2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45 #define NVME_MINORS (1U << MINORBITS)
46 #define NVME_Q_DEPTH 1024
47 #define NVME_AQ_DEPTH 64
48 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT (admin_timeout * HZ)
51 #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
53 static unsigned char admin_timeout
= 60;
54 module_param(admin_timeout
, byte
, 0644);
55 MODULE_PARM_DESC(admin_timeout
, "timeout in seconds for admin commands");
57 unsigned char nvme_io_timeout
= 30;
58 module_param_named(io_timeout
, nvme_io_timeout
, byte
, 0644);
59 MODULE_PARM_DESC(io_timeout
, "timeout in seconds for I/O");
61 static unsigned char shutdown_timeout
= 5;
62 module_param(shutdown_timeout
, byte
, 0644);
63 MODULE_PARM_DESC(shutdown_timeout
, "timeout in seconds for controller shutdown");
65 static int nvme_major
;
66 module_param(nvme_major
, int, 0);
68 static int nvme_char_major
;
69 module_param(nvme_char_major
, int, 0);
71 static int use_threaded_interrupts
;
72 module_param(use_threaded_interrupts
, int, 0);
74 static DEFINE_SPINLOCK(dev_list_lock
);
75 static LIST_HEAD(dev_list
);
76 static struct task_struct
*nvme_thread
;
77 static struct workqueue_struct
*nvme_workq
;
78 static wait_queue_head_t nvme_kthread_wait
;
80 static struct class *nvme_class
;
82 static void nvme_reset_failed_dev(struct work_struct
*ws
);
83 static int nvme_process_cq(struct nvme_queue
*nvmeq
);
85 struct async_cmd_info
{
86 struct kthread_work work
;
87 struct kthread_worker
*worker
;
95 * An NVM Express queue. Each device has at least two (one for admin
96 * commands and one for I/O commands).
99 struct device
*q_dmadev
;
100 struct nvme_dev
*dev
;
101 char irqname
[24]; /* nvme4294967295-65535\0 */
103 struct nvme_command
*sq_cmds
;
104 volatile struct nvme_completion
*cqes
;
105 dma_addr_t sq_dma_addr
;
106 dma_addr_t cq_dma_addr
;
116 struct async_cmd_info cmdinfo
;
117 struct blk_mq_hw_ctx
*hctx
;
121 * Check we didin't inadvertently grow the command struct
123 static inline void _nvme_check_size(void)
125 BUILD_BUG_ON(sizeof(struct nvme_rw_command
) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_create_cq
) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_sq
) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue
) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_features
) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_format_cmd
) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd
) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command
) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl
) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns
) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type
) != 64);
136 BUILD_BUG_ON(sizeof(struct nvme_smart_log
) != 512);
139 typedef void (*nvme_completion_fn
)(struct nvme_queue
*, void *,
140 struct nvme_completion
*);
142 struct nvme_cmd_info
{
143 nvme_completion_fn fn
;
146 struct nvme_queue
*nvmeq
;
147 struct nvme_iod iod
[0];
151 * Max size of iod being embedded in the request payload
153 #define NVME_INT_PAGES 2
154 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
157 * Will slightly overestimate the number of pages needed. This is OK
158 * as it only leads to a small amount of wasted memory for the lifetime of
161 static int nvme_npages(unsigned size
, struct nvme_dev
*dev
)
163 unsigned nprps
= DIV_ROUND_UP(size
+ dev
->page_size
, dev
->page_size
);
164 return DIV_ROUND_UP(8 * nprps
, PAGE_SIZE
- 8);
167 static unsigned int nvme_cmd_size(struct nvme_dev
*dev
)
169 unsigned int ret
= sizeof(struct nvme_cmd_info
);
171 ret
+= sizeof(struct nvme_iod
);
172 ret
+= sizeof(__le64
*) * nvme_npages(NVME_INT_BYTES(dev
), dev
);
173 ret
+= sizeof(struct scatterlist
) * NVME_INT_PAGES
;
178 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
179 unsigned int hctx_idx
)
181 struct nvme_dev
*dev
= data
;
182 struct nvme_queue
*nvmeq
= dev
->queues
[0];
184 WARN_ON(nvmeq
->hctx
);
186 hctx
->driver_data
= nvmeq
;
190 static int nvme_admin_init_request(void *data
, struct request
*req
,
191 unsigned int hctx_idx
, unsigned int rq_idx
,
192 unsigned int numa_node
)
194 struct nvme_dev
*dev
= data
;
195 struct nvme_cmd_info
*cmd
= blk_mq_rq_to_pdu(req
);
196 struct nvme_queue
*nvmeq
= dev
->queues
[0];
203 static void nvme_exit_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
205 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
210 static int nvme_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
211 unsigned int hctx_idx
)
213 struct nvme_dev
*dev
= data
;
214 struct nvme_queue
*nvmeq
= dev
->queues
[
215 (hctx_idx
% dev
->queue_count
) + 1];
220 /* nvmeq queues are shared between namespaces. We assume here that
221 * blk-mq map the tags so they match up with the nvme queue tags. */
222 WARN_ON(nvmeq
->hctx
->tags
!= hctx
->tags
);
224 hctx
->driver_data
= nvmeq
;
228 static int nvme_init_request(void *data
, struct request
*req
,
229 unsigned int hctx_idx
, unsigned int rq_idx
,
230 unsigned int numa_node
)
232 struct nvme_dev
*dev
= data
;
233 struct nvme_cmd_info
*cmd
= blk_mq_rq_to_pdu(req
);
234 struct nvme_queue
*nvmeq
= dev
->queues
[hctx_idx
+ 1];
241 static void nvme_set_info(struct nvme_cmd_info
*cmd
, void *ctx
,
242 nvme_completion_fn handler
)
247 blk_mq_start_request(blk_mq_rq_from_pdu(cmd
));
250 static void *iod_get_private(struct nvme_iod
*iod
)
252 return (void *) (iod
->private & ~0x1UL
);
256 * If bit 0 is set, the iod is embedded in the request payload.
258 static bool iod_should_kfree(struct nvme_iod
*iod
)
260 return (iod
->private & 0x01) == 0;
263 /* Special values must be less than 0x1000 */
264 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
265 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
266 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
267 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
269 static void special_completion(struct nvme_queue
*nvmeq
, void *ctx
,
270 struct nvme_completion
*cqe
)
272 if (ctx
== CMD_CTX_CANCELLED
)
274 if (ctx
== CMD_CTX_COMPLETED
) {
275 dev_warn(nvmeq
->q_dmadev
,
276 "completed id %d twice on queue %d\n",
277 cqe
->command_id
, le16_to_cpup(&cqe
->sq_id
));
280 if (ctx
== CMD_CTX_INVALID
) {
281 dev_warn(nvmeq
->q_dmadev
,
282 "invalid id %d completed on queue %d\n",
283 cqe
->command_id
, le16_to_cpup(&cqe
->sq_id
));
286 dev_warn(nvmeq
->q_dmadev
, "Unknown special completion %p\n", ctx
);
289 static void *cancel_cmd_info(struct nvme_cmd_info
*cmd
, nvme_completion_fn
*fn
)
296 cmd
->fn
= special_completion
;
297 cmd
->ctx
= CMD_CTX_CANCELLED
;
301 static void async_req_completion(struct nvme_queue
*nvmeq
, void *ctx
,
302 struct nvme_completion
*cqe
)
304 struct request
*req
= ctx
;
306 u32 result
= le32_to_cpup(&cqe
->result
);
307 u16 status
= le16_to_cpup(&cqe
->status
) >> 1;
309 if (status
== NVME_SC_SUCCESS
|| status
== NVME_SC_ABORT_REQ
)
310 ++nvmeq
->dev
->event_limit
;
311 if (status
== NVME_SC_SUCCESS
)
312 dev_warn(nvmeq
->q_dmadev
,
313 "async event result %08x\n", result
);
315 blk_mq_free_hctx_request(nvmeq
->hctx
, req
);
318 static void abort_completion(struct nvme_queue
*nvmeq
, void *ctx
,
319 struct nvme_completion
*cqe
)
321 struct request
*req
= ctx
;
323 u16 status
= le16_to_cpup(&cqe
->status
) >> 1;
324 u32 result
= le32_to_cpup(&cqe
->result
);
326 blk_mq_free_hctx_request(nvmeq
->hctx
, req
);
328 dev_warn(nvmeq
->q_dmadev
, "Abort status:%x result:%x", status
, result
);
329 ++nvmeq
->dev
->abort_limit
;
332 static void async_completion(struct nvme_queue
*nvmeq
, void *ctx
,
333 struct nvme_completion
*cqe
)
335 struct async_cmd_info
*cmdinfo
= ctx
;
336 cmdinfo
->result
= le32_to_cpup(&cqe
->result
);
337 cmdinfo
->status
= le16_to_cpup(&cqe
->status
) >> 1;
338 queue_kthread_work(cmdinfo
->worker
, &cmdinfo
->work
);
339 blk_mq_free_hctx_request(nvmeq
->hctx
, cmdinfo
->req
);
342 static inline struct nvme_cmd_info
*get_cmd_from_tag(struct nvme_queue
*nvmeq
,
345 struct blk_mq_hw_ctx
*hctx
= nvmeq
->hctx
;
346 struct request
*req
= blk_mq_tag_to_rq(hctx
->tags
, tag
);
348 return blk_mq_rq_to_pdu(req
);
352 * Called with local interrupts disabled and the q_lock held. May not sleep.
354 static void *nvme_finish_cmd(struct nvme_queue
*nvmeq
, int tag
,
355 nvme_completion_fn
*fn
)
357 struct nvme_cmd_info
*cmd
= get_cmd_from_tag(nvmeq
, tag
);
359 if (tag
>= nvmeq
->q_depth
) {
360 *fn
= special_completion
;
361 return CMD_CTX_INVALID
;
366 cmd
->fn
= special_completion
;
367 cmd
->ctx
= CMD_CTX_COMPLETED
;
372 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
373 * @nvmeq: The queue to use
374 * @cmd: The command to send
376 * Safe to use from interrupt context
378 static int __nvme_submit_cmd(struct nvme_queue
*nvmeq
, struct nvme_command
*cmd
)
380 u16 tail
= nvmeq
->sq_tail
;
382 memcpy(&nvmeq
->sq_cmds
[tail
], cmd
, sizeof(*cmd
));
383 if (++tail
== nvmeq
->q_depth
)
385 writel(tail
, nvmeq
->q_db
);
386 nvmeq
->sq_tail
= tail
;
391 static int nvme_submit_cmd(struct nvme_queue
*nvmeq
, struct nvme_command
*cmd
)
395 spin_lock_irqsave(&nvmeq
->q_lock
, flags
);
396 ret
= __nvme_submit_cmd(nvmeq
, cmd
);
397 spin_unlock_irqrestore(&nvmeq
->q_lock
, flags
);
401 static __le64
**iod_list(struct nvme_iod
*iod
)
403 return ((void *)iod
) + iod
->offset
;
406 static inline void iod_init(struct nvme_iod
*iod
, unsigned nbytes
,
407 unsigned nseg
, unsigned long private)
409 iod
->private = private;
410 iod
->offset
= offsetof(struct nvme_iod
, sg
[nseg
]);
412 iod
->length
= nbytes
;
416 static struct nvme_iod
*
417 __nvme_alloc_iod(unsigned nseg
, unsigned bytes
, struct nvme_dev
*dev
,
418 unsigned long priv
, gfp_t gfp
)
420 struct nvme_iod
*iod
= kmalloc(sizeof(struct nvme_iod
) +
421 sizeof(__le64
*) * nvme_npages(bytes
, dev
) +
422 sizeof(struct scatterlist
) * nseg
, gfp
);
425 iod_init(iod
, bytes
, nseg
, priv
);
430 static struct nvme_iod
*nvme_alloc_iod(struct request
*rq
, struct nvme_dev
*dev
,
433 unsigned size
= !(rq
->cmd_flags
& REQ_DISCARD
) ? blk_rq_bytes(rq
) :
434 sizeof(struct nvme_dsm_range
);
435 unsigned long mask
= 0;
436 struct nvme_iod
*iod
;
438 if (rq
->nr_phys_segments
<= NVME_INT_PAGES
&&
439 size
<= NVME_INT_BYTES(dev
)) {
440 struct nvme_cmd_info
*cmd
= blk_mq_rq_to_pdu(rq
);
444 iod_init(iod
, size
, rq
->nr_phys_segments
,
445 (unsigned long) rq
| 0x01);
449 return __nvme_alloc_iod(rq
->nr_phys_segments
, size
, dev
,
450 (unsigned long) rq
, gfp
);
453 void nvme_free_iod(struct nvme_dev
*dev
, struct nvme_iod
*iod
)
455 const int last_prp
= dev
->page_size
/ 8 - 1;
457 __le64
**list
= iod_list(iod
);
458 dma_addr_t prp_dma
= iod
->first_dma
;
460 if (iod
->npages
== 0)
461 dma_pool_free(dev
->prp_small_pool
, list
[0], prp_dma
);
462 for (i
= 0; i
< iod
->npages
; i
++) {
463 __le64
*prp_list
= list
[i
];
464 dma_addr_t next_prp_dma
= le64_to_cpu(prp_list
[last_prp
]);
465 dma_pool_free(dev
->prp_page_pool
, prp_list
, prp_dma
);
466 prp_dma
= next_prp_dma
;
469 if (iod_should_kfree(iod
))
473 static int nvme_error_status(u16 status
)
475 switch (status
& 0x7ff) {
476 case NVME_SC_SUCCESS
:
478 case NVME_SC_CAP_EXCEEDED
:
485 #ifdef CONFIG_BLK_DEV_INTEGRITY
486 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
488 if (be32_to_cpu(pi
->ref_tag
) == v
)
489 pi
->ref_tag
= cpu_to_be32(p
);
492 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
494 if (be32_to_cpu(pi
->ref_tag
) == p
)
495 pi
->ref_tag
= cpu_to_be32(v
);
499 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
501 * The virtual start sector is the one that was originally submitted by the
502 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
503 * start sector may be different. Remap protection information to match the
504 * physical LBA on writes, and back to the original seed on reads.
506 * Type 0 and 3 do not have a ref tag, so no remapping required.
508 static void nvme_dif_remap(struct request
*req
,
509 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
511 struct nvme_ns
*ns
= req
->rq_disk
->private_data
;
512 struct bio_integrity_payload
*bip
;
513 struct t10_pi_tuple
*pi
;
515 u32 i
, nlb
, ts
, phys
, virt
;
517 if (!ns
->pi_type
|| ns
->pi_type
== NVME_NS_DPS_PI_TYPE3
)
520 bip
= bio_integrity(req
->bio
);
524 pmap
= kmap_atomic(bip
->bip_vec
->bv_page
) + bip
->bip_vec
->bv_offset
;
529 virt
= bip_get_seed(bip
);
530 phys
= nvme_block_nr(ns
, blk_rq_pos(req
));
531 nlb
= (blk_rq_bytes(req
) >> ns
->lba_shift
);
532 ts
= ns
->disk
->integrity
->tuple_size
;
534 for (i
= 0; i
< nlb
; i
++, virt
++, phys
++) {
535 pi
= (struct t10_pi_tuple
*)p
;
536 dif_swap(phys
, virt
, pi
);
542 static int nvme_noop_verify(struct blk_integrity_iter
*iter
)
547 static int nvme_noop_generate(struct blk_integrity_iter
*iter
)
552 struct blk_integrity nvme_meta_noop
= {
553 .name
= "NVME_META_NOOP",
554 .generate_fn
= nvme_noop_generate
,
555 .verify_fn
= nvme_noop_verify
,
558 static void nvme_init_integrity(struct nvme_ns
*ns
)
560 struct blk_integrity integrity
;
562 switch (ns
->pi_type
) {
563 case NVME_NS_DPS_PI_TYPE3
:
564 integrity
= t10_pi_type3_crc
;
566 case NVME_NS_DPS_PI_TYPE1
:
567 case NVME_NS_DPS_PI_TYPE2
:
568 integrity
= t10_pi_type1_crc
;
571 integrity
= nvme_meta_noop
;
574 integrity
.tuple_size
= ns
->ms
;
575 blk_integrity_register(ns
->disk
, &integrity
);
576 blk_queue_max_integrity_segments(ns
->queue
, 1);
578 #else /* CONFIG_BLK_DEV_INTEGRITY */
579 static void nvme_dif_remap(struct request
*req
,
580 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
583 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
586 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
589 static void nvme_init_integrity(struct nvme_ns
*ns
)
594 static void req_completion(struct nvme_queue
*nvmeq
, void *ctx
,
595 struct nvme_completion
*cqe
)
597 struct nvme_iod
*iod
= ctx
;
598 struct request
*req
= iod_get_private(iod
);
599 struct nvme_cmd_info
*cmd_rq
= blk_mq_rq_to_pdu(req
);
601 u16 status
= le16_to_cpup(&cqe
->status
) >> 1;
603 if (unlikely(status
)) {
604 if (!(status
& NVME_SC_DNR
|| blk_noretry_request(req
))
605 && (jiffies
- req
->start_time
) < req
->timeout
) {
608 blk_mq_requeue_request(req
);
609 spin_lock_irqsave(req
->q
->queue_lock
, flags
);
610 if (!blk_queue_stopped(req
->q
))
611 blk_mq_kick_requeue_list(req
->q
);
612 spin_unlock_irqrestore(req
->q
->queue_lock
, flags
);
615 req
->errors
= nvme_error_status(status
);
620 dev_warn(&nvmeq
->dev
->pci_dev
->dev
,
621 "completing aborted command with status:%04x\n",
625 dma_unmap_sg(&nvmeq
->dev
->pci_dev
->dev
, iod
->sg
, iod
->nents
,
626 rq_data_dir(req
) ? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
627 if (blk_integrity_rq(req
)) {
628 if (!rq_data_dir(req
))
629 nvme_dif_remap(req
, nvme_dif_complete
);
630 dma_unmap_sg(&nvmeq
->dev
->pci_dev
->dev
, iod
->meta_sg
, 1,
631 rq_data_dir(req
) ? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
634 nvme_free_iod(nvmeq
->dev
, iod
);
636 blk_mq_complete_request(req
);
639 /* length is in bytes. gfp flags indicates whether we may sleep. */
640 int nvme_setup_prps(struct nvme_dev
*dev
, struct nvme_iod
*iod
, int total_len
,
643 struct dma_pool
*pool
;
644 int length
= total_len
;
645 struct scatterlist
*sg
= iod
->sg
;
646 int dma_len
= sg_dma_len(sg
);
647 u64 dma_addr
= sg_dma_address(sg
);
648 int offset
= offset_in_page(dma_addr
);
650 __le64
**list
= iod_list(iod
);
653 u32 page_size
= dev
->page_size
;
655 length
-= (page_size
- offset
);
659 dma_len
-= (page_size
- offset
);
661 dma_addr
+= (page_size
- offset
);
664 dma_addr
= sg_dma_address(sg
);
665 dma_len
= sg_dma_len(sg
);
668 if (length
<= page_size
) {
669 iod
->first_dma
= dma_addr
;
673 nprps
= DIV_ROUND_UP(length
, page_size
);
674 if (nprps
<= (256 / 8)) {
675 pool
= dev
->prp_small_pool
;
678 pool
= dev
->prp_page_pool
;
682 prp_list
= dma_pool_alloc(pool
, gfp
, &prp_dma
);
684 iod
->first_dma
= dma_addr
;
686 return (total_len
- length
) + page_size
;
689 iod
->first_dma
= prp_dma
;
692 if (i
== page_size
>> 3) {
693 __le64
*old_prp_list
= prp_list
;
694 prp_list
= dma_pool_alloc(pool
, gfp
, &prp_dma
);
696 return total_len
- length
;
697 list
[iod
->npages
++] = prp_list
;
698 prp_list
[0] = old_prp_list
[i
- 1];
699 old_prp_list
[i
- 1] = cpu_to_le64(prp_dma
);
702 prp_list
[i
++] = cpu_to_le64(dma_addr
);
703 dma_len
-= page_size
;
704 dma_addr
+= page_size
;
712 dma_addr
= sg_dma_address(sg
);
713 dma_len
= sg_dma_len(sg
);
720 * We reuse the small pool to allocate the 16-byte range here as it is not
721 * worth having a special pool for these or additional cases to handle freeing
724 static void nvme_submit_discard(struct nvme_queue
*nvmeq
, struct nvme_ns
*ns
,
725 struct request
*req
, struct nvme_iod
*iod
)
727 struct nvme_dsm_range
*range
=
728 (struct nvme_dsm_range
*)iod_list(iod
)[0];
729 struct nvme_command
*cmnd
= &nvmeq
->sq_cmds
[nvmeq
->sq_tail
];
731 range
->cattr
= cpu_to_le32(0);
732 range
->nlb
= cpu_to_le32(blk_rq_bytes(req
) >> ns
->lba_shift
);
733 range
->slba
= cpu_to_le64(nvme_block_nr(ns
, blk_rq_pos(req
)));
735 memset(cmnd
, 0, sizeof(*cmnd
));
736 cmnd
->dsm
.opcode
= nvme_cmd_dsm
;
737 cmnd
->dsm
.command_id
= req
->tag
;
738 cmnd
->dsm
.nsid
= cpu_to_le32(ns
->ns_id
);
739 cmnd
->dsm
.prp1
= cpu_to_le64(iod
->first_dma
);
741 cmnd
->dsm
.attributes
= cpu_to_le32(NVME_DSMGMT_AD
);
743 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
745 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
748 static void nvme_submit_flush(struct nvme_queue
*nvmeq
, struct nvme_ns
*ns
,
751 struct nvme_command
*cmnd
= &nvmeq
->sq_cmds
[nvmeq
->sq_tail
];
753 memset(cmnd
, 0, sizeof(*cmnd
));
754 cmnd
->common
.opcode
= nvme_cmd_flush
;
755 cmnd
->common
.command_id
= cmdid
;
756 cmnd
->common
.nsid
= cpu_to_le32(ns
->ns_id
);
758 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
760 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
763 static int nvme_submit_iod(struct nvme_queue
*nvmeq
, struct nvme_iod
*iod
,
766 struct request
*req
= iod_get_private(iod
);
767 struct nvme_command
*cmnd
;
771 if (req
->cmd_flags
& REQ_FUA
)
772 control
|= NVME_RW_FUA
;
773 if (req
->cmd_flags
& (REQ_FAILFAST_DEV
| REQ_RAHEAD
))
774 control
|= NVME_RW_LR
;
776 if (req
->cmd_flags
& REQ_RAHEAD
)
777 dsmgmt
|= NVME_RW_DSM_FREQ_PREFETCH
;
779 cmnd
= &nvmeq
->sq_cmds
[nvmeq
->sq_tail
];
780 memset(cmnd
, 0, sizeof(*cmnd
));
782 cmnd
->rw
.opcode
= (rq_data_dir(req
) ? nvme_cmd_write
: nvme_cmd_read
);
783 cmnd
->rw
.command_id
= req
->tag
;
784 cmnd
->rw
.nsid
= cpu_to_le32(ns
->ns_id
);
785 cmnd
->rw
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
786 cmnd
->rw
.prp2
= cpu_to_le64(iod
->first_dma
);
787 cmnd
->rw
.slba
= cpu_to_le64(nvme_block_nr(ns
, blk_rq_pos(req
)));
788 cmnd
->rw
.length
= cpu_to_le16((blk_rq_bytes(req
) >> ns
->lba_shift
) - 1);
790 if (blk_integrity_rq(req
)) {
791 cmnd
->rw
.metadata
= cpu_to_le64(sg_dma_address(iod
->meta_sg
));
792 switch (ns
->pi_type
) {
793 case NVME_NS_DPS_PI_TYPE3
:
794 control
|= NVME_RW_PRINFO_PRCHK_GUARD
;
796 case NVME_NS_DPS_PI_TYPE1
:
797 case NVME_NS_DPS_PI_TYPE2
:
798 control
|= NVME_RW_PRINFO_PRCHK_GUARD
|
799 NVME_RW_PRINFO_PRCHK_REF
;
800 cmnd
->rw
.reftag
= cpu_to_le32(
801 nvme_block_nr(ns
, blk_rq_pos(req
)));
805 control
|= NVME_RW_PRINFO_PRACT
;
807 cmnd
->rw
.control
= cpu_to_le16(control
);
808 cmnd
->rw
.dsmgmt
= cpu_to_le32(dsmgmt
);
810 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
812 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
817 static int nvme_queue_rq(struct blk_mq_hw_ctx
*hctx
,
818 const struct blk_mq_queue_data
*bd
)
820 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
821 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
822 struct request
*req
= bd
->rq
;
823 struct nvme_cmd_info
*cmd
= blk_mq_rq_to_pdu(req
);
824 struct nvme_iod
*iod
;
825 enum dma_data_direction dma_dir
;
828 * If formated with metadata, require the block layer provide a buffer
829 * unless this namespace is formated such that the metadata can be
830 * stripped/generated by the controller with PRACT=1.
832 if (ns
->ms
&& !blk_integrity_rq(req
)) {
833 if (!(ns
->pi_type
&& ns
->ms
== 8)) {
834 req
->errors
= -EFAULT
;
835 blk_mq_complete_request(req
);
836 return BLK_MQ_RQ_QUEUE_OK
;
840 iod
= nvme_alloc_iod(req
, ns
->dev
, GFP_ATOMIC
);
842 return BLK_MQ_RQ_QUEUE_BUSY
;
844 if (req
->cmd_flags
& REQ_DISCARD
) {
847 * We reuse the small pool to allocate the 16-byte range here
848 * as it is not worth having a special pool for these or
849 * additional cases to handle freeing the iod.
851 range
= dma_pool_alloc(nvmeq
->dev
->prp_small_pool
,
856 iod_list(iod
)[0] = (__le64
*)range
;
858 } else if (req
->nr_phys_segments
) {
859 dma_dir
= rq_data_dir(req
) ? DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
861 sg_init_table(iod
->sg
, req
->nr_phys_segments
);
862 iod
->nents
= blk_rq_map_sg(req
->q
, req
, iod
->sg
);
866 if (!dma_map_sg(nvmeq
->q_dmadev
, iod
->sg
, iod
->nents
, dma_dir
))
869 if (blk_rq_bytes(req
) !=
870 nvme_setup_prps(nvmeq
->dev
, iod
, blk_rq_bytes(req
), GFP_ATOMIC
)) {
871 dma_unmap_sg(&nvmeq
->dev
->pci_dev
->dev
, iod
->sg
,
872 iod
->nents
, dma_dir
);
875 if (blk_integrity_rq(req
)) {
876 if (blk_rq_count_integrity_sg(req
->q
, req
->bio
) != 1)
879 sg_init_table(iod
->meta_sg
, 1);
880 if (blk_rq_map_integrity_sg(
881 req
->q
, req
->bio
, iod
->meta_sg
) != 1)
884 if (rq_data_dir(req
))
885 nvme_dif_remap(req
, nvme_dif_prep
);
887 if (!dma_map_sg(nvmeq
->q_dmadev
, iod
->meta_sg
, 1, dma_dir
))
892 nvme_set_info(cmd
, iod
, req_completion
);
893 spin_lock_irq(&nvmeq
->q_lock
);
894 if (req
->cmd_flags
& REQ_DISCARD
)
895 nvme_submit_discard(nvmeq
, ns
, req
, iod
);
896 else if (req
->cmd_flags
& REQ_FLUSH
)
897 nvme_submit_flush(nvmeq
, ns
, req
->tag
);
899 nvme_submit_iod(nvmeq
, iod
, ns
);
901 nvme_process_cq(nvmeq
);
902 spin_unlock_irq(&nvmeq
->q_lock
);
903 return BLK_MQ_RQ_QUEUE_OK
;
906 nvme_free_iod(nvmeq
->dev
, iod
);
907 return BLK_MQ_RQ_QUEUE_ERROR
;
909 nvme_free_iod(nvmeq
->dev
, iod
);
910 return BLK_MQ_RQ_QUEUE_BUSY
;
913 static int nvme_process_cq(struct nvme_queue
*nvmeq
)
917 head
= nvmeq
->cq_head
;
918 phase
= nvmeq
->cq_phase
;
922 nvme_completion_fn fn
;
923 struct nvme_completion cqe
= nvmeq
->cqes
[head
];
924 if ((le16_to_cpu(cqe
.status
) & 1) != phase
)
926 nvmeq
->sq_head
= le16_to_cpu(cqe
.sq_head
);
927 if (++head
== nvmeq
->q_depth
) {
931 ctx
= nvme_finish_cmd(nvmeq
, cqe
.command_id
, &fn
);
932 fn(nvmeq
, ctx
, &cqe
);
935 /* If the controller ignores the cq head doorbell and continuously
936 * writes to the queue, it is theoretically possible to wrap around
937 * the queue twice and mistakenly return IRQ_NONE. Linux only
938 * requires that 0.1% of your interrupts are handled, so this isn't
941 if (head
== nvmeq
->cq_head
&& phase
== nvmeq
->cq_phase
)
944 writel(head
, nvmeq
->q_db
+ nvmeq
->dev
->db_stride
);
945 nvmeq
->cq_head
= head
;
946 nvmeq
->cq_phase
= phase
;
952 /* Admin queue isn't initialized as a request queue. If at some point this
953 * happens anyway, make sure to notify the user */
954 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx
*hctx
,
955 const struct blk_mq_queue_data
*bd
)
958 return BLK_MQ_RQ_QUEUE_ERROR
;
961 static irqreturn_t
nvme_irq(int irq
, void *data
)
964 struct nvme_queue
*nvmeq
= data
;
965 spin_lock(&nvmeq
->q_lock
);
966 nvme_process_cq(nvmeq
);
967 result
= nvmeq
->cqe_seen
? IRQ_HANDLED
: IRQ_NONE
;
969 spin_unlock(&nvmeq
->q_lock
);
973 static irqreturn_t
nvme_irq_check(int irq
, void *data
)
975 struct nvme_queue
*nvmeq
= data
;
976 struct nvme_completion cqe
= nvmeq
->cqes
[nvmeq
->cq_head
];
977 if ((le16_to_cpu(cqe
.status
) & 1) != nvmeq
->cq_phase
)
979 return IRQ_WAKE_THREAD
;
982 struct sync_cmd_info
{
983 struct task_struct
*task
;
988 static void sync_completion(struct nvme_queue
*nvmeq
, void *ctx
,
989 struct nvme_completion
*cqe
)
991 struct sync_cmd_info
*cmdinfo
= ctx
;
992 cmdinfo
->result
= le32_to_cpup(&cqe
->result
);
993 cmdinfo
->status
= le16_to_cpup(&cqe
->status
) >> 1;
994 wake_up_process(cmdinfo
->task
);
998 * Returns 0 on success. If the result is negative, it's a Linux error code;
999 * if the result is positive, it's an NVM Express status code
1001 static int nvme_submit_sync_cmd(struct request
*req
, struct nvme_command
*cmd
,
1002 u32
*result
, unsigned timeout
)
1004 struct sync_cmd_info cmdinfo
;
1005 struct nvme_cmd_info
*cmd_rq
= blk_mq_rq_to_pdu(req
);
1006 struct nvme_queue
*nvmeq
= cmd_rq
->nvmeq
;
1008 cmdinfo
.task
= current
;
1009 cmdinfo
.status
= -EINTR
;
1011 cmd
->common
.command_id
= req
->tag
;
1013 nvme_set_info(cmd_rq
, &cmdinfo
, sync_completion
);
1015 set_current_state(TASK_UNINTERRUPTIBLE
);
1016 nvme_submit_cmd(nvmeq
, cmd
);
1020 *result
= cmdinfo
.result
;
1021 return cmdinfo
.status
;
1024 static int nvme_submit_async_admin_req(struct nvme_dev
*dev
)
1026 struct nvme_queue
*nvmeq
= dev
->queues
[0];
1027 struct nvme_command c
;
1028 struct nvme_cmd_info
*cmd_info
;
1029 struct request
*req
;
1031 req
= blk_mq_alloc_request(dev
->admin_q
, WRITE
, GFP_ATOMIC
, false);
1033 return PTR_ERR(req
);
1035 req
->cmd_flags
|= REQ_NO_TIMEOUT
;
1036 cmd_info
= blk_mq_rq_to_pdu(req
);
1037 nvme_set_info(cmd_info
, req
, async_req_completion
);
1039 memset(&c
, 0, sizeof(c
));
1040 c
.common
.opcode
= nvme_admin_async_event
;
1041 c
.common
.command_id
= req
->tag
;
1043 return __nvme_submit_cmd(nvmeq
, &c
);
1046 static int nvme_submit_admin_async_cmd(struct nvme_dev
*dev
,
1047 struct nvme_command
*cmd
,
1048 struct async_cmd_info
*cmdinfo
, unsigned timeout
)
1050 struct nvme_queue
*nvmeq
= dev
->queues
[0];
1051 struct request
*req
;
1052 struct nvme_cmd_info
*cmd_rq
;
1054 req
= blk_mq_alloc_request(dev
->admin_q
, WRITE
, GFP_KERNEL
, false);
1056 return PTR_ERR(req
);
1058 req
->timeout
= timeout
;
1059 cmd_rq
= blk_mq_rq_to_pdu(req
);
1061 nvme_set_info(cmd_rq
, cmdinfo
, async_completion
);
1062 cmdinfo
->status
= -EINTR
;
1064 cmd
->common
.command_id
= req
->tag
;
1066 return nvme_submit_cmd(nvmeq
, cmd
);
1069 static int __nvme_submit_admin_cmd(struct nvme_dev
*dev
, struct nvme_command
*cmd
,
1070 u32
*result
, unsigned timeout
)
1073 struct request
*req
;
1075 req
= blk_mq_alloc_request(dev
->admin_q
, WRITE
, GFP_KERNEL
, false);
1077 return PTR_ERR(req
);
1078 res
= nvme_submit_sync_cmd(req
, cmd
, result
, timeout
);
1079 blk_mq_free_request(req
);
1083 int nvme_submit_admin_cmd(struct nvme_dev
*dev
, struct nvme_command
*cmd
,
1086 return __nvme_submit_admin_cmd(dev
, cmd
, result
, ADMIN_TIMEOUT
);
1089 int nvme_submit_io_cmd(struct nvme_dev
*dev
, struct nvme_ns
*ns
,
1090 struct nvme_command
*cmd
, u32
*result
)
1093 struct request
*req
;
1095 req
= blk_mq_alloc_request(ns
->queue
, WRITE
, (GFP_KERNEL
|__GFP_WAIT
),
1098 return PTR_ERR(req
);
1099 res
= nvme_submit_sync_cmd(req
, cmd
, result
, NVME_IO_TIMEOUT
);
1100 blk_mq_free_request(req
);
1104 static int adapter_delete_queue(struct nvme_dev
*dev
, u8 opcode
, u16 id
)
1106 struct nvme_command c
;
1108 memset(&c
, 0, sizeof(c
));
1109 c
.delete_queue
.opcode
= opcode
;
1110 c
.delete_queue
.qid
= cpu_to_le16(id
);
1112 return nvme_submit_admin_cmd(dev
, &c
, NULL
);
1115 static int adapter_alloc_cq(struct nvme_dev
*dev
, u16 qid
,
1116 struct nvme_queue
*nvmeq
)
1118 struct nvme_command c
;
1119 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_CQ_IRQ_ENABLED
;
1121 memset(&c
, 0, sizeof(c
));
1122 c
.create_cq
.opcode
= nvme_admin_create_cq
;
1123 c
.create_cq
.prp1
= cpu_to_le64(nvmeq
->cq_dma_addr
);
1124 c
.create_cq
.cqid
= cpu_to_le16(qid
);
1125 c
.create_cq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1126 c
.create_cq
.cq_flags
= cpu_to_le16(flags
);
1127 c
.create_cq
.irq_vector
= cpu_to_le16(nvmeq
->cq_vector
);
1129 return nvme_submit_admin_cmd(dev
, &c
, NULL
);
1132 static int adapter_alloc_sq(struct nvme_dev
*dev
, u16 qid
,
1133 struct nvme_queue
*nvmeq
)
1135 struct nvme_command c
;
1136 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_SQ_PRIO_MEDIUM
;
1138 memset(&c
, 0, sizeof(c
));
1139 c
.create_sq
.opcode
= nvme_admin_create_sq
;
1140 c
.create_sq
.prp1
= cpu_to_le64(nvmeq
->sq_dma_addr
);
1141 c
.create_sq
.sqid
= cpu_to_le16(qid
);
1142 c
.create_sq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1143 c
.create_sq
.sq_flags
= cpu_to_le16(flags
);
1144 c
.create_sq
.cqid
= cpu_to_le16(qid
);
1146 return nvme_submit_admin_cmd(dev
, &c
, NULL
);
1149 static int adapter_delete_cq(struct nvme_dev
*dev
, u16 cqid
)
1151 return adapter_delete_queue(dev
, nvme_admin_delete_cq
, cqid
);
1154 static int adapter_delete_sq(struct nvme_dev
*dev
, u16 sqid
)
1156 return adapter_delete_queue(dev
, nvme_admin_delete_sq
, sqid
);
1159 int nvme_identify(struct nvme_dev
*dev
, unsigned nsid
, unsigned cns
,
1160 dma_addr_t dma_addr
)
1162 struct nvme_command c
;
1164 memset(&c
, 0, sizeof(c
));
1165 c
.identify
.opcode
= nvme_admin_identify
;
1166 c
.identify
.nsid
= cpu_to_le32(nsid
);
1167 c
.identify
.prp1
= cpu_to_le64(dma_addr
);
1168 c
.identify
.cns
= cpu_to_le32(cns
);
1170 return nvme_submit_admin_cmd(dev
, &c
, NULL
);
1173 int nvme_get_features(struct nvme_dev
*dev
, unsigned fid
, unsigned nsid
,
1174 dma_addr_t dma_addr
, u32
*result
)
1176 struct nvme_command c
;
1178 memset(&c
, 0, sizeof(c
));
1179 c
.features
.opcode
= nvme_admin_get_features
;
1180 c
.features
.nsid
= cpu_to_le32(nsid
);
1181 c
.features
.prp1
= cpu_to_le64(dma_addr
);
1182 c
.features
.fid
= cpu_to_le32(fid
);
1184 return nvme_submit_admin_cmd(dev
, &c
, result
);
1187 int nvme_set_features(struct nvme_dev
*dev
, unsigned fid
, unsigned dword11
,
1188 dma_addr_t dma_addr
, u32
*result
)
1190 struct nvme_command c
;
1192 memset(&c
, 0, sizeof(c
));
1193 c
.features
.opcode
= nvme_admin_set_features
;
1194 c
.features
.prp1
= cpu_to_le64(dma_addr
);
1195 c
.features
.fid
= cpu_to_le32(fid
);
1196 c
.features
.dword11
= cpu_to_le32(dword11
);
1198 return nvme_submit_admin_cmd(dev
, &c
, result
);
1202 * nvme_abort_req - Attempt aborting a request
1204 * Schedule controller reset if the command was already aborted once before and
1205 * still hasn't been returned to the driver, or if this is the admin queue.
1207 static void nvme_abort_req(struct request
*req
)
1209 struct nvme_cmd_info
*cmd_rq
= blk_mq_rq_to_pdu(req
);
1210 struct nvme_queue
*nvmeq
= cmd_rq
->nvmeq
;
1211 struct nvme_dev
*dev
= nvmeq
->dev
;
1212 struct request
*abort_req
;
1213 struct nvme_cmd_info
*abort_cmd
;
1214 struct nvme_command cmd
;
1216 if (!nvmeq
->qid
|| cmd_rq
->aborted
) {
1217 unsigned long flags
;
1219 spin_lock_irqsave(&dev_list_lock
, flags
);
1220 if (work_busy(&dev
->reset_work
))
1222 list_del_init(&dev
->node
);
1223 dev_warn(&dev
->pci_dev
->dev
,
1224 "I/O %d QID %d timeout, reset controller\n",
1225 req
->tag
, nvmeq
->qid
);
1226 dev
->reset_workfn
= nvme_reset_failed_dev
;
1227 queue_work(nvme_workq
, &dev
->reset_work
);
1229 spin_unlock_irqrestore(&dev_list_lock
, flags
);
1233 if (!dev
->abort_limit
)
1236 abort_req
= blk_mq_alloc_request(dev
->admin_q
, WRITE
, GFP_ATOMIC
,
1238 if (IS_ERR(abort_req
))
1241 abort_cmd
= blk_mq_rq_to_pdu(abort_req
);
1242 nvme_set_info(abort_cmd
, abort_req
, abort_completion
);
1244 memset(&cmd
, 0, sizeof(cmd
));
1245 cmd
.abort
.opcode
= nvme_admin_abort_cmd
;
1246 cmd
.abort
.cid
= req
->tag
;
1247 cmd
.abort
.sqid
= cpu_to_le16(nvmeq
->qid
);
1248 cmd
.abort
.command_id
= abort_req
->tag
;
1251 cmd_rq
->aborted
= 1;
1253 dev_warn(nvmeq
->q_dmadev
, "Aborting I/O %d QID %d\n", req
->tag
,
1255 if (nvme_submit_cmd(dev
->queues
[0], &cmd
) < 0) {
1256 dev_warn(nvmeq
->q_dmadev
,
1257 "Could not abort I/O %d QID %d",
1258 req
->tag
, nvmeq
->qid
);
1259 blk_mq_free_request(abort_req
);
1263 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx
*hctx
,
1264 struct request
*req
, void *data
, bool reserved
)
1266 struct nvme_queue
*nvmeq
= data
;
1268 nvme_completion_fn fn
;
1269 struct nvme_cmd_info
*cmd
;
1270 struct nvme_completion cqe
;
1272 if (!blk_mq_request_started(req
))
1275 cmd
= blk_mq_rq_to_pdu(req
);
1277 if (cmd
->ctx
== CMD_CTX_CANCELLED
)
1280 if (blk_queue_dying(req
->q
))
1281 cqe
.status
= cpu_to_le16((NVME_SC_ABORT_REQ
| NVME_SC_DNR
) << 1);
1283 cqe
.status
= cpu_to_le16(NVME_SC_ABORT_REQ
<< 1);
1286 dev_warn(nvmeq
->q_dmadev
, "Cancelling I/O %d QID %d\n",
1287 req
->tag
, nvmeq
->qid
);
1288 ctx
= cancel_cmd_info(cmd
, &fn
);
1289 fn(nvmeq
, ctx
, &cqe
);
1292 static enum blk_eh_timer_return
nvme_timeout(struct request
*req
, bool reserved
)
1294 struct nvme_cmd_info
*cmd
= blk_mq_rq_to_pdu(req
);
1295 struct nvme_queue
*nvmeq
= cmd
->nvmeq
;
1297 dev_warn(nvmeq
->q_dmadev
, "Timeout I/O %d QID %d\n", req
->tag
,
1299 spin_lock_irq(&nvmeq
->q_lock
);
1300 nvme_abort_req(req
);
1301 spin_unlock_irq(&nvmeq
->q_lock
);
1304 * The aborted req will be completed on receiving the abort req.
1305 * We enable the timer again. If hit twice, it'll cause a device reset,
1306 * as the device then is in a faulty state.
1308 return BLK_EH_RESET_TIMER
;
1311 static void nvme_free_queue(struct nvme_queue
*nvmeq
)
1313 dma_free_coherent(nvmeq
->q_dmadev
, CQ_SIZE(nvmeq
->q_depth
),
1314 (void *)nvmeq
->cqes
, nvmeq
->cq_dma_addr
);
1315 dma_free_coherent(nvmeq
->q_dmadev
, SQ_SIZE(nvmeq
->q_depth
),
1316 nvmeq
->sq_cmds
, nvmeq
->sq_dma_addr
);
1320 static void nvme_free_queues(struct nvme_dev
*dev
, int lowest
)
1324 for (i
= dev
->queue_count
- 1; i
>= lowest
; i
--) {
1325 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
1327 dev
->queues
[i
] = NULL
;
1328 nvme_free_queue(nvmeq
);
1333 * nvme_suspend_queue - put queue into suspended state
1334 * @nvmeq - queue to suspend
1336 static int nvme_suspend_queue(struct nvme_queue
*nvmeq
)
1340 spin_lock_irq(&nvmeq
->q_lock
);
1341 if (nvmeq
->cq_vector
== -1) {
1342 spin_unlock_irq(&nvmeq
->q_lock
);
1345 vector
= nvmeq
->dev
->entry
[nvmeq
->cq_vector
].vector
;
1346 nvmeq
->dev
->online_queues
--;
1347 nvmeq
->cq_vector
= -1;
1348 spin_unlock_irq(&nvmeq
->q_lock
);
1350 irq_set_affinity_hint(vector
, NULL
);
1351 free_irq(vector
, nvmeq
);
1356 static void nvme_clear_queue(struct nvme_queue
*nvmeq
)
1358 struct blk_mq_hw_ctx
*hctx
= nvmeq
->hctx
;
1360 spin_lock_irq(&nvmeq
->q_lock
);
1361 if (hctx
&& hctx
->tags
)
1362 blk_mq_tag_busy_iter(hctx
, nvme_cancel_queue_ios
, nvmeq
);
1363 spin_unlock_irq(&nvmeq
->q_lock
);
1366 static void nvme_disable_queue(struct nvme_dev
*dev
, int qid
)
1368 struct nvme_queue
*nvmeq
= dev
->queues
[qid
];
1372 if (nvme_suspend_queue(nvmeq
))
1375 /* Don't tell the adapter to delete the admin queue.
1376 * Don't tell a removed adapter to delete IO queues. */
1377 if (qid
&& readl(&dev
->bar
->csts
) != -1) {
1378 adapter_delete_sq(dev
, qid
);
1379 adapter_delete_cq(dev
, qid
);
1381 if (!qid
&& dev
->admin_q
)
1382 blk_mq_freeze_queue_start(dev
->admin_q
);
1384 spin_lock_irq(&nvmeq
->q_lock
);
1385 nvme_process_cq(nvmeq
);
1386 spin_unlock_irq(&nvmeq
->q_lock
);
1389 static struct nvme_queue
*nvme_alloc_queue(struct nvme_dev
*dev
, int qid
,
1392 struct device
*dmadev
= &dev
->pci_dev
->dev
;
1393 struct nvme_queue
*nvmeq
= kzalloc(sizeof(*nvmeq
), GFP_KERNEL
);
1397 nvmeq
->cqes
= dma_zalloc_coherent(dmadev
, CQ_SIZE(depth
),
1398 &nvmeq
->cq_dma_addr
, GFP_KERNEL
);
1402 nvmeq
->sq_cmds
= dma_alloc_coherent(dmadev
, SQ_SIZE(depth
),
1403 &nvmeq
->sq_dma_addr
, GFP_KERNEL
);
1404 if (!nvmeq
->sq_cmds
)
1407 nvmeq
->q_dmadev
= dmadev
;
1409 snprintf(nvmeq
->irqname
, sizeof(nvmeq
->irqname
), "nvme%dq%d",
1410 dev
->instance
, qid
);
1411 spin_lock_init(&nvmeq
->q_lock
);
1413 nvmeq
->cq_phase
= 1;
1414 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1415 nvmeq
->q_depth
= depth
;
1418 dev
->queues
[qid
] = nvmeq
;
1423 dma_free_coherent(dmadev
, CQ_SIZE(depth
), (void *)nvmeq
->cqes
,
1424 nvmeq
->cq_dma_addr
);
1430 static int queue_request_irq(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1433 if (use_threaded_interrupts
)
1434 return request_threaded_irq(dev
->entry
[nvmeq
->cq_vector
].vector
,
1435 nvme_irq_check
, nvme_irq
, IRQF_SHARED
,
1437 return request_irq(dev
->entry
[nvmeq
->cq_vector
].vector
, nvme_irq
,
1438 IRQF_SHARED
, name
, nvmeq
);
1441 static void nvme_init_queue(struct nvme_queue
*nvmeq
, u16 qid
)
1443 struct nvme_dev
*dev
= nvmeq
->dev
;
1445 spin_lock_irq(&nvmeq
->q_lock
);
1448 nvmeq
->cq_phase
= 1;
1449 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1450 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(nvmeq
->q_depth
));
1451 dev
->online_queues
++;
1452 spin_unlock_irq(&nvmeq
->q_lock
);
1455 static int nvme_create_queue(struct nvme_queue
*nvmeq
, int qid
)
1457 struct nvme_dev
*dev
= nvmeq
->dev
;
1460 nvmeq
->cq_vector
= qid
- 1;
1461 result
= adapter_alloc_cq(dev
, qid
, nvmeq
);
1465 result
= adapter_alloc_sq(dev
, qid
, nvmeq
);
1469 result
= queue_request_irq(dev
, nvmeq
, nvmeq
->irqname
);
1473 nvme_init_queue(nvmeq
, qid
);
1477 adapter_delete_sq(dev
, qid
);
1479 adapter_delete_cq(dev
, qid
);
1483 static int nvme_wait_ready(struct nvme_dev
*dev
, u64 cap
, bool enabled
)
1485 unsigned long timeout
;
1486 u32 bit
= enabled
? NVME_CSTS_RDY
: 0;
1488 timeout
= ((NVME_CAP_TIMEOUT(cap
) + 1) * HZ
/ 2) + jiffies
;
1490 while ((readl(&dev
->bar
->csts
) & NVME_CSTS_RDY
) != bit
) {
1492 if (fatal_signal_pending(current
))
1494 if (time_after(jiffies
, timeout
)) {
1495 dev_err(&dev
->pci_dev
->dev
,
1496 "Device not ready; aborting %s\n", enabled
?
1497 "initialisation" : "reset");
1506 * If the device has been passed off to us in an enabled state, just clear
1507 * the enabled bit. The spec says we should set the 'shutdown notification
1508 * bits', but doing so may cause the device to complete commands to the
1509 * admin queue ... and we don't know what memory that might be pointing at!
1511 static int nvme_disable_ctrl(struct nvme_dev
*dev
, u64 cap
)
1513 dev
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1514 dev
->ctrl_config
&= ~NVME_CC_ENABLE
;
1515 writel(dev
->ctrl_config
, &dev
->bar
->cc
);
1517 return nvme_wait_ready(dev
, cap
, false);
1520 static int nvme_enable_ctrl(struct nvme_dev
*dev
, u64 cap
)
1522 dev
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1523 dev
->ctrl_config
|= NVME_CC_ENABLE
;
1524 writel(dev
->ctrl_config
, &dev
->bar
->cc
);
1526 return nvme_wait_ready(dev
, cap
, true);
1529 static int nvme_shutdown_ctrl(struct nvme_dev
*dev
)
1531 unsigned long timeout
;
1533 dev
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1534 dev
->ctrl_config
|= NVME_CC_SHN_NORMAL
;
1536 writel(dev
->ctrl_config
, &dev
->bar
->cc
);
1538 timeout
= SHUTDOWN_TIMEOUT
+ jiffies
;
1539 while ((readl(&dev
->bar
->csts
) & NVME_CSTS_SHST_MASK
) !=
1540 NVME_CSTS_SHST_CMPLT
) {
1542 if (fatal_signal_pending(current
))
1544 if (time_after(jiffies
, timeout
)) {
1545 dev_err(&dev
->pci_dev
->dev
,
1546 "Device shutdown incomplete; abort shutdown\n");
1554 static struct blk_mq_ops nvme_mq_admin_ops
= {
1555 .queue_rq
= nvme_admin_queue_rq
,
1556 .map_queue
= blk_mq_map_queue
,
1557 .init_hctx
= nvme_admin_init_hctx
,
1558 .exit_hctx
= nvme_exit_hctx
,
1559 .init_request
= nvme_admin_init_request
,
1560 .timeout
= nvme_timeout
,
1563 static struct blk_mq_ops nvme_mq_ops
= {
1564 .queue_rq
= nvme_queue_rq
,
1565 .map_queue
= blk_mq_map_queue
,
1566 .init_hctx
= nvme_init_hctx
,
1567 .exit_hctx
= nvme_exit_hctx
,
1568 .init_request
= nvme_init_request
,
1569 .timeout
= nvme_timeout
,
1572 static void nvme_dev_remove_admin(struct nvme_dev
*dev
)
1574 if (dev
->admin_q
&& !blk_queue_dying(dev
->admin_q
)) {
1575 blk_cleanup_queue(dev
->admin_q
);
1576 blk_mq_free_tag_set(&dev
->admin_tagset
);
1580 static int nvme_alloc_admin_tags(struct nvme_dev
*dev
)
1582 if (!dev
->admin_q
) {
1583 dev
->admin_tagset
.ops
= &nvme_mq_admin_ops
;
1584 dev
->admin_tagset
.nr_hw_queues
= 1;
1585 dev
->admin_tagset
.queue_depth
= NVME_AQ_DEPTH
- 1;
1586 dev
->admin_tagset
.timeout
= ADMIN_TIMEOUT
;
1587 dev
->admin_tagset
.numa_node
= dev_to_node(&dev
->pci_dev
->dev
);
1588 dev
->admin_tagset
.cmd_size
= nvme_cmd_size(dev
);
1589 dev
->admin_tagset
.driver_data
= dev
;
1591 if (blk_mq_alloc_tag_set(&dev
->admin_tagset
))
1594 dev
->admin_q
= blk_mq_init_queue(&dev
->admin_tagset
);
1595 if (IS_ERR(dev
->admin_q
)) {
1596 blk_mq_free_tag_set(&dev
->admin_tagset
);
1599 if (!blk_get_queue(dev
->admin_q
)) {
1600 nvme_dev_remove_admin(dev
);
1604 blk_mq_unfreeze_queue(dev
->admin_q
);
1609 static int nvme_configure_admin_queue(struct nvme_dev
*dev
)
1613 u64 cap
= readq(&dev
->bar
->cap
);
1614 struct nvme_queue
*nvmeq
;
1615 unsigned page_shift
= PAGE_SHIFT
;
1616 unsigned dev_page_min
= NVME_CAP_MPSMIN(cap
) + 12;
1617 unsigned dev_page_max
= NVME_CAP_MPSMAX(cap
) + 12;
1619 if (page_shift
< dev_page_min
) {
1620 dev_err(&dev
->pci_dev
->dev
,
1621 "Minimum device page size (%u) too large for "
1622 "host (%u)\n", 1 << dev_page_min
,
1626 if (page_shift
> dev_page_max
) {
1627 dev_info(&dev
->pci_dev
->dev
,
1628 "Device maximum page size (%u) smaller than "
1629 "host (%u); enabling work-around\n",
1630 1 << dev_page_max
, 1 << page_shift
);
1631 page_shift
= dev_page_max
;
1634 result
= nvme_disable_ctrl(dev
, cap
);
1638 nvmeq
= dev
->queues
[0];
1640 nvmeq
= nvme_alloc_queue(dev
, 0, NVME_AQ_DEPTH
);
1645 aqa
= nvmeq
->q_depth
- 1;
1648 dev
->page_size
= 1 << page_shift
;
1650 dev
->ctrl_config
= NVME_CC_CSS_NVM
;
1651 dev
->ctrl_config
|= (page_shift
- 12) << NVME_CC_MPS_SHIFT
;
1652 dev
->ctrl_config
|= NVME_CC_ARB_RR
| NVME_CC_SHN_NONE
;
1653 dev
->ctrl_config
|= NVME_CC_IOSQES
| NVME_CC_IOCQES
;
1655 writel(aqa
, &dev
->bar
->aqa
);
1656 writeq(nvmeq
->sq_dma_addr
, &dev
->bar
->asq
);
1657 writeq(nvmeq
->cq_dma_addr
, &dev
->bar
->acq
);
1659 result
= nvme_enable_ctrl(dev
, cap
);
1663 nvmeq
->cq_vector
= 0;
1664 result
= queue_request_irq(dev
, nvmeq
, nvmeq
->irqname
);
1671 nvme_free_queues(dev
, 0);
1675 struct nvme_iod
*nvme_map_user_pages(struct nvme_dev
*dev
, int write
,
1676 unsigned long addr
, unsigned length
)
1678 int i
, err
, count
, nents
, offset
;
1679 struct scatterlist
*sg
;
1680 struct page
**pages
;
1681 struct nvme_iod
*iod
;
1684 return ERR_PTR(-EINVAL
);
1685 if (!length
|| length
> INT_MAX
- PAGE_SIZE
)
1686 return ERR_PTR(-EINVAL
);
1688 offset
= offset_in_page(addr
);
1689 count
= DIV_ROUND_UP(offset
+ length
, PAGE_SIZE
);
1690 pages
= kcalloc(count
, sizeof(*pages
), GFP_KERNEL
);
1692 return ERR_PTR(-ENOMEM
);
1694 err
= get_user_pages_fast(addr
, count
, 1, pages
);
1702 iod
= __nvme_alloc_iod(count
, length
, dev
, 0, GFP_KERNEL
);
1707 sg_init_table(sg
, count
);
1708 for (i
= 0; i
< count
; i
++) {
1709 sg_set_page(&sg
[i
], pages
[i
],
1710 min_t(unsigned, length
, PAGE_SIZE
- offset
),
1712 length
-= (PAGE_SIZE
- offset
);
1715 sg_mark_end(&sg
[i
- 1]);
1718 nents
= dma_map_sg(&dev
->pci_dev
->dev
, sg
, count
,
1719 write
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
1729 for (i
= 0; i
< count
; i
++)
1732 return ERR_PTR(err
);
1735 void nvme_unmap_user_pages(struct nvme_dev
*dev
, int write
,
1736 struct nvme_iod
*iod
)
1740 dma_unmap_sg(&dev
->pci_dev
->dev
, iod
->sg
, iod
->nents
,
1741 write
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
1743 for (i
= 0; i
< iod
->nents
; i
++)
1744 put_page(sg_page(&iod
->sg
[i
]));
1747 static int nvme_submit_io(struct nvme_ns
*ns
, struct nvme_user_io __user
*uio
)
1749 struct nvme_dev
*dev
= ns
->dev
;
1750 struct nvme_user_io io
;
1751 struct nvme_command c
;
1752 unsigned length
, meta_len
;
1754 struct nvme_iod
*iod
, *meta_iod
= NULL
;
1755 dma_addr_t meta_dma_addr
;
1756 void *meta
, *uninitialized_var(meta_mem
);
1758 if (copy_from_user(&io
, uio
, sizeof(io
)))
1760 length
= (io
.nblocks
+ 1) << ns
->lba_shift
;
1761 meta_len
= (io
.nblocks
+ 1) * ns
->ms
;
1763 if (meta_len
&& ((io
.metadata
& 3) || !io
.metadata
))
1766 switch (io
.opcode
) {
1767 case nvme_cmd_write
:
1769 case nvme_cmd_compare
:
1770 iod
= nvme_map_user_pages(dev
, io
.opcode
& 1, io
.addr
, length
);
1777 return PTR_ERR(iod
);
1779 memset(&c
, 0, sizeof(c
));
1780 c
.rw
.opcode
= io
.opcode
;
1781 c
.rw
.flags
= io
.flags
;
1782 c
.rw
.nsid
= cpu_to_le32(ns
->ns_id
);
1783 c
.rw
.slba
= cpu_to_le64(io
.slba
);
1784 c
.rw
.length
= cpu_to_le16(io
.nblocks
);
1785 c
.rw
.control
= cpu_to_le16(io
.control
);
1786 c
.rw
.dsmgmt
= cpu_to_le32(io
.dsmgmt
);
1787 c
.rw
.reftag
= cpu_to_le32(io
.reftag
);
1788 c
.rw
.apptag
= cpu_to_le16(io
.apptag
);
1789 c
.rw
.appmask
= cpu_to_le16(io
.appmask
);
1792 meta_iod
= nvme_map_user_pages(dev
, io
.opcode
& 1, io
.metadata
,
1794 if (IS_ERR(meta_iod
)) {
1795 status
= PTR_ERR(meta_iod
);
1800 meta_mem
= dma_alloc_coherent(&dev
->pci_dev
->dev
, meta_len
,
1801 &meta_dma_addr
, GFP_KERNEL
);
1807 if (io
.opcode
& 1) {
1808 int meta_offset
= 0;
1810 for (i
= 0; i
< meta_iod
->nents
; i
++) {
1811 meta
= kmap_atomic(sg_page(&meta_iod
->sg
[i
])) +
1812 meta_iod
->sg
[i
].offset
;
1813 memcpy(meta_mem
+ meta_offset
, meta
,
1814 meta_iod
->sg
[i
].length
);
1815 kunmap_atomic(meta
);
1816 meta_offset
+= meta_iod
->sg
[i
].length
;
1820 c
.rw
.metadata
= cpu_to_le64(meta_dma_addr
);
1823 length
= nvme_setup_prps(dev
, iod
, length
, GFP_KERNEL
);
1824 c
.rw
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
1825 c
.rw
.prp2
= cpu_to_le64(iod
->first_dma
);
1827 if (length
!= (io
.nblocks
+ 1) << ns
->lba_shift
)
1830 status
= nvme_submit_io_cmd(dev
, ns
, &c
, NULL
);
1833 if (status
== NVME_SC_SUCCESS
&& !(io
.opcode
& 1)) {
1834 int meta_offset
= 0;
1836 for (i
= 0; i
< meta_iod
->nents
; i
++) {
1837 meta
= kmap_atomic(sg_page(&meta_iod
->sg
[i
])) +
1838 meta_iod
->sg
[i
].offset
;
1839 memcpy(meta
, meta_mem
+ meta_offset
,
1840 meta_iod
->sg
[i
].length
);
1841 kunmap_atomic(meta
);
1842 meta_offset
+= meta_iod
->sg
[i
].length
;
1846 dma_free_coherent(&dev
->pci_dev
->dev
, meta_len
, meta_mem
,
1851 nvme_unmap_user_pages(dev
, io
.opcode
& 1, iod
);
1852 nvme_free_iod(dev
, iod
);
1855 nvme_unmap_user_pages(dev
, io
.opcode
& 1, meta_iod
);
1856 nvme_free_iod(dev
, meta_iod
);
1862 static int nvme_user_cmd(struct nvme_dev
*dev
, struct nvme_ns
*ns
,
1863 struct nvme_passthru_cmd __user
*ucmd
)
1865 struct nvme_passthru_cmd cmd
;
1866 struct nvme_command c
;
1868 struct nvme_iod
*uninitialized_var(iod
);
1871 if (!capable(CAP_SYS_ADMIN
))
1873 if (copy_from_user(&cmd
, ucmd
, sizeof(cmd
)))
1876 memset(&c
, 0, sizeof(c
));
1877 c
.common
.opcode
= cmd
.opcode
;
1878 c
.common
.flags
= cmd
.flags
;
1879 c
.common
.nsid
= cpu_to_le32(cmd
.nsid
);
1880 c
.common
.cdw2
[0] = cpu_to_le32(cmd
.cdw2
);
1881 c
.common
.cdw2
[1] = cpu_to_le32(cmd
.cdw3
);
1882 c
.common
.cdw10
[0] = cpu_to_le32(cmd
.cdw10
);
1883 c
.common
.cdw10
[1] = cpu_to_le32(cmd
.cdw11
);
1884 c
.common
.cdw10
[2] = cpu_to_le32(cmd
.cdw12
);
1885 c
.common
.cdw10
[3] = cpu_to_le32(cmd
.cdw13
);
1886 c
.common
.cdw10
[4] = cpu_to_le32(cmd
.cdw14
);
1887 c
.common
.cdw10
[5] = cpu_to_le32(cmd
.cdw15
);
1889 length
= cmd
.data_len
;
1891 iod
= nvme_map_user_pages(dev
, cmd
.opcode
& 1, cmd
.addr
,
1894 return PTR_ERR(iod
);
1895 length
= nvme_setup_prps(dev
, iod
, length
, GFP_KERNEL
);
1896 c
.common
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
1897 c
.common
.prp2
= cpu_to_le64(iod
->first_dma
);
1900 timeout
= cmd
.timeout_ms
? msecs_to_jiffies(cmd
.timeout_ms
) :
1903 if (length
!= cmd
.data_len
)
1906 struct request
*req
;
1908 req
= blk_mq_alloc_request(ns
->queue
, WRITE
,
1909 (GFP_KERNEL
|__GFP_WAIT
), false);
1911 status
= PTR_ERR(req
);
1913 status
= nvme_submit_sync_cmd(req
, &c
, &cmd
.result
,
1915 blk_mq_free_request(req
);
1918 status
= __nvme_submit_admin_cmd(dev
, &c
, &cmd
.result
, timeout
);
1921 nvme_unmap_user_pages(dev
, cmd
.opcode
& 1, iod
);
1922 nvme_free_iod(dev
, iod
);
1925 if ((status
>= 0) && copy_to_user(&ucmd
->result
, &cmd
.result
,
1926 sizeof(cmd
.result
)))
1932 static int nvme_ioctl(struct block_device
*bdev
, fmode_t mode
, unsigned int cmd
,
1935 struct nvme_ns
*ns
= bdev
->bd_disk
->private_data
;
1939 force_successful_syscall_return();
1941 case NVME_IOCTL_ADMIN_CMD
:
1942 return nvme_user_cmd(ns
->dev
, NULL
, (void __user
*)arg
);
1943 case NVME_IOCTL_IO_CMD
:
1944 return nvme_user_cmd(ns
->dev
, ns
, (void __user
*)arg
);
1945 case NVME_IOCTL_SUBMIT_IO
:
1946 return nvme_submit_io(ns
, (void __user
*)arg
);
1947 case SG_GET_VERSION_NUM
:
1948 return nvme_sg_get_version_num((void __user
*)arg
);
1950 return nvme_sg_io(ns
, (void __user
*)arg
);
1956 #ifdef CONFIG_COMPAT
1957 static int nvme_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1958 unsigned int cmd
, unsigned long arg
)
1962 return -ENOIOCTLCMD
;
1964 return nvme_ioctl(bdev
, mode
, cmd
, arg
);
1967 #define nvme_compat_ioctl NULL
1970 static int nvme_open(struct block_device
*bdev
, fmode_t mode
)
1975 spin_lock(&dev_list_lock
);
1976 ns
= bdev
->bd_disk
->private_data
;
1979 else if (!kref_get_unless_zero(&ns
->dev
->kref
))
1981 spin_unlock(&dev_list_lock
);
1986 static void nvme_free_dev(struct kref
*kref
);
1988 static void nvme_release(struct gendisk
*disk
, fmode_t mode
)
1990 struct nvme_ns
*ns
= disk
->private_data
;
1991 struct nvme_dev
*dev
= ns
->dev
;
1993 kref_put(&dev
->kref
, nvme_free_dev
);
1996 static int nvme_getgeo(struct block_device
*bd
, struct hd_geometry
*geo
)
1998 /* some standard values */
1999 geo
->heads
= 1 << 6;
2000 geo
->sectors
= 1 << 5;
2001 geo
->cylinders
= get_capacity(bd
->bd_disk
) >> 11;
2005 static void nvme_config_discard(struct nvme_ns
*ns
)
2007 u32 logical_block_size
= queue_logical_block_size(ns
->queue
);
2008 ns
->queue
->limits
.discard_zeroes_data
= 0;
2009 ns
->queue
->limits
.discard_alignment
= logical_block_size
;
2010 ns
->queue
->limits
.discard_granularity
= logical_block_size
;
2011 ns
->queue
->limits
.max_discard_sectors
= 0xffffffff;
2012 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, ns
->queue
);
2015 static int nvme_revalidate_disk(struct gendisk
*disk
)
2017 struct nvme_ns
*ns
= disk
->private_data
;
2018 struct nvme_dev
*dev
= ns
->dev
;
2019 struct nvme_id_ns
*id
;
2020 dma_addr_t dma_addr
;
2021 int lbaf
, pi_type
, old_ms
;
2024 id
= dma_alloc_coherent(&dev
->pci_dev
->dev
, 4096, &dma_addr
,
2027 dev_warn(&dev
->pci_dev
->dev
, "%s: Memory alocation failure\n",
2031 if (nvme_identify(dev
, ns
->ns_id
, 0, dma_addr
)) {
2032 dev_warn(&dev
->pci_dev
->dev
,
2033 "identify failed ns:%d, setting capacity to 0\n",
2035 memset(id
, 0, sizeof(*id
));
2039 lbaf
= id
->flbas
& NVME_NS_FLBAS_LBA_MASK
;
2040 ns
->lba_shift
= id
->lbaf
[lbaf
].ds
;
2041 ns
->ms
= le16_to_cpu(id
->lbaf
[lbaf
].ms
);
2044 * If identify namespace failed, use default 512 byte block size so
2045 * block layer can use before failing read/write for 0 capacity.
2047 if (ns
->lba_shift
== 0)
2049 bs
= 1 << ns
->lba_shift
;
2051 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2052 pi_type
= ns
->ms
== sizeof(struct t10_pi_tuple
) ?
2053 id
->dps
& NVME_NS_DPS_PI_MASK
: 0;
2055 if (blk_get_integrity(disk
) && (ns
->pi_type
!= pi_type
||
2057 bs
!= queue_logical_block_size(disk
->queue
) ||
2058 (ns
->ms
&& id
->flbas
& NVME_NS_FLBAS_META_EXT
)))
2059 blk_integrity_unregister(disk
);
2061 ns
->pi_type
= pi_type
;
2062 blk_queue_logical_block_size(ns
->queue
, bs
);
2064 if (ns
->ms
&& !blk_get_integrity(disk
) && (disk
->flags
& GENHD_FL_UP
) &&
2065 !(id
->flbas
& NVME_NS_FLBAS_META_EXT
))
2066 nvme_init_integrity(ns
);
2068 if (id
->ncap
== 0 || (ns
->ms
&& !blk_get_integrity(disk
)))
2069 set_capacity(disk
, 0);
2071 set_capacity(disk
, le64_to_cpup(&id
->nsze
) << (ns
->lba_shift
- 9));
2073 if (dev
->oncs
& NVME_CTRL_ONCS_DSM
)
2074 nvme_config_discard(ns
);
2076 dma_free_coherent(&dev
->pci_dev
->dev
, 4096, id
, dma_addr
);
2080 static const struct block_device_operations nvme_fops
= {
2081 .owner
= THIS_MODULE
,
2082 .ioctl
= nvme_ioctl
,
2083 .compat_ioctl
= nvme_compat_ioctl
,
2085 .release
= nvme_release
,
2086 .getgeo
= nvme_getgeo
,
2087 .revalidate_disk
= nvme_revalidate_disk
,
2090 static int nvme_kthread(void *data
)
2092 struct nvme_dev
*dev
, *next
;
2094 while (!kthread_should_stop()) {
2095 set_current_state(TASK_INTERRUPTIBLE
);
2096 spin_lock(&dev_list_lock
);
2097 list_for_each_entry_safe(dev
, next
, &dev_list
, node
) {
2099 if (readl(&dev
->bar
->csts
) & NVME_CSTS_CFS
) {
2100 if (work_busy(&dev
->reset_work
))
2102 list_del_init(&dev
->node
);
2103 dev_warn(&dev
->pci_dev
->dev
,
2104 "Failed status: %x, reset controller\n",
2105 readl(&dev
->bar
->csts
));
2106 dev
->reset_workfn
= nvme_reset_failed_dev
;
2107 queue_work(nvme_workq
, &dev
->reset_work
);
2110 for (i
= 0; i
< dev
->queue_count
; i
++) {
2111 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
2114 spin_lock_irq(&nvmeq
->q_lock
);
2115 nvme_process_cq(nvmeq
);
2117 while ((i
== 0) && (dev
->event_limit
> 0)) {
2118 if (nvme_submit_async_admin_req(dev
))
2122 spin_unlock_irq(&nvmeq
->q_lock
);
2125 spin_unlock(&dev_list_lock
);
2126 schedule_timeout(round_jiffies_relative(HZ
));
2131 static void nvme_alloc_ns(struct nvme_dev
*dev
, unsigned nsid
)
2134 struct gendisk
*disk
;
2135 int node
= dev_to_node(&dev
->pci_dev
->dev
);
2137 ns
= kzalloc_node(sizeof(*ns
), GFP_KERNEL
, node
);
2141 ns
->queue
= blk_mq_init_queue(&dev
->tagset
);
2142 if (IS_ERR(ns
->queue
))
2144 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES
, ns
->queue
);
2145 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, ns
->queue
);
2146 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS
, ns
->queue
);
2148 ns
->queue
->queuedata
= ns
;
2150 disk
= alloc_disk_node(0, node
);
2152 goto out_free_queue
;
2156 ns
->lba_shift
= 9; /* set to a default value for 512 until disk is validated */
2157 list_add_tail(&ns
->list
, &dev
->namespaces
);
2159 blk_queue_logical_block_size(ns
->queue
, 1 << ns
->lba_shift
);
2160 if (dev
->max_hw_sectors
)
2161 blk_queue_max_hw_sectors(ns
->queue
, dev
->max_hw_sectors
);
2162 if (dev
->stripe_size
)
2163 blk_queue_chunk_sectors(ns
->queue
, dev
->stripe_size
>> 9);
2164 if (dev
->vwc
& NVME_CTRL_VWC_PRESENT
)
2165 blk_queue_flush(ns
->queue
, REQ_FLUSH
| REQ_FUA
);
2167 disk
->major
= nvme_major
;
2168 disk
->first_minor
= 0;
2169 disk
->fops
= &nvme_fops
;
2170 disk
->private_data
= ns
;
2171 disk
->queue
= ns
->queue
;
2172 disk
->driverfs_dev
= dev
->device
;
2173 disk
->flags
= GENHD_FL_EXT_DEVT
;
2174 sprintf(disk
->disk_name
, "nvme%dn%d", dev
->instance
, nsid
);
2177 * Initialize capacity to 0 until we establish the namespace format and
2178 * setup integrity extentions if necessary. The revalidate_disk after
2179 * add_disk allows the driver to register with integrity if the format
2182 set_capacity(disk
, 0);
2183 nvme_revalidate_disk(ns
->disk
);
2186 revalidate_disk(ns
->disk
);
2189 blk_cleanup_queue(ns
->queue
);
2194 static void nvme_create_io_queues(struct nvme_dev
*dev
)
2198 for (i
= dev
->queue_count
; i
<= dev
->max_qid
; i
++)
2199 if (!nvme_alloc_queue(dev
, i
, dev
->q_depth
))
2202 for (i
= dev
->online_queues
; i
<= dev
->queue_count
- 1; i
++)
2203 if (nvme_create_queue(dev
->queues
[i
], i
))
2207 static int set_queue_count(struct nvme_dev
*dev
, int count
)
2211 u32 q_count
= (count
- 1) | ((count
- 1) << 16);
2213 status
= nvme_set_features(dev
, NVME_FEAT_NUM_QUEUES
, q_count
, 0,
2218 dev_err(&dev
->pci_dev
->dev
, "Could not set queue count (%d)\n",
2222 return min(result
& 0xffff, result
>> 16) + 1;
2225 static size_t db_bar_size(struct nvme_dev
*dev
, unsigned nr_io_queues
)
2227 return 4096 + ((nr_io_queues
+ 1) * 8 * dev
->db_stride
);
2230 static int nvme_setup_io_queues(struct nvme_dev
*dev
)
2232 struct nvme_queue
*adminq
= dev
->queues
[0];
2233 struct pci_dev
*pdev
= dev
->pci_dev
;
2234 int result
, i
, vecs
, nr_io_queues
, size
;
2236 nr_io_queues
= num_possible_cpus();
2237 result
= set_queue_count(dev
, nr_io_queues
);
2240 if (result
< nr_io_queues
)
2241 nr_io_queues
= result
;
2243 size
= db_bar_size(dev
, nr_io_queues
);
2247 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), size
);
2250 if (!--nr_io_queues
)
2252 size
= db_bar_size(dev
, nr_io_queues
);
2254 dev
->dbs
= ((void __iomem
*)dev
->bar
) + 4096;
2255 adminq
->q_db
= dev
->dbs
;
2258 /* Deregister the admin queue's interrupt */
2259 free_irq(dev
->entry
[0].vector
, adminq
);
2262 * If we enable msix early due to not intx, disable it again before
2263 * setting up the full range we need.
2266 pci_disable_msix(pdev
);
2268 for (i
= 0; i
< nr_io_queues
; i
++)
2269 dev
->entry
[i
].entry
= i
;
2270 vecs
= pci_enable_msix_range(pdev
, dev
->entry
, 1, nr_io_queues
);
2272 vecs
= pci_enable_msi_range(pdev
, 1, min(nr_io_queues
, 32));
2276 for (i
= 0; i
< vecs
; i
++)
2277 dev
->entry
[i
].vector
= i
+ pdev
->irq
;
2282 * Should investigate if there's a performance win from allocating
2283 * more queues than interrupt vectors; it might allow the submission
2284 * path to scale better, even if the receive path is limited by the
2285 * number of interrupts.
2287 nr_io_queues
= vecs
;
2288 dev
->max_qid
= nr_io_queues
;
2290 result
= queue_request_irq(dev
, adminq
, adminq
->irqname
);
2294 /* Free previously allocated queues that are no longer usable */
2295 nvme_free_queues(dev
, nr_io_queues
+ 1);
2296 nvme_create_io_queues(dev
);
2301 nvme_free_queues(dev
, 1);
2306 * Return: error value if an error occurred setting up the queues or calling
2307 * Identify Device. 0 if these succeeded, even if adding some of the
2308 * namespaces failed. At the moment, these failures are silent. TBD which
2309 * failures should be reported.
2311 static int nvme_dev_add(struct nvme_dev
*dev
)
2313 struct pci_dev
*pdev
= dev
->pci_dev
;
2316 struct nvme_id_ctrl
*ctrl
;
2318 dma_addr_t dma_addr
;
2319 int shift
= NVME_CAP_MPSMIN(readq(&dev
->bar
->cap
)) + 12;
2321 mem
= dma_alloc_coherent(&pdev
->dev
, 4096, &dma_addr
, GFP_KERNEL
);
2325 res
= nvme_identify(dev
, 0, 1, dma_addr
);
2327 dev_err(&pdev
->dev
, "Identify Controller failed (%d)\n", res
);
2328 dma_free_coherent(&dev
->pci_dev
->dev
, 4096, mem
, dma_addr
);
2333 nn
= le32_to_cpup(&ctrl
->nn
);
2334 dev
->oncs
= le16_to_cpup(&ctrl
->oncs
);
2335 dev
->abort_limit
= ctrl
->acl
+ 1;
2336 dev
->vwc
= ctrl
->vwc
;
2337 dev
->event_limit
= min(ctrl
->aerl
+ 1, 8);
2338 memcpy(dev
->serial
, ctrl
->sn
, sizeof(ctrl
->sn
));
2339 memcpy(dev
->model
, ctrl
->mn
, sizeof(ctrl
->mn
));
2340 memcpy(dev
->firmware_rev
, ctrl
->fr
, sizeof(ctrl
->fr
));
2342 dev
->max_hw_sectors
= 1 << (ctrl
->mdts
+ shift
- 9);
2343 if ((pdev
->vendor
== PCI_VENDOR_ID_INTEL
) &&
2344 (pdev
->device
== 0x0953) && ctrl
->vs
[3]) {
2345 unsigned int max_hw_sectors
;
2347 dev
->stripe_size
= 1 << (ctrl
->vs
[3] + shift
);
2348 max_hw_sectors
= dev
->stripe_size
>> (shift
- 9);
2349 if (dev
->max_hw_sectors
) {
2350 dev
->max_hw_sectors
= min(max_hw_sectors
,
2351 dev
->max_hw_sectors
);
2353 dev
->max_hw_sectors
= max_hw_sectors
;
2355 dma_free_coherent(&dev
->pci_dev
->dev
, 4096, mem
, dma_addr
);
2357 dev
->tagset
.ops
= &nvme_mq_ops
;
2358 dev
->tagset
.nr_hw_queues
= dev
->online_queues
- 1;
2359 dev
->tagset
.timeout
= NVME_IO_TIMEOUT
;
2360 dev
->tagset
.numa_node
= dev_to_node(&dev
->pci_dev
->dev
);
2361 dev
->tagset
.queue_depth
=
2362 min_t(int, dev
->q_depth
, BLK_MQ_MAX_DEPTH
) - 1;
2363 dev
->tagset
.cmd_size
= nvme_cmd_size(dev
);
2364 dev
->tagset
.flags
= BLK_MQ_F_SHOULD_MERGE
;
2365 dev
->tagset
.driver_data
= dev
;
2367 if (blk_mq_alloc_tag_set(&dev
->tagset
))
2370 for (i
= 1; i
<= nn
; i
++)
2371 nvme_alloc_ns(dev
, i
);
2376 static int nvme_dev_map(struct nvme_dev
*dev
)
2379 int bars
, result
= -ENOMEM
;
2380 struct pci_dev
*pdev
= dev
->pci_dev
;
2382 if (pci_enable_device_mem(pdev
))
2385 dev
->entry
[0].vector
= pdev
->irq
;
2386 pci_set_master(pdev
);
2387 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
2391 if (pci_request_selected_regions(pdev
, bars
, "nvme"))
2394 if (dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64)) &&
2395 dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32)))
2398 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), 8192);
2402 if (readl(&dev
->bar
->csts
) == -1) {
2408 * Some devices don't advertse INTx interrupts, pre-enable a single
2409 * MSIX vec for setup. We'll adjust this later.
2412 result
= pci_enable_msix(pdev
, dev
->entry
, 1);
2417 cap
= readq(&dev
->bar
->cap
);
2418 dev
->q_depth
= min_t(int, NVME_CAP_MQES(cap
) + 1, NVME_Q_DEPTH
);
2419 dev
->db_stride
= 1 << NVME_CAP_STRIDE(cap
);
2420 dev
->dbs
= ((void __iomem
*)dev
->bar
) + 4096;
2428 pci_release_regions(pdev
);
2430 pci_disable_device(pdev
);
2434 static void nvme_dev_unmap(struct nvme_dev
*dev
)
2436 if (dev
->pci_dev
->msi_enabled
)
2437 pci_disable_msi(dev
->pci_dev
);
2438 else if (dev
->pci_dev
->msix_enabled
)
2439 pci_disable_msix(dev
->pci_dev
);
2444 pci_release_regions(dev
->pci_dev
);
2447 if (pci_is_enabled(dev
->pci_dev
))
2448 pci_disable_device(dev
->pci_dev
);
2451 struct nvme_delq_ctx
{
2452 struct task_struct
*waiter
;
2453 struct kthread_worker
*worker
;
2457 static void nvme_wait_dq(struct nvme_delq_ctx
*dq
, struct nvme_dev
*dev
)
2459 dq
->waiter
= current
;
2463 set_current_state(TASK_KILLABLE
);
2464 if (!atomic_read(&dq
->refcount
))
2466 if (!schedule_timeout(ADMIN_TIMEOUT
) ||
2467 fatal_signal_pending(current
)) {
2469 * Disable the controller first since we can't trust it
2470 * at this point, but leave the admin queue enabled
2471 * until all queue deletion requests are flushed.
2472 * FIXME: This may take a while if there are more h/w
2473 * queues than admin tags.
2475 set_current_state(TASK_RUNNING
);
2476 nvme_disable_ctrl(dev
, readq(&dev
->bar
->cap
));
2477 nvme_clear_queue(dev
->queues
[0]);
2478 flush_kthread_worker(dq
->worker
);
2479 nvme_disable_queue(dev
, 0);
2483 set_current_state(TASK_RUNNING
);
2486 static void nvme_put_dq(struct nvme_delq_ctx
*dq
)
2488 atomic_dec(&dq
->refcount
);
2490 wake_up_process(dq
->waiter
);
2493 static struct nvme_delq_ctx
*nvme_get_dq(struct nvme_delq_ctx
*dq
)
2495 atomic_inc(&dq
->refcount
);
2499 static void nvme_del_queue_end(struct nvme_queue
*nvmeq
)
2501 struct nvme_delq_ctx
*dq
= nvmeq
->cmdinfo
.ctx
;
2505 static int adapter_async_del_queue(struct nvme_queue
*nvmeq
, u8 opcode
,
2506 kthread_work_func_t fn
)
2508 struct nvme_command c
;
2510 memset(&c
, 0, sizeof(c
));
2511 c
.delete_queue
.opcode
= opcode
;
2512 c
.delete_queue
.qid
= cpu_to_le16(nvmeq
->qid
);
2514 init_kthread_work(&nvmeq
->cmdinfo
.work
, fn
);
2515 return nvme_submit_admin_async_cmd(nvmeq
->dev
, &c
, &nvmeq
->cmdinfo
,
2519 static void nvme_del_cq_work_handler(struct kthread_work
*work
)
2521 struct nvme_queue
*nvmeq
= container_of(work
, struct nvme_queue
,
2523 nvme_del_queue_end(nvmeq
);
2526 static int nvme_delete_cq(struct nvme_queue
*nvmeq
)
2528 return adapter_async_del_queue(nvmeq
, nvme_admin_delete_cq
,
2529 nvme_del_cq_work_handler
);
2532 static void nvme_del_sq_work_handler(struct kthread_work
*work
)
2534 struct nvme_queue
*nvmeq
= container_of(work
, struct nvme_queue
,
2536 int status
= nvmeq
->cmdinfo
.status
;
2539 status
= nvme_delete_cq(nvmeq
);
2541 nvme_del_queue_end(nvmeq
);
2544 static int nvme_delete_sq(struct nvme_queue
*nvmeq
)
2546 return adapter_async_del_queue(nvmeq
, nvme_admin_delete_sq
,
2547 nvme_del_sq_work_handler
);
2550 static void nvme_del_queue_start(struct kthread_work
*work
)
2552 struct nvme_queue
*nvmeq
= container_of(work
, struct nvme_queue
,
2554 if (nvme_delete_sq(nvmeq
))
2555 nvme_del_queue_end(nvmeq
);
2558 static void nvme_disable_io_queues(struct nvme_dev
*dev
)
2561 DEFINE_KTHREAD_WORKER_ONSTACK(worker
);
2562 struct nvme_delq_ctx dq
;
2563 struct task_struct
*kworker_task
= kthread_run(kthread_worker_fn
,
2564 &worker
, "nvme%d", dev
->instance
);
2566 if (IS_ERR(kworker_task
)) {
2567 dev_err(&dev
->pci_dev
->dev
,
2568 "Failed to create queue del task\n");
2569 for (i
= dev
->queue_count
- 1; i
> 0; i
--)
2570 nvme_disable_queue(dev
, i
);
2575 atomic_set(&dq
.refcount
, 0);
2576 dq
.worker
= &worker
;
2577 for (i
= dev
->queue_count
- 1; i
> 0; i
--) {
2578 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
2580 if (nvme_suspend_queue(nvmeq
))
2582 nvmeq
->cmdinfo
.ctx
= nvme_get_dq(&dq
);
2583 nvmeq
->cmdinfo
.worker
= dq
.worker
;
2584 init_kthread_work(&nvmeq
->cmdinfo
.work
, nvme_del_queue_start
);
2585 queue_kthread_work(dq
.worker
, &nvmeq
->cmdinfo
.work
);
2587 nvme_wait_dq(&dq
, dev
);
2588 kthread_stop(kworker_task
);
2592 * Remove the node from the device list and check
2593 * for whether or not we need to stop the nvme_thread.
2595 static void nvme_dev_list_remove(struct nvme_dev
*dev
)
2597 struct task_struct
*tmp
= NULL
;
2599 spin_lock(&dev_list_lock
);
2600 list_del_init(&dev
->node
);
2601 if (list_empty(&dev_list
) && !IS_ERR_OR_NULL(nvme_thread
)) {
2605 spin_unlock(&dev_list_lock
);
2611 static void nvme_freeze_queues(struct nvme_dev
*dev
)
2615 list_for_each_entry(ns
, &dev
->namespaces
, list
) {
2616 blk_mq_freeze_queue_start(ns
->queue
);
2618 spin_lock(ns
->queue
->queue_lock
);
2619 queue_flag_set(QUEUE_FLAG_STOPPED
, ns
->queue
);
2620 spin_unlock(ns
->queue
->queue_lock
);
2622 blk_mq_cancel_requeue_work(ns
->queue
);
2623 blk_mq_stop_hw_queues(ns
->queue
);
2627 static void nvme_unfreeze_queues(struct nvme_dev
*dev
)
2631 list_for_each_entry(ns
, &dev
->namespaces
, list
) {
2632 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED
, ns
->queue
);
2633 blk_mq_unfreeze_queue(ns
->queue
);
2634 blk_mq_start_stopped_hw_queues(ns
->queue
, true);
2635 blk_mq_kick_requeue_list(ns
->queue
);
2639 static void nvme_dev_shutdown(struct nvme_dev
*dev
)
2644 nvme_dev_list_remove(dev
);
2647 nvme_freeze_queues(dev
);
2648 csts
= readl(&dev
->bar
->csts
);
2650 if (csts
& NVME_CSTS_CFS
|| !(csts
& NVME_CSTS_RDY
)) {
2651 for (i
= dev
->queue_count
- 1; i
>= 0; i
--) {
2652 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
2653 nvme_suspend_queue(nvmeq
);
2656 nvme_disable_io_queues(dev
);
2657 nvme_shutdown_ctrl(dev
);
2658 nvme_disable_queue(dev
, 0);
2660 nvme_dev_unmap(dev
);
2662 for (i
= dev
->queue_count
- 1; i
>= 0; i
--)
2663 nvme_clear_queue(dev
->queues
[i
]);
2666 static void nvme_dev_remove(struct nvme_dev
*dev
)
2670 list_for_each_entry(ns
, &dev
->namespaces
, list
) {
2671 if (ns
->disk
->flags
& GENHD_FL_UP
) {
2672 if (blk_get_integrity(ns
->disk
))
2673 blk_integrity_unregister(ns
->disk
);
2674 del_gendisk(ns
->disk
);
2676 if (!blk_queue_dying(ns
->queue
)) {
2677 blk_mq_abort_requeue_list(ns
->queue
);
2678 blk_cleanup_queue(ns
->queue
);
2683 static int nvme_setup_prp_pools(struct nvme_dev
*dev
)
2685 struct device
*dmadev
= &dev
->pci_dev
->dev
;
2686 dev
->prp_page_pool
= dma_pool_create("prp list page", dmadev
,
2687 PAGE_SIZE
, PAGE_SIZE
, 0);
2688 if (!dev
->prp_page_pool
)
2691 /* Optimisation for I/Os between 4k and 128k */
2692 dev
->prp_small_pool
= dma_pool_create("prp list 256", dmadev
,
2694 if (!dev
->prp_small_pool
) {
2695 dma_pool_destroy(dev
->prp_page_pool
);
2701 static void nvme_release_prp_pools(struct nvme_dev
*dev
)
2703 dma_pool_destroy(dev
->prp_page_pool
);
2704 dma_pool_destroy(dev
->prp_small_pool
);
2707 static DEFINE_IDA(nvme_instance_ida
);
2709 static int nvme_set_instance(struct nvme_dev
*dev
)
2711 int instance
, error
;
2714 if (!ida_pre_get(&nvme_instance_ida
, GFP_KERNEL
))
2717 spin_lock(&dev_list_lock
);
2718 error
= ida_get_new(&nvme_instance_ida
, &instance
);
2719 spin_unlock(&dev_list_lock
);
2720 } while (error
== -EAGAIN
);
2725 dev
->instance
= instance
;
2729 static void nvme_release_instance(struct nvme_dev
*dev
)
2731 spin_lock(&dev_list_lock
);
2732 ida_remove(&nvme_instance_ida
, dev
->instance
);
2733 spin_unlock(&dev_list_lock
);
2736 static void nvme_free_namespaces(struct nvme_dev
*dev
)
2738 struct nvme_ns
*ns
, *next
;
2740 list_for_each_entry_safe(ns
, next
, &dev
->namespaces
, list
) {
2741 list_del(&ns
->list
);
2743 spin_lock(&dev_list_lock
);
2744 ns
->disk
->private_data
= NULL
;
2745 spin_unlock(&dev_list_lock
);
2752 static void nvme_free_dev(struct kref
*kref
)
2754 struct nvme_dev
*dev
= container_of(kref
, struct nvme_dev
, kref
);
2756 pci_dev_put(dev
->pci_dev
);
2757 put_device(dev
->device
);
2758 nvme_free_namespaces(dev
);
2759 nvme_release_instance(dev
);
2760 blk_mq_free_tag_set(&dev
->tagset
);
2761 blk_put_queue(dev
->admin_q
);
2767 static int nvme_dev_open(struct inode
*inode
, struct file
*f
)
2769 struct nvme_dev
*dev
;
2770 int instance
= iminor(inode
);
2773 spin_lock(&dev_list_lock
);
2774 list_for_each_entry(dev
, &dev_list
, node
) {
2775 if (dev
->instance
== instance
) {
2776 if (!dev
->admin_q
) {
2780 if (!kref_get_unless_zero(&dev
->kref
))
2782 f
->private_data
= dev
;
2787 spin_unlock(&dev_list_lock
);
2792 static int nvme_dev_release(struct inode
*inode
, struct file
*f
)
2794 struct nvme_dev
*dev
= f
->private_data
;
2795 kref_put(&dev
->kref
, nvme_free_dev
);
2799 static long nvme_dev_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
2801 struct nvme_dev
*dev
= f
->private_data
;
2805 case NVME_IOCTL_ADMIN_CMD
:
2806 return nvme_user_cmd(dev
, NULL
, (void __user
*)arg
);
2807 case NVME_IOCTL_IO_CMD
:
2808 if (list_empty(&dev
->namespaces
))
2810 ns
= list_first_entry(&dev
->namespaces
, struct nvme_ns
, list
);
2811 return nvme_user_cmd(dev
, ns
, (void __user
*)arg
);
2817 static const struct file_operations nvme_dev_fops
= {
2818 .owner
= THIS_MODULE
,
2819 .open
= nvme_dev_open
,
2820 .release
= nvme_dev_release
,
2821 .unlocked_ioctl
= nvme_dev_ioctl
,
2822 .compat_ioctl
= nvme_dev_ioctl
,
2825 static void nvme_set_irq_hints(struct nvme_dev
*dev
)
2827 struct nvme_queue
*nvmeq
;
2830 for (i
= 0; i
< dev
->online_queues
; i
++) {
2831 nvmeq
= dev
->queues
[i
];
2836 irq_set_affinity_hint(dev
->entry
[nvmeq
->cq_vector
].vector
,
2837 nvmeq
->hctx
->cpumask
);
2841 static int nvme_dev_start(struct nvme_dev
*dev
)
2844 bool start_thread
= false;
2846 result
= nvme_dev_map(dev
);
2850 result
= nvme_configure_admin_queue(dev
);
2854 spin_lock(&dev_list_lock
);
2855 if (list_empty(&dev_list
) && IS_ERR_OR_NULL(nvme_thread
)) {
2856 start_thread
= true;
2859 list_add(&dev
->node
, &dev_list
);
2860 spin_unlock(&dev_list_lock
);
2863 nvme_thread
= kthread_run(nvme_kthread
, NULL
, "nvme");
2864 wake_up_all(&nvme_kthread_wait
);
2866 wait_event_killable(nvme_kthread_wait
, nvme_thread
);
2868 if (IS_ERR_OR_NULL(nvme_thread
)) {
2869 result
= nvme_thread
? PTR_ERR(nvme_thread
) : -EINTR
;
2873 nvme_init_queue(dev
->queues
[0], 0);
2874 result
= nvme_alloc_admin_tags(dev
);
2878 result
= nvme_setup_io_queues(dev
);
2882 nvme_set_irq_hints(dev
);
2887 nvme_dev_remove_admin(dev
);
2889 nvme_disable_queue(dev
, 0);
2890 nvme_dev_list_remove(dev
);
2892 nvme_dev_unmap(dev
);
2896 static int nvme_remove_dead_ctrl(void *arg
)
2898 struct nvme_dev
*dev
= (struct nvme_dev
*)arg
;
2899 struct pci_dev
*pdev
= dev
->pci_dev
;
2901 if (pci_get_drvdata(pdev
))
2902 pci_stop_and_remove_bus_device_locked(pdev
);
2903 kref_put(&dev
->kref
, nvme_free_dev
);
2907 static void nvme_remove_disks(struct work_struct
*ws
)
2909 struct nvme_dev
*dev
= container_of(ws
, struct nvme_dev
, reset_work
);
2911 nvme_free_queues(dev
, 1);
2912 nvme_dev_remove(dev
);
2915 static int nvme_dev_resume(struct nvme_dev
*dev
)
2919 ret
= nvme_dev_start(dev
);
2922 if (dev
->online_queues
< 2) {
2923 spin_lock(&dev_list_lock
);
2924 dev
->reset_workfn
= nvme_remove_disks
;
2925 queue_work(nvme_workq
, &dev
->reset_work
);
2926 spin_unlock(&dev_list_lock
);
2928 nvme_unfreeze_queues(dev
);
2929 nvme_set_irq_hints(dev
);
2934 static void nvme_dev_reset(struct nvme_dev
*dev
)
2936 nvme_dev_shutdown(dev
);
2937 if (nvme_dev_resume(dev
)) {
2938 dev_warn(&dev
->pci_dev
->dev
, "Device failed to resume\n");
2939 kref_get(&dev
->kref
);
2940 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl
, dev
, "nvme%d",
2942 dev_err(&dev
->pci_dev
->dev
,
2943 "Failed to start controller remove task\n");
2944 kref_put(&dev
->kref
, nvme_free_dev
);
2949 static void nvme_reset_failed_dev(struct work_struct
*ws
)
2951 struct nvme_dev
*dev
= container_of(ws
, struct nvme_dev
, reset_work
);
2952 nvme_dev_reset(dev
);
2955 static void nvme_reset_workfn(struct work_struct
*work
)
2957 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, reset_work
);
2958 dev
->reset_workfn(work
);
2961 static void nvme_async_probe(struct work_struct
*work
);
2962 static int nvme_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2964 int node
, result
= -ENOMEM
;
2965 struct nvme_dev
*dev
;
2967 node
= dev_to_node(&pdev
->dev
);
2968 if (node
== NUMA_NO_NODE
)
2969 set_dev_node(&pdev
->dev
, 0);
2971 dev
= kzalloc_node(sizeof(*dev
), GFP_KERNEL
, node
);
2974 dev
->entry
= kzalloc_node(num_possible_cpus() * sizeof(*dev
->entry
),
2978 dev
->queues
= kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2983 INIT_LIST_HEAD(&dev
->namespaces
);
2984 dev
->reset_workfn
= nvme_reset_failed_dev
;
2985 INIT_WORK(&dev
->reset_work
, nvme_reset_workfn
);
2986 dev
->pci_dev
= pci_dev_get(pdev
);
2987 pci_set_drvdata(pdev
, dev
);
2988 result
= nvme_set_instance(dev
);
2992 result
= nvme_setup_prp_pools(dev
);
2996 kref_init(&dev
->kref
);
2997 dev
->device
= device_create(nvme_class
, &pdev
->dev
,
2998 MKDEV(nvme_char_major
, dev
->instance
),
2999 dev
, "nvme%d", dev
->instance
);
3000 if (IS_ERR(dev
->device
)) {
3001 result
= PTR_ERR(dev
->device
);
3004 get_device(dev
->device
);
3006 INIT_LIST_HEAD(&dev
->node
);
3007 INIT_WORK(&dev
->probe_work
, nvme_async_probe
);
3008 schedule_work(&dev
->probe_work
);
3012 nvme_release_prp_pools(dev
);
3014 nvme_release_instance(dev
);
3016 pci_dev_put(dev
->pci_dev
);
3024 static void nvme_async_probe(struct work_struct
*work
)
3026 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, probe_work
);
3029 result
= nvme_dev_start(dev
);
3033 if (dev
->online_queues
> 1)
3034 result
= nvme_dev_add(dev
);
3038 nvme_set_irq_hints(dev
);
3041 if (!work_busy(&dev
->reset_work
)) {
3042 dev
->reset_workfn
= nvme_reset_failed_dev
;
3043 queue_work(nvme_workq
, &dev
->reset_work
);
3047 static void nvme_reset_notify(struct pci_dev
*pdev
, bool prepare
)
3049 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3052 nvme_dev_shutdown(dev
);
3054 nvme_dev_resume(dev
);
3057 static void nvme_shutdown(struct pci_dev
*pdev
)
3059 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3060 nvme_dev_shutdown(dev
);
3063 static void nvme_remove(struct pci_dev
*pdev
)
3065 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3067 spin_lock(&dev_list_lock
);
3068 list_del_init(&dev
->node
);
3069 spin_unlock(&dev_list_lock
);
3071 pci_set_drvdata(pdev
, NULL
);
3072 flush_work(&dev
->probe_work
);
3073 flush_work(&dev
->reset_work
);
3074 nvme_dev_shutdown(dev
);
3075 nvme_dev_remove(dev
);
3076 nvme_dev_remove_admin(dev
);
3077 device_destroy(nvme_class
, MKDEV(nvme_char_major
, dev
->instance
));
3078 nvme_free_queues(dev
, 0);
3079 nvme_release_prp_pools(dev
);
3080 kref_put(&dev
->kref
, nvme_free_dev
);
3083 /* These functions are yet to be implemented */
3084 #define nvme_error_detected NULL
3085 #define nvme_dump_registers NULL
3086 #define nvme_link_reset NULL
3087 #define nvme_slot_reset NULL
3088 #define nvme_error_resume NULL
3090 #ifdef CONFIG_PM_SLEEP
3091 static int nvme_suspend(struct device
*dev
)
3093 struct pci_dev
*pdev
= to_pci_dev(dev
);
3094 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
3096 nvme_dev_shutdown(ndev
);
3100 static int nvme_resume(struct device
*dev
)
3102 struct pci_dev
*pdev
= to_pci_dev(dev
);
3103 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
3105 if (nvme_dev_resume(ndev
) && !work_busy(&ndev
->reset_work
)) {
3106 ndev
->reset_workfn
= nvme_reset_failed_dev
;
3107 queue_work(nvme_workq
, &ndev
->reset_work
);
3113 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops
, nvme_suspend
, nvme_resume
);
3115 static const struct pci_error_handlers nvme_err_handler
= {
3116 .error_detected
= nvme_error_detected
,
3117 .mmio_enabled
= nvme_dump_registers
,
3118 .link_reset
= nvme_link_reset
,
3119 .slot_reset
= nvme_slot_reset
,
3120 .resume
= nvme_error_resume
,
3121 .reset_notify
= nvme_reset_notify
,
3124 /* Move to pci_ids.h later */
3125 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
3127 static const struct pci_device_id nvme_id_table
[] = {
3128 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS
, 0xffffff) },
3131 MODULE_DEVICE_TABLE(pci
, nvme_id_table
);
3133 static struct pci_driver nvme_driver
= {
3135 .id_table
= nvme_id_table
,
3136 .probe
= nvme_probe
,
3137 .remove
= nvme_remove
,
3138 .shutdown
= nvme_shutdown
,
3140 .pm
= &nvme_dev_pm_ops
,
3142 .err_handler
= &nvme_err_handler
,
3145 static int __init
nvme_init(void)
3149 init_waitqueue_head(&nvme_kthread_wait
);
3151 nvme_workq
= create_singlethread_workqueue("nvme");
3155 result
= register_blkdev(nvme_major
, "nvme");
3158 else if (result
> 0)
3159 nvme_major
= result
;
3161 result
= __register_chrdev(nvme_char_major
, 0, NVME_MINORS
, "nvme",
3164 goto unregister_blkdev
;
3165 else if (result
> 0)
3166 nvme_char_major
= result
;
3168 nvme_class
= class_create(THIS_MODULE
, "nvme");
3170 goto unregister_chrdev
;
3172 result
= pci_register_driver(&nvme_driver
);
3178 class_destroy(nvme_class
);
3180 __unregister_chrdev(nvme_char_major
, 0, NVME_MINORS
, "nvme");
3182 unregister_blkdev(nvme_major
, "nvme");
3184 destroy_workqueue(nvme_workq
);
3188 static void __exit
nvme_exit(void)
3190 pci_unregister_driver(&nvme_driver
);
3191 unregister_blkdev(nvme_major
, "nvme");
3192 destroy_workqueue(nvme_workq
);
3193 class_destroy(nvme_class
);
3194 __unregister_chrdev(nvme_char_major
, 0, NVME_MINORS
, "nvme");
3195 BUG_ON(nvme_thread
&& !IS_ERR(nvme_thread
));
3199 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3200 MODULE_LICENSE("GPL");
3201 MODULE_VERSION("1.0");
3202 module_init(nvme_init
);
3203 module_exit(nvme_exit
);