Bluetooth: hci_uart: Use generic functionality from Broadcom module
[linux/fpc-iii.git] / drivers / block / pktcdvd.c
blob09e628dafd9d829eadd9abb68c6956d182a582f8
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_ioctl.h>
66 #include <scsi/scsi.h>
67 #include <linux/debugfs.h>
68 #include <linux/device.h>
70 #include <asm/uaccess.h>
72 #define DRIVER_NAME "pktcdvd"
74 #define pkt_err(pd, fmt, ...) \
75 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
76 #define pkt_notice(pd, fmt, ...) \
77 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
78 #define pkt_info(pd, fmt, ...) \
79 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
81 #define pkt_dbg(level, pd, fmt, ...) \
82 do { \
83 if (level == 2 && PACKET_DEBUG >= 2) \
84 pr_notice("%s: %s():" fmt, \
85 pd->name, __func__, ##__VA_ARGS__); \
86 else if (level == 1 && PACKET_DEBUG >= 1) \
87 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
88 } while (0)
90 #define MAX_SPEED 0xffff
92 static DEFINE_MUTEX(pktcdvd_mutex);
93 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
94 static struct proc_dir_entry *pkt_proc;
95 static int pktdev_major;
96 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
97 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
98 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
99 static mempool_t *psd_pool;
101 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
102 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
104 /* forward declaration */
105 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
106 static int pkt_remove_dev(dev_t pkt_dev);
107 static int pkt_seq_show(struct seq_file *m, void *p);
109 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
111 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
115 * create and register a pktcdvd kernel object.
117 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
118 const char* name,
119 struct kobject* parent,
120 struct kobj_type* ktype)
122 struct pktcdvd_kobj *p;
123 int error;
125 p = kzalloc(sizeof(*p), GFP_KERNEL);
126 if (!p)
127 return NULL;
128 p->pd = pd;
129 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
130 if (error) {
131 kobject_put(&p->kobj);
132 return NULL;
134 kobject_uevent(&p->kobj, KOBJ_ADD);
135 return p;
138 * remove a pktcdvd kernel object.
140 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
142 if (p)
143 kobject_put(&p->kobj);
146 * default release function for pktcdvd kernel objects.
148 static void pkt_kobj_release(struct kobject *kobj)
150 kfree(to_pktcdvdkobj(kobj));
154 /**********************************************************
156 * sysfs interface for pktcdvd
157 * by (C) 2006 Thomas Maier <balagi@justmail.de>
159 **********************************************************/
161 #define DEF_ATTR(_obj,_name,_mode) \
162 static struct attribute _obj = { .name = _name, .mode = _mode }
164 /**********************************************************
165 /sys/class/pktcdvd/pktcdvd[0-7]/
166 stat/reset
167 stat/packets_started
168 stat/packets_finished
169 stat/kb_written
170 stat/kb_read
171 stat/kb_read_gather
172 write_queue/size
173 write_queue/congestion_off
174 write_queue/congestion_on
175 **********************************************************/
177 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
178 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
179 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
180 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
181 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
182 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
184 static struct attribute *kobj_pkt_attrs_stat[] = {
185 &kobj_pkt_attr_st1,
186 &kobj_pkt_attr_st2,
187 &kobj_pkt_attr_st3,
188 &kobj_pkt_attr_st4,
189 &kobj_pkt_attr_st5,
190 &kobj_pkt_attr_st6,
191 NULL
194 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
195 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
196 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
198 static struct attribute *kobj_pkt_attrs_wqueue[] = {
199 &kobj_pkt_attr_wq1,
200 &kobj_pkt_attr_wq2,
201 &kobj_pkt_attr_wq3,
202 NULL
205 static ssize_t kobj_pkt_show(struct kobject *kobj,
206 struct attribute *attr, char *data)
208 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
209 int n = 0;
210 int v;
211 if (strcmp(attr->name, "packets_started") == 0) {
212 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
214 } else if (strcmp(attr->name, "packets_finished") == 0) {
215 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
217 } else if (strcmp(attr->name, "kb_written") == 0) {
218 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
220 } else if (strcmp(attr->name, "kb_read") == 0) {
221 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
223 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
224 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
226 } else if (strcmp(attr->name, "size") == 0) {
227 spin_lock(&pd->lock);
228 v = pd->bio_queue_size;
229 spin_unlock(&pd->lock);
230 n = sprintf(data, "%d\n", v);
232 } else if (strcmp(attr->name, "congestion_off") == 0) {
233 spin_lock(&pd->lock);
234 v = pd->write_congestion_off;
235 spin_unlock(&pd->lock);
236 n = sprintf(data, "%d\n", v);
238 } else if (strcmp(attr->name, "congestion_on") == 0) {
239 spin_lock(&pd->lock);
240 v = pd->write_congestion_on;
241 spin_unlock(&pd->lock);
242 n = sprintf(data, "%d\n", v);
244 return n;
247 static void init_write_congestion_marks(int* lo, int* hi)
249 if (*hi > 0) {
250 *hi = max(*hi, 500);
251 *hi = min(*hi, 1000000);
252 if (*lo <= 0)
253 *lo = *hi - 100;
254 else {
255 *lo = min(*lo, *hi - 100);
256 *lo = max(*lo, 100);
258 } else {
259 *hi = -1;
260 *lo = -1;
264 static ssize_t kobj_pkt_store(struct kobject *kobj,
265 struct attribute *attr,
266 const char *data, size_t len)
268 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
269 int val;
271 if (strcmp(attr->name, "reset") == 0 && len > 0) {
272 pd->stats.pkt_started = 0;
273 pd->stats.pkt_ended = 0;
274 pd->stats.secs_w = 0;
275 pd->stats.secs_rg = 0;
276 pd->stats.secs_r = 0;
278 } else if (strcmp(attr->name, "congestion_off") == 0
279 && sscanf(data, "%d", &val) == 1) {
280 spin_lock(&pd->lock);
281 pd->write_congestion_off = val;
282 init_write_congestion_marks(&pd->write_congestion_off,
283 &pd->write_congestion_on);
284 spin_unlock(&pd->lock);
286 } else if (strcmp(attr->name, "congestion_on") == 0
287 && sscanf(data, "%d", &val) == 1) {
288 spin_lock(&pd->lock);
289 pd->write_congestion_on = val;
290 init_write_congestion_marks(&pd->write_congestion_off,
291 &pd->write_congestion_on);
292 spin_unlock(&pd->lock);
294 return len;
297 static const struct sysfs_ops kobj_pkt_ops = {
298 .show = kobj_pkt_show,
299 .store = kobj_pkt_store
301 static struct kobj_type kobj_pkt_type_stat = {
302 .release = pkt_kobj_release,
303 .sysfs_ops = &kobj_pkt_ops,
304 .default_attrs = kobj_pkt_attrs_stat
306 static struct kobj_type kobj_pkt_type_wqueue = {
307 .release = pkt_kobj_release,
308 .sysfs_ops = &kobj_pkt_ops,
309 .default_attrs = kobj_pkt_attrs_wqueue
312 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
314 if (class_pktcdvd) {
315 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
316 "%s", pd->name);
317 if (IS_ERR(pd->dev))
318 pd->dev = NULL;
320 if (pd->dev) {
321 pd->kobj_stat = pkt_kobj_create(pd, "stat",
322 &pd->dev->kobj,
323 &kobj_pkt_type_stat);
324 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
325 &pd->dev->kobj,
326 &kobj_pkt_type_wqueue);
330 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
332 pkt_kobj_remove(pd->kobj_stat);
333 pkt_kobj_remove(pd->kobj_wqueue);
334 if (class_pktcdvd)
335 device_unregister(pd->dev);
339 /********************************************************************
340 /sys/class/pktcdvd/
341 add map block device
342 remove unmap packet dev
343 device_map show mappings
344 *******************************************************************/
346 static void class_pktcdvd_release(struct class *cls)
348 kfree(cls);
350 static ssize_t class_pktcdvd_show_map(struct class *c,
351 struct class_attribute *attr,
352 char *data)
354 int n = 0;
355 int idx;
356 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
357 for (idx = 0; idx < MAX_WRITERS; idx++) {
358 struct pktcdvd_device *pd = pkt_devs[idx];
359 if (!pd)
360 continue;
361 n += sprintf(data+n, "%s %u:%u %u:%u\n",
362 pd->name,
363 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
364 MAJOR(pd->bdev->bd_dev),
365 MINOR(pd->bdev->bd_dev));
367 mutex_unlock(&ctl_mutex);
368 return n;
371 static ssize_t class_pktcdvd_store_add(struct class *c,
372 struct class_attribute *attr,
373 const char *buf,
374 size_t count)
376 unsigned int major, minor;
378 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
379 /* pkt_setup_dev() expects caller to hold reference to self */
380 if (!try_module_get(THIS_MODULE))
381 return -ENODEV;
383 pkt_setup_dev(MKDEV(major, minor), NULL);
385 module_put(THIS_MODULE);
387 return count;
390 return -EINVAL;
393 static ssize_t class_pktcdvd_store_remove(struct class *c,
394 struct class_attribute *attr,
395 const char *buf,
396 size_t count)
398 unsigned int major, minor;
399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 pkt_remove_dev(MKDEV(major, minor));
401 return count;
403 return -EINVAL;
406 static struct class_attribute class_pktcdvd_attrs[] = {
407 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
408 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
409 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
410 __ATTR_NULL
414 static int pkt_sysfs_init(void)
416 int ret = 0;
419 * create control files in sysfs
420 * /sys/class/pktcdvd/...
422 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
423 if (!class_pktcdvd)
424 return -ENOMEM;
425 class_pktcdvd->name = DRIVER_NAME;
426 class_pktcdvd->owner = THIS_MODULE;
427 class_pktcdvd->class_release = class_pktcdvd_release;
428 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
429 ret = class_register(class_pktcdvd);
430 if (ret) {
431 kfree(class_pktcdvd);
432 class_pktcdvd = NULL;
433 pr_err("failed to create class pktcdvd\n");
434 return ret;
436 return 0;
439 static void pkt_sysfs_cleanup(void)
441 if (class_pktcdvd)
442 class_destroy(class_pktcdvd);
443 class_pktcdvd = NULL;
446 /********************************************************************
447 entries in debugfs
449 /sys/kernel/debug/pktcdvd[0-7]/
450 info
452 *******************************************************************/
454 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
456 return pkt_seq_show(m, p);
459 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
461 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
464 static const struct file_operations debug_fops = {
465 .open = pkt_debugfs_fops_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
469 .owner = THIS_MODULE,
472 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
474 if (!pkt_debugfs_root)
475 return;
476 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
477 if (!pd->dfs_d_root)
478 return;
480 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
481 pd->dfs_d_root, pd, &debug_fops);
484 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
486 if (!pkt_debugfs_root)
487 return;
488 debugfs_remove(pd->dfs_f_info);
489 debugfs_remove(pd->dfs_d_root);
490 pd->dfs_f_info = NULL;
491 pd->dfs_d_root = NULL;
494 static void pkt_debugfs_init(void)
496 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
499 static void pkt_debugfs_cleanup(void)
501 debugfs_remove(pkt_debugfs_root);
502 pkt_debugfs_root = NULL;
505 /* ----------------------------------------------------------*/
508 static void pkt_bio_finished(struct pktcdvd_device *pd)
510 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
511 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
512 pkt_dbg(2, pd, "queue empty\n");
513 atomic_set(&pd->iosched.attention, 1);
514 wake_up(&pd->wqueue);
519 * Allocate a packet_data struct
521 static struct packet_data *pkt_alloc_packet_data(int frames)
523 int i;
524 struct packet_data *pkt;
526 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
527 if (!pkt)
528 goto no_pkt;
530 pkt->frames = frames;
531 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
532 if (!pkt->w_bio)
533 goto no_bio;
535 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
536 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
537 if (!pkt->pages[i])
538 goto no_page;
541 spin_lock_init(&pkt->lock);
542 bio_list_init(&pkt->orig_bios);
544 for (i = 0; i < frames; i++) {
545 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
546 if (!bio)
547 goto no_rd_bio;
549 pkt->r_bios[i] = bio;
552 return pkt;
554 no_rd_bio:
555 for (i = 0; i < frames; i++) {
556 struct bio *bio = pkt->r_bios[i];
557 if (bio)
558 bio_put(bio);
561 no_page:
562 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
563 if (pkt->pages[i])
564 __free_page(pkt->pages[i]);
565 bio_put(pkt->w_bio);
566 no_bio:
567 kfree(pkt);
568 no_pkt:
569 return NULL;
573 * Free a packet_data struct
575 static void pkt_free_packet_data(struct packet_data *pkt)
577 int i;
579 for (i = 0; i < pkt->frames; i++) {
580 struct bio *bio = pkt->r_bios[i];
581 if (bio)
582 bio_put(bio);
584 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
585 __free_page(pkt->pages[i]);
586 bio_put(pkt->w_bio);
587 kfree(pkt);
590 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
592 struct packet_data *pkt, *next;
594 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
596 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
597 pkt_free_packet_data(pkt);
599 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
602 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
604 struct packet_data *pkt;
606 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
608 while (nr_packets > 0) {
609 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
610 if (!pkt) {
611 pkt_shrink_pktlist(pd);
612 return 0;
614 pkt->id = nr_packets;
615 pkt->pd = pd;
616 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
617 nr_packets--;
619 return 1;
622 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
624 struct rb_node *n = rb_next(&node->rb_node);
625 if (!n)
626 return NULL;
627 return rb_entry(n, struct pkt_rb_node, rb_node);
630 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
632 rb_erase(&node->rb_node, &pd->bio_queue);
633 mempool_free(node, pd->rb_pool);
634 pd->bio_queue_size--;
635 BUG_ON(pd->bio_queue_size < 0);
639 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
641 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
643 struct rb_node *n = pd->bio_queue.rb_node;
644 struct rb_node *next;
645 struct pkt_rb_node *tmp;
647 if (!n) {
648 BUG_ON(pd->bio_queue_size > 0);
649 return NULL;
652 for (;;) {
653 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
654 if (s <= tmp->bio->bi_iter.bi_sector)
655 next = n->rb_left;
656 else
657 next = n->rb_right;
658 if (!next)
659 break;
660 n = next;
663 if (s > tmp->bio->bi_iter.bi_sector) {
664 tmp = pkt_rbtree_next(tmp);
665 if (!tmp)
666 return NULL;
668 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
669 return tmp;
673 * Insert a node into the pd->bio_queue rb tree.
675 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
677 struct rb_node **p = &pd->bio_queue.rb_node;
678 struct rb_node *parent = NULL;
679 sector_t s = node->bio->bi_iter.bi_sector;
680 struct pkt_rb_node *tmp;
682 while (*p) {
683 parent = *p;
684 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
685 if (s < tmp->bio->bi_iter.bi_sector)
686 p = &(*p)->rb_left;
687 else
688 p = &(*p)->rb_right;
690 rb_link_node(&node->rb_node, parent, p);
691 rb_insert_color(&node->rb_node, &pd->bio_queue);
692 pd->bio_queue_size++;
696 * Send a packet_command to the underlying block device and
697 * wait for completion.
699 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
701 struct request_queue *q = bdev_get_queue(pd->bdev);
702 struct request *rq;
703 int ret = 0;
705 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
706 WRITE : READ, __GFP_WAIT);
707 if (IS_ERR(rq))
708 return PTR_ERR(rq);
709 blk_rq_set_block_pc(rq);
711 if (cgc->buflen) {
712 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
713 __GFP_WAIT);
714 if (ret)
715 goto out;
718 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
719 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
721 rq->timeout = 60*HZ;
722 if (cgc->quiet)
723 rq->cmd_flags |= REQ_QUIET;
725 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
726 if (rq->errors)
727 ret = -EIO;
728 out:
729 blk_put_request(rq);
730 return ret;
733 static const char *sense_key_string(__u8 index)
735 static const char * const info[] = {
736 "No sense", "Recovered error", "Not ready",
737 "Medium error", "Hardware error", "Illegal request",
738 "Unit attention", "Data protect", "Blank check",
741 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
745 * A generic sense dump / resolve mechanism should be implemented across
746 * all ATAPI + SCSI devices.
748 static void pkt_dump_sense(struct pktcdvd_device *pd,
749 struct packet_command *cgc)
751 struct request_sense *sense = cgc->sense;
753 if (sense)
754 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
755 CDROM_PACKET_SIZE, cgc->cmd,
756 sense->sense_key, sense->asc, sense->ascq,
757 sense_key_string(sense->sense_key));
758 else
759 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
763 * flush the drive cache to media
765 static int pkt_flush_cache(struct pktcdvd_device *pd)
767 struct packet_command cgc;
769 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
770 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
771 cgc.quiet = 1;
774 * the IMMED bit -- we default to not setting it, although that
775 * would allow a much faster close, this is safer
777 #if 0
778 cgc.cmd[1] = 1 << 1;
779 #endif
780 return pkt_generic_packet(pd, &cgc);
784 * speed is given as the normal factor, e.g. 4 for 4x
786 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
787 unsigned write_speed, unsigned read_speed)
789 struct packet_command cgc;
790 struct request_sense sense;
791 int ret;
793 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
794 cgc.sense = &sense;
795 cgc.cmd[0] = GPCMD_SET_SPEED;
796 cgc.cmd[2] = (read_speed >> 8) & 0xff;
797 cgc.cmd[3] = read_speed & 0xff;
798 cgc.cmd[4] = (write_speed >> 8) & 0xff;
799 cgc.cmd[5] = write_speed & 0xff;
801 if ((ret = pkt_generic_packet(pd, &cgc)))
802 pkt_dump_sense(pd, &cgc);
804 return ret;
808 * Queue a bio for processing by the low-level CD device. Must be called
809 * from process context.
811 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
813 spin_lock(&pd->iosched.lock);
814 if (bio_data_dir(bio) == READ)
815 bio_list_add(&pd->iosched.read_queue, bio);
816 else
817 bio_list_add(&pd->iosched.write_queue, bio);
818 spin_unlock(&pd->iosched.lock);
820 atomic_set(&pd->iosched.attention, 1);
821 wake_up(&pd->wqueue);
825 * Process the queued read/write requests. This function handles special
826 * requirements for CDRW drives:
827 * - A cache flush command must be inserted before a read request if the
828 * previous request was a write.
829 * - Switching between reading and writing is slow, so don't do it more often
830 * than necessary.
831 * - Optimize for throughput at the expense of latency. This means that streaming
832 * writes will never be interrupted by a read, but if the drive has to seek
833 * before the next write, switch to reading instead if there are any pending
834 * read requests.
835 * - Set the read speed according to current usage pattern. When only reading
836 * from the device, it's best to use the highest possible read speed, but
837 * when switching often between reading and writing, it's better to have the
838 * same read and write speeds.
840 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
843 if (atomic_read(&pd->iosched.attention) == 0)
844 return;
845 atomic_set(&pd->iosched.attention, 0);
847 for (;;) {
848 struct bio *bio;
849 int reads_queued, writes_queued;
851 spin_lock(&pd->iosched.lock);
852 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
853 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
854 spin_unlock(&pd->iosched.lock);
856 if (!reads_queued && !writes_queued)
857 break;
859 if (pd->iosched.writing) {
860 int need_write_seek = 1;
861 spin_lock(&pd->iosched.lock);
862 bio = bio_list_peek(&pd->iosched.write_queue);
863 spin_unlock(&pd->iosched.lock);
864 if (bio && (bio->bi_iter.bi_sector ==
865 pd->iosched.last_write))
866 need_write_seek = 0;
867 if (need_write_seek && reads_queued) {
868 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
869 pkt_dbg(2, pd, "write, waiting\n");
870 break;
872 pkt_flush_cache(pd);
873 pd->iosched.writing = 0;
875 } else {
876 if (!reads_queued && writes_queued) {
877 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
878 pkt_dbg(2, pd, "read, waiting\n");
879 break;
881 pd->iosched.writing = 1;
885 spin_lock(&pd->iosched.lock);
886 if (pd->iosched.writing)
887 bio = bio_list_pop(&pd->iosched.write_queue);
888 else
889 bio = bio_list_pop(&pd->iosched.read_queue);
890 spin_unlock(&pd->iosched.lock);
892 if (!bio)
893 continue;
895 if (bio_data_dir(bio) == READ)
896 pd->iosched.successive_reads +=
897 bio->bi_iter.bi_size >> 10;
898 else {
899 pd->iosched.successive_reads = 0;
900 pd->iosched.last_write = bio_end_sector(bio);
902 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
903 if (pd->read_speed == pd->write_speed) {
904 pd->read_speed = MAX_SPEED;
905 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
907 } else {
908 if (pd->read_speed != pd->write_speed) {
909 pd->read_speed = pd->write_speed;
910 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
914 atomic_inc(&pd->cdrw.pending_bios);
915 generic_make_request(bio);
920 * Special care is needed if the underlying block device has a small
921 * max_phys_segments value.
923 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
925 if ((pd->settings.size << 9) / CD_FRAMESIZE
926 <= queue_max_segments(q)) {
928 * The cdrom device can handle one segment/frame
930 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
931 return 0;
932 } else if ((pd->settings.size << 9) / PAGE_SIZE
933 <= queue_max_segments(q)) {
935 * We can handle this case at the expense of some extra memory
936 * copies during write operations
938 set_bit(PACKET_MERGE_SEGS, &pd->flags);
939 return 0;
940 } else {
941 pkt_err(pd, "cdrom max_phys_segments too small\n");
942 return -EIO;
947 * Copy all data for this packet to pkt->pages[], so that
948 * a) The number of required segments for the write bio is minimized, which
949 * is necessary for some scsi controllers.
950 * b) The data can be used as cache to avoid read requests if we receive a
951 * new write request for the same zone.
953 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
955 int f, p, offs;
957 /* Copy all data to pkt->pages[] */
958 p = 0;
959 offs = 0;
960 for (f = 0; f < pkt->frames; f++) {
961 if (bvec[f].bv_page != pkt->pages[p]) {
962 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
963 void *vto = page_address(pkt->pages[p]) + offs;
964 memcpy(vto, vfrom, CD_FRAMESIZE);
965 kunmap_atomic(vfrom);
966 bvec[f].bv_page = pkt->pages[p];
967 bvec[f].bv_offset = offs;
968 } else {
969 BUG_ON(bvec[f].bv_offset != offs);
971 offs += CD_FRAMESIZE;
972 if (offs >= PAGE_SIZE) {
973 offs = 0;
974 p++;
979 static void pkt_end_io_read(struct bio *bio, int err)
981 struct packet_data *pkt = bio->bi_private;
982 struct pktcdvd_device *pd = pkt->pd;
983 BUG_ON(!pd);
985 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
986 bio, (unsigned long long)pkt->sector,
987 (unsigned long long)bio->bi_iter.bi_sector, err);
989 if (err)
990 atomic_inc(&pkt->io_errors);
991 if (atomic_dec_and_test(&pkt->io_wait)) {
992 atomic_inc(&pkt->run_sm);
993 wake_up(&pd->wqueue);
995 pkt_bio_finished(pd);
998 static void pkt_end_io_packet_write(struct bio *bio, int err)
1000 struct packet_data *pkt = bio->bi_private;
1001 struct pktcdvd_device *pd = pkt->pd;
1002 BUG_ON(!pd);
1004 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err);
1006 pd->stats.pkt_ended++;
1008 pkt_bio_finished(pd);
1009 atomic_dec(&pkt->io_wait);
1010 atomic_inc(&pkt->run_sm);
1011 wake_up(&pd->wqueue);
1015 * Schedule reads for the holes in a packet
1017 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1019 int frames_read = 0;
1020 struct bio *bio;
1021 int f;
1022 char written[PACKET_MAX_SIZE];
1024 BUG_ON(bio_list_empty(&pkt->orig_bios));
1026 atomic_set(&pkt->io_wait, 0);
1027 atomic_set(&pkt->io_errors, 0);
1030 * Figure out which frames we need to read before we can write.
1032 memset(written, 0, sizeof(written));
1033 spin_lock(&pkt->lock);
1034 bio_list_for_each(bio, &pkt->orig_bios) {
1035 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1036 (CD_FRAMESIZE >> 9);
1037 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1038 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1039 BUG_ON(first_frame < 0);
1040 BUG_ON(first_frame + num_frames > pkt->frames);
1041 for (f = first_frame; f < first_frame + num_frames; f++)
1042 written[f] = 1;
1044 spin_unlock(&pkt->lock);
1046 if (pkt->cache_valid) {
1047 pkt_dbg(2, pd, "zone %llx cached\n",
1048 (unsigned long long)pkt->sector);
1049 goto out_account;
1053 * Schedule reads for missing parts of the packet.
1055 for (f = 0; f < pkt->frames; f++) {
1056 int p, offset;
1058 if (written[f])
1059 continue;
1061 bio = pkt->r_bios[f];
1062 bio_reset(bio);
1063 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1064 bio->bi_bdev = pd->bdev;
1065 bio->bi_end_io = pkt_end_io_read;
1066 bio->bi_private = pkt;
1068 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1069 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1070 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1071 f, pkt->pages[p], offset);
1072 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1073 BUG();
1075 atomic_inc(&pkt->io_wait);
1076 bio->bi_rw = READ;
1077 pkt_queue_bio(pd, bio);
1078 frames_read++;
1081 out_account:
1082 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1083 frames_read, (unsigned long long)pkt->sector);
1084 pd->stats.pkt_started++;
1085 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1089 * Find a packet matching zone, or the least recently used packet if
1090 * there is no match.
1092 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1094 struct packet_data *pkt;
1096 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1097 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1098 list_del_init(&pkt->list);
1099 if (pkt->sector != zone)
1100 pkt->cache_valid = 0;
1101 return pkt;
1104 BUG();
1105 return NULL;
1108 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1110 if (pkt->cache_valid) {
1111 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1112 } else {
1113 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1118 * recover a failed write, query for relocation if possible
1120 * returns 1 if recovery is possible, or 0 if not
1123 static int pkt_start_recovery(struct packet_data *pkt)
1126 * FIXME. We need help from the file system to implement
1127 * recovery handling.
1129 return 0;
1130 #if 0
1131 struct request *rq = pkt->rq;
1132 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1133 struct block_device *pkt_bdev;
1134 struct super_block *sb = NULL;
1135 unsigned long old_block, new_block;
1136 sector_t new_sector;
1138 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1139 if (pkt_bdev) {
1140 sb = get_super(pkt_bdev);
1141 bdput(pkt_bdev);
1144 if (!sb)
1145 return 0;
1147 if (!sb->s_op->relocate_blocks)
1148 goto out;
1150 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1151 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1152 goto out;
1154 new_sector = new_block * (CD_FRAMESIZE >> 9);
1155 pkt->sector = new_sector;
1157 bio_reset(pkt->bio);
1158 pkt->bio->bi_bdev = pd->bdev;
1159 pkt->bio->bi_rw = REQ_WRITE;
1160 pkt->bio->bi_iter.bi_sector = new_sector;
1161 pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE;
1162 pkt->bio->bi_vcnt = pkt->frames;
1164 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1165 pkt->bio->bi_private = pkt;
1167 drop_super(sb);
1168 return 1;
1170 out:
1171 drop_super(sb);
1172 return 0;
1173 #endif
1176 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1178 #if PACKET_DEBUG > 1
1179 static const char *state_name[] = {
1180 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1182 enum packet_data_state old_state = pkt->state;
1183 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1184 pkt->id, (unsigned long long)pkt->sector,
1185 state_name[old_state], state_name[state]);
1186 #endif
1187 pkt->state = state;
1191 * Scan the work queue to see if we can start a new packet.
1192 * returns non-zero if any work was done.
1194 static int pkt_handle_queue(struct pktcdvd_device *pd)
1196 struct packet_data *pkt, *p;
1197 struct bio *bio = NULL;
1198 sector_t zone = 0; /* Suppress gcc warning */
1199 struct pkt_rb_node *node, *first_node;
1200 struct rb_node *n;
1201 int wakeup;
1203 atomic_set(&pd->scan_queue, 0);
1205 if (list_empty(&pd->cdrw.pkt_free_list)) {
1206 pkt_dbg(2, pd, "no pkt\n");
1207 return 0;
1211 * Try to find a zone we are not already working on.
1213 spin_lock(&pd->lock);
1214 first_node = pkt_rbtree_find(pd, pd->current_sector);
1215 if (!first_node) {
1216 n = rb_first(&pd->bio_queue);
1217 if (n)
1218 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1220 node = first_node;
1221 while (node) {
1222 bio = node->bio;
1223 zone = get_zone(bio->bi_iter.bi_sector, pd);
1224 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1225 if (p->sector == zone) {
1226 bio = NULL;
1227 goto try_next_bio;
1230 break;
1231 try_next_bio:
1232 node = pkt_rbtree_next(node);
1233 if (!node) {
1234 n = rb_first(&pd->bio_queue);
1235 if (n)
1236 node = rb_entry(n, struct pkt_rb_node, rb_node);
1238 if (node == first_node)
1239 node = NULL;
1241 spin_unlock(&pd->lock);
1242 if (!bio) {
1243 pkt_dbg(2, pd, "no bio\n");
1244 return 0;
1247 pkt = pkt_get_packet_data(pd, zone);
1249 pd->current_sector = zone + pd->settings.size;
1250 pkt->sector = zone;
1251 BUG_ON(pkt->frames != pd->settings.size >> 2);
1252 pkt->write_size = 0;
1255 * Scan work queue for bios in the same zone and link them
1256 * to this packet.
1258 spin_lock(&pd->lock);
1259 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1260 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1261 bio = node->bio;
1262 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1263 get_zone(bio->bi_iter.bi_sector, pd));
1264 if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1265 break;
1266 pkt_rbtree_erase(pd, node);
1267 spin_lock(&pkt->lock);
1268 bio_list_add(&pkt->orig_bios, bio);
1269 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1270 spin_unlock(&pkt->lock);
1272 /* check write congestion marks, and if bio_queue_size is
1273 below, wake up any waiters */
1274 wakeup = (pd->write_congestion_on > 0
1275 && pd->bio_queue_size <= pd->write_congestion_off);
1276 spin_unlock(&pd->lock);
1277 if (wakeup) {
1278 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1279 BLK_RW_ASYNC);
1282 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1283 pkt_set_state(pkt, PACKET_WAITING_STATE);
1284 atomic_set(&pkt->run_sm, 1);
1286 spin_lock(&pd->cdrw.active_list_lock);
1287 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1288 spin_unlock(&pd->cdrw.active_list_lock);
1290 return 1;
1294 * Assemble a bio to write one packet and queue the bio for processing
1295 * by the underlying block device.
1297 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1299 int f;
1300 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1302 bio_reset(pkt->w_bio);
1303 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1304 pkt->w_bio->bi_bdev = pd->bdev;
1305 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1306 pkt->w_bio->bi_private = pkt;
1308 /* XXX: locking? */
1309 for (f = 0; f < pkt->frames; f++) {
1310 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1311 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1312 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1313 BUG();
1315 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1318 * Fill-in bvec with data from orig_bios.
1320 spin_lock(&pkt->lock);
1321 bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1323 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1324 spin_unlock(&pkt->lock);
1326 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1327 pkt->write_size, (unsigned long long)pkt->sector);
1329 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1330 pkt_make_local_copy(pkt, bvec);
1331 pkt->cache_valid = 1;
1332 } else {
1333 pkt->cache_valid = 0;
1336 /* Start the write request */
1337 atomic_set(&pkt->io_wait, 1);
1338 pkt->w_bio->bi_rw = WRITE;
1339 pkt_queue_bio(pd, pkt->w_bio);
1342 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1344 struct bio *bio;
1346 if (!uptodate)
1347 pkt->cache_valid = 0;
1349 /* Finish all bios corresponding to this packet */
1350 while ((bio = bio_list_pop(&pkt->orig_bios)))
1351 bio_endio(bio, uptodate ? 0 : -EIO);
1354 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1356 int uptodate;
1358 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1360 for (;;) {
1361 switch (pkt->state) {
1362 case PACKET_WAITING_STATE:
1363 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1364 return;
1366 pkt->sleep_time = 0;
1367 pkt_gather_data(pd, pkt);
1368 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1369 break;
1371 case PACKET_READ_WAIT_STATE:
1372 if (atomic_read(&pkt->io_wait) > 0)
1373 return;
1375 if (atomic_read(&pkt->io_errors) > 0) {
1376 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1377 } else {
1378 pkt_start_write(pd, pkt);
1380 break;
1382 case PACKET_WRITE_WAIT_STATE:
1383 if (atomic_read(&pkt->io_wait) > 0)
1384 return;
1386 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1387 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1388 } else {
1389 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1391 break;
1393 case PACKET_RECOVERY_STATE:
1394 if (pkt_start_recovery(pkt)) {
1395 pkt_start_write(pd, pkt);
1396 } else {
1397 pkt_dbg(2, pd, "No recovery possible\n");
1398 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1400 break;
1402 case PACKET_FINISHED_STATE:
1403 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1404 pkt_finish_packet(pkt, uptodate);
1405 return;
1407 default:
1408 BUG();
1409 break;
1414 static void pkt_handle_packets(struct pktcdvd_device *pd)
1416 struct packet_data *pkt, *next;
1419 * Run state machine for active packets
1421 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1422 if (atomic_read(&pkt->run_sm) > 0) {
1423 atomic_set(&pkt->run_sm, 0);
1424 pkt_run_state_machine(pd, pkt);
1429 * Move no longer active packets to the free list
1431 spin_lock(&pd->cdrw.active_list_lock);
1432 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1433 if (pkt->state == PACKET_FINISHED_STATE) {
1434 list_del(&pkt->list);
1435 pkt_put_packet_data(pd, pkt);
1436 pkt_set_state(pkt, PACKET_IDLE_STATE);
1437 atomic_set(&pd->scan_queue, 1);
1440 spin_unlock(&pd->cdrw.active_list_lock);
1443 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1445 struct packet_data *pkt;
1446 int i;
1448 for (i = 0; i < PACKET_NUM_STATES; i++)
1449 states[i] = 0;
1451 spin_lock(&pd->cdrw.active_list_lock);
1452 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1453 states[pkt->state]++;
1455 spin_unlock(&pd->cdrw.active_list_lock);
1459 * kcdrwd is woken up when writes have been queued for one of our
1460 * registered devices
1462 static int kcdrwd(void *foobar)
1464 struct pktcdvd_device *pd = foobar;
1465 struct packet_data *pkt;
1466 long min_sleep_time, residue;
1468 set_user_nice(current, MIN_NICE);
1469 set_freezable();
1471 for (;;) {
1472 DECLARE_WAITQUEUE(wait, current);
1475 * Wait until there is something to do
1477 add_wait_queue(&pd->wqueue, &wait);
1478 for (;;) {
1479 set_current_state(TASK_INTERRUPTIBLE);
1481 /* Check if we need to run pkt_handle_queue */
1482 if (atomic_read(&pd->scan_queue) > 0)
1483 goto work_to_do;
1485 /* Check if we need to run the state machine for some packet */
1486 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1487 if (atomic_read(&pkt->run_sm) > 0)
1488 goto work_to_do;
1491 /* Check if we need to process the iosched queues */
1492 if (atomic_read(&pd->iosched.attention) != 0)
1493 goto work_to_do;
1495 /* Otherwise, go to sleep */
1496 if (PACKET_DEBUG > 1) {
1497 int states[PACKET_NUM_STATES];
1498 pkt_count_states(pd, states);
1499 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1500 states[0], states[1], states[2],
1501 states[3], states[4], states[5]);
1504 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1505 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1506 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1507 min_sleep_time = pkt->sleep_time;
1510 pkt_dbg(2, pd, "sleeping\n");
1511 residue = schedule_timeout(min_sleep_time);
1512 pkt_dbg(2, pd, "wake up\n");
1514 /* make swsusp happy with our thread */
1515 try_to_freeze();
1517 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1518 if (!pkt->sleep_time)
1519 continue;
1520 pkt->sleep_time -= min_sleep_time - residue;
1521 if (pkt->sleep_time <= 0) {
1522 pkt->sleep_time = 0;
1523 atomic_inc(&pkt->run_sm);
1527 if (kthread_should_stop())
1528 break;
1530 work_to_do:
1531 set_current_state(TASK_RUNNING);
1532 remove_wait_queue(&pd->wqueue, &wait);
1534 if (kthread_should_stop())
1535 break;
1538 * if pkt_handle_queue returns true, we can queue
1539 * another request.
1541 while (pkt_handle_queue(pd))
1545 * Handle packet state machine
1547 pkt_handle_packets(pd);
1550 * Handle iosched queues
1552 pkt_iosched_process_queue(pd);
1555 return 0;
1558 static void pkt_print_settings(struct pktcdvd_device *pd)
1560 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1561 pd->settings.fp ? "Fixed" : "Variable",
1562 pd->settings.size >> 2,
1563 pd->settings.block_mode == 8 ? '1' : '2');
1566 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1568 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1570 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1571 cgc->cmd[2] = page_code | (page_control << 6);
1572 cgc->cmd[7] = cgc->buflen >> 8;
1573 cgc->cmd[8] = cgc->buflen & 0xff;
1574 cgc->data_direction = CGC_DATA_READ;
1575 return pkt_generic_packet(pd, cgc);
1578 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1580 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1581 memset(cgc->buffer, 0, 2);
1582 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1583 cgc->cmd[1] = 0x10; /* PF */
1584 cgc->cmd[7] = cgc->buflen >> 8;
1585 cgc->cmd[8] = cgc->buflen & 0xff;
1586 cgc->data_direction = CGC_DATA_WRITE;
1587 return pkt_generic_packet(pd, cgc);
1590 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1592 struct packet_command cgc;
1593 int ret;
1595 /* set up command and get the disc info */
1596 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1597 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1598 cgc.cmd[8] = cgc.buflen = 2;
1599 cgc.quiet = 1;
1601 if ((ret = pkt_generic_packet(pd, &cgc)))
1602 return ret;
1604 /* not all drives have the same disc_info length, so requeue
1605 * packet with the length the drive tells us it can supply
1607 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1608 sizeof(di->disc_information_length);
1610 if (cgc.buflen > sizeof(disc_information))
1611 cgc.buflen = sizeof(disc_information);
1613 cgc.cmd[8] = cgc.buflen;
1614 return pkt_generic_packet(pd, &cgc);
1617 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1619 struct packet_command cgc;
1620 int ret;
1622 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1623 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1624 cgc.cmd[1] = type & 3;
1625 cgc.cmd[4] = (track & 0xff00) >> 8;
1626 cgc.cmd[5] = track & 0xff;
1627 cgc.cmd[8] = 8;
1628 cgc.quiet = 1;
1630 if ((ret = pkt_generic_packet(pd, &cgc)))
1631 return ret;
1633 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1634 sizeof(ti->track_information_length);
1636 if (cgc.buflen > sizeof(track_information))
1637 cgc.buflen = sizeof(track_information);
1639 cgc.cmd[8] = cgc.buflen;
1640 return pkt_generic_packet(pd, &cgc);
1643 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1644 long *last_written)
1646 disc_information di;
1647 track_information ti;
1648 __u32 last_track;
1649 int ret = -1;
1651 if ((ret = pkt_get_disc_info(pd, &di)))
1652 return ret;
1654 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1655 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1656 return ret;
1658 /* if this track is blank, try the previous. */
1659 if (ti.blank) {
1660 last_track--;
1661 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1662 return ret;
1665 /* if last recorded field is valid, return it. */
1666 if (ti.lra_v) {
1667 *last_written = be32_to_cpu(ti.last_rec_address);
1668 } else {
1669 /* make it up instead */
1670 *last_written = be32_to_cpu(ti.track_start) +
1671 be32_to_cpu(ti.track_size);
1672 if (ti.free_blocks)
1673 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1675 return 0;
1679 * write mode select package based on pd->settings
1681 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1683 struct packet_command cgc;
1684 struct request_sense sense;
1685 write_param_page *wp;
1686 char buffer[128];
1687 int ret, size;
1689 /* doesn't apply to DVD+RW or DVD-RAM */
1690 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1691 return 0;
1693 memset(buffer, 0, sizeof(buffer));
1694 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1695 cgc.sense = &sense;
1696 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1697 pkt_dump_sense(pd, &cgc);
1698 return ret;
1701 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1702 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1703 if (size > sizeof(buffer))
1704 size = sizeof(buffer);
1707 * now get it all
1709 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1710 cgc.sense = &sense;
1711 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1712 pkt_dump_sense(pd, &cgc);
1713 return ret;
1717 * write page is offset header + block descriptor length
1719 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1721 wp->fp = pd->settings.fp;
1722 wp->track_mode = pd->settings.track_mode;
1723 wp->write_type = pd->settings.write_type;
1724 wp->data_block_type = pd->settings.block_mode;
1726 wp->multi_session = 0;
1728 #ifdef PACKET_USE_LS
1729 wp->link_size = 7;
1730 wp->ls_v = 1;
1731 #endif
1733 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1734 wp->session_format = 0;
1735 wp->subhdr2 = 0x20;
1736 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1737 wp->session_format = 0x20;
1738 wp->subhdr2 = 8;
1739 #if 0
1740 wp->mcn[0] = 0x80;
1741 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1742 #endif
1743 } else {
1745 * paranoia
1747 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1748 return 1;
1750 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1752 cgc.buflen = cgc.cmd[8] = size;
1753 if ((ret = pkt_mode_select(pd, &cgc))) {
1754 pkt_dump_sense(pd, &cgc);
1755 return ret;
1758 pkt_print_settings(pd);
1759 return 0;
1763 * 1 -- we can write to this track, 0 -- we can't
1765 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1767 switch (pd->mmc3_profile) {
1768 case 0x1a: /* DVD+RW */
1769 case 0x12: /* DVD-RAM */
1770 /* The track is always writable on DVD+RW/DVD-RAM */
1771 return 1;
1772 default:
1773 break;
1776 if (!ti->packet || !ti->fp)
1777 return 0;
1780 * "good" settings as per Mt Fuji.
1782 if (ti->rt == 0 && ti->blank == 0)
1783 return 1;
1785 if (ti->rt == 0 && ti->blank == 1)
1786 return 1;
1788 if (ti->rt == 1 && ti->blank == 0)
1789 return 1;
1791 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1792 return 0;
1796 * 1 -- we can write to this disc, 0 -- we can't
1798 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1800 switch (pd->mmc3_profile) {
1801 case 0x0a: /* CD-RW */
1802 case 0xffff: /* MMC3 not supported */
1803 break;
1804 case 0x1a: /* DVD+RW */
1805 case 0x13: /* DVD-RW */
1806 case 0x12: /* DVD-RAM */
1807 return 1;
1808 default:
1809 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1810 pd->mmc3_profile);
1811 return 0;
1815 * for disc type 0xff we should probably reserve a new track.
1816 * but i'm not sure, should we leave this to user apps? probably.
1818 if (di->disc_type == 0xff) {
1819 pkt_notice(pd, "unknown disc - no track?\n");
1820 return 0;
1823 if (di->disc_type != 0x20 && di->disc_type != 0) {
1824 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1825 return 0;
1828 if (di->erasable == 0) {
1829 pkt_notice(pd, "disc not erasable\n");
1830 return 0;
1833 if (di->border_status == PACKET_SESSION_RESERVED) {
1834 pkt_err(pd, "can't write to last track (reserved)\n");
1835 return 0;
1838 return 1;
1841 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1843 struct packet_command cgc;
1844 unsigned char buf[12];
1845 disc_information di;
1846 track_information ti;
1847 int ret, track;
1849 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1850 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1851 cgc.cmd[8] = 8;
1852 ret = pkt_generic_packet(pd, &cgc);
1853 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1855 memset(&di, 0, sizeof(disc_information));
1856 memset(&ti, 0, sizeof(track_information));
1858 if ((ret = pkt_get_disc_info(pd, &di))) {
1859 pkt_err(pd, "failed get_disc\n");
1860 return ret;
1863 if (!pkt_writable_disc(pd, &di))
1864 return -EROFS;
1866 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1868 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1869 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1870 pkt_err(pd, "failed get_track\n");
1871 return ret;
1874 if (!pkt_writable_track(pd, &ti)) {
1875 pkt_err(pd, "can't write to this track\n");
1876 return -EROFS;
1880 * we keep packet size in 512 byte units, makes it easier to
1881 * deal with request calculations.
1883 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1884 if (pd->settings.size == 0) {
1885 pkt_notice(pd, "detected zero packet size!\n");
1886 return -ENXIO;
1888 if (pd->settings.size > PACKET_MAX_SECTORS) {
1889 pkt_err(pd, "packet size is too big\n");
1890 return -EROFS;
1892 pd->settings.fp = ti.fp;
1893 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1895 if (ti.nwa_v) {
1896 pd->nwa = be32_to_cpu(ti.next_writable);
1897 set_bit(PACKET_NWA_VALID, &pd->flags);
1901 * in theory we could use lra on -RW media as well and just zero
1902 * blocks that haven't been written yet, but in practice that
1903 * is just a no-go. we'll use that for -R, naturally.
1905 if (ti.lra_v) {
1906 pd->lra = be32_to_cpu(ti.last_rec_address);
1907 set_bit(PACKET_LRA_VALID, &pd->flags);
1908 } else {
1909 pd->lra = 0xffffffff;
1910 set_bit(PACKET_LRA_VALID, &pd->flags);
1914 * fine for now
1916 pd->settings.link_loss = 7;
1917 pd->settings.write_type = 0; /* packet */
1918 pd->settings.track_mode = ti.track_mode;
1921 * mode1 or mode2 disc
1923 switch (ti.data_mode) {
1924 case PACKET_MODE1:
1925 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1926 break;
1927 case PACKET_MODE2:
1928 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1929 break;
1930 default:
1931 pkt_err(pd, "unknown data mode\n");
1932 return -EROFS;
1934 return 0;
1938 * enable/disable write caching on drive
1940 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1941 int set)
1943 struct packet_command cgc;
1944 struct request_sense sense;
1945 unsigned char buf[64];
1946 int ret;
1948 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1949 cgc.sense = &sense;
1950 cgc.buflen = pd->mode_offset + 12;
1953 * caching mode page might not be there, so quiet this command
1955 cgc.quiet = 1;
1957 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1958 return ret;
1960 buf[pd->mode_offset + 10] |= (!!set << 2);
1962 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1963 ret = pkt_mode_select(pd, &cgc);
1964 if (ret) {
1965 pkt_err(pd, "write caching control failed\n");
1966 pkt_dump_sense(pd, &cgc);
1967 } else if (!ret && set)
1968 pkt_notice(pd, "enabled write caching\n");
1969 return ret;
1972 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1974 struct packet_command cgc;
1976 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1977 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1978 cgc.cmd[4] = lockflag ? 1 : 0;
1979 return pkt_generic_packet(pd, &cgc);
1983 * Returns drive maximum write speed
1985 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1986 unsigned *write_speed)
1988 struct packet_command cgc;
1989 struct request_sense sense;
1990 unsigned char buf[256+18];
1991 unsigned char *cap_buf;
1992 int ret, offset;
1994 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1995 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1996 cgc.sense = &sense;
1998 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1999 if (ret) {
2000 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2001 sizeof(struct mode_page_header);
2002 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2003 if (ret) {
2004 pkt_dump_sense(pd, &cgc);
2005 return ret;
2009 offset = 20; /* Obsoleted field, used by older drives */
2010 if (cap_buf[1] >= 28)
2011 offset = 28; /* Current write speed selected */
2012 if (cap_buf[1] >= 30) {
2013 /* If the drive reports at least one "Logical Unit Write
2014 * Speed Performance Descriptor Block", use the information
2015 * in the first block. (contains the highest speed)
2017 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2018 if (num_spdb > 0)
2019 offset = 34;
2022 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2023 return 0;
2026 /* These tables from cdrecord - I don't have orange book */
2027 /* standard speed CD-RW (1-4x) */
2028 static char clv_to_speed[16] = {
2029 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2030 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2032 /* high speed CD-RW (-10x) */
2033 static char hs_clv_to_speed[16] = {
2034 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2035 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2037 /* ultra high speed CD-RW */
2038 static char us_clv_to_speed[16] = {
2039 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2040 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2044 * reads the maximum media speed from ATIP
2046 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2047 unsigned *speed)
2049 struct packet_command cgc;
2050 struct request_sense sense;
2051 unsigned char buf[64];
2052 unsigned int size, st, sp;
2053 int ret;
2055 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2056 cgc.sense = &sense;
2057 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2058 cgc.cmd[1] = 2;
2059 cgc.cmd[2] = 4; /* READ ATIP */
2060 cgc.cmd[8] = 2;
2061 ret = pkt_generic_packet(pd, &cgc);
2062 if (ret) {
2063 pkt_dump_sense(pd, &cgc);
2064 return ret;
2066 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2067 if (size > sizeof(buf))
2068 size = sizeof(buf);
2070 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2071 cgc.sense = &sense;
2072 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2073 cgc.cmd[1] = 2;
2074 cgc.cmd[2] = 4;
2075 cgc.cmd[8] = size;
2076 ret = pkt_generic_packet(pd, &cgc);
2077 if (ret) {
2078 pkt_dump_sense(pd, &cgc);
2079 return ret;
2082 if (!(buf[6] & 0x40)) {
2083 pkt_notice(pd, "disc type is not CD-RW\n");
2084 return 1;
2086 if (!(buf[6] & 0x4)) {
2087 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2088 return 1;
2091 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2093 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2095 /* Info from cdrecord */
2096 switch (st) {
2097 case 0: /* standard speed */
2098 *speed = clv_to_speed[sp];
2099 break;
2100 case 1: /* high speed */
2101 *speed = hs_clv_to_speed[sp];
2102 break;
2103 case 2: /* ultra high speed */
2104 *speed = us_clv_to_speed[sp];
2105 break;
2106 default:
2107 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2108 return 1;
2110 if (*speed) {
2111 pkt_info(pd, "maximum media speed: %d\n", *speed);
2112 return 0;
2113 } else {
2114 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2115 return 1;
2119 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2121 struct packet_command cgc;
2122 struct request_sense sense;
2123 int ret;
2125 pkt_dbg(2, pd, "Performing OPC\n");
2127 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2128 cgc.sense = &sense;
2129 cgc.timeout = 60*HZ;
2130 cgc.cmd[0] = GPCMD_SEND_OPC;
2131 cgc.cmd[1] = 1;
2132 if ((ret = pkt_generic_packet(pd, &cgc)))
2133 pkt_dump_sense(pd, &cgc);
2134 return ret;
2137 static int pkt_open_write(struct pktcdvd_device *pd)
2139 int ret;
2140 unsigned int write_speed, media_write_speed, read_speed;
2142 if ((ret = pkt_probe_settings(pd))) {
2143 pkt_dbg(2, pd, "failed probe\n");
2144 return ret;
2147 if ((ret = pkt_set_write_settings(pd))) {
2148 pkt_dbg(1, pd, "failed saving write settings\n");
2149 return -EIO;
2152 pkt_write_caching(pd, USE_WCACHING);
2154 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2155 write_speed = 16 * 177;
2156 switch (pd->mmc3_profile) {
2157 case 0x13: /* DVD-RW */
2158 case 0x1a: /* DVD+RW */
2159 case 0x12: /* DVD-RAM */
2160 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2161 break;
2162 default:
2163 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2164 media_write_speed = 16;
2165 write_speed = min(write_speed, media_write_speed * 177);
2166 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2167 break;
2169 read_speed = write_speed;
2171 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2172 pkt_dbg(1, pd, "couldn't set write speed\n");
2173 return -EIO;
2175 pd->write_speed = write_speed;
2176 pd->read_speed = read_speed;
2178 if ((ret = pkt_perform_opc(pd))) {
2179 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2182 return 0;
2186 * called at open time.
2188 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2190 int ret;
2191 long lba;
2192 struct request_queue *q;
2195 * We need to re-open the cdrom device without O_NONBLOCK to be able
2196 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2197 * so bdget() can't fail.
2199 bdget(pd->bdev->bd_dev);
2200 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2201 goto out;
2203 if ((ret = pkt_get_last_written(pd, &lba))) {
2204 pkt_err(pd, "pkt_get_last_written failed\n");
2205 goto out_putdev;
2208 set_capacity(pd->disk, lba << 2);
2209 set_capacity(pd->bdev->bd_disk, lba << 2);
2210 bd_set_size(pd->bdev, (loff_t)lba << 11);
2212 q = bdev_get_queue(pd->bdev);
2213 if (write) {
2214 if ((ret = pkt_open_write(pd)))
2215 goto out_putdev;
2217 * Some CDRW drives can not handle writes larger than one packet,
2218 * even if the size is a multiple of the packet size.
2220 spin_lock_irq(q->queue_lock);
2221 blk_queue_max_hw_sectors(q, pd->settings.size);
2222 spin_unlock_irq(q->queue_lock);
2223 set_bit(PACKET_WRITABLE, &pd->flags);
2224 } else {
2225 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2226 clear_bit(PACKET_WRITABLE, &pd->flags);
2229 if ((ret = pkt_set_segment_merging(pd, q)))
2230 goto out_putdev;
2232 if (write) {
2233 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2234 pkt_err(pd, "not enough memory for buffers\n");
2235 ret = -ENOMEM;
2236 goto out_putdev;
2238 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2241 return 0;
2243 out_putdev:
2244 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2245 out:
2246 return ret;
2250 * called when the device is closed. makes sure that the device flushes
2251 * the internal cache before we close.
2253 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2255 if (flush && pkt_flush_cache(pd))
2256 pkt_dbg(1, pd, "not flushing cache\n");
2258 pkt_lock_door(pd, 0);
2260 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2261 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2263 pkt_shrink_pktlist(pd);
2266 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2268 if (dev_minor >= MAX_WRITERS)
2269 return NULL;
2270 return pkt_devs[dev_minor];
2273 static int pkt_open(struct block_device *bdev, fmode_t mode)
2275 struct pktcdvd_device *pd = NULL;
2276 int ret;
2278 mutex_lock(&pktcdvd_mutex);
2279 mutex_lock(&ctl_mutex);
2280 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2281 if (!pd) {
2282 ret = -ENODEV;
2283 goto out;
2285 BUG_ON(pd->refcnt < 0);
2287 pd->refcnt++;
2288 if (pd->refcnt > 1) {
2289 if ((mode & FMODE_WRITE) &&
2290 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2291 ret = -EBUSY;
2292 goto out_dec;
2294 } else {
2295 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2296 if (ret)
2297 goto out_dec;
2299 * needed here as well, since ext2 (among others) may change
2300 * the blocksize at mount time
2302 set_blocksize(bdev, CD_FRAMESIZE);
2305 mutex_unlock(&ctl_mutex);
2306 mutex_unlock(&pktcdvd_mutex);
2307 return 0;
2309 out_dec:
2310 pd->refcnt--;
2311 out:
2312 mutex_unlock(&ctl_mutex);
2313 mutex_unlock(&pktcdvd_mutex);
2314 return ret;
2317 static void pkt_close(struct gendisk *disk, fmode_t mode)
2319 struct pktcdvd_device *pd = disk->private_data;
2321 mutex_lock(&pktcdvd_mutex);
2322 mutex_lock(&ctl_mutex);
2323 pd->refcnt--;
2324 BUG_ON(pd->refcnt < 0);
2325 if (pd->refcnt == 0) {
2326 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2327 pkt_release_dev(pd, flush);
2329 mutex_unlock(&ctl_mutex);
2330 mutex_unlock(&pktcdvd_mutex);
2334 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2336 struct packet_stacked_data *psd = bio->bi_private;
2337 struct pktcdvd_device *pd = psd->pd;
2339 bio_put(bio);
2340 bio_endio(psd->bio, err);
2341 mempool_free(psd, psd_pool);
2342 pkt_bio_finished(pd);
2345 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2347 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2348 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2350 psd->pd = pd;
2351 psd->bio = bio;
2352 cloned_bio->bi_bdev = pd->bdev;
2353 cloned_bio->bi_private = psd;
2354 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2355 pd->stats.secs_r += bio_sectors(bio);
2356 pkt_queue_bio(pd, cloned_bio);
2359 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2361 struct pktcdvd_device *pd = q->queuedata;
2362 sector_t zone;
2363 struct packet_data *pkt;
2364 int was_empty, blocked_bio;
2365 struct pkt_rb_node *node;
2367 zone = get_zone(bio->bi_iter.bi_sector, pd);
2370 * If we find a matching packet in state WAITING or READ_WAIT, we can
2371 * just append this bio to that packet.
2373 spin_lock(&pd->cdrw.active_list_lock);
2374 blocked_bio = 0;
2375 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2376 if (pkt->sector == zone) {
2377 spin_lock(&pkt->lock);
2378 if ((pkt->state == PACKET_WAITING_STATE) ||
2379 (pkt->state == PACKET_READ_WAIT_STATE)) {
2380 bio_list_add(&pkt->orig_bios, bio);
2381 pkt->write_size +=
2382 bio->bi_iter.bi_size / CD_FRAMESIZE;
2383 if ((pkt->write_size >= pkt->frames) &&
2384 (pkt->state == PACKET_WAITING_STATE)) {
2385 atomic_inc(&pkt->run_sm);
2386 wake_up(&pd->wqueue);
2388 spin_unlock(&pkt->lock);
2389 spin_unlock(&pd->cdrw.active_list_lock);
2390 return;
2391 } else {
2392 blocked_bio = 1;
2394 spin_unlock(&pkt->lock);
2397 spin_unlock(&pd->cdrw.active_list_lock);
2400 * Test if there is enough room left in the bio work queue
2401 * (queue size >= congestion on mark).
2402 * If not, wait till the work queue size is below the congestion off mark.
2404 spin_lock(&pd->lock);
2405 if (pd->write_congestion_on > 0
2406 && pd->bio_queue_size >= pd->write_congestion_on) {
2407 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2408 do {
2409 spin_unlock(&pd->lock);
2410 congestion_wait(BLK_RW_ASYNC, HZ);
2411 spin_lock(&pd->lock);
2412 } while(pd->bio_queue_size > pd->write_congestion_off);
2414 spin_unlock(&pd->lock);
2417 * No matching packet found. Store the bio in the work queue.
2419 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2420 node->bio = bio;
2421 spin_lock(&pd->lock);
2422 BUG_ON(pd->bio_queue_size < 0);
2423 was_empty = (pd->bio_queue_size == 0);
2424 pkt_rbtree_insert(pd, node);
2425 spin_unlock(&pd->lock);
2428 * Wake up the worker thread.
2430 atomic_set(&pd->scan_queue, 1);
2431 if (was_empty) {
2432 /* This wake_up is required for correct operation */
2433 wake_up(&pd->wqueue);
2434 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2436 * This wake up is not required for correct operation,
2437 * but improves performance in some cases.
2439 wake_up(&pd->wqueue);
2443 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2445 struct pktcdvd_device *pd;
2446 char b[BDEVNAME_SIZE];
2447 struct bio *split;
2449 pd = q->queuedata;
2450 if (!pd) {
2451 pr_err("%s incorrect request queue\n",
2452 bdevname(bio->bi_bdev, b));
2453 goto end_io;
2456 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2457 (unsigned long long)bio->bi_iter.bi_sector,
2458 (unsigned long long)bio_end_sector(bio));
2461 * Clone READ bios so we can have our own bi_end_io callback.
2463 if (bio_data_dir(bio) == READ) {
2464 pkt_make_request_read(pd, bio);
2465 return;
2468 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2469 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2470 (unsigned long long)bio->bi_iter.bi_sector);
2471 goto end_io;
2474 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2475 pkt_err(pd, "wrong bio size\n");
2476 goto end_io;
2479 blk_queue_bounce(q, &bio);
2481 do {
2482 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2483 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2485 if (last_zone != zone) {
2486 BUG_ON(last_zone != zone + pd->settings.size);
2488 split = bio_split(bio, last_zone -
2489 bio->bi_iter.bi_sector,
2490 GFP_NOIO, fs_bio_set);
2491 bio_chain(split, bio);
2492 } else {
2493 split = bio;
2496 pkt_make_request_write(q, split);
2497 } while (split != bio);
2499 return;
2500 end_io:
2501 bio_io_error(bio);
2506 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2507 struct bio_vec *bvec)
2509 struct pktcdvd_device *pd = q->queuedata;
2510 sector_t zone = get_zone(bmd->bi_sector, pd);
2511 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2512 int remaining = (pd->settings.size << 9) - used;
2513 int remaining2;
2516 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2517 * boundary, pkt_make_request() will split the bio.
2519 remaining2 = PAGE_SIZE - bmd->bi_size;
2520 remaining = max(remaining, remaining2);
2522 BUG_ON(remaining < 0);
2523 return remaining;
2526 static void pkt_init_queue(struct pktcdvd_device *pd)
2528 struct request_queue *q = pd->disk->queue;
2530 blk_queue_make_request(q, pkt_make_request);
2531 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2532 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2533 blk_queue_merge_bvec(q, pkt_merge_bvec);
2534 q->queuedata = pd;
2537 static int pkt_seq_show(struct seq_file *m, void *p)
2539 struct pktcdvd_device *pd = m->private;
2540 char *msg;
2541 char bdev_buf[BDEVNAME_SIZE];
2542 int states[PACKET_NUM_STATES];
2544 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2545 bdevname(pd->bdev, bdev_buf));
2547 seq_printf(m, "\nSettings:\n");
2548 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2550 if (pd->settings.write_type == 0)
2551 msg = "Packet";
2552 else
2553 msg = "Unknown";
2554 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2556 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2557 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2559 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2561 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2562 msg = "Mode 1";
2563 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2564 msg = "Mode 2";
2565 else
2566 msg = "Unknown";
2567 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2569 seq_printf(m, "\nStatistics:\n");
2570 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2571 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2572 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2573 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2574 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2576 seq_printf(m, "\nMisc:\n");
2577 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2578 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2579 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2580 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2581 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2582 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2584 seq_printf(m, "\nQueue state:\n");
2585 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2586 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2587 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2589 pkt_count_states(pd, states);
2590 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2591 states[0], states[1], states[2], states[3], states[4], states[5]);
2593 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2594 pd->write_congestion_off,
2595 pd->write_congestion_on);
2596 return 0;
2599 static int pkt_seq_open(struct inode *inode, struct file *file)
2601 return single_open(file, pkt_seq_show, PDE_DATA(inode));
2604 static const struct file_operations pkt_proc_fops = {
2605 .open = pkt_seq_open,
2606 .read = seq_read,
2607 .llseek = seq_lseek,
2608 .release = single_release
2611 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2613 int i;
2614 int ret = 0;
2615 char b[BDEVNAME_SIZE];
2616 struct block_device *bdev;
2618 if (pd->pkt_dev == dev) {
2619 pkt_err(pd, "recursive setup not allowed\n");
2620 return -EBUSY;
2622 for (i = 0; i < MAX_WRITERS; i++) {
2623 struct pktcdvd_device *pd2 = pkt_devs[i];
2624 if (!pd2)
2625 continue;
2626 if (pd2->bdev->bd_dev == dev) {
2627 pkt_err(pd, "%s already setup\n",
2628 bdevname(pd2->bdev, b));
2629 return -EBUSY;
2631 if (pd2->pkt_dev == dev) {
2632 pkt_err(pd, "can't chain pktcdvd devices\n");
2633 return -EBUSY;
2637 bdev = bdget(dev);
2638 if (!bdev)
2639 return -ENOMEM;
2640 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2641 if (ret)
2642 return ret;
2644 /* This is safe, since we have a reference from open(). */
2645 __module_get(THIS_MODULE);
2647 pd->bdev = bdev;
2648 set_blocksize(bdev, CD_FRAMESIZE);
2650 pkt_init_queue(pd);
2652 atomic_set(&pd->cdrw.pending_bios, 0);
2653 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2654 if (IS_ERR(pd->cdrw.thread)) {
2655 pkt_err(pd, "can't start kernel thread\n");
2656 ret = -ENOMEM;
2657 goto out_mem;
2660 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2661 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2662 return 0;
2664 out_mem:
2665 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2666 /* This is safe: open() is still holding a reference. */
2667 module_put(THIS_MODULE);
2668 return ret;
2671 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2673 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2674 int ret;
2676 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2677 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2679 mutex_lock(&pktcdvd_mutex);
2680 switch (cmd) {
2681 case CDROMEJECT:
2683 * The door gets locked when the device is opened, so we
2684 * have to unlock it or else the eject command fails.
2686 if (pd->refcnt == 1)
2687 pkt_lock_door(pd, 0);
2688 /* fallthru */
2690 * forward selected CDROM ioctls to CD-ROM, for UDF
2692 case CDROMMULTISESSION:
2693 case CDROMREADTOCENTRY:
2694 case CDROM_LAST_WRITTEN:
2695 case CDROM_SEND_PACKET:
2696 case SCSI_IOCTL_SEND_COMMAND:
2697 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2698 break;
2700 default:
2701 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2702 ret = -ENOTTY;
2704 mutex_unlock(&pktcdvd_mutex);
2706 return ret;
2709 static unsigned int pkt_check_events(struct gendisk *disk,
2710 unsigned int clearing)
2712 struct pktcdvd_device *pd = disk->private_data;
2713 struct gendisk *attached_disk;
2715 if (!pd)
2716 return 0;
2717 if (!pd->bdev)
2718 return 0;
2719 attached_disk = pd->bdev->bd_disk;
2720 if (!attached_disk || !attached_disk->fops->check_events)
2721 return 0;
2722 return attached_disk->fops->check_events(attached_disk, clearing);
2725 static const struct block_device_operations pktcdvd_ops = {
2726 .owner = THIS_MODULE,
2727 .open = pkt_open,
2728 .release = pkt_close,
2729 .ioctl = pkt_ioctl,
2730 .check_events = pkt_check_events,
2733 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2735 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2739 * Set up mapping from pktcdvd device to CD-ROM device.
2741 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2743 int idx;
2744 int ret = -ENOMEM;
2745 struct pktcdvd_device *pd;
2746 struct gendisk *disk;
2748 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2750 for (idx = 0; idx < MAX_WRITERS; idx++)
2751 if (!pkt_devs[idx])
2752 break;
2753 if (idx == MAX_WRITERS) {
2754 pr_err("max %d writers supported\n", MAX_WRITERS);
2755 ret = -EBUSY;
2756 goto out_mutex;
2759 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2760 if (!pd)
2761 goto out_mutex;
2763 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2764 sizeof(struct pkt_rb_node));
2765 if (!pd->rb_pool)
2766 goto out_mem;
2768 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2769 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2770 spin_lock_init(&pd->cdrw.active_list_lock);
2772 spin_lock_init(&pd->lock);
2773 spin_lock_init(&pd->iosched.lock);
2774 bio_list_init(&pd->iosched.read_queue);
2775 bio_list_init(&pd->iosched.write_queue);
2776 sprintf(pd->name, DRIVER_NAME"%d", idx);
2777 init_waitqueue_head(&pd->wqueue);
2778 pd->bio_queue = RB_ROOT;
2780 pd->write_congestion_on = write_congestion_on;
2781 pd->write_congestion_off = write_congestion_off;
2783 disk = alloc_disk(1);
2784 if (!disk)
2785 goto out_mem;
2786 pd->disk = disk;
2787 disk->major = pktdev_major;
2788 disk->first_minor = idx;
2789 disk->fops = &pktcdvd_ops;
2790 disk->flags = GENHD_FL_REMOVABLE;
2791 strcpy(disk->disk_name, pd->name);
2792 disk->devnode = pktcdvd_devnode;
2793 disk->private_data = pd;
2794 disk->queue = blk_alloc_queue(GFP_KERNEL);
2795 if (!disk->queue)
2796 goto out_mem2;
2798 pd->pkt_dev = MKDEV(pktdev_major, idx);
2799 ret = pkt_new_dev(pd, dev);
2800 if (ret)
2801 goto out_new_dev;
2803 /* inherit events of the host device */
2804 disk->events = pd->bdev->bd_disk->events;
2805 disk->async_events = pd->bdev->bd_disk->async_events;
2807 add_disk(disk);
2809 pkt_sysfs_dev_new(pd);
2810 pkt_debugfs_dev_new(pd);
2812 pkt_devs[idx] = pd;
2813 if (pkt_dev)
2814 *pkt_dev = pd->pkt_dev;
2816 mutex_unlock(&ctl_mutex);
2817 return 0;
2819 out_new_dev:
2820 blk_cleanup_queue(disk->queue);
2821 out_mem2:
2822 put_disk(disk);
2823 out_mem:
2824 if (pd->rb_pool)
2825 mempool_destroy(pd->rb_pool);
2826 kfree(pd);
2827 out_mutex:
2828 mutex_unlock(&ctl_mutex);
2829 pr_err("setup of pktcdvd device failed\n");
2830 return ret;
2834 * Tear down mapping from pktcdvd device to CD-ROM device.
2836 static int pkt_remove_dev(dev_t pkt_dev)
2838 struct pktcdvd_device *pd;
2839 int idx;
2840 int ret = 0;
2842 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2844 for (idx = 0; idx < MAX_WRITERS; idx++) {
2845 pd = pkt_devs[idx];
2846 if (pd && (pd->pkt_dev == pkt_dev))
2847 break;
2849 if (idx == MAX_WRITERS) {
2850 pr_debug("dev not setup\n");
2851 ret = -ENXIO;
2852 goto out;
2855 if (pd->refcnt > 0) {
2856 ret = -EBUSY;
2857 goto out;
2859 if (!IS_ERR(pd->cdrw.thread))
2860 kthread_stop(pd->cdrw.thread);
2862 pkt_devs[idx] = NULL;
2864 pkt_debugfs_dev_remove(pd);
2865 pkt_sysfs_dev_remove(pd);
2867 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2869 remove_proc_entry(pd->name, pkt_proc);
2870 pkt_dbg(1, pd, "writer unmapped\n");
2872 del_gendisk(pd->disk);
2873 blk_cleanup_queue(pd->disk->queue);
2874 put_disk(pd->disk);
2876 mempool_destroy(pd->rb_pool);
2877 kfree(pd);
2879 /* This is safe: open() is still holding a reference. */
2880 module_put(THIS_MODULE);
2882 out:
2883 mutex_unlock(&ctl_mutex);
2884 return ret;
2887 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2889 struct pktcdvd_device *pd;
2891 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2893 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2894 if (pd) {
2895 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2896 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2897 } else {
2898 ctrl_cmd->dev = 0;
2899 ctrl_cmd->pkt_dev = 0;
2901 ctrl_cmd->num_devices = MAX_WRITERS;
2903 mutex_unlock(&ctl_mutex);
2906 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2908 void __user *argp = (void __user *)arg;
2909 struct pkt_ctrl_command ctrl_cmd;
2910 int ret = 0;
2911 dev_t pkt_dev = 0;
2913 if (cmd != PACKET_CTRL_CMD)
2914 return -ENOTTY;
2916 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2917 return -EFAULT;
2919 switch (ctrl_cmd.command) {
2920 case PKT_CTRL_CMD_SETUP:
2921 if (!capable(CAP_SYS_ADMIN))
2922 return -EPERM;
2923 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2924 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2925 break;
2926 case PKT_CTRL_CMD_TEARDOWN:
2927 if (!capable(CAP_SYS_ADMIN))
2928 return -EPERM;
2929 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2930 break;
2931 case PKT_CTRL_CMD_STATUS:
2932 pkt_get_status(&ctrl_cmd);
2933 break;
2934 default:
2935 return -ENOTTY;
2938 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2939 return -EFAULT;
2940 return ret;
2943 #ifdef CONFIG_COMPAT
2944 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2946 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2948 #endif
2950 static const struct file_operations pkt_ctl_fops = {
2951 .open = nonseekable_open,
2952 .unlocked_ioctl = pkt_ctl_ioctl,
2953 #ifdef CONFIG_COMPAT
2954 .compat_ioctl = pkt_ctl_compat_ioctl,
2955 #endif
2956 .owner = THIS_MODULE,
2957 .llseek = no_llseek,
2960 static struct miscdevice pkt_misc = {
2961 .minor = MISC_DYNAMIC_MINOR,
2962 .name = DRIVER_NAME,
2963 .nodename = "pktcdvd/control",
2964 .fops = &pkt_ctl_fops
2967 static int __init pkt_init(void)
2969 int ret;
2971 mutex_init(&ctl_mutex);
2973 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2974 sizeof(struct packet_stacked_data));
2975 if (!psd_pool)
2976 return -ENOMEM;
2978 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2979 if (ret < 0) {
2980 pr_err("unable to register block device\n");
2981 goto out2;
2983 if (!pktdev_major)
2984 pktdev_major = ret;
2986 ret = pkt_sysfs_init();
2987 if (ret)
2988 goto out;
2990 pkt_debugfs_init();
2992 ret = misc_register(&pkt_misc);
2993 if (ret) {
2994 pr_err("unable to register misc device\n");
2995 goto out_misc;
2998 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3000 return 0;
3002 out_misc:
3003 pkt_debugfs_cleanup();
3004 pkt_sysfs_cleanup();
3005 out:
3006 unregister_blkdev(pktdev_major, DRIVER_NAME);
3007 out2:
3008 mempool_destroy(psd_pool);
3009 return ret;
3012 static void __exit pkt_exit(void)
3014 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3015 misc_deregister(&pkt_misc);
3017 pkt_debugfs_cleanup();
3018 pkt_sysfs_cleanup();
3020 unregister_blkdev(pktdev_major, DRIVER_NAME);
3021 mempool_destroy(psd_pool);
3024 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3025 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3026 MODULE_LICENSE("GPL");
3028 module_init(pkt_init);
3029 module_exit(pkt_exit);