi
, NULL
};
1675 struct device_node
*np
= ofdev
->dev
.of_node
;
1678 /* Allocate DWC SATA device */
1679 host
= ata_host_alloc_pinfo(&ofdev
->dev
, ppi
, SATA_DWC_MAX_PORTS
);
1680 hsdev
= devm_kzalloc(&ofdev
->dev
, sizeof(*hsdev
), GFP_KERNEL
);
1681 if (!host
|| !hsdev
)
1684 host
->private_data
= hsdev
;
1686 if (of_property_read_u32(np
, "dma-channel", &dma_chan
)) {
1687 dev_warn(&ofdev
->dev
, "no dma-channel property set."
1688 " Use channel 0\n");
1691 host_pvt
.dma_channel
= dma_chan
;
1693 /* Ioremap SATA registers */
1694 base
= of_iomap(np
, 0);
1696 dev_err(&ofdev
->dev
, "ioremap failed for SATA register"
1700 hsdev
->reg_base
= base
;
1701 dev_dbg(&ofdev
->dev
, "ioremap done for SATA register address\n");
1703 /* Synopsys DWC SATA specific Registers */
1704 hsdev
->sata_dwc_regs
= (void *__iomem
)(base
+ SATA_DWC_REG_OFFSET
);
1707 host
->ports
[0]->ioaddr
.cmd_addr
= base
;
1708 host
->ports
[0]->ioaddr
.scr_addr
= base
+ SATA_DWC_SCR_OFFSET
;
1709 host_pvt
.scr_addr_sstatus
= base
+ SATA_DWC_SCR_OFFSET
;
1710 sata_dwc_setup_port(&host
->ports
[0]->ioaddr
, (unsigned long)base
);
1712 /* Read the ID and Version Registers */
1713 idr
= in_le32(&hsdev
->sata_dwc_regs
->idr
);
1714 versionr
= in_le32(&hsdev
->sata_dwc_regs
->versionr
);
1715 dev_notice(&ofdev
->dev
, "id %d, controller version %c.%c%c\n",
1716 idr
, ver
[0], ver
[1], ver
[2]);
1718 /* Get SATA DMA interrupt number */
1719 irq
= irq_of_parse_and_map(np
, 1);
1720 if (irq
== NO_IRQ
) {
1721 dev_err(&ofdev
->dev
, "no SATA DMA irq\n");
1726 /* Get physical SATA DMA register base address */
1727 host_pvt
.sata_dma_regs
= (void *)of_iomap(np
, 1);
1728 if (!(host_pvt
.sata_dma_regs
)) {
1729 dev_err(&ofdev
->dev
, "ioremap failed for AHBDMA register"
1735 /* Save dev for later use in dev_xxx() routines */
1736 host_pvt
.dwc_dev
= &ofdev
->dev
;
1738 /* Initialize AHB DMAC */
1739 err
= dma_dwc_init(hsdev
, irq
);
1741 goto error_dma_iomap
;
1743 /* Enable SATA Interrupts */
1744 sata_dwc_enable_interrupts(hsdev
);
1746 /* Get SATA interrupt number */
1747 irq
= irq_of_parse_and_map(np
, 0);
1748 if (irq
== NO_IRQ
) {
1749 dev_err(&ofdev
->dev
, "no SATA DMA irq\n");
1755 * Now, register with libATA core, this will also initiate the
1756 * device discovery process, invoking our port_start() handler &
1757 * error_handler() to execute a dummy Softreset EH session
1759 err
= ata_host_activate(host
, irq
, sata_dwc_isr
, 0, &sata_dwc_sht
);
1761 dev_err(&ofdev
->dev
, "failed to activate host");
1763 dev_set_drvdata(&ofdev
->dev
, host
);
1767 /* Free SATA DMA resources */
1768 dma_dwc_exit(hsdev
);
1770 iounmap((void __iomem
*)host_pvt
.sata_dma_regs
);
1776 static int sata_dwc_remove(struct platform_device
*ofdev
)
1778 struct device
*dev
= &ofdev
->dev
;
1779 struct ata_host
*host
= dev_get_drvdata(dev
);
1780 struct sata_dwc_device
*hsdev
= host
->private_data
;
1782 ata_host_detach(host
);
1784 /* Free SATA DMA resources */
1785 dma_dwc_exit(hsdev
);
1787 iounmap((void __iomem
*)host_pvt
.sata_dma_regs
);
1788 iounmap(hsdev
->reg_base
);
1789 dev_dbg(&ofdev
->dev
, "done\n");
1793 static const struct of_device_id sata_dwc_match
[] = {
1794 { .compatible
= "amcc,sata-460ex", },
1797 MODULE_DEVICE_TABLE(of
, sata_dwc_match
);
1799 static struct platform_driver sata_dwc_driver
= {
1802 .of_match_table
= sata_dwc_match
,
1804 .probe
= sata_dwc_probe
,
1805 .remove
= sata_dwc_remove
,
1808 module_platform_driver(sata_dwc_driver
);
1810 MODULE_LICENSE("GPL");
1811 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1812 MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1813 MODULE_VERSION(DRV_VERSION
);