2 * AMCC SoC PPC4xx Crypto Driver
4 * Copyright (c) 2008 Applied Micro Circuits Corporation.
5 * All rights reserved. James Hsiao <jhsiao@amcc.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * This file implements AMCC crypto offload Linux device driver for use with
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/module.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/slab.h>
36 #include <asm/dcr-regs.h>
37 #include <asm/cacheflush.h>
38 #include <crypto/aes.h>
39 #include <crypto/sha.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
44 #define PPC4XX_SEC_VERSION_STR "0.5"
47 * PPC4xx Crypto Engine Initialization Routine
49 static void crypto4xx_hw_init(struct crypto4xx_device
*dev
)
51 union ce_ring_size ring_size
;
52 union ce_ring_contol ring_ctrl
;
53 union ce_part_ring_size part_ring_size
;
54 union ce_io_threshold io_threshold
;
56 union ce_pe_dma_cfg pe_dma_cfg
;
59 writel(PPC4XX_BYTE_ORDER
, dev
->ce_base
+ CRYPTO4XX_BYTE_ORDER_CFG
);
60 /* setup pe dma, include reset sg, pdr and pe, then release reset */
62 pe_dma_cfg
.bf
.bo_sgpd_en
= 1;
63 pe_dma_cfg
.bf
.bo_data_en
= 0;
64 pe_dma_cfg
.bf
.bo_sa_en
= 1;
65 pe_dma_cfg
.bf
.bo_pd_en
= 1;
66 pe_dma_cfg
.bf
.dynamic_sa_en
= 1;
67 pe_dma_cfg
.bf
.reset_sg
= 1;
68 pe_dma_cfg
.bf
.reset_pdr
= 1;
69 pe_dma_cfg
.bf
.reset_pe
= 1;
70 writel(pe_dma_cfg
.w
, dev
->ce_base
+ CRYPTO4XX_PE_DMA_CFG
);
71 /* un reset pe,sg and pdr */
72 pe_dma_cfg
.bf
.pe_mode
= 0;
73 pe_dma_cfg
.bf
.reset_sg
= 0;
74 pe_dma_cfg
.bf
.reset_pdr
= 0;
75 pe_dma_cfg
.bf
.reset_pe
= 0;
76 pe_dma_cfg
.bf
.bo_td_en
= 0;
77 writel(pe_dma_cfg
.w
, dev
->ce_base
+ CRYPTO4XX_PE_DMA_CFG
);
78 writel(dev
->pdr_pa
, dev
->ce_base
+ CRYPTO4XX_PDR_BASE
);
79 writel(dev
->pdr_pa
, dev
->ce_base
+ CRYPTO4XX_RDR_BASE
);
80 writel(PPC4XX_PRNG_CTRL_AUTO_EN
, dev
->ce_base
+ CRYPTO4XX_PRNG_CTRL
);
81 get_random_bytes(&rand_num
, sizeof(rand_num
));
82 writel(rand_num
, dev
->ce_base
+ CRYPTO4XX_PRNG_SEED_L
);
83 get_random_bytes(&rand_num
, sizeof(rand_num
));
84 writel(rand_num
, dev
->ce_base
+ CRYPTO4XX_PRNG_SEED_H
);
86 ring_size
.bf
.ring_offset
= PPC4XX_PD_SIZE
;
87 ring_size
.bf
.ring_size
= PPC4XX_NUM_PD
;
88 writel(ring_size
.w
, dev
->ce_base
+ CRYPTO4XX_RING_SIZE
);
90 writel(ring_ctrl
.w
, dev
->ce_base
+ CRYPTO4XX_RING_CTRL
);
91 device_ctrl
= readl(dev
->ce_base
+ CRYPTO4XX_DEVICE_CTRL
);
92 device_ctrl
|= PPC4XX_DC_3DES_EN
;
93 writel(device_ctrl
, dev
->ce_base
+ CRYPTO4XX_DEVICE_CTRL
);
94 writel(dev
->gdr_pa
, dev
->ce_base
+ CRYPTO4XX_GATH_RING_BASE
);
95 writel(dev
->sdr_pa
, dev
->ce_base
+ CRYPTO4XX_SCAT_RING_BASE
);
97 part_ring_size
.bf
.sdr_size
= PPC4XX_SDR_SIZE
;
98 part_ring_size
.bf
.gdr_size
= PPC4XX_GDR_SIZE
;
99 writel(part_ring_size
.w
, dev
->ce_base
+ CRYPTO4XX_PART_RING_SIZE
);
100 writel(PPC4XX_SD_BUFFER_SIZE
, dev
->ce_base
+ CRYPTO4XX_PART_RING_CFG
);
102 io_threshold
.bf
.output_threshold
= PPC4XX_OUTPUT_THRESHOLD
;
103 io_threshold
.bf
.input_threshold
= PPC4XX_INPUT_THRESHOLD
;
104 writel(io_threshold
.w
, dev
->ce_base
+ CRYPTO4XX_IO_THRESHOLD
);
105 writel(0, dev
->ce_base
+ CRYPTO4XX_PDR_BASE_UADDR
);
106 writel(0, dev
->ce_base
+ CRYPTO4XX_RDR_BASE_UADDR
);
107 writel(0, dev
->ce_base
+ CRYPTO4XX_PKT_SRC_UADDR
);
108 writel(0, dev
->ce_base
+ CRYPTO4XX_PKT_DEST_UADDR
);
109 writel(0, dev
->ce_base
+ CRYPTO4XX_SA_UADDR
);
110 writel(0, dev
->ce_base
+ CRYPTO4XX_GATH_RING_BASE_UADDR
);
111 writel(0, dev
->ce_base
+ CRYPTO4XX_SCAT_RING_BASE_UADDR
);
112 /* un reset pe,sg and pdr */
113 pe_dma_cfg
.bf
.pe_mode
= 1;
114 pe_dma_cfg
.bf
.reset_sg
= 0;
115 pe_dma_cfg
.bf
.reset_pdr
= 0;
116 pe_dma_cfg
.bf
.reset_pe
= 0;
117 pe_dma_cfg
.bf
.bo_td_en
= 0;
118 writel(pe_dma_cfg
.w
, dev
->ce_base
+ CRYPTO4XX_PE_DMA_CFG
);
119 /*clear all pending interrupt*/
120 writel(PPC4XX_INTERRUPT_CLR
, dev
->ce_base
+ CRYPTO4XX_INT_CLR
);
121 writel(PPC4XX_INT_DESCR_CNT
, dev
->ce_base
+ CRYPTO4XX_INT_DESCR_CNT
);
122 writel(PPC4XX_INT_DESCR_CNT
, dev
->ce_base
+ CRYPTO4XX_INT_DESCR_CNT
);
123 writel(PPC4XX_INT_CFG
, dev
->ce_base
+ CRYPTO4XX_INT_CFG
);
124 writel(PPC4XX_PD_DONE_INT
, dev
->ce_base
+ CRYPTO4XX_INT_EN
);
127 int crypto4xx_alloc_sa(struct crypto4xx_ctx
*ctx
, u32 size
)
129 ctx
->sa_in
= dma_alloc_coherent(ctx
->dev
->core_dev
->device
, size
* 4,
130 &ctx
->sa_in_dma_addr
, GFP_ATOMIC
);
131 if (ctx
->sa_in
== NULL
)
134 ctx
->sa_out
= dma_alloc_coherent(ctx
->dev
->core_dev
->device
, size
* 4,
135 &ctx
->sa_out_dma_addr
, GFP_ATOMIC
);
136 if (ctx
->sa_out
== NULL
) {
137 dma_free_coherent(ctx
->dev
->core_dev
->device
,
139 ctx
->sa_in
, ctx
->sa_in_dma_addr
);
143 memset(ctx
->sa_in
, 0, size
* 4);
144 memset(ctx
->sa_out
, 0, size
* 4);
150 void crypto4xx_free_sa(struct crypto4xx_ctx
*ctx
)
152 if (ctx
->sa_in
!= NULL
)
153 dma_free_coherent(ctx
->dev
->core_dev
->device
, ctx
->sa_len
* 4,
154 ctx
->sa_in
, ctx
->sa_in_dma_addr
);
155 if (ctx
->sa_out
!= NULL
)
156 dma_free_coherent(ctx
->dev
->core_dev
->device
, ctx
->sa_len
* 4,
157 ctx
->sa_out
, ctx
->sa_out_dma_addr
);
159 ctx
->sa_in_dma_addr
= 0;
160 ctx
->sa_out_dma_addr
= 0;
164 u32
crypto4xx_alloc_state_record(struct crypto4xx_ctx
*ctx
)
166 ctx
->state_record
= dma_alloc_coherent(ctx
->dev
->core_dev
->device
,
167 sizeof(struct sa_state_record
),
168 &ctx
->state_record_dma_addr
, GFP_ATOMIC
);
169 if (!ctx
->state_record_dma_addr
)
171 memset(ctx
->state_record
, 0, sizeof(struct sa_state_record
));
176 void crypto4xx_free_state_record(struct crypto4xx_ctx
*ctx
)
178 if (ctx
->state_record
!= NULL
)
179 dma_free_coherent(ctx
->dev
->core_dev
->device
,
180 sizeof(struct sa_state_record
),
182 ctx
->state_record_dma_addr
);
183 ctx
->state_record_dma_addr
= 0;
187 * alloc memory for the gather ring
188 * no need to alloc buf for the ring
189 * gdr_tail, gdr_head and gdr_count are initialized by this function
191 static u32
crypto4xx_build_pdr(struct crypto4xx_device
*dev
)
194 struct pd_uinfo
*pd_uinfo
;
195 dev
->pdr
= dma_alloc_coherent(dev
->core_dev
->device
,
196 sizeof(struct ce_pd
) * PPC4XX_NUM_PD
,
197 &dev
->pdr_pa
, GFP_ATOMIC
);
201 dev
->pdr_uinfo
= kzalloc(sizeof(struct pd_uinfo
) * PPC4XX_NUM_PD
,
203 if (!dev
->pdr_uinfo
) {
204 dma_free_coherent(dev
->core_dev
->device
,
205 sizeof(struct ce_pd
) * PPC4XX_NUM_PD
,
210 memset(dev
->pdr
, 0, sizeof(struct ce_pd
) * PPC4XX_NUM_PD
);
211 dev
->shadow_sa_pool
= dma_alloc_coherent(dev
->core_dev
->device
,
213 &dev
->shadow_sa_pool_pa
,
215 if (!dev
->shadow_sa_pool
)
218 dev
->shadow_sr_pool
= dma_alloc_coherent(dev
->core_dev
->device
,
219 sizeof(struct sa_state_record
) * PPC4XX_NUM_PD
,
220 &dev
->shadow_sr_pool_pa
, GFP_ATOMIC
);
221 if (!dev
->shadow_sr_pool
)
223 for (i
= 0; i
< PPC4XX_NUM_PD
; i
++) {
224 pd_uinfo
= (struct pd_uinfo
*) (dev
->pdr_uinfo
+
225 sizeof(struct pd_uinfo
) * i
);
227 /* alloc 256 bytes which is enough for any kind of dynamic sa */
228 pd_uinfo
->sa_va
= dev
->shadow_sa_pool
+ 256 * i
;
229 pd_uinfo
->sa_pa
= dev
->shadow_sa_pool_pa
+ 256 * i
;
231 /* alloc state record */
232 pd_uinfo
->sr_va
= dev
->shadow_sr_pool
+
233 sizeof(struct sa_state_record
) * i
;
234 pd_uinfo
->sr_pa
= dev
->shadow_sr_pool_pa
+
235 sizeof(struct sa_state_record
) * i
;
241 static void crypto4xx_destroy_pdr(struct crypto4xx_device
*dev
)
243 if (dev
->pdr
!= NULL
)
244 dma_free_coherent(dev
->core_dev
->device
,
245 sizeof(struct ce_pd
) * PPC4XX_NUM_PD
,
246 dev
->pdr
, dev
->pdr_pa
);
247 if (dev
->shadow_sa_pool
)
248 dma_free_coherent(dev
->core_dev
->device
, 256 * PPC4XX_NUM_PD
,
249 dev
->shadow_sa_pool
, dev
->shadow_sa_pool_pa
);
250 if (dev
->shadow_sr_pool
)
251 dma_free_coherent(dev
->core_dev
->device
,
252 sizeof(struct sa_state_record
) * PPC4XX_NUM_PD
,
253 dev
->shadow_sr_pool
, dev
->shadow_sr_pool_pa
);
255 kfree(dev
->pdr_uinfo
);
258 static u32
crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device
*dev
)
263 retval
= dev
->pdr_head
;
264 tmp
= (dev
->pdr_head
+ 1) % PPC4XX_NUM_PD
;
266 if (tmp
== dev
->pdr_tail
)
267 return ERING_WAS_FULL
;
274 static u32
crypto4xx_put_pd_to_pdr(struct crypto4xx_device
*dev
, u32 idx
)
276 struct pd_uinfo
*pd_uinfo
;
279 pd_uinfo
= (struct pd_uinfo
*)(dev
->pdr_uinfo
+
280 sizeof(struct pd_uinfo
) * idx
);
281 spin_lock_irqsave(&dev
->core_dev
->lock
, flags
);
282 if (dev
->pdr_tail
!= PPC4XX_LAST_PD
)
286 pd_uinfo
->state
= PD_ENTRY_FREE
;
287 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
292 static struct ce_pd
*crypto4xx_get_pdp(struct crypto4xx_device
*dev
,
293 dma_addr_t
*pd_dma
, u32 idx
)
295 *pd_dma
= dev
->pdr_pa
+ sizeof(struct ce_pd
) * idx
;
297 return dev
->pdr
+ sizeof(struct ce_pd
) * idx
;
301 * alloc memory for the gather ring
302 * no need to alloc buf for the ring
303 * gdr_tail, gdr_head and gdr_count are initialized by this function
305 static u32
crypto4xx_build_gdr(struct crypto4xx_device
*dev
)
307 dev
->gdr
= dma_alloc_coherent(dev
->core_dev
->device
,
308 sizeof(struct ce_gd
) * PPC4XX_NUM_GD
,
309 &dev
->gdr_pa
, GFP_ATOMIC
);
313 memset(dev
->gdr
, 0, sizeof(struct ce_gd
) * PPC4XX_NUM_GD
);
318 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device
*dev
)
320 dma_free_coherent(dev
->core_dev
->device
,
321 sizeof(struct ce_gd
) * PPC4XX_NUM_GD
,
322 dev
->gdr
, dev
->gdr_pa
);
326 * when this function is called.
327 * preemption or interrupt must be disabled
329 u32
crypto4xx_get_n_gd(struct crypto4xx_device
*dev
, int n
)
333 if (n
>= PPC4XX_NUM_GD
)
334 return ERING_WAS_FULL
;
336 retval
= dev
->gdr_head
;
337 tmp
= (dev
->gdr_head
+ n
) % PPC4XX_NUM_GD
;
338 if (dev
->gdr_head
> dev
->gdr_tail
) {
339 if (tmp
< dev
->gdr_head
&& tmp
>= dev
->gdr_tail
)
340 return ERING_WAS_FULL
;
341 } else if (dev
->gdr_head
< dev
->gdr_tail
) {
342 if (tmp
< dev
->gdr_head
|| tmp
>= dev
->gdr_tail
)
343 return ERING_WAS_FULL
;
350 static u32
crypto4xx_put_gd_to_gdr(struct crypto4xx_device
*dev
)
354 spin_lock_irqsave(&dev
->core_dev
->lock
, flags
);
355 if (dev
->gdr_tail
== dev
->gdr_head
) {
356 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
360 if (dev
->gdr_tail
!= PPC4XX_LAST_GD
)
365 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
370 static inline struct ce_gd
*crypto4xx_get_gdp(struct crypto4xx_device
*dev
,
371 dma_addr_t
*gd_dma
, u32 idx
)
373 *gd_dma
= dev
->gdr_pa
+ sizeof(struct ce_gd
) * idx
;
375 return (struct ce_gd
*) (dev
->gdr
+ sizeof(struct ce_gd
) * idx
);
379 * alloc memory for the scatter ring
380 * need to alloc buf for the ring
381 * sdr_tail, sdr_head and sdr_count are initialized by this function
383 static u32
crypto4xx_build_sdr(struct crypto4xx_device
*dev
)
386 struct ce_sd
*sd_array
;
388 /* alloc memory for scatter descriptor ring */
389 dev
->sdr
= dma_alloc_coherent(dev
->core_dev
->device
,
390 sizeof(struct ce_sd
) * PPC4XX_NUM_SD
,
391 &dev
->sdr_pa
, GFP_ATOMIC
);
395 dev
->scatter_buffer_size
= PPC4XX_SD_BUFFER_SIZE
;
396 dev
->scatter_buffer_va
=
397 dma_alloc_coherent(dev
->core_dev
->device
,
398 dev
->scatter_buffer_size
* PPC4XX_NUM_SD
,
399 &dev
->scatter_buffer_pa
, GFP_ATOMIC
);
400 if (!dev
->scatter_buffer_va
) {
401 dma_free_coherent(dev
->core_dev
->device
,
402 sizeof(struct ce_sd
) * PPC4XX_NUM_SD
,
403 dev
->sdr
, dev
->sdr_pa
);
409 for (i
= 0; i
< PPC4XX_NUM_SD
; i
++) {
410 sd_array
[i
].ptr
= dev
->scatter_buffer_pa
+
411 dev
->scatter_buffer_size
* i
;
417 static void crypto4xx_destroy_sdr(struct crypto4xx_device
*dev
)
419 if (dev
->sdr
!= NULL
)
420 dma_free_coherent(dev
->core_dev
->device
,
421 sizeof(struct ce_sd
) * PPC4XX_NUM_SD
,
422 dev
->sdr
, dev
->sdr_pa
);
424 if (dev
->scatter_buffer_va
!= NULL
)
425 dma_free_coherent(dev
->core_dev
->device
,
426 dev
->scatter_buffer_size
* PPC4XX_NUM_SD
,
427 dev
->scatter_buffer_va
,
428 dev
->scatter_buffer_pa
);
432 * when this function is called.
433 * preemption or interrupt must be disabled
435 static u32
crypto4xx_get_n_sd(struct crypto4xx_device
*dev
, int n
)
440 if (n
>= PPC4XX_NUM_SD
)
441 return ERING_WAS_FULL
;
443 retval
= dev
->sdr_head
;
444 tmp
= (dev
->sdr_head
+ n
) % PPC4XX_NUM_SD
;
445 if (dev
->sdr_head
> dev
->gdr_tail
) {
446 if (tmp
< dev
->sdr_head
&& tmp
>= dev
->sdr_tail
)
447 return ERING_WAS_FULL
;
448 } else if (dev
->sdr_head
< dev
->sdr_tail
) {
449 if (tmp
< dev
->sdr_head
|| tmp
>= dev
->sdr_tail
)
450 return ERING_WAS_FULL
;
451 } /* the head = tail, or empty case is already take cared */
457 static u32
crypto4xx_put_sd_to_sdr(struct crypto4xx_device
*dev
)
461 spin_lock_irqsave(&dev
->core_dev
->lock
, flags
);
462 if (dev
->sdr_tail
== dev
->sdr_head
) {
463 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
466 if (dev
->sdr_tail
!= PPC4XX_LAST_SD
)
470 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
475 static inline struct ce_sd
*crypto4xx_get_sdp(struct crypto4xx_device
*dev
,
476 dma_addr_t
*sd_dma
, u32 idx
)
478 *sd_dma
= dev
->sdr_pa
+ sizeof(struct ce_sd
) * idx
;
480 return (struct ce_sd
*)(dev
->sdr
+ sizeof(struct ce_sd
) * idx
);
483 static u32
crypto4xx_fill_one_page(struct crypto4xx_device
*dev
,
484 dma_addr_t
*addr
, u32
*length
,
485 u32
*idx
, u32
*offset
, u32
*nbytes
)
489 if (*length
> dev
->scatter_buffer_size
) {
490 memcpy(phys_to_virt(*addr
),
491 dev
->scatter_buffer_va
+
492 *idx
* dev
->scatter_buffer_size
+ *offset
,
493 dev
->scatter_buffer_size
);
495 *length
-= dev
->scatter_buffer_size
;
496 *nbytes
-= dev
->scatter_buffer_size
;
497 if (*idx
== PPC4XX_LAST_SD
)
501 *addr
= *addr
+ dev
->scatter_buffer_size
;
503 } else if (*length
< dev
->scatter_buffer_size
) {
504 memcpy(phys_to_virt(*addr
),
505 dev
->scatter_buffer_va
+
506 *idx
* dev
->scatter_buffer_size
+ *offset
, *length
);
507 if ((*offset
+ *length
) == dev
->scatter_buffer_size
) {
508 if (*idx
== PPC4XX_LAST_SD
)
521 len
= (*nbytes
<= dev
->scatter_buffer_size
) ?
522 (*nbytes
) : dev
->scatter_buffer_size
;
523 memcpy(phys_to_virt(*addr
),
524 dev
->scatter_buffer_va
+
525 *idx
* dev
->scatter_buffer_size
+ *offset
,
530 if (*idx
== PPC4XX_LAST_SD
)
539 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device
*dev
,
541 struct pd_uinfo
*pd_uinfo
,
543 struct scatterlist
*dst
)
551 struct scatterlist
*sg
;
553 this_sd
= pd_uinfo
->first_sd
;
560 addr
= dma_map_page(dev
->core_dev
->device
, sg_page(sg
),
561 sg
->offset
, sg
->length
, DMA_TO_DEVICE
);
564 len
= (nbytes
<= sg
->length
) ? nbytes
: sg
->length
;
565 while (crypto4xx_fill_one_page(dev
, &addr
, &len
,
566 &this_sd
, &offset
, &nbytes
))
572 len
= (nbytes
<= (dev
->scatter_buffer_size
- offset
)) ?
573 nbytes
: (dev
->scatter_buffer_size
- offset
);
574 len
= (sg
->length
< len
) ? sg
->length
: len
;
575 while (crypto4xx_fill_one_page(dev
, &addr
, &len
,
576 &this_sd
, &offset
, &nbytes
))
583 while (crypto4xx_fill_one_page(dev
, &addr
,
584 &sg_len
, &this_sd
, &offset
, &nbytes
))
592 static u32
crypto4xx_copy_digest_to_dst(struct pd_uinfo
*pd_uinfo
,
593 struct crypto4xx_ctx
*ctx
)
595 struct dynamic_sa_ctl
*sa
= (struct dynamic_sa_ctl
*) ctx
->sa_in
;
596 struct sa_state_record
*state_record
=
597 (struct sa_state_record
*) pd_uinfo
->sr_va
;
599 if (sa
->sa_command_0
.bf
.hash_alg
== SA_HASH_ALG_SHA1
) {
600 memcpy((void *) pd_uinfo
->dest_va
, state_record
->save_digest
,
601 SA_HASH_ALG_SHA1_DIGEST_SIZE
);
607 static void crypto4xx_ret_sg_desc(struct crypto4xx_device
*dev
,
608 struct pd_uinfo
*pd_uinfo
)
611 if (pd_uinfo
->num_gd
) {
612 for (i
= 0; i
< pd_uinfo
->num_gd
; i
++)
613 crypto4xx_put_gd_to_gdr(dev
);
614 pd_uinfo
->first_gd
= 0xffffffff;
615 pd_uinfo
->num_gd
= 0;
617 if (pd_uinfo
->num_sd
) {
618 for (i
= 0; i
< pd_uinfo
->num_sd
; i
++)
619 crypto4xx_put_sd_to_sdr(dev
);
621 pd_uinfo
->first_sd
= 0xffffffff;
622 pd_uinfo
->num_sd
= 0;
626 static u32
crypto4xx_ablkcipher_done(struct crypto4xx_device
*dev
,
627 struct pd_uinfo
*pd_uinfo
,
630 struct crypto4xx_ctx
*ctx
;
631 struct ablkcipher_request
*ablk_req
;
632 struct scatterlist
*dst
;
635 ablk_req
= ablkcipher_request_cast(pd_uinfo
->async_req
);
636 ctx
= crypto_tfm_ctx(ablk_req
->base
.tfm
);
638 if (pd_uinfo
->using_sd
) {
639 crypto4xx_copy_pkt_to_dst(dev
, pd
, pd_uinfo
, ablk_req
->nbytes
,
642 dst
= pd_uinfo
->dest_va
;
643 addr
= dma_map_page(dev
->core_dev
->device
, sg_page(dst
),
644 dst
->offset
, dst
->length
, DMA_FROM_DEVICE
);
646 crypto4xx_ret_sg_desc(dev
, pd_uinfo
);
647 if (ablk_req
->base
.complete
!= NULL
)
648 ablk_req
->base
.complete(&ablk_req
->base
, 0);
653 static u32
crypto4xx_ahash_done(struct crypto4xx_device
*dev
,
654 struct pd_uinfo
*pd_uinfo
)
656 struct crypto4xx_ctx
*ctx
;
657 struct ahash_request
*ahash_req
;
659 ahash_req
= ahash_request_cast(pd_uinfo
->async_req
);
660 ctx
= crypto_tfm_ctx(ahash_req
->base
.tfm
);
662 crypto4xx_copy_digest_to_dst(pd_uinfo
,
663 crypto_tfm_ctx(ahash_req
->base
.tfm
));
664 crypto4xx_ret_sg_desc(dev
, pd_uinfo
);
665 /* call user provided callback function x */
666 if (ahash_req
->base
.complete
!= NULL
)
667 ahash_req
->base
.complete(&ahash_req
->base
, 0);
672 static u32
crypto4xx_pd_done(struct crypto4xx_device
*dev
, u32 idx
)
675 struct pd_uinfo
*pd_uinfo
;
677 pd
= dev
->pdr
+ sizeof(struct ce_pd
)*idx
;
678 pd_uinfo
= dev
->pdr_uinfo
+ sizeof(struct pd_uinfo
)*idx
;
679 if (crypto_tfm_alg_type(pd_uinfo
->async_req
->tfm
) ==
680 CRYPTO_ALG_TYPE_ABLKCIPHER
)
681 return crypto4xx_ablkcipher_done(dev
, pd_uinfo
, pd
);
683 return crypto4xx_ahash_done(dev
, pd_uinfo
);
687 * Note: Only use this function to copy items that is word aligned.
689 void crypto4xx_memcpy_le(unsigned int *dst
,
690 const unsigned char *buf
,
694 for (; len
>= 4; buf
+= 4, len
-= 4)
695 *dst
++ = cpu_to_le32(*(unsigned int *) buf
);
722 static void crypto4xx_stop_all(struct crypto4xx_core_device
*core_dev
)
724 crypto4xx_destroy_pdr(core_dev
->dev
);
725 crypto4xx_destroy_gdr(core_dev
->dev
);
726 crypto4xx_destroy_sdr(core_dev
->dev
);
727 iounmap(core_dev
->dev
->ce_base
);
728 kfree(core_dev
->dev
);
732 void crypto4xx_return_pd(struct crypto4xx_device
*dev
,
733 u32 pd_entry
, struct ce_pd
*pd
,
734 struct pd_uinfo
*pd_uinfo
)
736 /* irq should be already disabled */
737 dev
->pdr_head
= pd_entry
;
739 pd
->pd_ctl_len
.w
= 0;
740 pd_uinfo
->state
= PD_ENTRY_FREE
;
744 * derive number of elements in scatterlist
745 * Shamlessly copy from talitos.c
747 static int get_sg_count(struct scatterlist
*sg_list
, int nbytes
)
749 struct scatterlist
*sg
= sg_list
;
754 if (sg
->length
> nbytes
)
756 nbytes
-= sg
->length
;
763 static u32
get_next_gd(u32 current
)
765 if (current
!= PPC4XX_LAST_GD
)
771 static u32
get_next_sd(u32 current
)
773 if (current
!= PPC4XX_LAST_SD
)
779 u32
crypto4xx_build_pd(struct crypto_async_request
*req
,
780 struct crypto4xx_ctx
*ctx
,
781 struct scatterlist
*src
,
782 struct scatterlist
*dst
,
783 unsigned int datalen
,
784 void *iv
, u32 iv_len
)
786 struct crypto4xx_device
*dev
= ctx
->dev
;
787 dma_addr_t addr
, pd_dma
, sd_dma
, gd_dma
;
788 struct dynamic_sa_ctl
*sa
;
789 struct scatterlist
*sg
;
793 u32 fst_gd
= 0xffffffff;
794 u32 fst_sd
= 0xffffffff;
797 struct pd_uinfo
*pd_uinfo
= NULL
;
798 unsigned int nbytes
= datalen
, idx
;
799 unsigned int ivlen
= 0;
802 /* figure how many gd is needed */
803 num_gd
= get_sg_count(src
, datalen
);
807 /* figure how many sd is needed */
808 if (sg_is_last(dst
) || ctx
->is_hash
) {
811 if (datalen
> PPC4XX_SD_BUFFER_SIZE
) {
812 num_sd
= datalen
/ PPC4XX_SD_BUFFER_SIZE
;
813 if (datalen
% PPC4XX_SD_BUFFER_SIZE
)
821 * The follow section of code needs to be protected
822 * The gather ring and scatter ring needs to be consecutive
823 * In case of run out of any kind of descriptor, the descriptor
824 * already got must be return the original place.
826 spin_lock_irqsave(&dev
->core_dev
->lock
, flags
);
828 fst_gd
= crypto4xx_get_n_gd(dev
, num_gd
);
829 if (fst_gd
== ERING_WAS_FULL
) {
830 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
835 fst_sd
= crypto4xx_get_n_sd(dev
, num_sd
);
836 if (fst_sd
== ERING_WAS_FULL
) {
838 dev
->gdr_head
= fst_gd
;
839 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
843 pd_entry
= crypto4xx_get_pd_from_pdr_nolock(dev
);
844 if (pd_entry
== ERING_WAS_FULL
) {
846 dev
->gdr_head
= fst_gd
;
848 dev
->sdr_head
= fst_sd
;
849 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
852 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
854 pd_uinfo
= (struct pd_uinfo
*)(dev
->pdr_uinfo
+
855 sizeof(struct pd_uinfo
) * pd_entry
);
856 pd
= crypto4xx_get_pdp(dev
, &pd_dma
, pd_entry
);
857 pd_uinfo
->async_req
= req
;
858 pd_uinfo
->num_gd
= num_gd
;
859 pd_uinfo
->num_sd
= num_sd
;
861 if (iv_len
|| ctx
->is_hash
) {
863 pd
->sa
= pd_uinfo
->sa_pa
;
864 sa
= (struct dynamic_sa_ctl
*) pd_uinfo
->sa_va
;
865 if (ctx
->direction
== DIR_INBOUND
)
866 memcpy(sa
, ctx
->sa_in
, ctx
->sa_len
* 4);
868 memcpy(sa
, ctx
->sa_out
, ctx
->sa_len
* 4);
870 memcpy((void *) sa
+ ctx
->offset_to_sr_ptr
,
871 &pd_uinfo
->sr_pa
, 4);
874 crypto4xx_memcpy_le(pd_uinfo
->sr_va
, iv
, iv_len
);
876 if (ctx
->direction
== DIR_INBOUND
) {
877 pd
->sa
= ctx
->sa_in_dma_addr
;
878 sa
= (struct dynamic_sa_ctl
*) ctx
->sa_in
;
880 pd
->sa
= ctx
->sa_out_dma_addr
;
881 sa
= (struct dynamic_sa_ctl
*) ctx
->sa_out
;
884 pd
->sa_len
= ctx
->sa_len
;
886 /* get first gd we are going to use */
888 pd_uinfo
->first_gd
= fst_gd
;
889 pd_uinfo
->num_gd
= num_gd
;
890 gd
= crypto4xx_get_gdp(dev
, &gd_dma
, gd_idx
);
893 sa
->sa_command_0
.bf
.gather
= 1;
896 /* walk the sg, and setup gather array */
899 addr
= dma_map_page(dev
->core_dev
->device
, sg_page(sg
),
900 sg
->offset
, sg
->length
, DMA_TO_DEVICE
);
902 gd
->ctl_len
.len
= sg
->length
;
903 gd
->ctl_len
.done
= 0;
904 gd
->ctl_len
.ready
= 1;
905 if (sg
->length
>= nbytes
)
907 nbytes
-= sg
->length
;
908 gd_idx
= get_next_gd(gd_idx
);
909 gd
= crypto4xx_get_gdp(dev
, &gd_dma
, gd_idx
);
913 pd
->src
= (u32
)dma_map_page(dev
->core_dev
->device
, sg_page(src
),
914 src
->offset
, src
->length
, DMA_TO_DEVICE
);
916 * Disable gather in sa command
918 sa
->sa_command_0
.bf
.gather
= 0;
920 * Indicate gather array is not used
922 pd_uinfo
->first_gd
= 0xffffffff;
923 pd_uinfo
->num_gd
= 0;
925 if (ctx
->is_hash
|| sg_is_last(dst
)) {
927 * we know application give us dst a whole piece of memory
928 * no need to use scatter ring.
929 * In case of is_hash, the icv is always at end of src data.
931 pd_uinfo
->using_sd
= 0;
932 pd_uinfo
->first_sd
= 0xffffffff;
933 pd_uinfo
->num_sd
= 0;
934 pd_uinfo
->dest_va
= dst
;
935 sa
->sa_command_0
.bf
.scatter
= 0;
937 pd
->dest
= virt_to_phys((void *)dst
);
939 pd
->dest
= (u32
)dma_map_page(dev
->core_dev
->device
,
940 sg_page(dst
), dst
->offset
,
941 dst
->length
, DMA_TO_DEVICE
);
943 struct ce_sd
*sd
= NULL
;
946 sa
->sa_command_0
.bf
.scatter
= 1;
947 pd_uinfo
->using_sd
= 1;
948 pd_uinfo
->dest_va
= dst
;
949 pd_uinfo
->first_sd
= fst_sd
;
950 pd_uinfo
->num_sd
= num_sd
;
951 sd
= crypto4xx_get_sdp(dev
, &sd_dma
, sd_idx
);
953 /* setup scatter descriptor */
956 /* sd->ptr should be setup by sd_init routine*/
958 if (nbytes
>= PPC4XX_SD_BUFFER_SIZE
)
959 nbytes
-= PPC4XX_SD_BUFFER_SIZE
;
963 sd_idx
= get_next_sd(sd_idx
);
964 sd
= crypto4xx_get_sdp(dev
, &sd_dma
, sd_idx
);
965 /* setup scatter descriptor */
968 if (nbytes
>= PPC4XX_SD_BUFFER_SIZE
)
969 nbytes
-= PPC4XX_SD_BUFFER_SIZE
;
972 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
973 * which is more than nbytes, so done.
979 sa
->sa_command_1
.bf
.hash_crypto_offset
= 0;
980 pd
->pd_ctl
.w
= ctx
->pd_ctl
;
981 pd
->pd_ctl_len
.w
= 0x00400000 | (ctx
->bypass
<< 24) | datalen
;
982 pd_uinfo
->state
= PD_ENTRY_INUSE
;
984 /* write any value to push engine to read a pd */
985 writel(1, dev
->ce_base
+ CRYPTO4XX_INT_DESCR_RD
);
990 * Algorithm Registration Functions
992 static int crypto4xx_alg_init(struct crypto_tfm
*tfm
)
994 struct crypto_alg
*alg
= tfm
->__crt_alg
;
995 struct crypto4xx_alg
*amcc_alg
= crypto_alg_to_crypto4xx_alg(alg
);
996 struct crypto4xx_ctx
*ctx
= crypto_tfm_ctx(tfm
);
998 ctx
->dev
= amcc_alg
->dev
;
1001 ctx
->sa_in_dma_addr
= 0;
1002 ctx
->sa_out_dma_addr
= 0;
1005 switch (alg
->cra_flags
& CRYPTO_ALG_TYPE_MASK
) {
1007 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct crypto4xx_ctx
);
1009 case CRYPTO_ALG_TYPE_AHASH
:
1010 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
1011 sizeof(struct crypto4xx_ctx
));
1018 static void crypto4xx_alg_exit(struct crypto_tfm
*tfm
)
1020 struct crypto4xx_ctx
*ctx
= crypto_tfm_ctx(tfm
);
1022 crypto4xx_free_sa(ctx
);
1023 crypto4xx_free_state_record(ctx
);
1026 int crypto4xx_register_alg(struct crypto4xx_device
*sec_dev
,
1027 struct crypto4xx_alg_common
*crypto_alg
,
1030 struct crypto4xx_alg
*alg
;
1034 for (i
= 0; i
< array_size
; i
++) {
1035 alg
= kzalloc(sizeof(struct crypto4xx_alg
), GFP_KERNEL
);
1039 alg
->alg
= crypto_alg
[i
];
1042 switch (alg
->alg
.type
) {
1043 case CRYPTO_ALG_TYPE_AHASH
:
1044 rc
= crypto_register_ahash(&alg
->alg
.u
.hash
);
1048 rc
= crypto_register_alg(&alg
->alg
.u
.cipher
);
1053 list_del(&alg
->entry
);
1056 list_add_tail(&alg
->entry
, &sec_dev
->alg_list
);
1063 static void crypto4xx_unregister_alg(struct crypto4xx_device
*sec_dev
)
1065 struct crypto4xx_alg
*alg
, *tmp
;
1067 list_for_each_entry_safe(alg
, tmp
, &sec_dev
->alg_list
, entry
) {
1068 list_del(&alg
->entry
);
1069 switch (alg
->alg
.type
) {
1070 case CRYPTO_ALG_TYPE_AHASH
:
1071 crypto_unregister_ahash(&alg
->alg
.u
.hash
);
1075 crypto_unregister_alg(&alg
->alg
.u
.cipher
);
1081 static void crypto4xx_bh_tasklet_cb(unsigned long data
)
1083 struct device
*dev
= (struct device
*)data
;
1084 struct crypto4xx_core_device
*core_dev
= dev_get_drvdata(dev
);
1085 struct pd_uinfo
*pd_uinfo
;
1089 while (core_dev
->dev
->pdr_head
!= core_dev
->dev
->pdr_tail
) {
1090 tail
= core_dev
->dev
->pdr_tail
;
1091 pd_uinfo
= core_dev
->dev
->pdr_uinfo
+
1092 sizeof(struct pd_uinfo
)*tail
;
1093 pd
= core_dev
->dev
->pdr
+ sizeof(struct ce_pd
) * tail
;
1094 if ((pd_uinfo
->state
== PD_ENTRY_INUSE
) &&
1095 pd
->pd_ctl
.bf
.pe_done
&&
1096 !pd
->pd_ctl
.bf
.host_ready
) {
1097 pd
->pd_ctl
.bf
.pe_done
= 0;
1098 crypto4xx_pd_done(core_dev
->dev
, tail
);
1099 crypto4xx_put_pd_to_pdr(core_dev
->dev
, tail
);
1100 pd_uinfo
->state
= PD_ENTRY_FREE
;
1102 /* if tail not done, break */
1111 static irqreturn_t
crypto4xx_ce_interrupt_handler(int irq
, void *data
)
1113 struct device
*dev
= (struct device
*)data
;
1114 struct crypto4xx_core_device
*core_dev
= dev_get_drvdata(dev
);
1116 if (core_dev
->dev
->ce_base
== 0)
1119 writel(PPC4XX_INTERRUPT_CLR
,
1120 core_dev
->dev
->ce_base
+ CRYPTO4XX_INT_CLR
);
1121 tasklet_schedule(&core_dev
->tasklet
);
1127 * Supported Crypto Algorithms
1129 struct crypto4xx_alg_common crypto4xx_alg
[] = {
1130 /* Crypto AES modes */
1131 { .type
= CRYPTO_ALG_TYPE_ABLKCIPHER
, .u
.cipher
= {
1132 .cra_name
= "cbc(aes)",
1133 .cra_driver_name
= "cbc-aes-ppc4xx",
1134 .cra_priority
= CRYPTO4XX_CRYPTO_PRIORITY
,
1135 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
| CRYPTO_ALG_ASYNC
,
1136 .cra_blocksize
= AES_BLOCK_SIZE
,
1137 .cra_ctxsize
= sizeof(struct crypto4xx_ctx
),
1138 .cra_type
= &crypto_ablkcipher_type
,
1139 .cra_init
= crypto4xx_alg_init
,
1140 .cra_exit
= crypto4xx_alg_exit
,
1141 .cra_module
= THIS_MODULE
,
1144 .min_keysize
= AES_MIN_KEY_SIZE
,
1145 .max_keysize
= AES_MAX_KEY_SIZE
,
1146 .ivsize
= AES_IV_SIZE
,
1147 .setkey
= crypto4xx_setkey_aes_cbc
,
1148 .encrypt
= crypto4xx_encrypt
,
1149 .decrypt
= crypto4xx_decrypt
,
1156 * Module Initialization Routine
1158 static int __init
crypto4xx_probe(struct platform_device
*ofdev
)
1161 struct resource res
;
1162 struct device
*dev
= &ofdev
->dev
;
1163 struct crypto4xx_core_device
*core_dev
;
1165 rc
= of_address_to_resource(ofdev
->dev
.of_node
, 0, &res
);
1169 if (of_find_compatible_node(NULL
, NULL
, "amcc,ppc460ex-crypto")) {
1170 mtdcri(SDR0
, PPC460EX_SDR0_SRST
,
1171 mfdcri(SDR0
, PPC460EX_SDR0_SRST
) | PPC460EX_CE_RESET
);
1172 mtdcri(SDR0
, PPC460EX_SDR0_SRST
,
1173 mfdcri(SDR0
, PPC460EX_SDR0_SRST
) & ~PPC460EX_CE_RESET
);
1174 } else if (of_find_compatible_node(NULL
, NULL
,
1175 "amcc,ppc405ex-crypto")) {
1176 mtdcri(SDR0
, PPC405EX_SDR0_SRST
,
1177 mfdcri(SDR0
, PPC405EX_SDR0_SRST
) | PPC405EX_CE_RESET
);
1178 mtdcri(SDR0
, PPC405EX_SDR0_SRST
,
1179 mfdcri(SDR0
, PPC405EX_SDR0_SRST
) & ~PPC405EX_CE_RESET
);
1180 } else if (of_find_compatible_node(NULL
, NULL
,
1181 "amcc,ppc460sx-crypto")) {
1182 mtdcri(SDR0
, PPC460SX_SDR0_SRST
,
1183 mfdcri(SDR0
, PPC460SX_SDR0_SRST
) | PPC460SX_CE_RESET
);
1184 mtdcri(SDR0
, PPC460SX_SDR0_SRST
,
1185 mfdcri(SDR0
, PPC460SX_SDR0_SRST
) & ~PPC460SX_CE_RESET
);
1187 printk(KERN_ERR
"Crypto Function Not supported!\n");
1191 core_dev
= kzalloc(sizeof(struct crypto4xx_core_device
), GFP_KERNEL
);
1195 dev_set_drvdata(dev
, core_dev
);
1196 core_dev
->ofdev
= ofdev
;
1197 core_dev
->dev
= kzalloc(sizeof(struct crypto4xx_device
), GFP_KERNEL
);
1201 core_dev
->dev
->core_dev
= core_dev
;
1202 core_dev
->device
= dev
;
1203 spin_lock_init(&core_dev
->lock
);
1204 INIT_LIST_HEAD(&core_dev
->dev
->alg_list
);
1205 rc
= crypto4xx_build_pdr(core_dev
->dev
);
1209 rc
= crypto4xx_build_gdr(core_dev
->dev
);
1213 rc
= crypto4xx_build_sdr(core_dev
->dev
);
1217 /* Init tasklet for bottom half processing */
1218 tasklet_init(&core_dev
->tasklet
, crypto4xx_bh_tasklet_cb
,
1219 (unsigned long) dev
);
1221 /* Register for Crypto isr, Crypto Engine IRQ */
1222 core_dev
->irq
= irq_of_parse_and_map(ofdev
->dev
.of_node
, 0);
1223 rc
= request_irq(core_dev
->irq
, crypto4xx_ce_interrupt_handler
, 0,
1224 core_dev
->dev
->name
, dev
);
1226 goto err_request_irq
;
1228 core_dev
->dev
->ce_base
= of_iomap(ofdev
->dev
.of_node
, 0);
1229 if (!core_dev
->dev
->ce_base
) {
1230 dev_err(dev
, "failed to of_iomap\n");
1235 /* need to setup pdr, rdr, gdr and sdr before this */
1236 crypto4xx_hw_init(core_dev
->dev
);
1238 /* Register security algorithms with Linux CryptoAPI */
1239 rc
= crypto4xx_register_alg(core_dev
->dev
, crypto4xx_alg
,
1240 ARRAY_SIZE(crypto4xx_alg
));
1247 iounmap(core_dev
->dev
->ce_base
);
1249 free_irq(core_dev
->irq
, dev
);
1251 irq_dispose_mapping(core_dev
->irq
);
1252 tasklet_kill(&core_dev
->tasklet
);
1253 crypto4xx_destroy_sdr(core_dev
->dev
);
1255 crypto4xx_destroy_gdr(core_dev
->dev
);
1257 crypto4xx_destroy_pdr(core_dev
->dev
);
1259 kfree(core_dev
->dev
);
1266 static int __exit
crypto4xx_remove(struct platform_device
*ofdev
)
1268 struct device
*dev
= &ofdev
->dev
;
1269 struct crypto4xx_core_device
*core_dev
= dev_get_drvdata(dev
);
1271 free_irq(core_dev
->irq
, dev
);
1272 irq_dispose_mapping(core_dev
->irq
);
1274 tasklet_kill(&core_dev
->tasklet
);
1275 /* Un-register with Linux CryptoAPI */
1276 crypto4xx_unregister_alg(core_dev
->dev
);
1277 /* Free all allocated memory */
1278 crypto4xx_stop_all(core_dev
);
1283 static const struct of_device_id crypto4xx_match
[] = {
1284 { .compatible
= "amcc,ppc4xx-crypto",},
1288 static struct platform_driver crypto4xx_driver
= {
1290 .name
= "crypto4xx",
1291 .of_match_table
= crypto4xx_match
,
1293 .probe
= crypto4xx_probe
,
1294 .remove
= __exit_p(crypto4xx_remove
),
1297 module_platform_driver(crypto4xx_driver
);
1299 MODULE_LICENSE("GPL");
1300 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1301 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");